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Abstract

Developing extensible, robust, and efficient distributed sys-
temsisacomplex task. To help aleviate thiscomplexity, we
have developed the ADAPTIVE Service eXecutive (ASX)
framework. ASX is an object-oriented framework composed
of automated tools and reusable components. These tools
and components help to simplify the development, config-
uration, and reconfiguration of applicationsin a distributed
environment. Using the ASX framework, the servicesin the
applications may be updated and extended without modi-
fying, recompiling, relinking, or restarting the applications
a run-time. This paper describes the features and object-
oriented architecture of the ASX framework. It also describes
how the ASX framework has been used to develop a highly
modular, reusable, and dynamically reconfigurable family of
distributed system management applications.

1 Introduction

Mapping distributed application services flexibly and effi-
ciently onto host processes and threadsis a challenging task.
Selecting an efficient mapping is difficult since service func-
tionality, network/host workload, and OS/hardware platform
characteristics may vary dynamicaly. Therefore, it is es-
sential to develop software toolsthat support flexibility with
respect to the following design criteria

o which services to map onto which hostsin adistributed
system,

¢ howto effectively usetheparallelism avail ableon multi-
processor platforms.

Ideally, software development tools should postpone these
decisions until very late in the development cycle (i.e, at
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installation-time or run-time). By deferring these decisions,
it becomes possibleto select mappingsthat aretailored to an
application’srun-time environment.

Object-oriented frameworks are a promising technique for
alleviating the complexity of developing, configuring, and
reconfiguring services in distributed applications. A frame-
work isan integrated collection of software components that
collaborate to produce a reusable architecture for a family
of related applications[1]. Object-oriented frameworks en-
able fine-grain component reuse and eliminate unnecessary
performance overhead introduced by many existing toolsfor
configuring applications.

The components in aframework typicaly include classes
(such as message managers, timer-based event dispatchers,
and connectionmaps[2]), class hierarchies(such asaninher-
itancelatticeof local and remoteinterprocesscommunication
mechanisms [3]), class categories (such as a family of con-
currency control mechanisms[4]), and objects (such as event
demultiplexers[5]). Frameworks emphasize the integration
and collaboration of application-specific and application-
independent components. This enables larger-scale reuse
of software, compared with reusing individual classes and
stand-al one functions.

To illustrate how object-oriented frameworks are being
applied successfully in practice, this paper examines the
ADAPTIVE Service eXecutive (ASX) framework. The ASX
framework provides an integrated collection of automated
toolsand reusable components. These toolsand components
are specificaly targeted for developing applicationsin dis-
tributed systems. Examples of these systems include global
personal communication systems, tel ecommuni cation switch
management platforms, and real-time market data analysis
applications. In these types of systems, it is often necessary
to phase new versions of services into applications without
disrupting current execution [6].

In addition to describing the features and object-oriented
architecture of the ASX framework, this paper describes
how ASX is being used to develop a family of commer-
cia distributed system management applications. These
applications monitor and control private-branch exchange
(PBXs) switches and public central-office telecommunica-
tion switches running on heterogeneous hardware and soft-
ware platforms.



This paper is organized in the following manner: Sec-
tion 2 outlines the primary features in the ASX framework;
Section 3 examines acommercia Call Center Management
distributed system built using ASX; Section 4 describes the
obj ect-oriented architecture of ASX; Section 5 compares the
ASX framework with rel ated research; and Section 6 presents
concluding remarks.

2 Overview of the ADAPTIVE Service
eXecutive (ASX) Framework

The ASX framework enhances the modularity, extensibility,
and portability of OS mechanisms that provide interprocess
communication, event demultiplexing, dynamic linking, and
concurrency. These OS mechanisms are orchestrated by the
ASX framework to automate the configuration and reconfig-
uration of services into distributed applications.

Applications developed using the ASX framework may
be flexibly configured either statically and/or dynamically.
Static configuration is performed by developers a compile-
time. Dynamic configuration is performed by administrators
or by management applications at installation-time and/or
a run-time. This flexibility alows applications executing
within the ASX run-time environment to update their func-
tionality dynamicdly, often without being shutdown com-
pletely and restarted. The primary features of the ASX frame-
work are outlined in Sections 2.1 and 2.2 below.

2.1 Reusable, Application-Independent Com-
ponents

The ASX framework providesthefollowing reusable compo-
nents that form the basis for developing distributed applica
tions:

e port monitoring

o buffer management and message queueing

o event demultiplexing and event handler dispatching

¢ local/remote interprocess communication

concurrency control

configuration, installation, and run-time management of
application services

To implement these components efficiently and extensibly,
the ASX framework employs multi-threading and dynamic
linking mechanisms available in operating systems such as
UNIX and WindowsNT. These mechanismsfecilitatethe de-
vel opment of distributed systemsthat may be updated and ex-
tended without modifying, recompiling, relinking, or restart-
ing applications a run-time. To promote reuse, the ASX
components are designed using object-oriented techniques
(such as design patterns [5] and hierarchical software de-
composition[7]) and object-oriented language features (such
as abstract base classes, inheritance, and dynamic binding,
and parameterized types[8]).

2.2 Supportfor Highly-Decoupled System Ar-
chitectures

To enhance the flexibility and extensibility of distributed
systems, the ASX framework decouples the functionality of
application-specific services from the characteristics of dis-
tributed systems described bel ow:

e Structural Characteristics: The ASX framework decou-
ples service functionality from the following structural char-
acteristics of applications:

e The type and number of services associated with each
process — The ASX framework supports the configu-
ration of applications that contain multiple services.
These services may be instances of the same service
or instances of different services.

e The point of time at which service(s) are configured
into an application— The ASX framework encapsulates
dynamic linking mechanisms provided by an operat-
ing system. Dynamic linking is a lightweight mecha-
nism for configuring services into an application either
statically (at compile-time or link-time) or dynamically
(when an application first begins executing or while it
isrunning). The ASX framework allows the choice be-
tween static and dynamic configuration to be deferred
until installation-time[9].

e The order in which hierarchically-related services are
composed into an application — An application may be
represented as a series of hierarchically-related services
that communicate by passing typed messages. These
services may be flexibly configured in order to satisfy
application requirements and enhance component reuse.

