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Chapter 1

Introduction

This document describes steps taken in building DOVE, the Distribued Object Visualization En-

vironment. The project served as a milestone in achieving the full functionality of DOVE. Major

outcomes are a prototype of DOVE and a tested ACE/TAO environment.

The ACE framework and TAO (The ACE ORB), described below, have been developed

in a research, non-commercial environment, therefore the software is not as fully implemented as

commercial products and tests have to be performed to assure that the needed functionality is

available. Besides assuring functionality tests improve the quality of the ACE framework and TAO.

The structure of this document is as follows. First an overview over the used architectures,

like CORBA, ACE, TAO and DOVE, is given. Then the context and objectives of this project are

presented. The devolpement of the prototypes is described in phases, which are Analysis, Require-

ments, Speci�cation and Implementation.

This document also describes an additional project: the implementation of the CORBA

Common Object Services LifeCycle Service. It has been added, because it was done within the same

independent study class.
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Chapter 2

Overview

In the following sections the used architectures and environments are described. Which are: The

Common Object Request Architecture (CORBA), the ACE framework, the TAO environment and

the DOVE architecture.

2.1 Overview of CORBA

CORBA is a distributed object computing (DOC) middleware standard de�ned by the Object Man-

agement Group (OMG). CORBA is designed to support the development of 
exible and reuseable

distributed services and applications by (1) separating interfaces from remote implementations and

(2) automating many common network programming tasks (such as object registration, location

and activation; request demultiplexing; framing and error handling; parameter marshalling and

demarshalling; and operation dispatching).

Advances in DOC technology have occured at a time when deregulation and global compe-

tition are motivating the need for increased software productivity and quality. Distributed object

computing is perceived as a way to control costs through open systems and client/server computing.

Likewise, OO design and programming are widely touted as an e�ective means to reduce cost and

improve software quality through reuse and extensibility, and modularity.

The Common Object Request Broker Architecture (CORBA) speci�es a system, which pro-

vides interoperability between objects in a heterogeneous, distributed environment. CORBA does

this in a way transparent to the programmer. The main features are:

� ORB Core

� OMG Interface De�nition Language (IDL)

� Language Mappings

� Interface Repository

� Stubs and Skeletons

� Dynamic Invocation and Dispatch
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� Object Adapters

DIIDII ORBORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

DSIDSI

in  argsin  args

out  args + return  valueout  args + return  value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

SERVANTSERVANT

STANDARD  INTERFACESTANDARD  INTERFACE STANDARD  LANGUAGESTANDARD  LANGUAGE

MAPPINGMAPPING

ORB-ORB-SPECIFIC  INTERFACESPECIFIC  INTERFACE STANDARD  PROTOCOLSTANDARD  PROTOCOL

IDLIDL
STUBSSTUBS

Figure 2.1:

The �gure above shows the relationships between the various components.

2.1.1 ORB core

The Object Request Broker (ORB) is the central component, it handles the connection management

and delivers data. It is de�ned by its interfaces and is not required to be a single component. ORB

interfaces connect the other components to the ORB core.

The ORB Core is the most crucial part in the CORBA, it is responsible for communication

between clients and objects. The communication is done transparently, this is one of the key features

of the ORB. The ORB hides the following information from the client:

� Object location: The client does not know where the server object is located. It could be

located on the same physical machine, in the same ORB or in a di�erent ORB environment.

� Object Implementation: The server object may be implemented in any language supported by

CORBA. The client sees only the interface.

� Object execution state: No information is necessary to the client about the execution state of

the server. If necessary the server will be started automatically by the ORB.

� Object communication mechanisms: The client has no information about the underlying com-

munication mechanisms, whether TCP/IP, Novell or any other protocol.
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The communication outside the ORB between clients and object implementations is done

via OMG IDL or Dynamic Invocation Interface / Dynamic Skeleton Interface (DII/DSI).

2.1.2 Object Creation

A client needs an object reference to make an request to an object. These object references belong

only to a single object and are created when the object is created. The client cannot change these

object references. They can be obtained in several di�erent ways:

� Object creation: A client can issue a creation request to a so-called Factory, a client cannot

create an object by its own. The factory object creates a new object and passes the object

reference to the client.

� Directory service: This service is responsible for holding object references in association with

names and properties. Requests from clients about an object providing a certain service are

responded with an object reference belonging to an object, which provides this service. It can

be imagined as a DB allowing only two types of requests: object references belonging to names

and object references belonging to properties.

� Convert to string and back: Object references can be converted into strings. This is useful for

example in the Internet Inter-ORB Protocol to exchange object references.

Like seen above CORBA has no explicit creation service, this fact emerges out of the following

rule: "Keep the ORB as simple as possible, and push as much functionality as possible to other

OMA components such as Object Services and Common Facilities".

2.1.3 OMG IDL

To be able to access an object, the interface of the object has to be known. The interfaces should

have a uniform syntax and semantics, independent from the implementation language. The In-

terface De�nition Language (IDL) does this in specifying the object interfaces in a standardized

way. Standardized mapping between implementation language and IDL are provided by OMG.

Language-independent interfaces are important within heterogeneous systems, since not all pro-

gramming languages are supported or available on all platforms. IDL allows de�ning the methods

to access a CORBA object. Some of the supported data types are: long, double, enum, octect and

boolean. The data type \any" is a special one. It can contain any data as the name already says.

It is enormously important for dynamic environments. Structures and unions are available as well.

2.1.4 OMG IDL - Language Mappings

Language mappings describe how the IDL is mapped to the facilities provided by a certain language.

Standardized language mappings exist for C, C++, Smalltalk, Ada95, Cobol and Unix Bourne Shell.

