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Abstract

Developing extensible, robust, and efficient distributed sys-
tems is a complex task. To help alleviate this complexity, we
have developed the ADAPTIVE Service eXecutive (ASX)
framework. ASX is an object-oriented framework composed
of automated tools and reusable components. These tools
and components help to simplify the development, config-
uration, and reconfiguration of applications in a distributed
environment. Using the ASX framework, the services in the
applications may be updated and extended without modi-
fying, recompiling, relinking, or restarting the applications
at run-time. This paper describes the features and object-
oriented architecture of theASX framework. It also describes
how the ASX framework has been used to develop a highly
modular, reusable, and dynamically reconfigurable family of
distributed system management applications.

1 Introduction

Mapping distributed application services flexibly and effi-
ciently onto host processes and threads is a challenging task.
Selecting an efficient mapping is difficult since service func-
tionality, network/host workload, and OS/hardware platform
characteristics may vary dynamically. Therefore, it is es-
sential to develop software tools that support flexibility with
respect to the following design criteria:

� which services to map onto which hosts in a distributed
system;

� how to effectively use the parallelism available on multi-
processor platforms.

Ideally, software development tools should postpone these
decisions until very late in the development cycle (i.e., at

1This research is supported in part by grants from the University of
California MICRO program, HughesAircraft, Nippon Steel Information and
Communication Systems Inc. (ENICOM), Hitachi Ltd., Hitachi America,
Tokyo Electric Power Company, and Hewlett Packard (HP).

installation-time or run-time). By deferring these decisions,
it becomes possible to select mappings that are tailored to an
application’s run-time environment.

Object-oriented frameworks are a promising technique for
alleviating the complexity of developing, configuring, and
reconfiguring services in distributed applications. A frame-
work is an integrated collection of software components that
collaborate to produce a reusable architecture for a family
of related applications [1]. Object-oriented frameworks en-
able fine-grain component reuse and eliminate unnecessary
performance overhead introduced by many existing tools for
configuring applications.

The components in a framework typically include classes
(such as message managers, timer-based event dispatchers,
and connection maps [2]), class hierarchies (such as an inher-
itance lattice of local and remote interprocess communication
mechanisms [3]), class categories (such as a family of con-
currency control mechanisms [4]), and objects (such as event
demultiplexers [5]). Frameworks emphasize the integration
and collaboration of application-specific and application-
independent components. This enables larger-scale reuse
of software, compared with reusing individual classes and
stand-alone functions.

To illustrate how object-oriented frameworks are being
applied successfully in practice, this paper examines the
ADAPTIVE Service eXecutive (ASX) framework. The ASX
framework provides an integrated collection of automated
tools and reusable components. These tools and components
are specifically targeted for developing applications in dis-
tributed systems. Examples of these systems include global
personal communication systems, telecommunication switch
management platforms, and real-time market data analysis
applications. In these types of systems, it is often necessary
to phase new versions of services into applications without
disrupting current execution [6].

In addition to describing the features and object-oriented
architecture of the ASX framework, this paper describes
how ASX is being used to develop a family of commer-
cial distributed system management applications. These
applications monitor and control private-branch exchange
(PBXs) switches and public central-office telecommunica-
tion switches running on heterogeneous hardware and soft-
ware platforms.
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This paper is organized in the following manner: Sec-
tion 2 outlines the primary features in the ASX framework;
Section 3 examines a commercial Call Center Management
distributed system built using ASX; Section 4 describes the
object-oriented architecture of ASX; Section 5 compares the
ASX framework with related research; and Section 6 presents
concluding remarks.

2 Overview of the ADAPTIVE Service
eXecutive (ASX) Framework

The ASX framework enhances the modularity, extensibility,
and portability of OS mechanisms that provide interprocess
communication, event demultiplexing, dynamic linking, and
concurrency. These OS mechanisms are orchestrated by the
ASX framework to automate the configuration and reconfig-
uration of services into distributed applications.

Applications developed using the ASX framework may
be flexibly configured either statically and/or dynamically.
Static configuration is performed by developers at compile-
time. Dynamic configuration is performed by administrators
or by management applications at installation-time and/or
at run-time. This flexibility allows applications executing
within the ASX run-time environment to update their func-
tionality dynamically, often without being shutdown com-
pletely and restarted. The primary features of theASX frame-
work are outlined in Sections 2.1 and 2.2 below.

2.1 Reusable, Application-Independent Com-
ponents

The ASX framework provides the following reusable compo-
nents that form the basis for developing distributed applica-
tions:

� port monitoring

� buffer management and message queueing

� event demultiplexing and event handler dispatching

� local/remote interprocess communication

� concurrency control

� configuration, installation, and run-time management of
application services

To implement these components efficiently and extensibly,
the ASX framework employs multi-threading and dynamic
linking mechanisms available in operating systems such as
UNIX and Windows NT. These mechanisms facilitate the de-
velopment of distributedsystems that may be updated and ex-
tended without modifying, recompiling, relinking, or restart-
ing applications at run-time. To promote reuse, the ASX
components are designed using object-oriented techniques
(such as design patterns [5] and hierarchical software de-
composition [7]) and object-oriented language features (such
as abstract base classes, inheritance, and dynamic binding,
and parameterized types [8]).

2.2 Support for Highly-Decoupled System Ar-
chitectures

To enhance the flexibility and extensibility of distributed
systems, the ASX framework decouples the functionality of
application-specific services from the characteristics of dis-
tributed systems described below:

�Structural Characteristics: TheASX framework decou-
ples service functionality from the following structural char-
acteristics of applications:

� The type and number of services associated with each
process – The ASX framework supports the configu-
ration of applications that contain multiple services.
These services may be instances of the same service
or instances of different services.

� The point of time at which service(s) are configured
into an application – The ASX framework encapsulates
dynamic linking mechanisms provided by an operat-
ing system. Dynamic linking is a lightweight mecha-
nism for configuring services into an application either
statically (at compile-time or link-time) or dynamically
(when an application first begins executing or while it
is running). The ASX framework allows the choice be-
tween static and dynamic configuration to be deferred
until installation-time [9].