e Communication Mechanisms; The ASX frame
work decouples service functionality from the following
communication-rel ated mechanisms;

e Theunderlying interprocess communication (IPC) pro-
tocols and interfaces used to communicate with peers
— The ASX framework encapsulates |PC mechanisms
(such as sockets, TLI, STREAM pipes, and named
pipes) with a uniform, portable, and type-safe object-
oriented interface.

e The 1/O-based and timer-based event demultiplexing
mechanisms—The ASX framework encapsul ates several
event demultiplexing mechanisms (such as the UNIX
sel ect and pol | system cdls and the Windows
NT Wi t For Mul ti pl eQbj ect s function) with a
uniform, extensible object-oriented interface. These
demultiplexing mechanisms are used to dispatch ex-
ternal events (such as connection requests and appli-
cation data) onto pre-registered application-specified
event handlers.



e Concurrency Strategies. The ASX framework decou-
ples service functionality from the following concurrency
strategies:

e The type and number of concurrent processes and/or
threads used to perform services at run-time — The
ASX framework encapsul ates different flavors of multi-
threading mechani sms (such as POSI X threads, MACH
cthreads, Solaris threads, and Windows NT threads).
This encapsulation facilitates portability and greater
functionality for multi-processing capabilitiesavailable
on an OS platform. On SunOS 5.x UNIX [10], for in-
stance, developers may select between user-level and
kernel-level threads at run-time.

o Flexible selection of process architectures — The ASX
framework enables the flexible configuration of severa
message-based and task-based process architectures[4].
A process architecture binds CPUs with the tasks and
themessages associ ated with applicationsin ahost com-
puter. The choice of process architecture directly im-
pacts sources of distributed application overhead (such
as memory-to-memory copying and data manipulation,
context switching, scheduling, and synchronization).

The ASX framework enabl es applicationsto avoid premature
commitment to the structural characteristics, communication
mechanisms, and concurrency strategies described above un-
til latein the development cycle(i.e., duringinstallation-time
or run-time). This “late binding” method of configuring
services into applications enhances application portability,
reusability, and extensibility. These enhancements occur
since design and implementation decisions are deferred until
sufficient information is available to select efficient policies
and mechanisms.

3 Developing a Distributed Call Cen-
ter Management Systemwith the ASX
Framework

This section motivates and illustrates the use of the ASX
framework to develop a family of distributed system man-
agement applications. These applications monitor and man-
age PBX and central -office telecommuni cation switchesin a
Call Center. Call Centers contain groups of operators that
interact with customers to setup airline reservations, process
insurance claims, accept product orders, etc. A Cal Center
Management (CCM) system providesservicesthat alow the
staff of a Call Center to assess the performance of the Call
Center and the quality of service provided to customers. The
behaviour of the CCM system and the ASX framework com-
ponents that are used to implement the CCM software are
described below.
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Figure 1: Distributed Components in the Call Center Man-
agement System



3.1 Overview of theCall Center Management
System

The ASX-based Call Center Management (CCM) system pro-
cesses real-time information generated by system operators,
telecommunication switches, and networks. Supervisors use
this information to monitor and optimize CCM system per-
formance interactively. In addition, thisinformation may be
used to forecast the allocation of resources (such as operator
and switch capacity planning) to meet anticipated customer
demand.

Figurelillustratesthe distributed architecture of the CCM
system. In this system, telecommunication switches receive
customer callsontrunk linesand forward these callsto avail -
able operators. Operators interact with customers using op-
erator workstations (labeled “OP” in Figure 1). To expedite
interactions with customers, these workstations access cus-
tomer account records stored in a database attached to the
network.

Theswitchesand operator workstationsinthe CCM system
continuously generate messages known as “activity events.”
These events provide a real-time status report on operator
activitiesand telecommunication switch performance. Inthe
CCM system, these activity eventsare sent through routersto
oneor more event servers. Anevent server runson aseparate
network that isconnected viaLANs or WANSs to the operator
group networks. These servers act as mediators that analyze,
filter, and forward a subset of the activity eventsthey receive
to supervisor hosts. These hosts summarize the events and
display them to supervisorsin agraphical format.

The event processing in the CCM system is representative
of agrowing class of gpplicationsknown as*dynamic multi-
point applications.” Examples of these gpplicationsinclude
satellite tel emetry processing systems, real-time market data
analysis systems, large-sca e network management systems,
and distributed interactive simulation systems. Dynamic
multi-point applications have the following characteristics:

¢ ahigh volume of events are generated continuoudly in
real-time by one or more suppliers;

o thedataformats of the events are potentially complex;

e Zero or more consumers may subscribe to a subset of
the total events generated by the supplier(s);

e consumers typically reside on different hosts than sup-
pliers;

e consumers must be able to process the events they re-
celvein red-time;

e consumersmay add, del ete, or updatetheir subscriptions
dynamically.

In adynamic multi-point application, each generated event
is compared with the set of active consumer subscriptions.
These applications are characterized as multi-point since any
event that matches a subscription is delivered to the corre-
sponding consumer(s). Likewise, the applications are char-
acterized as dynamic since consumers may modify their sub-

scriptionsat run-timeand each event may potentialy be sent
to a different subset of consumers.

3.2 Design Goalsof theCCM System

The object-oriented design and implementation of the CCM
system is strongly influenced by requirements for platform
independence and configuration flexibility. Platform inde-
pendence is necessary since the CCM system is targeted for
various configurations of the following:

o Telecommuni cation switches—such as PBX and central -
office switches

¢ Host platforms— such as Windows NT, Windows 3.1,
0S/2, and UNIX platforms

o Wide-area and local-area networks — such as X.25,
TCP/IP, and Novdl IPX/SPX networks

Configuration flexibility is necessary since not al Call
Center ingtallations require every feature provided by the
CCM system. It would be possible (although highly unde-
sirable) to manually construct and deliver CCM systems that
are customized for the platforms and the subsets of features
required by aparticular install ation. However, thisstatic con-
figuration processwoul d require thesdl ection of services, and
the division of labor between different hostsin a CCM sys-
tem, to be completely fixed duringinitial system deployment.
Our experience with earlier-generation CCM applicationsin-
dicated that even if configuration information was available
at the time of system deployment, it was likely to change in
the future, often upon short notice.