A language mapping to Java is announced. These language mappings have to be unambiguous, if

not, communication between object implementations in di�erent languages may fail.
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2.1.5 Stubs and Skeletons

A stub is the connection between the client and the client ORB. A skeleton is the connection between

the object implementation and the server ORB. See Error! Reference source not found.. They are

both generated automatically by the IDL compilers and translators. A stub creates and issues

requests of a client while a skeleton delivers requests to the CORBA object implementation.

Dispatching through stubs and skeletons is often called static invocation. When a client

issues a request, this request is marshaled by the client stub and delivered to the client ORB. Once

the request arrives at the target object, the server ORB and the skeleton cooperate to unmarshal

the request (convert it from its transmissible form to a programming language form) and dispatch it

to the object. When the object has completed the request, the results are sent back the same way,

through the server skeleton to the server ORB, ORB connection, client ORB and back through the

client stub to the client application.

2.1.6 Interface Repository

Interfaces to objects can be speci�ed in two ways: either in OMG IDL or they can be added to the

Interface Repository (IR). Communication via Dynamic Invocation Interface (DII) uses the infor-

mation in the IR. Object interface de�nitions, object reference, operation and a list of parameters

can be retrieved from the IR. The IR is database, which provides persistent storage of object in-

terface de�nitions. The IR allows applications to specify their interfaces at run-time and not at

compilation-time. This functionality is crucial for gateways between foreign object systems (such

as Microsoft Component Object Model applications) and CORBA. Having to recompile and rebuild

the gateway every time someone added a new OMG IDL interface type to the system would result

in a very di�cult management and maintenance problem.

2.1.7 Dynamic Invocation and Dispatch

Beside invocation of objects via OMG IDL another invocation mechanism exists. This consists of:

� Dynamic Invocation Interface (DII) - which supports dynamic client request information.

� Dynamic Skeleton Interface (DSI) - which provides dynamic dispatch to objects.

They can be seen as a generic stub and generic skeleton. Unlike IDL stubs, the Dynamic

Invocation and Dispatch mechanism allows clients to make non-blocking deferred synchronous calls

which separate send and receive operations. Other forms of calls are: blocking synchronous invoca-

tion and oneway invocation.

2.1.8 Object Adapters

Object Adapters serve as glue between the object implementation and the ORB.

An Object Adapter is an interposed object allowing a caller to invoke requests on an object

even though the caller does not know that object's true interface. The Object Adapter has the

following responsibilities:
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� Object registration - OAs supply operations that allow programming language entities to be

registered as implementations for CORBA objects.

� Object reference generation - OAs generate object references for CORBA objects.

� Server process activation - If necessary, OAs start up server processes in which objects can be

activated.

� Object activation - OAs activate objects if they are not already active when requests arrive

for them.

� Request demultiplexing - OAs must cooperate with the ORB to ensure that requests can be

received over multiple connections without blocking inde�nitely on any single connection.

� Object upcalls - OAs dispatch requests to registered objects

Object Adapters are mostly language dependent the reason is that there are di�erent im-

plementations of object registration. CORBA allows several Object Adapters but it currently only

provides one: the Basic Object Adapter (BOA). While an interface is responsible for the type of

an implementation, an Object Adapter is responsible for the "style" of object implementation. For

instance, activating an object when a request is sent if the object is not already active.

For the BOA four styles of activation are described:

� Per Method

� Shared

� Unshared

� Persistent

Per method activation is when a new server is started every time an object method is

invoked. Each method call runs in its own server. Shared activation style servers are those that

support multiple objects active at a time. A single server may handle multiple objects all active

simultaneously. Unshared activation servers are those that support only one single active object.

Multiple method invocations may be handled by the single server as long as they are all on the same

object. Persistent servers are those that are always active and do not require activation. Rather

these are presumed to be available as long as the system (or machine) is operating.

2.1.9 Inter-ORB Protocol

To allow communication between ORBs of di�erent vendors OMG has released a standardized

interoperabilit protocol. General Inter-ORB Protocol (GIOP) was speci�cally de�ned to meet the

needs of ORB-to-ORB interaction and is designed to work over any transport protocol that meets

a minimal set of assumptions. The General Inter-ORB Protocol speci�es transfer syntax and a

standard set of message formats for ORB interoperation over any connection-oriented transport.

GIOP is designed to be simple and easy to implement while still allowing for reasonable scalability

and performance.
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The Internet Inter-ORB Protocol (IIOP) is a speci�cation how the GIOP has to be im-

plemented using TCP/IP. The support for GIOP and IIOP is mandatory for a CORBA 2.0 ORB.

Objects publish their identities and locations in the form of object references. The CORBA 2.0 spec-

i�cation dictates a common format for object references exchanged over IIOP, IOR (Interoperable

Object Reference) format. An IOR contains one or more pro�les. Each pro�le describes how a client

can contact and send requests to the object using a particular protocol. All legal IORs must have

at least one IIOP pro�le, thus ensuring that wherever that reference goes, any CORBA-compliant

ORB will be able to locate the object and send requests to it. The IIOP pro�le contains the In-

ternet address of the object's server and a key value used by the server to �nd the speci�c object

described by the reference. Object references can be converted into character strings, which can

be published arbitrarily, like URLs, in email messages, �les, databases, directories, and so on. Any

CORBA-compliant application can convert the string into an IOR and use it to locate and invoke

the object.

2.1.10 Common Object Services

Common Object Services (COS) are part of the CORBA standard. Several services, like Naming

Service, Trading Service and Event Service have well de�ned interfaces and functionality.

The Naming Service provides the functionality to bind a name with an object relative to

a naming context. A name has to be unique in a given naming context. The user can query the

Naming Service for an object by the name of the object. This name has to be the same name, as

the one it was registered with.

