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Abstract 

In an emerging class of open distributed real-time and 
embedded (DRE) systems with stringent but dynamic 
QoS requirements, there is a need to propagate QoS 
parameters and enforce task QoS requirements across 
multiple endsystems in a way that is simultaneously 
efficient and adaptable.  The Object Management 
Group’s (OMG) Real-Time CORBA 2.0 specification 
(RTC2) defines a dynamic scheduling framework for 
propagating and enforcing QoS parameters 
dynamically in standard CORBA middleware. 

 This paper makes two contributions to 
research on middleware for open DRE systems.  First, 
it describes the design and capabilities of the RTC2 
dynamic scheduling framework provided by TAO, 
which is our open-source CORBA standards-based 
Object Request Broker (ORB). Second, it describes and 
summarize the results of empirical studies we have 
conducted to validate our RTC2 framework in the 
context of open DRE systems.  The results of those 
experiments show that a range of policies for adaptive 
scheduling and management of distributable threads 
can be enforced efficiently in standard middleware for 
open DRE systems. 
 

1. Introduction 
 
Emerging trends. Developing distributed real-time 
and embedded (DRE) systems whose quality of service 
(QoS) can be assured even in the face of changes in 
available resources is an important and challenging 
R&D problem. It is useful to distinguish two types of 
QoS assurance for DRE systems: (1) static, in which 
QoS requirements are known a priori and can be 
enforced efficiently due to that knowledge and (2) 
dynamic, in which QoS requirements can vary at run-
time and their enforcement requires more flexible 

mechanisms that may incur more overhead.  Many 
DRE systems have a combination of static and dynamic 
QoS requirements, and hybrid static/dynamic 
enforcement mechanisms have been shown useful in 
previous work [1]. 

Static approaches are often suitable for closed 
DRE systems, where the set of application tasks that 
will run in the system and the loads they will place on 
system resources are known in advance. For example, 
the OMG’s Real-time CORBA 1.0 (RTC1) 
specification [2] supports statically scheduled DRE 
systems in which task eligibility can be mapped to a 
fixed set of priorities. Such closed systems can be 
scheduled a priori.  

Dynamic approaches to resource management 
are often essential for open DRE systems, which 
consist of independently developed application 
components that are distributed across host endsystems 
sharing a common network. Due to the heterogeneity of 
the components, the complexity of their modes of 
interaction, and the dynamic environments in which 
they operate, it is hard to specify the resource 
requirements of open DRE systems a priori.    
New middleware challenges and solutions. The 
OMG Real-Time CORBA 2.0 specification (RTC2) [5] 
addresses the limitations with the fixed-priority 
mechanisms specified by RTC1. In particular, RTC2 
extends RTC1 by providing interfaces and mechanisms 
that applications can use to plug in dynamic schedulers 
and interact with them across a distributed system.  
RTC2 therefore gives application developers more 
flexibility to specify and use scheduling disciplines and 
parameters that accurately define and describe their 
execution and resource requirements. To accomplish 
this, RTC2 introduces two new concepts to Real-time 
CORBA: (1) distributable threads that are used to map 
end-to-end QoS requirements to sequential and 
branching distributed computations across the 



endsystems they traverse and (2) a scheduling service 
architecture that allows applications to choose which 
mechanisms enforce task eligibility. 

We have implemented a RTC2 prototype that 
enhances on our prior work with The ACE ORB 
(TAO) [6] and its Real-time Scheduling Service [7][8] . 
This paper describes how we designed and optimized 
the performance of our RTC2 Dynamic Scheduling 
framework to address the following design challenges:  
• Defining a means to install pluggable dynamic 

schedulers that support scheduling policies and 
mechanisms for a wide range of DRE applications, 

• Creating an interface that allows customization of 
interactions between an installed RTC2 dynamic 
scheduler and an application, 

• Portable and efficient mechanisms for 
distinguishing between distributable thread and OS 
thread identities, and 

• Safe and effective mechanisms for canceling 
distributable threads to give applications control 
over distributed concurrency. 

The results of our efforts have been integrated with the 
TAO open-source software release and are available 
from deuce. doc. wust l . edu/ Downl oad. ht ml . 

Paper  organization. The remainder of this paper is 
organized as follows: Section 2 describes the RTC2 
specification and explains the design of our RTC2 
framework, which has been integrated with the TAO 
open-source Real-time CORBA ORB; Section 3 
presents empirical studies we conducted to validate our 
RTC2 approach and to quantify the costs of dynamic 
scheduling of distributable threads; and Section 4 
offers concluding remarks. 