The ASX framework facilitates platform independence to
improve software component reuse across platforms and to
reduce development effort. Object-oriented language fea-
tures (such as abstract base classes, inheritance, and parame-
terized types) are used extensively throughout the CCM sys-
tem. These features help to localize and minimize platform
dependencies.

In addition, the ASX framework isused to defer the point of
timeat which aparticular set of servicesisconfiguredtoform
a CCM system. By combining advanced OS features (such
as multi-threading and dynamic linking) and object-oriented
language features, the ASX framework enables services of-
fered by a CCM system to be extended without modifying,
recompiling, relinking, or even restarting the system at run-
time[9].

3.3 Mapping CCM Functionality onto ASX
Components

Figure 2 illustrates the ASX framework components used
to implement the event server portion of the CCM sys-
tem shown in Figure 1> These components include

2A comprehensive description of other components (such as routers,
operator stations, switches, and supervisor hosts) in the CCM system is
beyond the scope of this paper.
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Figure2: ASX Componentsinthe Call Center Manager Event
Server

the React or, Servi ce Confi gurator,and Stream
class categories. A more detailed discussion of these ASX
framework componentsis provided in Section 4.

A CCM event server performs the following tasks:

o it receives activity events that are generated continu-
oudly by operator workstations and telecommuni cation
switches;

¢ it analyzes and correlates the activity eventsit receives
to produce a new set of derived messages known as
“status events’;

o itfiltersout status eventsthat do not match any supervi-
sor subscriptions;

o itforwardsthestatuseventsthat did match subscriptions
acrossanetwork to supervisor hoststhat have previously
registered to receive these events.

The CCM event server contains a set of hierarchicaly-
related processing Modul es. A Modul e isareusable ASX
component used to decompose the CCM event server into
a series of bi-directional, interconnected, functiondly dis-
tinct layers. Modul es may be configured statically and/or
dynamicaly into the event server using mechanisms pro-
vided by the ASX framework. The behaviour of the ASX
Modul es (the Swi t ch Adapt er, Event Anal yzer,
Event Filter, and Sessi on Rout er) that comprise
the CCM event server is described below. The other ASX

components in Figure 2 (such as the React or, Servi ce
Confi g,and Servi ce Repository)will beexplained
shortly.

e TheSwitch Adapter Module: TheSwi t ch Adapt er
Modul e object interacts with the telecommunication
switches monitored by the CCM event server. ThisModul e
shields the upstream layers of the event server architecture
from switch-specific communication characteristics (such as
activity event frame formats). The Swi t ch Adapt er
Modul e maintainsacollection of Swi t ch | Oobjectsthat
are responsible for transforming incoming activity events.
This transformation encapsulates the activity events into a
canonical switch-independent messageformat. Thismessage
format isbuilt atop aflexible dynamic memory management
class described in [4]. After being allocated and initialized,
the canonical message objects are passed upstream to the
Event Anal yzer Mdul e.

e TheEvent Analyzer Module: TheEvent Anal yzer

Modul e transforms switch-specific activity events into a
switch-independent event format known as “status events.”

During the event analysis process, the Event Anal yzer

also synthesizes groups of activity events into a new set of
derived status events. These synthesized status events are
triggered in response to the occurrence of one or more activ-
ity events. After the Event Anal yzer has transformed
and/or synthesized the incoming activity events, it forwards
theresulting statuseventstotheEvent Fi | t er Modul e.

e The Event Filter Module: The Event Filter

Modul e performs event reduction processing to minimize
unnecessary network traffic and unnecessary processing at
consumer endsystems. This Modul e forwards only those
status events subscribed to by at least one supervisor. The
Event Filter Modul e containsa collection of Event

Forwar di ng Di scrim nator (EFD) objects. Each
EFD object contains a predicate that indicates the character-
isticsof statusevent(s) asupervisor has registered to receive.
EFD predicates may be used to selectively filter out status
events based on characteristics such as event type, event
value, event generation time, event frequency, and event state
changes. An EFD predicate may contain relational operators
that enable the composition of arbitrarily complex filter ex-
pressions.

Supervisors may register EFD objects with the event
server during initial system configuration and during run-
time. When statuseventsare passedtotheEvent Filter
Modul e, itinspectstheregistered EFDs to determinethe set
of supervisorsthat should receive the status event. If astatus
event matches a supervisor’sEFD predicate, the supervisor’s
address is added to a data structure (called the Sessi on
Addr Set) that accompanies the status event message to
the Sessi on Rout er Modul e (described below). If a
Sessi on Addr Set contains at least one address after
al EFDs are inspected by the Event Fil t er Modul e,
the status event and the Sessi on Addr Set are passed
upstream to the Sessi on Rout er Modul e.



e The Session Router Modulee  The Sessi on Rout er
Modul e interacts with supervisors on remote hosts. It
shields the downstream layers of the CCM event server ar-
chitecture from non-portable details of the communication
protocols used to communicate with supervisors. Supervi-
sorsconnect to theevent server by establishing asession with
theSessi on Rout er Mbdul e. A uniqueSessi on | O
object is created to manage each supervisor session. This
Sessi on | Oobject handles al the data transfer and con-
trol operations between the event server and a supervisor.
After connecting to the event server, a supervisor subscribes
toaset of statusevent(s). Subsequently, whenthe Sessi on
Rout er receives a message from the Event Filter
Modul e, it automatically forwards the status event mes-
sagetoall supervisorsaddressed by the message’'s Sessi on
Addr Set.

In general, the use of ASX Modul es encapsulates non-
portabl e system mechanisms (such as communication proto-
cols and the frame formats of activity and status events) be-
hind abstract interfaces. This helps to improve the platform
independence of the CCM system. For example, when the
origina PBX-based version of the CCM systemwas portedto
adifferent central -office switch architecture, only the Event
Anal yzer and Swi t ch Adapt er portions of the event
server were affected significantly.