The Trading Service allows service providers to advertise their services, and service con-

sumers to dynamically discover those services and bind to them. The service provider submits an

interface reference to the service and a description of the service's capabilities to the Trading Ser-

vice. The service consumer queries the Trading Service for all service instances of a given type whose

capabilities meet the consumer's requirements.

The Event Service allows the user to send and receive events. Suppliers put events into the

Event Channel, which are read by Consumers. Two di�erent models exist for this relationship. One

is the PUSH model and the other is the PULL model. The PUSH model is the most popular and

most useful. It works in the way, that the Supplier pushes actively events into the Event Channel

and the receiver waits passively to get a event pushed to it. The supplier has to register which events

it will push and and the consumer has to specify which events it wants to receive. In the PULL

model the client pulls actively the Event Channel for events.

Figure 2.2 shows what parts are involved. As can be seen the Event Service supports �ltering

and correlation.

The Lifecycle service is another service, which is part of the CORBA COSs. This service

allows objects to be created through standardized factories, moved to other locations, copied to the

same or di�erent locations or deleted. Three kind of interfaces are de�ned by the CORBA COS

speci�cation: the LifeCycleObject, which has to be supported by every object conforming to the

LifeCycle Service, the FactoryFinder, which is an interface for objects capable of �nding proper

factories and GenericFactory which is an interface supported by factories which are forwarding

creation requests to concrete factories.
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Figure 2.2: Event Channel internals

2.2 Overview of ACE

The following description of ACE was taken from [9]:

The ADAPTIVE Communication Environment (ACE) is an object-oriented (OO) toolkit

that implements fundamental design patterns for communication software. ACE is targeted for

developers of high-performance communication services and applications on UNIX and Win32 plat-

forms. ACE simpli�es the development of OO network applications and services that utilize in-

terprocess communication, event demultiplexing, explicit dynamic linking, and concurrency. ACE

automates system con�guration and recon�guration by dynamically linking services into applications

at run-time and executing these services in one or more processes or threads.

ACE is freely available and is being used for many commercial projects (such as Ericsson,

Bellcore, Siemens, Motorola, Kodak, and Boeing), as well as many academic and industrial research

projects. ACE has been ported to a variety of OS platforms including Win32 and most UNIX/POSIX

implementations. In addition both C++ and Java versions of ACE are available.

ACE contains a rich set of reusable wrappers, class categories, and frameworks that perform

common network programming tasks across a wide range of OS platforms. The tasks provided by

ACE include:

� Event demultiplexing and event handler dispatching

� Connection establishment and service initialization

� Interprocess communication and shared memory management.
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� Dynamic con�guration of distributed communication services.

� Concurrency/parallelism and synchronization.

� Components for higher-level distributed services (such as Name Service, Event Service, Logging

Service, Time Service and Token Service).
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Figure 2.3: ACE layers

The ACE toolkit is designed using a layered architecture. Figure 2.3 illustrates the vertical

and horizontal relationship between ACE components. The lower layers of ACE are OO wrappers

that encapsulate existing OS network programming mechanisms. The higher layers of ACE extend

the wrappers to provide OO frameworks and components that cover a broader range of application-

oriented networking tasks and services.

2.2.1 The ACE OS Adaptation Layer

Approximately 10% of the ACE source code are devoted to the OS Adaptation Layer. This layer

shields the higher layers of ACE from platform-speci�c dependencies associated with the following

OS mechanisms:

� Multi-threading and synchronization

� Interprocess communication

� Event demultiplexing

� Explicit dynamic linking
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� Memory-mapped �les and shared memory

2.2.2 The ACE OO Wrappers

Above the OS Adaptation Layer are OO wrappers that encapsulate and enhance the concurrency,

interprocess communication (IPC), and virtual memory mechanisms available on modern operating

systems like Win32 and UNIX. Applications can combine these components by selectively inheriting,

aggregating, and/or instantiating the following ACE wrappers class categories:

� IPC Service Access Point

� Service Initialization

� Concurrency mechanisms

� Memory management mechanisms

� CORBA integration

The use of OO wrappers improves application robustness by encapsulating OS communica-

tion, concurrency and virtual memory mechanisms with type-secure OO interfaces. This alleviates

the need for applications to directly access the underlying OS libraries, which are written using

weakly-typed C interfaces. Therefore, compilers for OO languages like C++ and Java can detect

type system violations at compile-time, rather than at run-time. The C++ version of ACE uses

inlining extensively to eliminate performance penalties that would otherwise be incurred from the

additional type-security and abstraction provided by the wrapper layer.

2.2.3 The ACE Framework

ACE contains a higher layer network programming framework that integrates and enhances the

lower layer OS wrappers. This framework supports dynamic con�guration of concurrent network

daemons composed of application serives. The framework portion of ACE contains the following

class categories:

� Reactor - The ACE Reactor provides extensible, object-oriented demultiplexer that dispatches

handlers in response to various types of events (e.g. I/O based, timer-based, signal-based and

synchronization-based events.)

� Service Con�gurator - The ACE Service Con�gurator supports the construction of applications

whose services may be con�gured dynamically at installation time and/or run-time.

� Streams - The ACE Streams components simplify the development of concurrent communica-

tion software applications composed of one or more hierarchically-related services.
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2.2.4 The ACE Network Service Components

In addition to the wrappers and frameworks, ACE provides a standard library of network service

components. These components play two roles in ACE:

1. They illustrate how to utilize the ACE IPC wrappers, Reactor, Service Con�gurator, Service

Initialization, Concurrency, Memory Management and Strams components.

2. They provide reusable components for common distributed system tasks such as logging, nam-

ing, locking and time synchronization.