� The order in which hierarchically-related services are
composed into an application – An application may be
represented as a series of hierarchically-related services
that communicate by passing typed messages. These
services may be flexibly configured in order to satisfy
application requirements and enhance component reuse.

� Communication Mechanisms: The ASX frame-
work decouples service functionality from the following
communication-related mechanisms:

� The underlying interprocess communication (IPC) pro-
tocols and interfaces used to communicate with peers
– The ASX framework encapsulates IPC mechanisms
(such as sockets, TLI, STREAM pipes, and named
pipes) with a uniform, portable, and type-safe object-
oriented interface.

� The I/O-based and timer-based event demultiplexing
mechanisms – TheASX framework encapsulates several
event demultiplexing mechanisms (such as the UNIX
select and poll system calls and the Windows
NT WaitForMultipleObjects function) with a
uniform, extensible object-oriented interface. These
demultiplexing mechanisms are used to dispatch ex-
ternal events (such as connection requests and appli-
cation data) onto pre-registered application-specified
event handlers.
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� Concurrency Strategies: The ASX framework decou-
ples service functionality from the following concurrency
strategies:

� The type and number of concurrent processes and/or
threads used to perform services at run-time – The
ASX framework encapsulates different flavors of multi-
threading mechanisms (such as POSIX threads, MACH
cthreads, Solaris threads, and Windows NT threads).
This encapsulation facilitates portability and greater
functionality for multi-processing capabilities available
on an OS platform. On SunOS 5.x UNIX [10], for in-
stance, developers may select between user-level and
kernel-level threads at run-time.

� Flexible selection of process architectures – The ASX
framework enables the flexible configuration of several
message-based and task-based process architectures [4].
A process architecture binds CPUs with the tasks and
the messages associated with applications in a host com-
puter. The choice of process architecture directly im-
pacts sources of distributed application overhead (such
as memory-to-memory copying and data manipulation,
context switching, scheduling, and synchronization).

The ASX framework enables applications to avoid premature
commitment to the structural characteristics, communication
mechanisms, and concurrency strategies described above un-
til late in the development cycle (i.e., during installation-time
or run-time). This “late binding” method of configuring
services into applications enhances application portability,
reusability, and extensibility. These enhancements occur
since design and implementation decisions are deferred until
sufficient information is available to select efficient policies
and mechanisms.

3 Developing a Distributed Call Cen-
ter Management System with theASX
Framework

This section motivates and illustrates the use of the ASX
framework to develop a family of distributed system man-
agement applications. These applications monitor and man-
age PBX and central-office telecommunication switches in a
Call Center. Call Centers contain groups of operators that
interact with customers to setup airline reservations, process
insurance claims, accept product orders, etc. A Call Center
Management (CCM) system provides services that allow the
staff of a Call Center to assess the performance of the Call
Center and the quality of service provided to customers. The
behaviour of the CCM system and the ASX framework com-
ponents that are used to implement the CCM software are
described below.
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Figure 1: Distributed Components in the Call Center Man-
agement System
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3.1 Overview of the Call Center Management
System

TheASX-based Call Center Management (CCM) system pro-
cesses real-time information generated by system operators,
telecommunication switches, and networks. Supervisors use
this information to monitor and optimize CCM system per-
formance interactively. In addition, this information may be
used to forecast the allocation of resources (such as operator
and switch capacity planning) to meet anticipated customer
demand.

Figure 1 illustrates the distributed architecture of the CCM
system. In this system, telecommunication switches receive
customer calls on trunk lines and forward these calls to avail-
able operators. Operators interact with customers using op-
erator workstations (labeled “OP” in Figure 1). To expedite
interactions with customers, these workstations access cus-
tomer account records stored in a database attached to the
network.

The switches and operator workstations in the CCM system
continuously generate messages known as “activity events.”
These events provide a real-time status report on operator
activities and telecommunication switch performance. In the
CCM system, these activity events are sent through routers to
one or more event servers. An event server runs on a separate
network that is connected via LANs or WANs to the operator
group networks. These servers act as mediators that analyze,
filter, and forward a subset of the activity events they receive
to supervisor hosts. These hosts summarize the events and
display them to supervisors in a graphical format.

The event processing in the CCM system is representative
of a growing class of applications known as “dynamic multi-
point applications.” Examples of these applications include
satellite telemetry processing systems, real-time market data
analysis systems, large-scale network management systems,
and distributed interactive simulation systems. Dynamic
multi-point applications have the following characteristics:

� a high volume of events are generated continuously in
real-time by one or more suppliers;

� the data formats of the events are potentially complex;

� zero or more consumers may subscribe to a subset of
the total events generated by the supplier(s);

� consumers typically reside on different hosts than sup-
pliers;

� consumers must be able to process the events they re-
ceive in real-time;

� consumers may add, delete, or update their subscriptions
dynamically.

In a dynamic multi-point application, each generated event
is compared with the set of active consumer subscriptions.
These applications are characterized as multi-point since any
event that matches a subscription is delivered to the corre-
sponding consumer(s). Likewise, the applications are char-
acterized as dynamic since consumers may modify their sub-

scriptions at run-time and each event may potentially be sent
to a different subset of consumers.

3.2 Design Goals of the CCM System

The object-oriented design and implementation of the CCM
system is strongly influenced by requirements for platform
independence and configuration flexibility. Platform inde-
pendence is necessary since the CCM system is targeted for
various configurations of the following:

� Telecommunication switches – such as PBX and central-
office switches

� Host platforms – such as Windows NT, Windows 3.1,
OS/2, and UNIX platforms

� Wide-area and local-area networks – such as X.25,
TCP/IP, and Novell IPX/SPX networks

Configuration flexibility is necessary since not all Call
Center installations require every feature provided by the
CCM system. It would be possible (although highly unde-
sirable) to manually construct and deliver CCM systems that
are customized for the platforms and the subsets of features
required by a particular installation. However, this static con-
figurationprocess would require the selection of services, and
the division of labor between different hosts in a CCM sys-
tem, to be completely fixed during initial system deployment.
Our experience with earlier-generation CCM applications in-
dicated that even if configuration information was available
at the time of system deployment, it was likely to change in
the future, often upon short notice.