Figure 2 illustrates several other ASX-based components.
The Servi ce Confi g object is a reusable component
from the Servi ce Confi gurat or class category de-
scribed in Section 4.3. The CCM event server uses
the Servi ce Confi g object to control the initial con-
figuration, subsequent reconfiguration(s), and remova of
Modul es from the CCM St ream The React or object
isan event demultiplexer (described in Section 4.2). It dis-
patches incoming messages from supervisors, and activity
events from switches, to the appropriate Sessi on | Oand
Swi t ch | O objects, respectively. These | O objects are
implemented by inheriting from the Event Handl er ab-
stract base class (described in Section 4.2). The | O objects
communicate with their peersacrossthe network viathel PC
SAP communi cation objects (described in Section 4.5).

Messages sent from supervisors to the event server are
received by a Sessi on | O object, passed downstream
throughthe CCM St r eamobject, and handled by the appro-
priate Modul e (eg., EFD registrations are handled by the
Event Filter Modul e). Likewise, incoming messages
from switchesarereceivedby aSwi t ch | Oobject and sent
upstream starting a the Swi t ch Adapt er Modul e. As
described in the following section, the Modul es that com-
prise the CCM St r eamobject may be configured into the
event server at installation-time by developers, as well as at
run-timeby system administratorsor by system management
tools.

34 CCM Event Server Configuration

The ASX framework supports flexible configuration of pro-
cessing Modul es intothe CCM event server. To accomplish
this, the ASX framework provides a configuration script-
ing language based upon dynamic linking mechanisms (the
scripting language is described further in Section 4.3). For
example, at ingtallation-timethe Ser vi ce Conf i g object
uses the following configuration script to determine which
services to dynamically link into the address space of the
CCM event server:

# Configure a stream containing 4 Mdul es
stream CCM Stream dynani ¢ STREAM *

/svcs/ CCM_Stream so: al | oc()
{

dynanic Switch_Adapter Mdule *
/svecs/ SA. so:alloc() "-p 2001"

dynam ¢ Event_Anal yzer Mdule *
/ sves/ EA. so: al |l oc()

dynam c Event_Filter Mdule *
/ sves/ EF-svr. so: al |l oc()

dynani ¢ Session_Router Mdule *
/svcs/ SR so:alloc() "-p 2010"

}

This configuration script indicates the order in which the
four event server Modul es (Swi t ch Adapt er, Event
Anal yzer, Event Filter, and Sessi on Router,
respectively) aredynamically linked and pushed into the CCM
St r eamobject.

During the installation of the event server, the Ser vi ce
Conf i g objectinterpretsthisconfigurationscript and carries
out the directives described by each entry, as follows:

e The Servi ce Confi g interprets the dynami c di-
rective as an instruction to dynamically link the shared
object file (specified by apathnameendingin . so) into
the address space of the CCM event server.

e Theframework then extractsthe al | oc function from
the newly linked shared object file and invokes it.
This function alocates a pointer to an instance of the
Modul e object contained within the shared object file.

o Theframework then passesin any initialization parame-
ters (appearing as string literalsat the end of theline) to
the initialization method of the Modul e. This method
performsModul e-specificinitidizationactivities(such
as allocating data structures, establishing connections,
or registering EFDs).

¢ Oncethe Modul e isinitiaized, the framework pushes
it on to the stack of interconnected Mbdul es that are
being configured to form the CCM St r eam

Once dl the Modul es have been dynamicaly linked, ini-
tialized, and connected together, the application enters an
event loop managed by the React or object. When events
arrive, thisevent loop dispatches the appropriate methods of
the Swi t ch | Oand Sessi on | Oobjects to initiate the
event service processing described in Section 3.3 above.



35 CCM Event Server Reconfiguration

Thissection motivatesand illustrates how thedynamic recon-
figuration mechanisms provided by the ASX framework are
appliedinthe CCM system. Thisflexibility proved tobequite
useful for the CCM project, where different OS/hardware
platforms and different network characteristics necessitate
different configurationsof event serversand supervisor hosts.
Two types of configurations occur most commonly:

e Centralized Event Filter Processing — In certain envi-
ronments, it isbeneficial to centralize al the event filter-
ing at the event server. Thisconfigurationisappropriate
when the following conditions occur:

— an event server isinstaled on a high-performance
platform (such as a multi-processor);

— the supervisor hosts are run on less powerful plat-
forms (such as inexpensive PCs);

— ardatively low-bandwidth (or highly congested)
network connectsthe event server to the supervisor
hosts;

— few of the supervisors subscribe to most of the
events

— the complexity and number of Event Forward-
ing Discriminators(EFDs) installed by supervisors
does not cause a major performance bottleneck.

When these conditions occur, the network and the su-
pervisor hosts at the edges of the CCM system are typ-
ically the processing bottleneck, rather than the event
server. Therefore, a centralized event filtering architec-
ture helpsto off-load work from the edges of the CCM
system.

o Decentralized Event Filter Processing — In other envi-
ronments, it is beneficia to decentralize event filtering
by installing it on the supervisor hosts. This configura-
tionisappropriatewhen the foll owing conditionsoccur:

— thesupervisor hostsare powerful workstationplat-
forms;

the event server does not run on a considerably
more powerful platform;

a dedicated, high-speed network is available to
connect the event server to the supervisor hosts;
many of the supervisors subscribe to most of the
events

a large number of supervisors configure complex
EFD objectsinto an event server.

When these conditions occur, the event server becomesa
bottleneck and overall system performanceis degraded,
even though surplus processing capacity is availablein
the network and in the supervisor hosts.

Other more complex scenarios are also possible. For exam-
ple, the network topol ogy that interconnects operator groups,

event servers, and supervisors may involve both loca-area
and wide-area networks.

The CCM St r eam architecture depicted in Figure 2 is
an exampl e of acentralized event filter processing configura:
tion. It performsall event analysisand event filter processing
in the event server. However, this configuration may not be
appropriate for certain CCM environments, for the reasons
outlined above. To address this situation, Figure 3 illus-
trates how the stream configuration shown in Figure 2 may
be modified to operate efficiently when event server process-
ing congtitutes the primary performance bottleneck. In this
configuration, event filtering has been reconfigured into the
supervisor hosts.