When combined with OO language features (such as classes, inheritance, dynamic binding

and parameterized types) and design patterns (such as Abstract Factory, Builder and Service Con-

�gurator), the reusable ACE components facilitate the development of communication services and

applications, that may be updated and extended without modifying, recompiling, relinking or even

restarting running software.
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2.3 Overview of TAO

In several areas, like avionics and telecommunication, is a need for real-time CORBA. CORBA alone

is not yet suited for performance sensitive, real-time applications for the following reasons:

� Lack of QoS speci�cation interfaces: No interfaces are provided by the CORBA 2.0

standard. The clients cannot specify their needs in terms of QoS and servers do not enforce

admission control.

� Lack of QoS enforcement: Conventional ORBs do not provide end-to-end QoS enforce-

ments. For instance most ORBs use a FIFO strategy for scheduling and dispatching client

requests. But FIFO strategies do not obey priorites so a lower priority request could prevent

a higher priority request to be served.

� Lack of performance optimizations: There exists a signi�cant overhead in most ORBs

due to data-copying, ine�cient demultiplexing or long chains of intra-ORB virtual method

calls. Most ORBs lack of integration with underlying real-time OS and network QoS mecha-

nisms.

TAO (The ACE ORB) is an ORB endsystem architecture for high-performance Real-Time

CORBA. TAO complies with the CORBA 2.0 standard and addresses the above mentioned lacks of

most ORBs. TAO is developed, implemented and maintained by the Distribued Object Computing

group at Washington University.

The Naming Service, Trading Service and Event Service are implemented as part of the

CORBA Common Object Services.

Additionaly TAO provides a new Object Service, the TAO real-time Scheduling Service

is responsible for allocating scarce system resources to meet application needs. For deterministic

real-time systems, the primary function of the Scheduling Service is to guarantee that processing

requirements will be met. At the time of writing this document the real-time Scheduling Service

was not fully implemented, as a basic functionality the Scheduling Service (brie
y Scheduler) is

responsible for giving timeouts to registered clients. Real-time information is given to the Scheduler,

like period, priority and worst case execution time.

The implementation of the TAO real-time Event Service makes use of the Scheduling Service.

Consumers and Suppliers have to register with the Scheduling Service in order to be accepted by the

Event Service. The events pushed by the supplier have a struct containing an CORBA::Any as event

data �eld. This indicates, that the TAO Event Service is not compatible with other Event Services.

The events pused by the supplier consist out of a struct containing real-time QoS informa-

tion and a �eld called EventData. The OMG speci�cation of the Event Service suggests to use

CORBA::Any in the interface to the push for event data.

2.4 Overview of DOVE

The Distributed Object Visualization Environment (DOVE) is meant to be an web-based network

management and visualization system using Java and Real-time CORBA
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2.4.1 DOVE Objectives

The goal of the Distributed Object Visualization Envirionment is to monitor and control the state

of applications distributed throughout a network. DOVE has the following objectives as stated in

[10]:

� Create Web-based telecom management application tools using Java component technology

(such as JavaBeans) that can automatically generate visualizations of system- and application-

level information in a network environment.

� Develop a real-time Agent framework based on TAO (The ACE ORB) to monitor and control

applications and network elements in large-scale, hierarchical networks with minimal e�ort by

developers and administrators.

� Develop a platform-independent, persistent, and hierarchical Management Information Base

(MIB) that allows end-user applications and management applications to store and retrieve

name-value bindings e�ciently in a distribued environment. Using components from ACE,

applications can store attributes in the DOVE MIB, which makes them automatically eligible

for visualization. These attribues may be statistical data, con�guration or any other data of

interest.

2.4.2 The DOVE Software Architecture

DOVE consists of �ve components:

1. The DOVE Application

2. The MIB

3. The DOVE Browser

4. The Visualization Component

5. The DOVE Agent

The role of each component in DOVE is described below:

� The DOVE Application publishes state variables to be monitored or con�gured by the

Visualization Component. Using pre-de�ned and/or automatically generated APIs, the appli-

cation stores and retrieves values in the DOVE MIB. The high degree of dynamism supported

by DOVE is particularly suitable for applications that (1) cannot provide a user interface, (2)

must be restarted or recompiled to change their con�guration, or (3) for which logging is too

costly.

� The MIB is the logical repository of information in DOVE. MIBs are separate entities from

DOVE agents, which allows the MIB to be persistent and the application to write to the MIB,

even when an agent is not currently running. Although the MIB is a logical repository, load

or store operations on the MIB will cost no more than a read or write to shared memory since

the application and MIB typically share the same endsystem.
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� The DOVE Browser is a Java applet or stand-alone application that discovers, through

Agents the applications on a network o�ering DOVE services. The Browser is also a visu-

alization builder, allowing end-users to bind graphical or data gathering components to data

published by the DOVE Application. The Browser can then package the resulting tool in its

own applet or application . Likewise, the Browser can simly save it to a �le for later use. This

\build once, use frequently" approach is provided by JavaBeans.

In complex system management environments, such as a central o�ce network operations

center, there may be multiple DOVE browsers that interact with multiple Agents. It is the

responsiblity of the DOVE framework to provide a transparent and scalable infrastructure for

large-scale systems management.

� The Visualization Component is the conduit through which information from a DOVE ap-

plication reaches the user and con�guration information from the user reaches the application.

Each Visualization Component is a Java Bean, which is registered for updates from Agent or

Application Proxy. The Visualization Component makes new information public as it arrives

and �res events related to those changes.