The ASX framework facilitates platform independence to
improve software component reuse across platforms and to
reduce development effort. Object-oriented language fea-
tures (such as abstract base classes, inheritance, and parame-
terized types) are used extensively throughout the CCM sys-
tem. These features help to localize and minimize platform
dependencies.

In addition, theASX framework is used to defer the point of
time at which a particular set of services is configured to form
a CCM system. By combining advanced OS features (such
as multi-threading and dynamic linking) and object-oriented
language features, the ASX framework enables services of-
fered by a CCM system to be extended without modifying,
recompiling, relinking, or even restarting the system at run-
time [9].

3.3 Mapping CCM Functionality onto ASX
Components

Figure 2 illustrates the ASX framework components used
to implement the event server portion of the CCM sys-
tem shown in Figure 1.2 These components include

2A comprehensive description of other components (such as routers,
operator stations, switches, and supervisor hosts) in the CCM system is
beyond the scope of this paper.

4



: Reactor

: Service
Repository

: Service
Config

CCM
Stream

: Event
Filter

ASX  RUN-TIME
: Switch

IO
: Switch

IO

: Session
IO

: Session
IO

: Session
IO

TELECOM
SWITCHES

SUPER-
VISOR

EVENT
SERVER

SUPER-
VISOR

SUPER-
VISOR

: Session
Router

: Switch
Adapter

: Event
Analyzer up

st
re

am

do
w

ns
tr

ea
m

Figure 2: ASXComponents in the Call Center Manager Event
Server

the Reactor, Service Configurator, and Stream
class categories. A more detailed discussion of these ASX
framework components is provided in Section 4.

A CCM event server performs the following tasks:

� it receives activity events that are generated continu-
ously by operator workstations and telecommunication
switches;

� it analyzes and correlates the activity events it receives
to produce a new set of derived messages known as
“status events”;

� it filters out status events that do not match any supervi-
sor subscriptions;

� it forwards the status events that did match subscriptions
across a network to supervisor hosts that have previously
registered to receive these events.

The CCM event server contains a set of hierarchically-
related processing Modules. A Module is a reusable ASX
component used to decompose the CCM event server into
a series of bi-directional, interconnected, functionally dis-
tinct layers. Modules may be configured statically and/or
dynamically into the event server using mechanisms pro-
vided by the ASX framework. The behaviour of the ASX
Modules (the Switch Adapter, Event Analyzer,
Event Filter, and Session Router) that comprise
the CCM event server is described below. The other ASX

components in Figure 2 (such as the Reactor, Service
Config, and Service Repository) will be explained
shortly.

�The Switch Adapter Module: TheSwitch Adapter
Module object interacts with the telecommunication
switches monitored by the CCM event server. This Module
shields the upstream layers of the event server architecture
from switch-specific communication characteristics (such as
activity event frame formats). The Switch Adapter
Module maintains a collection of Switch IO objects that
are responsible for transforming incoming activity events.
This transformation encapsulates the activity events into a
canonical switch-independent message format. This message
format is built atop a flexible dynamic memory management
class described in [4]. After being allocated and initialized,
the canonical message objects are passed upstream to the
Event Analyzer Module.

�The Event Analyzer Module: TheEvent Analyzer
Module transforms switch-specific activity events into a
switch-independent event format known as “status events.”
During the event analysis process, the Event Analyzer
also synthesizes groups of activity events into a new set of
derived status events. These synthesized status events are
triggered in response to the occurrence of one or more activ-
ity events. After the Event Analyzer has transformed
and/or synthesized the incoming activity events, it forwards
the resulting status events to theEvent Filter Module.

� The Event Filter Module: The Event Filter
Module performs event reduction processing to minimize
unnecessary network traffic and unnecessary processing at
consumer endsystems. This Module forwards only those
status events subscribed to by at least one supervisor. The
Event Filter Module contains a collection of Event
Forwarding Discriminator (EFD) objects. Each
EFD object contains a predicate that indicates the character-
istics of status event(s) a supervisor has registered to receive.
EFD predicates may be used to selectively filter out status
events based on characteristics such as event type, event
value, event generation time, event frequency, and event state
changes. An EFD predicate may contain relational operators
that enable the composition of arbitrarily complex filter ex-
pressions.

Supervisors may register EFD objects with the event
server during initial system configuration and during run-
time. When status events are passed to theEvent Filter
Module, it inspects the registered EFDs to determine the set
of supervisors that should receive the status event. If a status
event matches a supervisor’sEFD predicate, the supervisor’s
address is added to a data structure (called the Session
Addr Set) that accompanies the status event message to
the Session Router Module (described below). If a
Session Addr Set contains at least one address after
all EFDs are inspected by the Event Filter Module,
the status event and the Session Addr Set are passed
upstream to the Session Router Module.
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� The Session Router Module: The Session Router
Module interacts with supervisors on remote hosts. It
shields the downstream layers of the CCM event server ar-
chitecture from non-portable details of the communication
protocols used to communicate with supervisors. Supervi-
sors connect to the event server by establishing a session with
theSession Router Module. A uniqueSession IO
object is created to manage each supervisor session. This
Session IO object handles all the data transfer and con-
trol operations between the event server and a supervisor.
After connecting to the event server, a supervisor subscribes
to a set of status event(s). Subsequently, when theSession
Router receives a message from the Event Filter
Module, it automatically forwards the status event mes-
sage to all supervisors addressed by the message’s Session
Addr Set.

In general, the use of ASX Modules encapsulates non-
portable system mechanisms (such as communication proto-
cols and the frame formats of activity and status events) be-
hind abstract interfaces. This helps to improve the platform
independence of the CCM system. For example, when the
original PBX-based version of the CCM system was ported to
a different central-office switch architecture, only theEvent
Analyzer and Switch Adapter portions of the event
server were affected significantly.