The following script dynamicaly reconfigures the
Modul es inthe CCM system:

# Suspend execution of the stream
suspend CCM_Stream

# Renove Event_Filter Mdule from stream
stream CCM Stream {
remove Event _Filter

# Instruct all the renote Supervisors to
# dynanically configure an instance of the
# Event Filter Mdule into their streans

remote "-h all -p 911" {
stream CCM Stream {
dynamic Event _Filter Mdule *
/sves/ EF-cli.so:alloc()
}

}

# Continue CCM stream processing
resunme CCM Stream

Thisnew script transfersthe event filter processing function-
ality from the event server to the supervisor hosts using the
following steps:

e The event server’s CCM St r eamobject is suspended.
This preventsit from processing events until the recon-
figuration procedure is complete. Notethat this scheme
assumes the switch interface either buffers incoming
eventsor exerts flow control backpressure on the switch
during the reconfiguration period.

e The Event Filter Modul e is removed from the
CCM St r eam This invokes a finalization method on
the Modul e and dynamically unlinks the associated
shared object file from the event server’s address space.

e The Event Filter Mdul e is then dynamically
linked into streamsinstalled on all the supervisor hosts.
The“-hall” argument to ther enot e directiveinforms
the Servi ce Confi g object to execute the configu-
ration directive on all the remote supervisor hosts.

e The execution of the event server’'s CCM St r eamis
resumed.

SNote that this script assumes that the / svcs/ EF-cl i . so shared
object file is accessible to all connected hosts via a network file system.
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Theresult of thisreconfigurationisto distributethe event fil-
ter processing among all the supervisor hosts, rather than cen-
tralizing it at the event server. Moreover, when the Event

Filter objectintheEF-cl i . so shared object fileis dy-
namically linked into the supervisor hosts, its initialization
method is automatically invoked by ASX. This method may
be programmed to only configure EFDs that are relevant
to the current supervisor host. In addition, by using the
dynamic linking mechanisms supplied by the ASX frame-
work, the CCM server need not be completely shutdown and
restarted at run-time during this filter migration process.

4 TheObject-Oriented Architecture of
the ASX Framewor k

The architecture of the ASX framework has been devel-
oped incrementally by generalizing from extensive design
and implementation experience with a range of distributed
systems. These systems include on-line transaction pro-
cessing [5], telecommunication switch monitoring [11], and
multi-processor-based communi cation subsystems[4]. After
building severa prototypes and iterating through a number
of alternative designs, the class categoriesillustrated in Fig-
ure 4 were identified and implemented. A class category is
a collection of components that collaborate to provide a set
of related services [8]. An application may be configured by
using object-oriented language features that speciaize and
compose the following ASX components:

e The St r eamclass category — componentsin thisclass
category are responsible for coordinating the configu-
ration and run-time execution of a Stream, which isan
object containing a set of hierarchically-related services
(such asan event server inthe Call Center Management
system) defined by an application.



e TheReact or classcategory —componentsinthisclass
category are responsible for demultiplexing and dis-
patching event handlersthat are triggered concurrently
by varioustypes of events.

e The Service Configurator class category —
components in this class category are responsible for
dynamically linking or dynamically unlinking services
into or out of the address space of an application at
run-time,

e The Concurrency class category — components in
thisclass category areresponsiblefor spawning, execut-
ing, synchronizing, and gracefully terminating services
at run-time via one or more threads of control within
one or MOore processes.

e Thel PC SAP classcategory —componentsinthisclass
category encapsulate standard OS loca and remote in-
terprocess communication (IPC) mechanisms (such as
socketsand TLI) within atype-safe and portable object-
oriented interface.

Lines connecting the class categories in Figure 4 indicate
dependency relationships. For example, components that
implement the application-specific servicesin an application
depend onthe St r eamcomponents, whichinturn depend on
theSer vi ce Confi gur at or components. Components
intheConcur r ency classcategory are used throughout the
application-specific and application-independent portions of
the ASX framework. Therefore, they are marked with the
global adornment.

This section examines the main components in each class
category. Reationships between components in the ASX
framework are illustrated throughout the paper using Booch
notation [8]. Solid rectangles indicate class categories,
which combine a number of related classes into a common
name space. Solid clouds indicate objects; nesting indicates
composition relationships between objects; and undirected
edges indicate some type of link exists between two objects.
Dashed cloudsindicate classes; directed edgesindicateinher-
itance rel ationships between classes; and an undirected edge
with asmall circle at one end indicates either a composition
or uses relation between two classes.

4.1 The Stream Class Category

Componentsinthe St r eamclass category areresponsible
for coordinating one or more Streams. A Stream isan object
used to configure and execute application-specific services
into the ASX run-time environment. For example, Figure 5
illustrates the Stream of Modul es that comprise the CCM
event server presented in Section 3.

Inheritance and object composition are used to link a se-
ries of application-specific Mbdul es together to form a
Stream. Modul es are objects that developers use to de-
compose the architecture of an application into functionally
distinct layers. For instance, the CCM event server is de-
composed intofour layers (theSwi t ch Adapt er , Event

: SESSION
MODULE
: EVENT
FILTER @ %
WRITE  READ
+: EVENT TASK TASK
ANALYZER i ity
PROCESS
: SWITCH OR THREAD
ADAPTER
. J

Figure5: Componentsin the St r eamClass Category

Anal yzer, Event Filter, and Sessi on Router
Modul es). Each Modul e in aStream implementsacluster
of related application-specific functions (such as an end-to-
end transport service, apresentation layer formatting service,
or an event filtering service for dynamic multi-point applica
tions).

Modul e objects communicate by exchanging typed mes-
sages with adjacent Modul e objects in a Stream. Message
passing overhead isminimized by passing apointer toames-
sage between two Modul es rather than by copying the data.
Modul es may bejoinedtogether inessentialy arbitrary con-
figurations in order to satisfy application requirements and
enhance component reuse. Moreover, Modul e objects may
be configured into a Stream by devel opersat installation-time
or by applications or administratorsat run-time.

Every Modul e containsapair of Task objectsthat parti-
tion alayer into its application-specific read-side and write-
side processing functionality. A Task provides an abstract
domain class that may be specidized to target a particular
application-specific domain (such as the domain of commu-
nication subsystems [4] or the domain of distributed system
management applications [11]). Likewise, a Modul e pro-
videsaflexiblecompositionmechanism that allowsinstances
of the application-specific Task domain classes to be con-
figured dynamically into a Stream.