2. Dynamic Scheduling Framework Design 
and Implementation for  RT CORBA 2.0  
 
This section describes the key characteristics and 
capabilities of RTC2 specification and describes the 
RTC2 dynamic scheduling framework that we have 
integrated with the TAO Real-time CORBA ORB.  The 
key elements of TAO’s RTC2 framework, which 
Figure 1 illustrates, are:  
1. Distributable threads, which applications use to 

traverse endsystems, 

2. Scheduling segments, which map policy 
parameters to distributable threads at specific 
points of execution, 

3. Current execution locus, the head of an active 
thread,  

4. Scheduling policies, which determine the 
eligibility of each thread based on parameters of 
the scheduling segment within which that thread is 
executing, and 

5. Dynamic scheduler, which reconciles the set of 
scheduling policies for all segments and threads on 
an endsystem, to determine which thread is active. 
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Figure 1: TAO’s RTC2 Architecture 

The remainder of this section explains the concepts of 
distributable threads and the pluggable scheduling 
framework specified by RTC2 and outlines the design 
of these concepts in TAO’s RTC2 framework 
implementation.  We also describe scheduling points, 
which govern how and when scheduling parameter 
values can be mapped to distributable threads.  We 
conclude by discussing issues related to distributable 
thread identity (such as the need to emulate OS-level 
thread-specific mechanisms for storage or locking in 
middleware) and examine the interfaces and 
mechanisms needed to cancel distributable threads.  

2.1. Distr ibutable Threads 

DRE applications must manage key resources, such as 
CPU cycles, network bandwidth, and battery power, to 
ensure predictable behavior along each end-to-end 
path.  In RTC1-based DRE systems, application end-
to-end priorities can be acquired from clients, 
propagated with invocations, and used by servers to 
arbitrate access to endsystem CPU resources.  For 
dynamic DRE systems, the fixed-priority propagation 
model provided by RTC1 is insufficient because these 
DRE systems require more information than just 
priority, e.g., they may need deadline, execution time, 
and laxity. A more sophisticated abstraction than 
priority is thus needed to identify the most eligible 
schedulable entity, and additional scheduling 
parameters may need to be associated with it so that it 
can be scheduled appropriately.  

A natural unit of scheduling abstraction 
suggested by CORBA’s programming model is a 
thread that can execute operations in objects without 
regard for physical endsystem boundaries. In the RTC2 
specification, this programming model abstraction is 



termed a distributable thread, which can span multiple 
endsystems and is the primary schedulable entity in 
RTC2-based DRE applications. A distributable thread 
replaces the concept of an activity that was introduced 
but not formally specified in the RTC1 specification. 

Each distributable thread in RTC2 is 
identified by a unique system wide identifier called a 
Globally Unique Id (GUID) [9]. A distributable thread 
may have one or more execution scheduling 
parameters, e.g., priority, time-constraints (such as 
deadlines), and importance. These parameters specify 
the acceptable end-to-end timeliness for completing the 
sequential execution of operations in CORBA object 
instances that may reside on multiple physical 
endsystems.  

Within each endsystem, the flow of control of 
the distributable thread is mapped onto the execution of 
a local thread provided by the OS. At any given instant, 
each distributable thread has only one execution point 
in the whole system, i.e., a distributable thread does not 
execute simultaneously on multiple endsystems it 
spans.  Instead, it executes a code sequence consisting 
of nested distributed and/or local operation 
invocations, similar to the way a local thread executes 
through a series of nested local operation invocations. 
Below, we describe the key interfaces and properties of 
distributable threads in the RTC2 specification and 
explain how we implement those aspects in TAO. 
Scheduling segment. A distributable thread comprises 
one or more scheduling segments. A scheduling 
segment is a code sequence whose execution is 
scheduled according to a distinct set of scheduling 
parameters specified by the application. For example, 
the worst-case execution time, deadline, and criticality 
of a real-time operation is used by the Maximum 
Urgency First (MUF) scheduling strategy [4]. These 
parameters can be associated with a segment 
encompassing that operation on a particular endsystem, 
e.g., as shown for segment B in Figure 1. The code 
sequence that a scheduling segment comprises can 
include remote and/or local operation invocations.   
 Appropriate operations defined in the 
RTSchedul i ng: : Cur r ent  interface described below 
are used to open or close a scheduling segment. A DRE 
application opens a scheduling segment by calling the 
begi n_schedul i ng_segment ( )  operation and then 
closes the scheduling segment by calling the 
end_schedul i ng_segment ( )  operation. Nested 
scheduling segments are allowed so that different parts 
of a scheduling segment can be scheduled with 
different sets of scheduling parameters.  