Figure 2 illustrates several other ASX-based components.
The Service Config object is a reusable component
from the Service Configurator class category de-
scribed in Section 4.3. The CCM event server uses
the Service Config object to control the initial con-
figuration, subsequent reconfiguration(s), and removal of
Modules from the CCM Stream. The Reactor object
is an event demultiplexer (described in Section 4.2). It dis-
patches incoming messages from supervisors, and activity
events from switches, to the appropriate Session IO and
Switch IO objects, respectively. These IO objects are
implemented by inheriting from the Event Handler ab-
stract base class (described in Section 4.2). The IO objects
communicate with their peers across the network via the IPC
SAP communication objects (described in Section 4.5).

Messages sent from supervisors to the event server are
received by a Session IO object, passed downstream
through theCCM Stream object, and handled by the appro-
priate Module (e.g., EFD registrations are handled by the
Event Filter Module). Likewise, incoming messages
from switches are received by a Switch IO object and sent
upstream starting at the Switch Adapter Module. As
described in the following section, the Modules that com-
prise the CCM Stream object may be configured into the
event server at installation-time by developers, as well as at
run-time by system administrators or by system management
tools.

3.4 CCM Event Server Configuration

The ASX framework supports flexible configuration of pro-
cessingModules into the CCM event server. To accomplish
this, the ASX framework provides a configuration script-
ing language based upon dynamic linking mechanisms (the
scripting language is described further in Section 4.3). For
example, at installation-time the Service Config object
uses the following configuration script to determine which
services to dynamically link into the address space of the
CCM event server:

# Configure a stream containing 4 Modules
stream CCM_Stream dynamic STREAM *
/svcs/CCM_Stream.so:alloc()

{
dynamic Switch_Adapter Module *
/svcs/SA.so:alloc() "-p 2001"

dynamic Event_Analyzer Module *
/svcs/EA.so:alloc()

dynamic Event_Filter Module *
/svcs/EF-svr.so:alloc()

dynamic Session_Router Module *
/svcs/SR.so:alloc() "-p 2010"

}

This configuration script indicates the order in which the
four event server Modules (Switch Adapter, Event
Analyzer, Event Filter, and Session Router,
respectively) are dynamically linked and pushed into theCCM
Stream object.

During the installation of the event server, the Service
Configobject interprets this configurationscript and carries
out the directives described by each entry, as follows:

� The Service Config interprets the dynamic di-
rective as an instruction to dynamically link the shared
object file (specified by a pathname ending in .so) into
the address space of the CCM event server.

� The framework then extracts the alloc function from
the newly linked shared object file and invokes it.
This function allocates a pointer to an instance of the
Module object contained within the shared object file.

� The framework then passes in any initializationparame-
ters (appearing as string literals at the end of the line) to
the initialization method of the Module. This method
performsModule-specific initializationactivities (such
as allocating data structures, establishing connections,
or registering EFDs).

� Once the Module is initialized, the framework pushes
it on to the stack of interconnected Modules that are
being configured to form the CCM Stream.

Once all the Modules have been dynamically linked, ini-
tialized, and connected together, the application enters an
event loop managed by the Reactor object. When events
arrive, this event loop dispatches the appropriate methods of
the Switch IO and Session IO objects to initiate the
event service processing described in Section 3.3 above.
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3.5 CCM Event Server Reconfiguration

This section motivates and illustrates how the dynamic recon-
figuration mechanisms provided by the ASX framework are
applied in the CCM system. This flexibility proved to be quite
useful for the CCM project, where different OS/hardware
platforms and different network characteristics necessitate
different configurations of event servers and supervisor hosts.
Two types of configurations occur most commonly:

� Centralized Event Filter Processing – In certain envi-
ronments, it is beneficial to centralize all the event filter-
ing at the event server. This configuration is appropriate
when the following conditions occur:

– an event server is installed on a high-performance
platform (such as a multi-processor);

– the supervisor hosts are run on less powerful plat-
forms (such as inexpensive PCs);

– a relatively low-bandwidth (or highly congested)
network connects the event server to the supervisor
hosts;

– few of the supervisors subscribe to most of the
events

– the complexity and number of Event Forward-
ing Discriminators (EFDs) installed by supervisors
does not cause a major performance bottleneck.

When these conditions occur, the network and the su-
pervisor hosts at the edges of the CCM system are typ-
ically the processing bottleneck, rather than the event
server. Therefore, a centralized event filtering architec-
ture helps to off-load work from the edges of the CCM
system.

� Decentralized Event Filter Processing – In other envi-
ronments, it is beneficial to decentralize event filtering
by installing it on the supervisor hosts. This configura-
tion is appropriate when the following conditions occur:

– the supervisor hosts are powerful workstationplat-
forms;

– the event server does not run on a considerably
more powerful platform;

– a dedicated, high-speed network is available to
connect the event server to the supervisor hosts;

– many of the supervisors subscribe to most of the
events

– a large number of supervisors configure complex
EFD objects into an event server.

When these conditions occur, the event server becomes a
bottleneck and overall system performance is degraded,
even though surplus processing capacity is available in
the network and in the supervisor hosts.

Other more complex scenarios are also possible. For exam-
ple, the network topology that interconnects operator groups,

event servers, and supervisors may involve both local-area
and wide-area networks.

The CCM Stream architecture depicted in Figure 2 is
an example of a centralized event filter processing configura-
tion. It performs all event analysis and event filter processing
in the event server. However, this configuration may not be
appropriate for certain CCM environments, for the reasons
outlined above. To address this situation, Figure 3 illus-
trates how the stream configuration shown in Figure 2 may
be modified to operate efficiently when event server process-
ing constitutes the primary performance bottleneck. In this
configuration, event filtering has been reconfigured into the
supervisor hosts.