The ASX framework enables developers to incorporate
application-specific functionality into a Stream without mod-
ifying the existing applicati on-independent framework com-
ponents. Incorporating a new layer of service functionality
into a Stream involvesthe following steps:

¢ InheritingfromtheTask interface and selectively over-
riding severa methods (described below) in the Task
subclass to implement application-specific functional -
ity;

o Allocating a new Modul e that contains two instances
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(one for the read-side and one for the write-side) of the
application-specific Task subclass;

e Inserting the Modul e into a Stream.

The Task abstract class* defines an interface that may
be inherited and implemented by derived classes to provide
application-specificfunctionality for read-sideand write-side
processing in aModul e. One Task subclass handles read-
side processing for messages sent upstream to its Modul e
layer; the other handles write-side processing messages sent
downstream to its Mbdul e layer.

4.2 TheReactor Class Category

Components in the React or class category [5] are re-
sponsible for demultiplexing and dispatching event handlers
that are triggered concurrently by various types of events.
These events may be 1/0O-based events received on com-
munication ports, time-based events generated by a timer-
driven calout queue, or signa-based events. When these
events occur at run-time, the React or dispatches the ap-
propriate pre-registered handler(s) to processtheevents. The
React or encapsulates and enhances the functionality of
OS event demulti plexing mechanisms (such as the Windows
NTWai t For Mul ti pl eObj ect s andtheUNIX sel ect

4An abstract class in C++ provides an interface that contains at least
one pure virtual method. A pure virtual method providesonly an interface
declaration, without any accompanying definition. Subclasses of an abstract
class must provide definitions for al its pure virtual methods before any
objects of the class may be instantiated.
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and pol | system calls). These demultiplexing mechanisms
detect the occurrence of different types of input and output
events on one or more 1/O descriptors simultaneoudly.

The React or is a container class whose methods pro-
vide a uniform interface to manage objects that implement
varioustypes of application-specific event handlers. Certain
methods register, dispatch, and remove /O descriptor-based
and signal-based handler objectsfrom the React or . Other
methods schedule, cancel, and dispatch timer-based handler
objects. As shown in Figure 6, these handler objects de-
rive from the Event Handl er abstract base class. This
class specifies an interface for event registration and event
handler dispatching. Subclasses of Event Handl er may
augment the base classinterface by defining additional meth-
ods and data members. In addition, virtual methods in the
Event Handl er interface may be selectively overridden
to implement application-specific functionality.

The CCM event server described in Section 3 uses the
React or to monitor communication ports connected to
switches and supervisor hosts. Each communication port
isassociated with an event handler. The React or typicaly
waitsin an event loop for control messages to arrivefrom su-
pervisorsor for activity eventsto arrivefrom switches and/or
operator hosts. When events arrive, the React or automat-
ically dispatches a method on the corresponding Sessi on
| Oor Swi tch | Oevent handler. This handler then per-
forms the appropriate application-specific processing in re-
sponseto the event.

4.3 The Service Configurator Class Category

Componentsin the Ser vi ce Conf i gur at or class cat-
egory are responsible for linking and/or unlinking services
dynamically into or out of the address space of an application
a run-time [9]. Dynamic linking is a lightweight mecha-
nismsfor configuring and reconfiguring application services.
By using dynamic linking, it is often possible to reconfig-
ure services without modifying, recompiling, relinking, and
restarting an executing application.

The Servi ce Configurator isused in the CCM
event server to dynamically link and unlink Modul es to
and from a Stream, respectively. It aso performs run-time
control of Modul es and Streams (such as temporarily sus-
pending and resuming the CCM St r eamduring reconfigura:
tion). The components of the Ser vi ce Confi gur at or
discussed below includethethe Ser vi ce Obj ect inheri-
tancehierarchy (Figure7 (1)),theSer vi ce Repository
class (Figure 7 (2)), and the Ser vi ce Conf i g class (Fig-
ure7 (3)).

e The Service Object Inheritance Hierarchy: The
Servi ce bj ect classisthefocal point of a multi-level
hierarchy of typesrelated by inheritance. The interfacespro-
vided by the abstract classes in this type hierarchy may be
selectively implemented by application-specific subclasses.
By decoupling the application-specific portions of a handler
object from the underlying Servi ce Confi gur at or
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mechanisms, the effort necessary to insert and remove ser-
vicesfrom an application at run-timeisreduced significantly.

TheSer vi ce Obj ect inheritancehierarchy consistsof
theEvent Handl er and Shar ed Obj ect abstract base
classes, aswell asthe Ser vi ce Obj ect abstract derived
class. The Event Handl er classwas described abovein
the React or Section4.2. The Shar ed Obj ect abstract
base class specifies an interface for dynamicaly linking and
unlinking objects into and out of an application’s address
space. Thisabstract base class exports pure virtual methods.

Pure virtua methods impose a contract between the
reusable, application-independent components provided by
the Servi ce Confi gurator and application-specific
objects that utilize these components. By using pure Vvir-
tual methods, the Ser vi ce Conf i gur at or ensuresthat
a event handler implementation honors its obligation to pro-
vide certain configuration-related information. For example,
in the CCM event server, this information is used by the
Servi ce Confi gurator to automaticaly link, initia-
ize, identify, and unlink a service at run-time,

TheShar ed hj ect abstract baseclassisdefinedinde-
pendently from the Event Handl er class to clearly sep-
arate their two orthogonal sets of concerns. For example,
certain applications (such as a compiler or text editor) might
benefit from dynamic linking, though they might not require
I/O descriptor-based, timer-based, signal-based event demul -
tiplexing. Conversely, other applications (such asan ft p
server) require event demultiplexing, but might not require
dynamic linking.

Complex applications often require support for dynamic
linking and event demultiplexing. For example, both these
features are used to automate the dynamic configuration and
reconfiguration of application-specific services in the CCM
event server describedin Section 3. Therefore, theSer vi ce
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Confi gurat or class category provides the Servi ce
hj ect abstract derived class, which combines interfaces
inherited from boththeEvent Handl er andthe Shar ed
hj ect abstract base classes.