Our RTC2 implementation in TAO currently 
places a restriction that the calls to begin and end each 

scheduling segment should be made on the same 
physical endsystem. We will lift this restriction in 
future work so that the begin and end points can be on 
different hosts.  We will provide different strategies for 
the cases where all begin and end points are or are not 
collocated, however, since supporting distributed 
segment begin and end points incurs more overhead.   
The Current inter face.  The RTSchedul i ng 
modul e’ s Cur r ent  interface defines operations that 
begin, update, and end the scheduling segments 
described above, as well as create and destroy 
distributable threads. Each scheduling segment has a 
unique instance of this Cur r ent  object managed in 
local thread specific storage (TSS) [10] on each 
endsystem along the overall path of the distributable 
thread. A nested scheduling segment keeps a reference 
to the Cur r ent  instance of its enclosing scheduling 
segment. Each operation in the Current interface of the 
RT Scheduling module is described below. 
begin_scheduling_segment() – A DRE application 
calls this operation to start a scheduling segment. If the 
caller is not already within a distributable thread, a new 
distributable thread is created. If the caller is already 
within a distributable thread, a nested scheduling 
segment is created. This call is also a scheduling point, 
where the application interacts with the RTC2 dynamic 
scheduler to select the currently executing thread 
(Section 2.3 describes scheduling points in depth). 
update_scheduling_segment() – This operation is a 
scheduling point for the application to interact with the 
RTC2 dynamic scheduler to update the scheduling 
parameters and to check whether or not the schedule 
remains feasible. It must be called only from within a 
scheduling segment. A CORBA: : BAD_I NV_ORDER 
exception is thrown if this operation is called outside a 
scheduling segment context. 
end_scheduling_segment() – This operation marks the 
end of a scheduling segment and the termination of the 
distributable thread if the segment is not nested within 
another scheduling segment. Every call to begi n_ 
schedul i ng_segment ( )  should have a 
corresponding call to end_schedul i ng_segment ( ) . 
As noted earlier, in TAO’s RTC2 prototype the 
segment begin and end calls should be on the same host 
and in the same thread.  After a call to 
end_schedul i ng_segment ( ) , the distributable 
thread is operating with the scheduling parameter of the 
next outer scheduling segment scope. If this operation 
is performed at the outermost scope, the processing for 
the native thread that the distributable thread is mapped 
onto reverts back to the fixed priority OS scheduling 
where the active thread priority is the sole determinant 
of the threads eligibility for execution. 



spawn() – A distributable thread can create a new 
distributable thread by invoking the spawn( )  
operation. If the scheduling parameters for the new 
distributable thread not specified explicitly, the implicit 
scheduling parameters of the distributable thread 
calling spawn( )  are used. The spawn( )  operation 
can only be called by a distributable thread, otherwise a 
CORBA: : BAD_I NV_ ORDER exception is thrown.  
 

Distr ibutable thread location. Now that we have 
explained the terminology and API for distributed 
threads we can illustrate how all the pieces fit together. 
A distributable thread may be entirely local to a host or 
it may span multiple hosts by making remote 
invocations. Figures 2 and 3 therefore illustrate the 
different spans that are possible for distributable 
threads.  In these figures, calls made by the application 
are shown as solid dots, while calls made by 
interceptors within the middleware are shown as 
shaded rectangles. 

In Figure 2, DT1 makes a two-way invocation 
on an object on a different host and also has a nested 
segment started on Host 2 (BSS-B to ESS-B within 
BSS-A to ESS-A). DT2 and DT3 are simple 
distributable threads that do not traverse host 
boundaries. DT2 has a single scheduling segment 
(BSS-C to ESS-C), while DT3 has a nested scheduling 
segment (BSS-E to ESS-E within BSS-D to ESS-D).  
In Figure 3 DT2 is created by the invocation of the 
RTSchedul i ng: : Cur r ent : : spawn( )  operation 
within DT1, while DT4 is implicitly created on Host 2 
to service a one-way invocation. DT4 is destroyed 
when the upcall completes on Host 2.  
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Figure 2: Distr ibutable Threads and the Hosts They Span 