The following script dynamically reconfigures the
Modules in the CCM system:

# Suspend execution of the stream
suspend CCM_Stream

# Remove Event_Filter Module from stream
stream CCM_Stream {
remove Event_Filter

}

# Instruct all the remote Supervisors to
# dynamically configure an instance of the
# Event Filter Module into their streams

remote "-h all -p 911" {
stream CCM_Stream {
dynamic Event_Filter Module *
/svcs/EF-cli.so:alloc()

}
}

# Continue CCM stream processing
resume CCM_Stream

This new script transfers the event filter processing function-
ality from the event server to the supervisor hosts using the
following steps:

� The event server’s CCM Stream object is suspended.
This prevents it from processing events until the recon-
figuration procedure is complete. Note that this scheme
assumes the switch interface either buffers incoming
events or exerts flow control backpressure on the switch
during the reconfiguration period.

� The Event Filter Module is removed from the
CCM Stream. This invokes a finalization method on
the Module and dynamically unlinks the associated
shared object file from the event server’s address space.

� The Event Filter Module is then dynamically
linked into streams installed on all the supervisor hosts.
The “-h all” argument to the remote directive informs
the Service Config object to execute the configu-
ration directive on all the remote supervisor hosts.3

� The execution of the event server’s CCM Stream is
resumed.

3Note that this script assumes that the /svcs/EF-cli.so shared
object file is accessible to all connected hosts via a network file system.
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The result of this reconfiguration is to distribute the event fil-
ter processing among all the supervisor hosts, rather than cen-
tralizing it at the event server. Moreover, when the Event
Filter object in the EF-cli.so shared object file is dy-
namically linked into the supervisor hosts, its initialization
method is automatically invoked by ASX. This method may
be programmed to only configure EFDs that are relevant
to the current supervisor host. In addition, by using the
dynamic linking mechanisms supplied by the ASX frame-
work, the CCM server need not be completely shutdown and
restarted at run-time during this filter migration process.

4 The Object-Oriented Architecture of
the ASX Framework

The architecture of the ASX framework has been devel-
oped incrementally by generalizing from extensive design
and implementation experience with a range of distributed
systems. These systems include on-line transaction pro-
cessing [5], telecommunication switch monitoring [11], and
multi-processor-based communication subsystems [4]. After
building several prototypes and iterating through a number
of alternative designs, the class categories illustrated in Fig-
ure 4 were identified and implemented. A class category is
a collection of components that collaborate to provide a set
of related services [8]. An application may be configured by
using object-oriented language features that specialize and
compose the followingASX components:

� The Stream class category – components in this class
category are responsible for coordinating the configu-
ration and run-time execution of a Stream, which is an
object containing a set of hierarchically-related services
(such as an event server in the Call Center Management
system) defined by an application.
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� TheReactor class category – components in this class
category are responsible for demultiplexing and dis-
patching event handlers that are triggered concurrently
by various types of events.

� The Service Configurator class category –
components in this class category are responsible for
dynamically linking or dynamically unlinking services
into or out of the address space of an application at
run-time.

� The Concurrency class category – components in
this class category are responsible for spawning, execut-
ing, synchronizing, and gracefully terminating services
at run-time via one or more threads of control within
one or more processes.

� TheIPC SAP class category – components in this class
category encapsulate standard OS local and remote in-
terprocess communication (IPC) mechanisms (such as
sockets and TLI) within a type-safe and portable object-
oriented interface.

Lines connecting the class categories in Figure 4 indicate
dependency relationships. For example, components that
implement the application-specific services in an application
depend on theStream components, which in turn depend on
theService Configurator components. Components
in theConcurrency class category are used throughout the
application-specific and application-independent portions of
the ASX framework. Therefore, they are marked with the
global adornment.

This section examines the main components in each class
category. Relationships between components in the ASX
framework are illustrated throughout the paper using Booch
notation [8]. Solid rectangles indicate class categories,
which combine a number of related classes into a common
name space. Solid clouds indicate objects; nesting indicates
composition relationships between objects; and undirected
edges indicate some type of link exists between two objects.
Dashed clouds indicate classes; directed edges indicate inher-
itance relationships between classes; and an undirected edge
with a small circle at one end indicates either a composition
or uses relation between two classes.

4.1 The Stream Class Category

Components in theStream class category are responsible
for coordinating one or more Streams. A Stream is an object
used to configure and execute application-specific services
into the ASX run-time environment. For example, Figure 5
illustrates the Stream of Modules that comprise the CCM
event server presented in Section 3.

Inheritance and object composition are used to link a se-
ries of application-specific Modules together to form a
Stream. Modules are objects that developers use to de-
compose the architecture of an application into functionally
distinct layers. For instance, the CCM event server is de-
composed into four layers (theSwitch Adapter, Event

PROCESS

OR  THREAD

WRITE

TASK

READ

TASK

MODULE

: SESSION

ROUTER

: EVENT

FILTER

: EVENT

ANALYZER

: SWITCH

ADAPTER

Figure 5: Components in the Stream Class Category

Analyzer, Event Filter, and Session Router
Modules). Each Module in a Stream implements a cluster
of related application-specific functions (such as an end-to-
end transport service, a presentation layer formatting service,
or an event filtering service for dynamic multi-point applica-
tions).
Module objects communicate by exchanging typed mes-

sages with adjacent Module objects in a Stream. Message
passing overhead is minimized by passing a pointer to a mes-
sage between two Modules rather than by copying the data.
Modulesmay be joined together in essentially arbitrary con-
figurations in order to satisfy application requirements and
enhance component reuse. Moreover, Module objects may
be configured into a Stream by developers at installation-time
or by applications or administrators at run-time.

Every Module contains a pair of Task objects that parti-
tion a layer into its application-specific read-side and write-
side processing functionality. A Task provides an abstract
domain class that may be specialized to target a particular
application-specific domain (such as the domain of commu-
nication subsystems [4] or the domain of distributed system
management applications [11]). Likewise, a Module pro-
vides a flexible compositionmechanism that allows instances
of the application-specific Task domain classes to be con-
figured dynamically into a Stream.