Note that the Task class in the St r eamclass category
(described in Section 4.1) is derived from the Ser vi ce
bj ect abstract derived class (illustrated in Figure 7 (1)).
This enables hierarchicaly-related, application-specific
Tasks (which are grouped together to form the Modul es
comprising an application Stream) to be linked and unlinked
into and out of an application at run-time. The CCM event
server uses these dynamic linking and unlinking mechanisms
to interpret the (re)configuration script language described
further below.

e TheServiceRepository Class:  TheASXframework sup-
ports the configuration of applications that contain one or
more Streams. Each Stream may have one or more intercon-
nected application-specific Modul es. To simplify run-time
administration, the Ser vi ce Repository classis used
toindividualy and/or collectively control theMbdul es that
comprise an application’scurrently active Streams.

TheServi ce Repository isan object manager used
by the ASX framework to coordinate local/remote opera-
tions on services offered by Streams in an application. A
search structure within the object manager binds service
names (represented as a string) with instances of compos-
iteServi ce Obj ect s (represented as C++ object code).
A servicenameuniquely identifiesan instanceof aSer vi ce
Obj ect stored in the repository.

Each entry in the Servi ce Repository contains a
pointer totheSer vi ce Cbj ect portionof an application-
specific subclass (shown in Figure 7 (2)). This enables the
Servi ce Confi gurator classesto automaticaly load,
enable, suspend, resume, or unload Servi ce Cbj ects



from a Stream dynamically. The repository also maintains a
handle to the underlying shared object file for each dynami-
caly linked Ser vi ce Obj ect . Thishandleisused to un-
link and unload aSer vi ce Cbj ect fromarunning appli-
cationwhenitsserviceisnolonger required. Aniterator class
is aso supplied dong with the Ser vi ce Repository.
Thisclassmay be used tovisit every Ser vi ce hj ect in
the repository without compromising data encapsulation.

e The Service Config Class. the Service Config
class illustrated in Figure 7 (3) is the foca point of the
Servi ce Configurator class category. It integrates
theother ASX framework components(such astheSer vi ce
Reposi tory, theServi ce Obj ect inheritance hierar-
chy, and the React or). Applications use the Ser vi ce
Conf i g class to automate the static and/or dynamic con-
figuration of hierarchically-related Modul es to form one or
more Streams. A configurationfile (knownassvc. conf)is
used to guidethe configuration and reconfiguration activities
of aServi ce Confi g object. This configuration fileis
specified using ascripting language. Severa examples of the
svc. conf files used to configure and reconfigure services
in the CCM event server are presented in Sections 3.4 and
3.5.

Thesvc. conf filemay beused to configure one or more
Streams into an application. Each entry in the file begins
with a directive (such as dynami c, r enove, suspend,
or resune) that specifies which configuration activity to
perform. Each entry also contains attributesthat identify the
location of the shared object file for each dynamically linked
service, as well as any parameters required to initialize a
service when it islinked at run-time,

By consolidating service attributes and initialization pa-
rameters into a single configuration file, the installation and
administration of the services in an application is smpli-
fied. In addition, the svc. conf file helpsto decouple the
structure of an application from the behaviour of itsservices.
This decoupling separates the application-independent con-
figuration and reconfiguration of mechanisms provided by
the framework from the application-specific attributes and
parameters specified inthesvc. conf file

Figure 8 illustrates a state transition diagram depict-
ing the Servi ce Confi g and React or methods that
are invoked in response to events occurring during ser-
vice configuration, execution, and reconfiguration. For ex-
ample, when the CONFIGURE and RECONFIGURE events oc-
cur, thepr ocess di recti ves method of theSer vi ce
Confi g classis caled to interpret the svc. conf fileas
sociated with the application. The contentsof asvc. conf
file dictate the content of Streams that are configured into
an application. Thisfileisinitially interpreted when a new
instance of a daemon is configured. The file is interpreted
again whenever a daemon reconfiguration istriggered upon
receipt of a pre-designated external event (such asthe UNIX
SIGHUP signal).
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Figure 8: State Transition Diagram for Service Configura-
tion, Execution, and Reconfiguration

4.4 TheConcurrency Class Category

Components in the ASX Concurrency class category
are responsible for spawning, executing, synchronizing,
and gracefully terminating services at run-time via one or
more threads of control within one or more processes [4].
The following section discusses the Synch and Thr ead
Manager classesinthe Concur r ency class category.

e The Synch Classes:. The Synch classes provide type-
safe object-oriented interfaces for two types of synchroniza-
tion mechanisms: Mut ex and Condi ti on objects [10].
Applications use Mut ex objects to ensure the integrity of
shared resources that may be accessed concurrently by mul-
tiple threads of control. A Condi ti on object alows one
or more cooperating threads to suspend their execution until
acondition expression involving shared data attains a partic-
ular state. The ASX framework also provides a collection of
more sophisticated concurrency control mechanisms (such
as Moni tors, Readers Witer locks, and recursive
Mut ex objects) that build upontheMut ex and Condi ti on
synchronization mechanisms.

e The Thread Manager Class: TheThread Manager
class contains a set of mechanisms that manipulate multi-
ple threads of control atomically. Typicaly, these threads
of control collaborate to implement collective actions (such
as rendering different portions of a large image in paral-
lel). TheThr ead Manager classalso shieldsapplications
from non-portable incompatibilities between different fla-
vorsof multi-threading mechanisms (such as POSI X threads,
MACH cthreads, Solaristhreads, and WindowsNT threads).

TheThr ead Manager class provides methodsthat sus-
pend and resume a set of collaborating threads of control
atomically. This feature is useful for applications that exe-
cute multipletasks or process multiple messages in paralldl.



For example, a CCM event server Stream is composed of
Modul es that execute in separate threads of control and
collaborate by passing messages between threads. It isim-
portant to ensurethat all Tasks inthe Stream are completely
interconnected before allowing messages to flow through the
Stream. The mechanisms in the Thr ead Manager class
alow theseinitialization activitiesto execute atomically.

45 ThelPC SAP Class Category

Components in the | PC SAP class category encapsulate
standard OSlocal and remote | PC mechani sms (such as sock-
ets and TLI1) within atype-safe and portabl e object-oriented
interface [3]. The | PC SAP class category is organized
as a forest of class categories that are rooted at the | PC
SAP base class. These class categories includes SOCK SAP
(which encapsulates the socket interface), TLI - SAP (which
encapsulates the System V UNIX Transport Layer Interface
(TLI)), SPI PE SAP (which encapsulates the UNIX SVR4
STREAM pipeinterface), and FI FO SAP (which encapsu-
lates the UNIX named pipeinterface).