2.2. Pluggable Scheduling 
 

Different distributable threads in a DRE system 
contend for shared resources, such as CPU cycles. To 
support the end-to-end QoS demands of open DRE 
systems, it is imperative that such contention be 
resolved predictably,  which necessitates scheduling 
and dispatching mechanisms for these entities based on 
the real-time requirements of the system. In the RTC2 
specification, the scheduling policy decides the 

sequence in which the distributable threads should be 
given access to the resources and the dispatching 
mechanism grants the resources according to the 
sequence decided by the scheduling policy. 
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Figure 3: Ways to Spawn a Distr ibutable Thread 

 Various scheduling disciplines exist that require 
different scheduling parameters, such as MLF, EDF, 
MUF [4], or RMS+MLF [11]. One or more of these 
scheduling disciplines (or any other discipline the 
system developer chooses) may be used by an open 
DRE system to fulfill its scheduling requirements. 
Supporting this flexibility requires a mechanism by 
which different dynamic schedulers (each 
implementing one or more scheduling disciplines) can 
be plugged into an RTC2 implementation.  

The RTC2 specification provides a common CORBA 
IDL interface, RTSchedul i ng: : Schedul er . This 
interface has the semantics of an abstract class from 
which specific dynamic scheduler implementations can 
be derived. In the RTC2 specification, the dynamic 
scheduler is installed in the ORB and can be queried 
with the standard CORBA ORB: :  
r esol ve_i ni t i al _r ef er ences f act or y 
oper at i on using the name “RTSchedul er . ”  The 
application then interacts with the installed RTC2 
dynamic scheduler (e.g., passing its scheduling 
requirements) using operations defined in the 
RTSchedul i ng: : Schedul er  interface that is listed 
under Scheduler Upcalls in Table 1. Similarly, the 
ORB interacts with the RTC2 dynamic scheduler at the 
points described in Section 2.3 to ensure proper 
dispatching and sharing of scheduling information 
across hosts. This is done through scheduler operations 
listed under scheduler upcalls in Table 2. 

2.3. Scheduling Points 
 

An application and ORB interact with the RTC2 
dynamic scheduler at pre-defined points to schedule 
distributable threads in a DRE system.  These 
scheduling points allow an application and ORB to 
provide the RTC2 dynamic scheduler information 
about the competing tasks in the system, so it can make 



scheduling decisions in a consistent and predictable 
manner. We now describe these scheduling points, 
which are illustrated in Figure 4. 
 
Table 1: Summary of Scheduler  Upcalls for  User  Invoked 

Scheduling Points  

Table 2:  Summary of Scheduler  Upcalls for  ORB 
Invoked Scheduling Points 

ORB intercepts Scheduler upcall 

Out goi ng r equest   Schedul er : : send_r equest  

I ncomi ng r equest  Schedul er : : r ecei ve_r equest  

Out goi ng r epl y Schedul er : : send_r epl y 

I ncomi ng r epl y Schedul er : : r ecei ve_r epl y 

 
Scheduling points 1-3 in Figure 4 are points where an 
application interacts with the RTC2 dynamic scheduler 
and are summarized in Table 1.  The key application-
level scheduling points and their characteristics are: 
New distr ibutable threads and segments. When a 
new scheduling segment or new distributable thread is 
created, the RTC2 dynamic scheduler must be 
informed so that it can schedule the new segment. The 
RTC2 dynamic scheduler then schedules the new 
scheduling segment based on its parameters and those 
of the active scheduling segments for other 
distributable threads in the system when application 
code outside a distributable thread calls the 
begi n_new_schedul i ng_segment ( )  operation to 
create a new distributable thread, or when code within 
a distributable thread makes a call to 
begi n_nest ed_schedul i ng_segment ( )  to create 
a nested scheduling segment. 
Changes to scheduling segment parameters. When 
the Cur r ent : : updat e_schedul i ng_segment ( )  
op- er at i on is invoked by a distributable thread to 
change its scheduling parameters, it updates scheduling 
parameters of the corresponding scheduling segment 
via Schedul er : : updat e_schedul i ng_segment ( ) . 
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Figure 4: RTC2 Scheduling Points 