Through the DOVE Browser, the user can connect components to these properties and events

to monitor and change the state of the application, a concept illustrated in
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Object

e.g. Scheduler
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Object
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Figure 2.4: DOVE software architecture

Figure 2.4 explains the relationships between the various DOVE components. For exam-

ple, suppose an Image Server publishes the outgoing number of megabytes and updates the

value every time a client �nishes downloading an image. A network management application

may want to use the Visualization Component to chart the average outgoing throughput. To

achieve this functionality, the Visualization Component would have a property called \outgoing

Megabytes," the point data, timestamps indicating the start and �nish time of the connection,

and an event called"outgoing Megabytes updated." The user would simply connect an aver-

aging graph to the \outgoing throughput" property, which would cause the graph to invisibly

attach itself to the timestamp properties and update event, and when the update event oc-

cured, the graph would update the current average throughput (in Megabytes/sec) using the

new point datum and time elapsed, and plot the next point on the graph.
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The standard bridge from JavaBeans to ActiveX makes it possible to exchange information

between JavaBeans and COM objects. Thus it is possible to integrate DOVE with Microsoft

EXCEL applications running in the Microsoft O�ce suite. In addition, e�orts are underway

to integrate JavaBeans with CORBA.

� The DOVE Agent runs as a Singleton process on an endsystem containing a DOVE MIB.

The Agent performs the following tasks:

1. Service advertisement

2. Change noti�cations

3. Data reduction and correlation

4. Visualization con�guration

� The optional Application Proxy extends the Agent with application-speci�c functionality.

An application proxy is necessary when the application developer wants the Agent and Visu-

alization Component to interact in ways that the generic DOVE framework cannot provide.

For example, the application developer may want to send special messages to the Visualization

Component when the application sets a 
ag in the MIB.
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Chapter 3

Context

The Distributed Object Computing group is part of the Department of Computer Science at Wash-

ington University which is led by Professor Douglas C. Schmidt. Boeing is the primary customer

concerning the DOVE project. Boeing is considering the use of DOVE in avionics applications where

real-time is needed. This need is satis�ed by ACE and TAO, the real-time ORB. Siemens is also

interested in the concept of integrating JavaBeans into CORBA applications. Which adds Siemens

as a second customer of this project.
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Chapter 4

Objectives

In the following the major objectives will be described. As mentioned earlier a major goal of the

project is prototyping, this also includes testing for feasability. What means new ways are gone and

the outcomes are compared against the expectations about them. Prototyping serves also as a test

of the TAO and to collect experience with the various components, e.g. Scheduling Service, in order

to improve them.

As an objective introduced by the customer, Boeing, sensor information of an aircraft has

to be conveyed from several data sources to several data sinks. The architecture used has to be

independent from the number of suppliers(sources) and consumers (sinks). Information �ltering and

correlation should be supported. As a key architecture the TAO Event Service is introduced to the

DOVE project to solve the independence between suppliers and consumers as well as �ltering and

correlation. The sensor information is encapsulated in so called events.

To support location independence of the consumers as well as to have them running in any

environment without customization they will be implemented using Java.

As steps towards a full implemenation of DOVE using the Event Service serveral steps have

to be taken.

� The interoperability between TAO and an Java ORB (in this case VisiBroker) has to be tested.

This test will discover possible 
aws in supporting interoperability by TAO. I 
aws are detected

they have to be debugged and removed.

� The VisiBroker Java ORB has to be tested for the purpose of real-time data visualization.

� The DOVE project makes full use of the Event and Scheduling Service, this will discover

possible 
aws and restrictions in their implementation.

� Building prototypes of DOVE to support the customer in decision making concerning DOVE.

Prototypes are a very helpful media to make customers aware of how things work or will work.

� Integrate the prototypes, especially the DOVE Browser, into the Netscape Browser using the

build-in VisiBroker ORB.
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Chapter 5

Requirements and Analysis

In this section the two �rst phases of the software lifecycle of the DOVE project are described.

5.1 Bootstrapping the Naming Service

The prototypes have to communicate with the Scheduling- and Event Service, therefore they should

make use of the Naming Service. They �nd each other through the Naming Service. If the Naming

Service were not used, object references to all of them would have to be provided via parameters,

which would be tedious.

To be able to use a Common Object Service, the objects, what want to use it must have an

object reference to it. There are several ways to obtain one: Feeding in the Interobject Reference

(IOR) as a parameter, reading it from an environment variable or asking the Naming Service to

provide it.

The last option would work if all Services were properly registered with the Naming Service.

It is possible to get object references to all other Common Object Services by just asking the Naming

Service with their name and an object reference is replied. Therefore it must be assured that every

Common Object Service registers properly with the Naming Service.

One concern remains: Where does the �rst object get the object reference of the Naming

Service?

5.2 The DOVE Browser

A �rst demo of a DOVE Browser, refered to as \demo" in the following sections, uses Java and Unix

sockets. The demo is very restrictive, e.g. it allows only one data source and only one data sink.

The data transported consists of weapon status, navigation infromation and statistical data. The

demo is a result of some �rst steps toward DOVE and is used in this project as a basis for a new,

more advanced DOVE Browser.
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5.2.1 The old DOVE Browser

The demo consists of a Java front end showing the available weapons, an arti�cal horizon and several

statistical data. A statistical data is displayed in its own Java-Canvas and they are all together

contained within a Java-Panel. The weapons are listed in a Java-Panel (class Display Weapons)

as well as the arti�cal horizon (class Display Art Horizon). Class Display Weapons and class

Display Art Horizon inherit from an interface called Display Object. A Factory pattern is used

to manage weapon and arti�cal horizon displays. The factory is called Display Factory Object.