Each classcategory inl PC SAP isorganized asaninheri-
tance hierarchy where every subclass providesawell-defined
subset of local or remote communication mechanisms. To-
gether, the subclasses within ahierarchy comprisethe overall
functionality of aparticular communi cation abstraction (such
as the Internet-domain or UNIX-domain protocol families).
Inheritance-based hierarchical decomposition enhances the
reuse of code that is common among the various | PC SAP
class categories.

5 Reated Work

Various strategies and tactics for developing flexible dis-
tributed system software have emerged in several domains.
One approach (used by distributed application frameworks
such as Regis [12] and Polylith [6]) represents application
state attributesas abstract datatypesto facilitate service con-
figuration and reconfiguration.

Another approach (used by daemon management frame-
works such asi netd and | i st en in System V Release
4 UNIX [13]) provides mechanisms for automating tedious
and error-prone activities associated with configuring and
reconfiguring network daemons. These mechanisms auto-
mate service initidization, reduce the consumption of OS
resources by spawning event handlers “on-demand,” alow
daemon services to be updated without modifying existing
source code, and consolidate the administration of network
services via uniform configuration management operations.

Yet another approach (used by the x-kernel [2] and Sys
tem V STREAMS [14]) configures network software flexi-
bly by interconnecting building-block protocol and service
components. These frameworks encourage the devel opment
of standard communication-related components by decou-
pling application-specific processing functionality from the
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application-independent communication framework infras-
tructure.

The existing frameworks outlined above have proven to
be useful in practice. However, these frameworks were de-
veloped without adequate consideration of object-oriented
techniques (such as class-based encapsulation, inheritance,
dynamic binding, and parameterized types) and OS mecha
nisms (such as dynamic linking and lightweight processes)
that are provided by operating systems (suchas SVR4 UNI X,
Windows NT, and OS/2). This deters fine-grain component
reuse and introduces unnecessary performance overhead that
discourages devel opers from fully exploiting the benefits of
flexible software configuration techniques.

For example, the standard version of i net d iswrittenin
C and its implementation is characterized by a proliferation
of global variables, alack of information hiding, and an al-
gorithmic decomposition that precludesfine-grained reuse of
itsinternal components. More importantly, existing frame-
works do not provide automated support for (1) dynamically
linking services into an application’s address space at run-
time and (2) executing these services in parald via one or
more lightweight processes [10]. Instead, these frameworks
typically configure and reconfigure application services by
spawning heavyweight processes and connecting these pro-
cesses via heavyweight |PC mechanisms (such as pipes and
sockets).

The ASX framework extends related work by provid-
ing object-oriented components that decouple application-
specific service functionality from the following structura
and behavioura characteristics of parallel and distributed
software systems:

e The use of dynamic linking, which facilitates the con-
figuration of fine-grained objects into applicationswith
minimal run-time overhead [9];

e The type of locking mechanisms used to synchronize
access to shared objects;

¢ Theuseof kernel-level and user-level execution agents,

¢ Theuse of message-based and task-based process archi-
tectures[4].

6 Concluding Remarks

The ASX framework provides an integrated collection of
object-oriented components. These components support the
static and dynami c configuration of modular servicesinto dis-
tributed applications. Component reuse is enhanced in the
ASX framework by separating the higher-level application-
specific policies (such as the CCM event analyzer and
event filtering mechanisms) fromthelower-level application-
independent mechanisms (such as the choi ce of mechanisms
for network communication, event demultiplexing and event
handler dispatching, and process or thread concurrency con-
trol strategies). In addition, ASX uses dynamic binding



and dynamic linking to improve flexibility and extensibil-
ity. These mechanismsfacilitatethe devel opment of applica
tions that may be extended without modifying, recompiling,
relinking, or restarting an existing application at run-time[9].

We are currently evaluating the CCM distributed architec-
ture described in Section 3 to determine techniques for im-
proving event server performance. One technique involves
optimizing event filtering by merging multiplefilter expres-
sions together using atrie data structure. This technique is
similar to optimizing packet filtersthat monitor network traf-
fic on an Ethernet [15]. The use of atrie reduces the amount
of timerequired to process M/ messages of size L through N
event filtersfrom O(M x L x N)toO(M x L).

Another strategy for improving performance involvespar-
alelizing the CCM event server. The god is to minimize
the overhead of paralel processing (such as data movement,
context switching, scheduling, and synchronization). The
St r eamand Concur r ency class categories (described in
Sections 4.1 and 4.4) facilitate flexible binding of threads
onto either Mbdul es or eventsin order to parallelize perfor-
mance [4].

We are also investigating service migration policiesto for-
mul ate guidelinesthat ensure the dynamic reconfiguration of
the event server does not corrupt or disrupt active services.
For instance, the EFDs inthe CCM event server described in
Section 3 do not mai ntai n much context independent i nforma-
tion. Therefore, the effort necessary to migrate them ismin-
imized since extensive state manipulations are not required.
To reconfigure other types of services (such as the Event
Anal yzer Modul e), however, requires more costly state
preservation and restoration procedures. A more ambitious
long-term project involves using the ASX mechanisms to ex-
periment with servicemigration policiesthat rel ocate services
dynamically to reduce overall system workload at run-time.

Components in the ASX framework are currently being
used in a number of large-scale distributed systems in-
cluding the AT&T Q.port ATM signaling software prod-
uct, the network management portion of the Motorolal RID-
IUM global personal communications system, and a fam-
ily of telecommunication switch management systems de-
veloped at Ericsson/GE Mobile Communications. In ad-
dition, the ASX framework has being used in the ADAP-
TIVE Communication Environment (ACE) [16]. ACE
facilitates experimentation with various aspects of com-
munication subsystems (such as flexible process archi-
tectures for multi-processor-based communication proto-
col stacks [4] and adaptive protocol reconfiguration tech-
niques [16]) and distributed applications (such as extensi-
ble frameworks for concurrent event demultiplexing [5]).
A fredly available subset of the ASX framework described
in this paper may be obtained via anonymous ftp from
i cs. uci . eduinthefilesgnu/ C++.wr appers.tar.Z
and gnu/ C++_wr apper s_doc. tar. Z.
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