The ASX framework enables developers to incorporate
application-specific functionality into a Stream without mod-
ifying the existing application-independent framework com-
ponents. Incorporating a new layer of service functionality
into a Stream involves the following steps:

� Inheriting from theTask interface and selectively over-
riding several methods (described below) in the Task
subclass to implement application-specific functional-
ity;

� Allocating a new Module that contains two instances
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(one for the read-side and one for the write-side) of the
application-specific Task subclass;

� Inserting the Module into a Stream.

The Task abstract class4 defines an interface that may
be inherited and implemented by derived classes to provide
application-specific functionality for read-side and write-side
processing in a Module. One Task subclass handles read-
side processing for messages sent upstream to its Module
layer; the other handles write-side processing messages sent
downstream to its Module layer.

4.2 The Reactor Class Category

Components in the Reactor class category [5] are re-
sponsible for demultiplexing and dispatching event handlers
that are triggered concurrently by various types of events.
These events may be I/O-based events received on com-
munication ports, time-based events generated by a timer-
driven callout queue, or signal-based events. When these
events occur at run-time, the Reactor dispatches the ap-
propriate pre-registered handler(s) to process the events. The
Reactor encapsulates and enhances the functionality of
OS event demultiplexing mechanisms (such as the Windows
NTWaitForMultipleObjects and the UNIXselect

4An abstract class in C++ provides an interface that contains at least
one pure virtual method. A pure virtual method provides only an interface
declaration, without any accompanying definition. Subclasses of an abstract
class must provide definitions for all its pure virtual methods before any
objects of the class may be instantiated.

and poll system calls). These demultiplexing mechanisms
detect the occurrence of different types of input and output
events on one or more I/O descriptors simultaneously.

The Reactor is a container class whose methods pro-
vide a uniform interface to manage objects that implement
various types of application-specific event handlers. Certain
methods register, dispatch, and remove I/O descriptor-based
and signal-based handler objects from the Reactor. Other
methods schedule, cancel, and dispatch timer-based handler
objects. As shown in Figure 6, these handler objects de-
rive from the Event Handler abstract base class. This
class specifies an interface for event registration and event
handler dispatching. Subclasses of Event Handler may
augment the base class interface by defining additional meth-
ods and data members. In addition, virtual methods in the
Event Handler interface may be selectively overridden
to implement application-specific functionality.

The CCM event server described in Section 3 uses the
Reactor to monitor communication ports connected to
switches and supervisor hosts. Each communication port
is associated with an event handler. The Reactor typically
waits in an event loop for control messages to arrive from su-
pervisors or for activity events to arrive from switches and/or
operator hosts. When events arrive, the Reactor automat-
ically dispatches a method on the corresponding Session
IO or Switch IO event handler. This handler then per-
forms the appropriate application-specific processing in re-
sponse to the event.

4.3 The Service Configurator Class Category

Components in the Service Configurator class cat-
egory are responsible for linking and/or unlinking services
dynamically into or out of the address space of an application
at run-time [9]. Dynamic linking is a lightweight mecha-
nisms for configuring and reconfiguring application services.
By using dynamic linking, it is often possible to reconfig-
ure services without modifying, recompiling, relinking, and
restarting an executing application.

The Service Configurator is used in the CCM
event server to dynamically link and unlink Modules to
and from a Stream, respectively. It also performs run-time
control of Modules and Streams (such as temporarily sus-
pending and resuming theCCM Stream during reconfigura-
tion). The components of the Service Configurator
discussed below include the the Service Object inheri-
tance hierarchy (Figure 7 (1)), theService Repository
class (Figure 7 (2)), and the Service Config class (Fig-
ure 7 (3)).

� The Service Object Inheritance Hierarchy: The
Service Object class is the focal point of a multi-level
hierarchy of types related by inheritance. The interfaces pro-
vided by the abstract classes in this type hierarchy may be
selectively implemented by application-specific subclasses.
By decoupling the application-specific portions of a handler
object from the underlying Service Configurator
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Figure 7: Components in the Service Configurator Class Category

mechanisms, the effort necessary to insert and remove ser-
vices from an application at run-time is reduced significantly.

TheService Object inheritance hierarchy consists of
theEvent Handler and Shared Object abstract base
classes, as well as the Service Object abstract derived
class. The Event Handler class was described above in
the Reactor Section 4.2. The Shared Object abstract
base class specifies an interface for dynamically linking and
unlinking objects into and out of an application’s address
space. This abstract base class exports pure virtual methods.

Pure virtual methods impose a contract between the
reusable, application-independent components provided by
the Service Configurator and application-specific
objects that utilize these components. By using pure vir-
tual methods, the Service Configurator ensures that
a event handler implementation honors its obligation to pro-
vide certain configuration-related information. For example,
in the CCM event server, this information is used by the
Service Configurator to automatically link, initial-
ize, identify, and unlink a service at run-time.

TheShared Object abstract base class is defined inde-
pendently from the Event Handler class to clearly sep-
arate their two orthogonal sets of concerns. For example,
certain applications (such as a compiler or text editor) might
benefit from dynamic linking, though they might not require
I/O descriptor-based, timer-based, signal-based event demul-
tiplexing. Conversely, other applications (such as an ftp
server) require event demultiplexing, but might not require
dynamic linking.

Complex applications often require support for dynamic
linking and event demultiplexing. For example, both these
features are used to automate the dynamic configuration and
reconfiguration of application-specific services in the CCM
event server described in Section 3. Therefore, theService

Configurator class category provides the Service
Object abstract derived class, which combines interfaces
inherited from both the Event Handler and the Shared
Object abstract base classes.

Note that the Task class in the Stream class category
(described in Section 4.1) is derived from the Service
Object abstract derived class (illustrated in Figure 7 (1)).
This enables hierarchically-related, application-specific
Tasks (which are grouped together to form the Modules
comprising an application Stream) to be linked and unlinked
into and out of an application at run-time. The CCM event
server uses these dynamic linking and unlinking mechanisms
to interpret the (re)configuration script language described
further below.