Display_Object

Display_Client

feedind data

createcreate

feeding data

Display

Display_Input_Stream

Display_Output_StreamDisplay_Server

connection via Sockets

Display_Object_Factory

create

Display_WeaponsDisplay_Art_Horizon

Figure 5.1: Object Diagram of the old DOVE Browser

Figure 5.1 explains the dependencies between the objects (classes). The communication

between source and sink (visualization) is done via sockets. No data structure is introduced. The

input for this demo is randomly generated by a process, which feeds this data to a socket connected

with the display part of the demo.

5.2.2 The new DOVE Browser

The following issues and requirements have been found.

� It is necessary for the DOVE Browser concept to use the Event Service. It has to make use of

the PUSH model. The Event Channel, which is part of the Event Service, will play the role

of the DOVE Agent.
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� The Event Service has to use CORBA::Any in the EventData �eld to be 
exible in relation to

the format of the data (e.g. sensor data) conveyed by the event channel, the core of the Event

Service.

� A well de�ned event data structure must be introduced to contain the sensor data of an aircraft.

� One of the objectives of the DOVE Browser is to be as generic as possible in Visualization Com-

ponent relations. One crucial technique is the use of JavaBeans as Visualization Components.

It is also important to �nd a generic way to connect them to Event Service.

� The customer (Boeing) asked for a MIB saving all event data information on persistent storage.

Once stored this information could then be used for analysis of the system and for debugging.

The stored information should be saved in a way, that is easy to debug.

It has been decided to apply an incremental development approach to build prototypes imple-

menting the above mentioned functionality. This means the old DOVE Browser will be incrementally

enhanced until the full functionality, stated here as requirements, is supported.

5.3 TAO's CORBA::Any type

As already mentioned the CORBA::Any type can be of great use for the scalability of the DOVE

Browser using the event channel. The CORBA::Any type consists of several �elds, the most important

being the typecode and the value �eld. The value �eld is a pointer to void. The CORBA speci�cation

allows for �lling the CORBA::Any with any type, standard CORBA types or user de�ned types. The

value and type of a CORBA::Any can be set using the copy-constructor, the copy-operator, the

relpace method or the "<<="-operator. The stub (or skeleton) has to ensure that the value(s)

and the type(s) are properly marshalled for transmission as the skeleton (or stub) is responsible for

proper demarshalling.

The TAO implementation of the CORBA::Any type was not fully completed at the time of the

beginning of this project. As such, an e�ort must be made to ensure that the functionality needed

for the DOVE Browser is available. Tests must be conducted using CORBA::Short, CORBA::Long,

CORBA::Sequence, CORBA::String and CORBA::Double as types contained in the CORBA::Any as

they are needed for the DOVE Browser. Inserting the values and types in the CORBA::Any using the

afore-mentioned operators and extracting them using the ">>="-operator must be tested, as does

using the member functions CORBA::Any::value and CORBA::Any::type. The "inout" parameter

passing mechanism is best suited for testing, as it tests for proper implementation of the parameter

passing mechanisms.
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Chapter 6

Ideas for approaches

6.1 What is a MIB?

A Management Information Base (MIB) is a kind of database containing management information

about devices. These devices can be network devices like routers, PCs, workstations or even software

running on machines. So the notion of a MIB is used in a broader sense than for example in the

\Simple Network Management Protocol" (SNMP). The idea of a MIB is here used for any storage

of management information, such as event data or statistics of a service.

6.2 How to build DOVE MIB functionality into the Event

Service paradigm.

As mentioned when giving the overview of DOVE, a part of the DOVE concept is the above men-

tioned MIB (Management Information Base).

1. Having a MIB connected directly to the Event Service The Event Service could im-

plement the persistence storage of events in itself. The Common Object Services Description

[8] describes on page 4-3 that the event channel may store events for \a speci�ed time, passing

it along to any consumer who registers with the channel during that period of time (e.g., it

may keep event noti�cations about changes to engineering speci�cations for a week)." The

advantages would be a simple interface and only a minimum of objects would be involved in

a request for old messages, namely the Event Service and the requesting object.

2. A second idea is to have the MIB as an object external to the Event Service. The MIB

would be a consumer for the event channel. The idea is that this external object listens to all

the events, stores them on a persitent storage and retrieves them on demand (time, type and

source ID). Retrieving means �ltering them from the persistent storage and supplying them to

the event channel again. Care has to be taken that other components are bothered/confused

by the repetition of the events.
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� One way to avoid this would be that the external object, the MIB, pushes the events

directly to the consumer who requested the stored events.

� Another way would be that the MIB is contacted without involving the Event Service at

all. This would require that the requesting objects have to know whom to ask. The object

reference of the MIB could be supplied as a reaction to a request to the Event Service or,

this is the better alternative to decouple Event Service and MIB, to the Naming Service.

It is necessary to ensure that the order of the events can be maintained. For example, what

would happen if new events arrive while receiving old events from the MIB? In the middle of the

project one customer, Boeing, stated the need for a MIB on a persistent storage, as mentioned in

the Analysis and Requrirements section of this document. It has been decided to design an external

MIB which receives all events from the Event Service which is used as DOVE Agent and stores them

as type, member name and value triple on a persistent storage.

6.3 Considerations about the event data

The events in the OMG COS Speci�cation of the Event Service are of type CORBA::Any. TAO

de�nes events as a structure containing real-time information and a data �eld, which is not speci�ed

yet. This data �eld has to be customized to events sent. Having the concrete issue of transporting

air �ghter data in the Boing project, there are several possibilities:

� Use a CORBA::Any type as the data �eld, this allows the biggest variability. The event data

can be changed \on the 
ight". The drawback is that we sacri�ce a lot of performance for this

variety.

� A �xed struct/union combination. The event data will be �xed and any change in this data

structure will cause the need to recompile and restart the Event Service.

It has been decided to use the Any type, performance will be slightly sacri�ced in favor to scalability.