Termination of a scheduling segment or  
distr ibutable thread. The RTC2 dynamic scheduler 
should be informed when Cur r ent  
: : end_schedul i ng_segment ( )  is invoked by a 
distributable thread to end a scheduling segment or 
when a distributable thread is cancelled, so it can 
reschedule the system accordingly.  Hence, the 
Cur r ent : : end_schedul i ng_segment ( )  operation 
invokes the end_schedul i ng_segment ( )  operation 
on the RTC2 dynamic scheduler to indicate when the 
outermost scheduling segment is terminated. The RTC2 
dynamic scheduler then reverts the thread to its original 
scheduling parameters. If a nested scheduling segment 
is terminated, an automatic invocation of 
Schedul er : : end_nest ed_schedul i ng_segment (
)  occurs. The RTC2 dynamic scheduler then ends the 
scheduling segment and resets the distributable thread 
to the scheduling parameters of the enclosing 
scheduling segment scope.  
As is described in Section 2.4.2, a distributable thread 
can also be terminated from the application or another 
distributable thread by calling the cancel ( )  
operation on the distributable thread. When the 
distributable thread is cancelled, the Schedul er : :  
cancel  operation is called automatically by the RTC2 
framework, which informs the RTC2 dynamic 
scheduler of the distributable thread cancellation.  

Scheduling points 4-7 in Figure 4 are points 
where an ORB interacts with the RTC2 dynamic 
scheduler, i.e., when remote invocations are made 
between different hosts, and are summarized in Table 
2. Collocated invocations occur when the client and 
server are located in the same process. In collocated 
two-way invocations, the thread making the request 

User invokes Scheduler upcall 

Cur r ent : : spawn Schedul er : :  
begi n_new_schedul i ng_segment  

Cur r ent : :  
begi n_schedul i ng_segment  
 

Schedul er : :  
begi n_new_schedul i ng_segment  

Cur r ent : :  
begi n_schedul i ng_segment  
 

Schedul er : :  
begi n_nest ed_schedul i ng_segment  

Cur r ent : :  
Updat e_schedul i ng_segment  

Schedul er : :  
Updat e_schedul i ng_segment  

Cur r ent : :  
end_schedul i ng_segment  
 

Schedul er : :  
end_nest ed_schedul i ng_segment  

Cur r ent : :  
end_schedul i ng_segment  
 

Schedul er : :  
end_schedul i ng_segment  

Di st r i but abl eThr ead: :  
Cancel  Schedul er : : cancel  



also services the request. Unless a scheduling segment 
begins or ends at that point, therefore, the distributable 
thread does not have to be rescheduled by the RTC2 
dynamic scheduler. Collocated one-way invocations do 
not result in creation of a new distributable thread in 
TAO’s RTC2 implementation due to (1) the overhead 
of distributable thread creation, (2) scheduling 
overhead/complexity, (3) lack of interceptor support 
for collocated one-ways, and (4) lack of support for 
executing collocated calls in separate threads. 

The ORB interacts with the RTC2 dynamic 
scheduler at points where the remote operation 
invocations are sent and received. Client-side and 
server-side interceptors are therefore installed to allow 
interception requests as they are sent and received. 
These interceptors are required (a) to intercept where a 
new distributable thread is spawned in one-way 
operation invocations and create a new GUID for that 
thread on the server, (b) to populate the service 
contexts, sent with the invocation, with the GUID and 
required scheduling parameters of the distributable 
thread, (c) to re-create distributable threads on the 
server, (d) to perform cleanup operations for the 
distributable thread on the server when replies  are sent 
back to a client for two-way operations, and (e) to 
perform cleanup operations on the client when the 
replies from two-way operations are received. These 
interception points interact with the RTC2 dynamic 
scheduler so it can make appropriate scheduling 
decisions.  The key RTC2 ORB-level scheduling points 
and their characteristics are described below. 
Send request. When a remote operation invocation is 
made, the RTC2 dynamic scheduler must be informed 
to ensure that it can (1) populate the service context of 
the request to embed the appropriate scheduling 
parameters of the distributable thread and (2) 
potentially re-map the local thread associated with the 
distributable thread to service another distributable 
thread. As discussed in Section 2.4, when the 
distributable thread returns to that same ORB during a 
nested upcall, it may be mapped to a different local 
thread than the one with which it was associated 
previously. The client request interceptor’s 
send_r equest ( )  operation is invoked automatically 
just before a request is sent. This operation in turn 
invokes Schedul er : : send_r equest ( )  with the 
scheduling parameters of the distributable thread that is 
making the request. The scheduling information in the 
service context of the invocation enables the RTC2 
dynamic scheduler on the remote host to schedule the 
incoming request appropriately. 
Receive request. When a request is received, the 
server request interceptor’s r ecei ve_r equest ( )  