�The Service Repository Class: TheASX framework sup-
ports the configuration of applications that contain one or
more Streams. Each Stream may have one or more intercon-
nected application-specific Modules. To simplify run-time
administration, the Service Repository class is used
to individuallyand/or collectively control theModules that
comprise an application’s currently active Streams.

The Service Repository is an object manager used
by the ASX framework to coordinate local/remote opera-
tions on services offered by Streams in an application. A
search structure within the object manager binds service
names (represented as a string) with instances of compos-
ite Service Objects (represented as C++ object code).
A service name uniquely identifies an instance of a Service
Object stored in the repository.

Each entry in the Service Repository contains a
pointer to theService Object portion of an application-
specific subclass (shown in Figure 7 (2)). This enables the
Service Configurator classes to automatically load,
enable, suspend, resume, or unload Service Objects
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from a Stream dynamically. The repository also maintains a
handle to the underlying shared object file for each dynami-
cally linked Service Object. This handle is used to un-
link and unload a Service Object from a running appli-
cation when its service is no longer required. An iterator class
is also supplied along with the Service Repository.
This class may be used to visit every Service Object in
the repository without compromising data encapsulation.

� The Service Config Class: the Service Config
class illustrated in Figure 7 (3) is the focal point of the
Service Configurator class category. It integrates
the otherASX framework components (such as theService
Repository, the Service Object inheritance hierar-
chy, and the Reactor). Applications use the Service
Config class to automate the static and/or dynamic con-
figuration of hierarchically-related Modules to form one or
more Streams. A configurationfile (known as svc.conf) is
used to guide the configuration and reconfiguration activities
of a Service Config object. This configuration file is
specified using a scripting language. Several examples of the
svc.conf files used to configure and reconfigure services
in the CCM event server are presented in Sections 3.4 and
3.5.

The svc.conf file may be used to configure one or more
Streams into an application. Each entry in the file begins
with a directive (such as dynamic, remove, suspend,
or resume) that specifies which configuration activity to
perform. Each entry also contains attributes that identify the
location of the shared object file for each dynamically linked
service, as well as any parameters required to initialize a
service when it is linked at run-time.

By consolidating service attributes and initialization pa-
rameters into a single configuration file, the installation and
administration of the services in an application is simpli-
fied. In addition, the svc.conf file helps to decouple the
structure of an application from the behaviour of its services.
This decoupling separates the application-independent con-
figuration and reconfiguration of mechanisms provided by
the framework from the application-specific attributes and
parameters specified in the svc.conf file.

Figure 8 illustrates a state transition diagram depict-
ing the Service Config and Reactor methods that
are invoked in response to events occurring during ser-
vice configuration, execution, and reconfiguration. For ex-
ample, when the CONFIGURE and RECONFIGURE events oc-
cur, the process directives method of the Service
Config class is called to interpret the svc.conf file as-
sociated with the application. The contents of a svc.conf
file dictate the content of Streams that are configured into
an application. This file is initially interpreted when a new
instance of a daemon is configured. The file is interpreted
again whenever a daemon reconfiguration is triggered upon
receipt of a pre-designated external event (such as the UNIX
SIGHUP signal).

INITIALIZED

CONFIGURE/
Service_Config::process_directives()

NETWORK  EVENT/
Reactor::dispatch()

RECONFIGURE/
Service_Config::process_directives()

SHUTDOWN/
Service_Config::close() AWAITING

EVENTS

START  EVENT  LOOP/
Service_Config::run_event_loop()

CALL  HANDLER/
Event_Handler::handle_input()

IDLE

PERFORM
CALLBACK

Figure 8: State Transition Diagram for Service Configura-
tion, Execution, and Reconfiguration

4.4 The Concurrency Class Category

Components in the ASX Concurrency class category
are responsible for spawning, executing, synchronizing,
and gracefully terminating services at run-time via one or
more threads of control within one or more processes [4].
The following section discusses the Synch and Thread
Manager classes in the Concurrency class category.

� The Synch Classes: The Synch classes provide type-
safe object-oriented interfaces for two types of synchroniza-
tion mechanisms: Mutex and Condition objects [10].
Applications use Mutex objects to ensure the integrity of
shared resources that may be accessed concurrently by mul-
tiple threads of control. A Condition object allows one
or more cooperating threads to suspend their execution until
a condition expression involving shared data attains a partic-
ular state. The ASX framework also provides a collection of
more sophisticated concurrency control mechanisms (such
as Monitors, Readers Writer locks, and recursive
Mutex objects) that build upon theMutex andCondition
synchronization mechanisms.

� The Thread Manager Class: The Thread Manager
class contains a set of mechanisms that manipulate multi-
ple threads of control atomically. Typically, these threads
of control collaborate to implement collective actions (such
as rendering different portions of a large image in paral-
lel). The Thread Manager class also shields applications
from non-portable incompatibilities between different fla-
vors of multi-threadingmechanisms (such as POSIX threads,
MACH cthreads, Solaris threads, and Windows NT threads).

The Thread Manager class provides methods that sus-
pend and resume a set of collaborating threads of control
atomically. This feature is useful for applications that exe-
cute multiple tasks or process multiple messages in parallel.
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For example, a CCM event server Stream is composed of
Modules that execute in separate threads of control and
collaborate by passing messages between threads. It is im-
portant to ensure that allTasks in the Stream are completely
interconnected before allowing messages to flow through the
Stream. The mechanisms in the Thread Manager class
allow these initialization activities to execute atomically.

4.5 The IPC SAP Class Category

Components in the IPC SAP class category encapsulate
standard OS local and remote IPC mechanisms (such as sock-
ets and TLI) within a type-safe and portable object-oriented
interface [3]. The IPC SAP class category is organized
as a forest of class categories that are rooted at the IPC
SAP base class. These class categories includes SOCK SAP
(which encapsulates the socket interface), TLI SAP (which
encapsulates the System V UNIX Transport Layer Interface
(TLI)), SPIPE SAP (which encapsulates the UNIX SVR4
STREAM pipe interface), and FIFO SAP (which encapsu-
lates the UNIX named pipe interface).