6.4 Considerations about the sensor data structure

Since consumers and suppliers of the event channel are implemented in a di�erent programming

language in the case of the DOVE Browser, it is necessary to de�ne the sensor data structure in a

portable language. IDL is the obvious choice. The sensor data structure is put into the CORBA::Any

type member of the events. The requirements are that every sensor data structure should contain

statistical scheduling data beside the actual data which are either weapon status or navigation

information. It has been decided to put the statistical data together in one structure. This structure

is always a member of the sensor data structure. The weapon status and navigation information

could be put together into a union because of space optimizations. But this is not necessary because

the CORBA::Any type already provides the 
exibility needed to save space.
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Chapter 7

Speci�cations and Implemenations

The following sections show the incremental developement of the DOVE prototypes. Two phases

of the software lifecycle are discussed below: Speci�cation and Implementation. The previous two

phases of the software lifecycle, Requirements and Analysis, were mentioned earlier in a more com-

bined way. Documentation of testing has been omitted, not because it is unimportant, but because

it is considered as part of the implementation. No implementation of prototypes was done until all

parts were running properly. If the components of the produced software are to be used in practice,

they will have to be thoroughly tested. The best option would be to rewrite all components to

eliminate any bugs created and kept by the incremental development.

7.1 Bootstrapping protocol for the CORBA Common Object

Services

7.1.1 Speci�cation

To get the object reference of the Naming Service several possibilities exist. One of them is to give

the IOR (Inter Object Reference) of the Naming Service to the application as an input parameter.

Another possiblity is to de�ne a so called bootstrap protocol for the Naming Service.

TAO implemented the bootstrap protocol for the Naming Service in the following way:

� The Naming Service listens to a well de�ned multicast address at a well de�ned port for

requests. The advantage of a multicast instead of a �xed host address is that the Naming

Service can reside on any machine in a domain. The other machines in this domain do not

have to know on which machine the Naming Service resides, it is transparent to them.

� The Naming Service expects to receive two bytes which de�ne in network byte order the port

on which the requesting machine expects the response of the Naming Service. This response

consists of the IOR of the Naming Service.

� Any object requesting the Naming Service IOR has to send a UDP packet containing a port

number to the multicast address. The port number in the packet is the packet referes to the
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port on which the requesting object listens for the response of the Naming Service. It then has

to wait until the response arrives or a timeout occurs. The timeout has to be chosen within

resonable limits. The received Naming Service IOR can then be resolved by the string to object

command speci�ed by CORBA.

By having the the Naming Service object the other COSes can be resolved easily using the resolve

method of the Naming Service.

7.1.2 Implementation of the bootstrap protocol for the Naming Service

The implementation was done in a straight forward manner. Thre seconds was chosen as the timeout,

because the network environment was small. Java supports multicast datagrams so they were used.

To have the port number for replies in network byte order a little hacking had to be done because

Java does not support di�erent byte orders. After testing which order worked, the mapping from

Java to network byte order was hardcoded. The results of this were:

� Name Service crashes if you give a name not available in its DB.

� The Resolve Initial Reference method has to use af �xed bu�er when receiving the Name Service

IOR, this could be dangerous if the IOR size is very large. This was solved immediately to:

Use the maximum datagram size de�ned in ACE.

7.2 Testing the CORBA::Any type in TAO

7.2.1 Speci�cation: How to test the CORBA::Any type

To test the Any type a server and a client, complying to an Any intensive interface, are built. The

object implementation managed by the server provides one method, this method accepts one inout

parameter of type Any. The method checks for the type code and selects the appropriate commands

to modify the value of the CORBA::Any. The manipulations are very simple, so that it is easy to

control on the client side if the correct value is returned by the server. The client does several

requests, each time using a di�erent type in the Any. Tests using the sensor data structure ensure

that they will work when used by the DOVE Browser.

7.2.2 Results: Needed CORBA::Any type customizations

The tests showed that sequences and arrays did not work properly. A bug in the stub code could be

found as well as a bug in the marshalling code.

� When using the any type alone as an argument, the any was not given as an argument to the

do call!

� When using the any type in a struct an Any var was generated, which cannot be handled by

the marshalling code.

� The copy operator released memory, which did not belong to the ORB. The Release statement

in any.cpp (operator=) had to be checked.
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The bugs found were �xed immediately by the responsible person. After the corrections, the

CORBA::Any type is now ready to use. The sensor data structure cannot contain sequences because

of the above mentioned problems. A tradeo� must be made, which is: Using a �xed number of

members with names indicating the position in the sequence instead of a sequence type itself.

The Any type could have been tested more completely by also using simple in or out pa-

rameter passing mechanisms and return types, but this was left for other projects.

7.3 Testing the interoperability between Orbix, Visibroker,

TAO

7.3.1 Speci�cation

As mentioned earlier TAO is built to be used with C++, which means TAO provides only an

IDL compiler to compile from IDL to C++. Interoperability with Java implementations should

be possible by de�nition of GIOP or better IIOP, but there is no guarantee that everything works.

Therefore it had been decided to test all cross compatibilities. To achieve this the Any test mentioned

earlier is implemented with all three ORBs, including both the client and server sides. The port

of the already existing C++ Any test to Visibroker for Java will of course be more complicated

than the port to Orbix also using C++. It is expected that, using the same ORB to communicate

between the client and server, no problems should occur. Therefore the x to x connections are only

used to proof the correct implementation of client and server. The server implementation prints the

IOR (Inter Object Reference) and the client accepts an IOR of a server. In this way it is possible

to connect any client to any server.