operation is invoked automatically by the RTC2 
framework before the upcall to the servant is made. 
This operation in turn invokes 
Schedul er : : r ecei ve_r equest ( ) , passing it 
the received service context that contains the GUID 
and scheduling parameters for the corresponding 
distributable thread. It is the responsibility of the RTC2 
dynamic scheduler to unmarshal the scheduling 
information in the service context that is received. The 
RTC2 dynamic scheduler uses this information to 
schedule the thread servicing the request, and the ORB 
requires it to reconstruct a 
RTSchedul i ng: : Cur r ent ,  and hence a distributable 
thread, on the server. 
Send reply – When the distributable thread returns via 
a two-way reply to a host from which it migrated, the 
send_r epl y( )  operation on the server request 
interceptor is called automatically by the RTC2 
framework just before the reply is sent. This operation 
in turn calls the Schedul er : : send_r epl y( )  
oper at i on on the server-side RTC2 dynamic 
scheduler so it can perform any scheduling of the 
thread  making the upcall as required by the scheduling 
discipline used so the next eligible distributable thread 
in the system is executed.  
Receive reply. Distributable threads migrate across 
hosts through two-way calls. The distributable thread 
returns to the previous host, from where it migrated, 
through the reply of the two-request. When the reply is 
received the client request interceptor’s 
r ecei ve_r epl y( )  operation is invoked. This 
operation in turn invokes Schedul er : :  
r ecei ve_r epl y( )  on the client-side RTC2 dynamic 
scheduler, which then performs any scheduling related 
decisions required by the scheduling discipline, as a 
distributable thread re-enters the system. 

2.4. Challenges of Implementing an RTC2 
Framework in TAO 

To manage distributable threads correctly, an RTC2 
framework must resolve a number of design challenges. 
Below we examine two challenges we faced when 
implementing distributable threads (1) managing 
distributable vs. OS thread identities and (2) canceling 
distributable threads. For each challenge, we describe 
the context in which the challenge arises, identify the 
specific problem that must be addressed, describe our 
solution for resolving the challenge, and explain how 
this solution was applied to TAO’s RTC2 framework. 

2.4.1. Distr ibutable vs. OS Thread Identity 
Context. A key design issue with the RTC2 
specification is that in modern ORB middleware with 
alternative concurrency strategies [11], a distributable 



thread may be mapped on each endsystem to several 
different OS threads over its lifetime.  Figure 5 
illustrates how a distributable thread can use thread-
specific storage (TSS), lock resources recursively so 
that they can be re-acquired later by that same 
distributable thread, or perform any number of other 
operations that are sensitive to the identity of the 
distributable thread performing them. 

In Figure 5, distributable thread DT1 
associated with OS thread 1 writes information into 
TSS on endsystem A and then migrates to endsystem 
B. Before DT1 makes a nested two way call back to an 
object on endsystem A, DT2 migrates from endsystem 
B to endsystem A.  For efficiency, flexible concurrency 
strategies (such as thread pools [2]) may map 
distributable threads to whatever local threads are 
available. For example, Figure 5 shows DT2 mapped to 
OS thread 1 and when DT1 returns to endsystem A it 
maps to OS thread 2.   

Host 1 Host 2

OS
Thread

1

DT 1

tss_write

tss_read

OS
Thread

2

OS
Thread

1

DT 2

 
Figure 5: TSS with Distr ibutable Threads 

Problem. Problems can arise when DT1 wants to 
obtain the information it previously stored in TSS. If 
native OS-level TSS was used, OS thread 2 cannot 
access the TSS for OS thread 1, so DT1’s call to 
t ss_r ead( )  in Figure 5 will fail. Moreover, the OS-
level TSS mechanism does not offer a way to substitute 
the OS thread identity used for a TSS call, even 
temporarily.  
Solution. To resolve these problems, some notion of 
distributable thread identity is needed that is separate 
from the identities of operating system threads.  
Likewise, mechanisms are needed that use distributable 
thread GUIDs rather than OS thread IDs, which results 
in an emulation of OS-level mechanisms in middleware 
that can incur additional overhead.   