Each class category inIPC SAP is organized as an inheri-
tance hierarchy where every subclass provides a well-defined
subset of local or remote communication mechanisms. To-
gether, the subclasses within a hierarchy comprise the overall
functionalityof a particular communication abstraction (such
as the Internet-domain or UNIX-domain protocol families).
Inheritance-based hierarchical decomposition enhances the
reuse of code that is common among the various IPC SAP
class categories.

5 Related Work

Various strategies and tactics for developing flexible dis-
tributed system software have emerged in several domains.
One approach (used by distributed application frameworks
such as Regis [12] and Polylith [6]) represents application
state attributes as abstract data types to facilitate service con-
figuration and reconfiguration.

Another approach (used by daemon management frame-
works such as inetd and listen in System V Release
4 UNIX [13]) provides mechanisms for automating tedious
and error-prone activities associated with configuring and
reconfiguring network daemons. These mechanisms auto-
mate service initialization, reduce the consumption of OS
resources by spawning event handlers “on-demand,” allow
daemon services to be updated without modifying existing
source code, and consolidate the administration of network
services via uniform configuration management operations.

Yet another approach (used by the x-kernel [2] and Sys-
tem V STREAMS [14]) configures network software flexi-
bly by interconnecting building-block protocol and service
components. These frameworks encourage the development
of standard communication-related components by decou-
pling application-specific processing functionality from the

application-independent communication framework infras-
tructure.

The existing frameworks outlined above have proven to
be useful in practice. However, these frameworks were de-
veloped without adequate consideration of object-oriented
techniques (such as class-based encapsulation, inheritance,
dynamic binding, and parameterized types) and OS mecha-
nisms (such as dynamic linking and lightweight processes)
that are provided by operating systems (such as SVR4 UNIX,
Windows NT, and OS/2). This deters fine-grain component
reuse and introduces unnecessary performance overhead that
discourages developers from fully exploiting the benefits of
flexible software configuration techniques.

For example, the standard version of inetd is written in
C and its implementation is characterized by a proliferation
of global variables, a lack of information hiding, and an al-
gorithmic decomposition that precludes fine-grained reuse of
its internal components. More importantly, existing frame-
works do not provide automated support for (1) dynamically
linking services into an application’s address space at run-
time and (2) executing these services in parallel via one or
more lightweight processes [10]. Instead, these frameworks
typically configure and reconfigure application services by
spawning heavyweight processes and connecting these pro-
cesses via heavyweight IPC mechanisms (such as pipes and
sockets).

The ASX framework extends related work by provid-
ing object-oriented components that decouple application-
specific service functionality from the following structural
and behavioural characteristics of parallel and distributed
software systems:

� The use of dynamic linking, which facilitates the con-
figuration of fine-grained objects into applications with
minimal run-time overhead [9];

� The type of locking mechanisms used to synchronize
access to shared objects;

� The use of kernel-level and user-level execution agents;

� The use of message-based and task-based process archi-
tectures [4].

6 Concluding Remarks

The ASX framework provides an integrated collection of
object-oriented components. These components support the
static and dynamic configuration of modular services into dis-
tributed applications. Component reuse is enhanced in the
ASX framework by separating the higher-level application-
specific policies (such as the CCM event analyzer and
event filtering mechanisms) from the lower-level application-
independent mechanisms (such as the choice of mechanisms
for network communication, event demultiplexing and event
handler dispatching, and process or thread concurrency con-
trol strategies). In addition, ASX uses dynamic binding
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and dynamic linking to improve flexibility and extensibil-
ity. These mechanisms facilitate the development of applica-
tions that may be extended without modifying, recompiling,
relinking, or restarting an existing application at run-time [9].

We are currently evaluating the CCM distributed architec-
ture described in Section 3 to determine techniques for im-
proving event server performance. One technique involves
optimizing event filtering by merging multiple filter expres-
sions together using a trie data structure. This technique is
similar to optimizing packet filters that monitor network traf-
fic on an Ethernet [15]. The use of a trie reduces the amount
of time required to processM messages of size L throughN
event filters from O(M � L� N ) to O(M � L).

Another strategy for improving performance involves par-
allelizing the CCM event server. The goal is to minimize
the overhead of parallel processing (such as data movement,
context switching, scheduling, and synchronization). The
Stream and Concurrency class categories (described in
Sections 4.1 and 4.4) facilitate flexible binding of threads
onto either Modules or events in order to parallelize perfor-
mance [4].

We are also investigating service migration policies to for-
mulate guidelines that ensure the dynamic reconfiguration of
the event server does not corrupt or disrupt active services.
For instance, the EFDs in the CCM event server described in
Section 3 do not maintain much context independent informa-
tion. Therefore, the effort necessary to migrate them is min-
imized since extensive state manipulations are not required.
To reconfigure other types of services (such as the Event
Analyzer Module), however, requires more costly state
preservation and restoration procedures. A more ambitious
long-term project involves using the ASX mechanisms to ex-
periment with service migration policies that relocate services
dynamically to reduce overall system workload at run-time.

Components in the ASX framework are currently being
used in a number of large-scale distributed systems in-
cluding the AT&T Q.port ATM signaling software prod-
uct, the network management portion of the Motorola IRID-
IUM global personal communications system, and a fam-
ily of telecommunication switch management systems de-
veloped at Ericsson/GE Mobile Communications. In ad-
dition, the ASX framework has being used in the ADAP-
TIVE Communication Environment (ACE) [16]. ACE
facilitates experimentation with various aspects of com-
munication subsystems (such as flexible process archi-
tectures for multi-processor-based communication proto-
col stacks [4] and adaptive protocol reconfiguration tech-
niques [16]) and distributed applications (such as extensi-
ble frameworks for concurrent event demultiplexing [5]).
A freely available subset of the ASX framework described
in this paper may be obtained via anonymous ftp from
ics.uci.edu in the files gnu/C++ wrappers.tar.Z
and gnu/C++ wrappers doc.tar.Z.
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