2.4.2. Canceling a Distr ibutable Thread 
Context. DRE applications may need to cancel 
distributable threads that become useless due to 
deadline failure or to changing application 
requirements at run-time, or that might interfere with 
other distributable threads that have become more 
important. In the RTC2 specification, a distributable 
thread supports the following Di st r i but abl eThr ead 

interface whose cancel ( )  operation can be invoked to 
stop the corresponding distributable thread.  

l ocal  i nt er f ace 
RTSchedul i ng: : Di st r i but abl eThr ead 
{  
  / /  r ai ses CORBA: : OBJECT_NOT_FOUND  
  / /  i f  di st r i but abl e t hr ead  i s not  
known  
  voi d cancel ( ) ;  
} ;  
The Di st r i but abl eThr ead instance is created when 
the outer most scheduling segment is created. All 
nested scheduling segments are associated with the 
same distributable thread that they constitute. 
Problem. Safe and effective cancellation of a 
distributable thread requires that two conditions are 
satisfied: (1) cancellation must only be invoked on a 
distributable thread that in fact exists in the system and 
multiple cancellation of a distributable thread must not 
occur and (2) because a distributable thread may have 
locked resources or performed other operations with 
side effects outside that distributable thread, the effects 
of those operations must be reversed before the 
distributable thread is destroyed. 
Solution. To cancel a distributable thread, the 
application can only call the cancel ( )  operation on 
the instance of the distributable thread that is to be 
cancelled. Moreover, once cancellation is successful 
that instance becomes invalid for further cancellation. 
In the TAO RTC2 framework, this operation causes the 
CORBA: :  THREAD_CANCELLED exception to be (1) 
raised in the context of the distributable thread at the 
next scheduling point for the distributable thread and 
(2) propagated to where the distributable thread started, 
as illustrated in Figure 6.  A distributable thread can be 
cancelled any time on any host that it currently spans. 
As shown in Figure 6, the distributable thread was 
cancelled on Host 2, even though it is currently 
executing on Host 3.  

When the cancel ( )  operation is called, a 
thread cancelled exception is propagated to the start of 
the distributable thread. As shown in Figure 6, the 
CORBA: : THREAD_CANCELLED exception is propagated 
from Host 2 to Host 1 where the distributable thread 
started. Since the cancellation is not forwarded to the 
head of the distributable thread if it is not on the same 
host, the cancellation will only be processed after the 
distributable thread returns to Host 2 from Host 3. 
Note that while the distributable thread is a local 
interface, the head of the distributable thread may not 
be executing within the same address space as the 
thread calling cancel ( ) . Hence, cancel ( )  is 
implemented by setting a flag in the 
Di st r i but abl eThr ead interface to mark it as 
cancelled. At the next local scheduling point of the 



distributable thread a check for cancellation of the 
distributable thread will be performed. If the flag is set, 
then the distributable thread is cancelled and the 
CORBA: :  THREAD_CANCELLED exception is raised 
and the relevant resources are released. After 
CORBA: : THREAD_ CANCELLED is raised and the 
distributable thread is cancelled, the local thread that 
the distributable thread was mapped is released, 
possibly to be used by another distributable thread. 

BSS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

DT cancelled

 
Figure 6: Distr ibutable Thread Cancellation 

3. Empir ical Studies 

This section describes empirical benchmarks we 
conducted to validate TAO’s RTC2 architecture 
described in Section 2.  We describe experiments that 
evaluated alternative mechanisms for scheduling 
distributable threads according to importance.  
Exper iment overview and configuration. We 
plugged two RTC2 dynamic scheduler implementations 
into the TAO ORB to test the behavior of its RTC2 
dynamic scheduling framework with different 
scheduling mechanisms.  Both implementations use a 
scheduling policy that prioritizes distributable threads. 
Our Fixed Priority (FP) Scheduler implementation 
schedules distributable threads by mapping each one’s 
dynamic importance to native OS priorities. Our Most 
Important First (MIF) Scheduler implementation 
maintains its own ready queue that stores distributable 
threads in order of their importance, and the local 
thread to which each distributable thread in the queue 
is mapped waits on a condition variable. When a 
distributable thread reaches the head of the queue (i.e., 
it is next to execute), the MIF Scheduler signals the 
corresponding condition variable on which the local 
thread is waiting, to awaken it. 
 The experimental configuration we used to examine 
both the FP and MIF schedulers is identical. The test 
consisted of a set of local and distributed (spanning two 
hosts) distributable threads. The hosts were both 
running RedHat Linux 7.1 in the real-time scheduling 
class. The local distributable threads consisted of 
threads performing CPU bound work on the local host 

for a given execution time. The distributed 
distributable threads (1) performed the specified local 
CPU bound work on the local host, (2) then made the 
remote invocation performing CPU bound work on the 
remote host for a given execution time, and (3) came 
back to the local host to perform the specified local 
CPU bound work. Tables 3 and 4 show the scheduling 
parameters of distributable threads on Host 1 and Host 
2 respectively: execution times for local work before 
and after the remote invocation are separated by a ‘+’ .  
In the Execution Time column, “Loc.”  represents local 
execution times while “Rem.”  represents remote 
execution times.   
 

Table 3: Distr ibutable Thread Schedule on Host 1 

GUID 
Start 
Time  
(secs) 

Importance 
Execution Time 

(secs) 
Spa
n 

   Loc. Rem.  

1 
0 9 3+3 3 Dis

t 
2 0 3 6+6 3  

Dis
t 

3 12 1 6 N/A Lo
cal 

 

Table 4: Distr ibutable Thread Schedule on Host 2 

Execution 
Time  

GUID 

Start 
Time 
(secs) 

Importanc
e 

Loc. Rem. 
Span 

4 0 5 9 N/A Local 
5 9 7 3 N/A Local 

 
Summary of Empir ical results. Since both the FP and 
MIF schedulers use the same scheduling policy based 
on the importance of the distributable threads, the 
resulting performance was nearly identical. This result 
demonstrates that system-wide dynamic scheduling can 
be achieved with TAO’s RTC2 framework when tasks 
(represented by the distributable threads) enter and 
leave the system dynamically. Since both the FP and 
MIF schedulers schedule the distributable threads 
based on their importance, it is not surprising based on 
policy that the performance was nearly identical. The 
one small but important difference from a mechanism  
perspective was in the times at which the threads are 
suspended and resumed, due to the context switch time 
for the MIF scheduler (which is at the middleware 
level) compared to the FP scheduler (which is at the OS 
level). These results validate our hypothesis that 
dynamic schedulers implementing different scheduling 



disciplines and even using different scheduling 
mechanisms can be plugged into TAO’s RTC2 
framework to schedule the distributable threads in the 
system according to a variety of requirements, while 
maintaining reasonable efficiency. 
 

4. Concluding Remarks 
 
The Real-time CORBA 2.0 (RTC2) specification 
defines a dynamic scheduling framework that enhances 
the development of open distributed real-time and 
embedded (DRE) systems that possess dynamic QoS 
requirements. The RTC2 framework provides a 
distributable thread capability that can support 
execution sequences requiring dynamic scheduling and 
enforce their QoS requirements based on scheduling 
parameters associated with them. The RTC2 
distributable threads abstraction can extend over as 
many hosts that the execution sequence may span. 
Flexible scheduling is achieved by plugging in dynamic 
schedulers that implement different scheduling 
disciplines, such as EDF, MLF, MUF, or RMS+MLF. 
 TAO’s implementation of the RTC2 specification 
has addressed a broader set of issues than the standard 
itself covers, such as mapping distributable and local 
thread identities, supporting hybrid static and dynamic 
scheduling, and defining efficient mechanisms for 
enforcing a variety of scheduling policies. We learned 
the following lessons based on our experience 
developing and empirically evaluating TAO’s RTC2 
framework:  
• RTC2 is a good beginning towards addressing the 

dynamic scheduling issue in DRE systems. To 
achieve correctness, however, there is a need for a 
robust implementation of a Scheduling Service that 
works in conjunction with the RTC2 framework. 
By integrating our earlier work on the Kokyu 
scheduling framework [7], [8] within the RTC2 
standard, we have provided a wider range of 
scheduling policies and mechanisms. 

• Some features that are implemented for the 
efficiency of thread and other resource 
management can hinder the correct working of the 
RTC2 framework. For example, managing 
distributable threads is more costly and 
complicated due to sensitivity of key mechanisms 
to their identities, as is discussed in Section 0.  

• In practice, relatively few DRE applications need 
system-wide dynamic scheduling, which has 
limited the scope of the RTC2 specification. In 
particular, it presently does not address 
interoperability of the dynamic schedulers on 

different hosts. Instead, it only ensures propagation 
of timeliness requirements of an execution 
sequence across the hosts it spans so it can be 
scheduled on each host.  
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