7.3.2 Results about the interoperability

The communication between TAO and Orbix works both ways without any problems. (TAO server

and Orbix client, as well as TAO client and Orbix server). Also the communication between Orbix

and Visibroker for Java show no problems. The communication between Visibroker for Java Version

2.5 and TAO has problems, though. After switching over to Visibroker for Java Version 3.1 the

communication works without any problems. The reason for this 
aw is not known, it is assumed

that it is an incompatibility in the implemented IIOP protocols. In March 1998 the new version of

Visibroker for Java came out, Version 3.2. A bug has been found a bug in this version when using

more than one child struct inside a parent struct. The marshalling code does not marshall these

kind of structs properly, perhaps optimizations might have been improperly implemented.
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7.4 Testing the access to the TAO Event Service using Visi-

broker

7.4.1 Speci�cation

The key to using the TAO Event Service is the IDL speci�cations of the various objects involved

in the communication. The involved objects are the Naming Service, Scheduling Service and Event

Service. The IDL specifcations have to be compiled to Java code in order to allow the DOVE

Browser to connect to the three services. It has been decided to use the already mentioned PUSH

model of the Event Service to achieve event delivery between suppliers and consumers.

7.4.2 Result

Initialization is tedious, a helper class is needed and/or initialization of the \data " �eld should be

separated. The dependency information supplied by a supplier or a consumer of the Event Service

contains also events. This fact makes some problems in situations where no event is wanted to be

sent by the supplier. So in this case the event information has to be initialized, though actually

no event data is available. A redesign of the dependency information could resolve these kind of

situations.

7.5 Testing the sensor data structure as content of an CORBA::Any

type

7.5.1 Speci�cation

Because the sensor data structure is not just a simple type it must be proven that TAO and Visibroker

are able to exchange this structure in an CORBA::Any. The already mentioned Any test will be

enhanced to not only test simple types and arbitrary structs, but also to test the two concrete

structures: Navigation information structure and Weapons status structure.

7.5.2 Implementation and Results

The implementation is no big e�ort. Some dummy values are assigned to the members of the sensor

data structure. The Any test client then calls the Any test server with the sensor data structure

inside the Any type. On the TAO client side the replace method is used because it is assumed

that it is implemented properly. The Visibroker server side extracted the sensor data structure with

the help of the Helper classes, which are automatically supported by the Visibroker Java to IDL

compiler.
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7.6 Enhancing the DOVE Browser with the Event Service

7.6.1 Speci�cation

As mentioned in the Analysis and Requirements the DOVE Browser has to be enhanced to use the

Event Service and the events must transport the sensor data in their CORBA::Any type member.

After completing the various tests to assure that the needed functionality, CORBA::Anys and inter-

operability, is available the DOVE Browser can now be redesigned. The old DOVE Browser, the so

called demo, uses sockets to communicate between a data generator and a viewer. Raw bytes are

sent between them. The old viewer consists of several visualization components: a graph component,

a list-panel to display the weapon status and an arti�cal horizon. The way the viewer is build makes

it possible to have several of these components running at the same time connected to di�erent data

sources. Thus it is possible to bring up graphs dynamically, but the set of viewers is hard coded.

One goal is to have the components running as JavaBeans. Doing so allows to be more dynamic

and to facilitate the connection between visualization components and speci�c metrics supplied by

a event channel consumer, which is part of the viewer. This will be a topic of further enhancement.

The whole idea with the Event Service is to have several suppliers (e.g. sensors), several

consumers (viewers) and the possibility to �lter and correlate events (e.g. sensor information).

The monitored object has to be a supplier of events in this concept, either directly or

indirectly with a proxy in between. In the case of this DOVE Browser, the monitored object is a

dummy supplier supplying only dummy statistical data, weapon status and navigation information.

Display_Object

Display_Client

feedind data

createcreate

feeding data

Display

Border to the Event Service

Border to the Event Service

Display_Object_Factory

Event SupplierDisplay_Server

Display_Event_Consumer

Event Channel

Display_Art_Horizon Display_Weapons

create

Figure 7.1: Object Diagram of the old DOVE Browser using the Event Service
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Figure 7.1 shows the relationships of the Event Service parts to the rest of the DOVE

Browser. The Event Channel pushes events to the Event Consumer which then updates information

inside the DOVE Browser.

7.6.2 Implementation

The implementation of the enhancement of the DOVE Browser using the Event Service requires

translating the IDL de�nitions of the Naming Service, Scheduling Service and Event Service to

Java. The objects are now accessed by Java as it was done by TAO objects. The main problem now

is to �gure out the mapping.

7.7 Putting the DOVE Browser into a web browser as an

applet

7.7.1 Speci�cation

As mentioned in the analysis section, a main concern is to be able to have the DOVE Browser running

in a web browser with the event channel being on any machine in the internet and the data source,

the event channel supplier on a third location or on one of the before mentioned locations. Since

Netscape has provided an ORB built-in in their Netscape Communicator for quite some time, the

vision of having an applet using CORBA running in a web browser is a reality. The ORB provided

by Netscape is the Visigenic ORB Visibroker for Java version 2.5 assuming Netscape Communicator

4.04. Since the DOVE Browser is written using Java 1.1 and Visibroker 3.1, the applet can not

run in the regular Netscape Communicator 4.04, which does not support Java 1.1 at this time, only

Java 1.0 (assuming February 1998). It is very important for the DOC group to be able to show the

customers, e.g. Boeing, the DOVE Browser running in a web browser. Therefore several tests are

made to �nd out the part not working in the communication between TAO and Visibroker 2.5. The

�nal result is, that there must be a 
aw in the marshalling code of Visibroker 2.5. At the time of

the tests (February 1998) an extension of Netscape Communicator was available supporting Java

1.1 and Visibroker 3.1. This could solve the problems, but the way to install the extension is very

complicated and therefore not reasonable for the use by the customers. It has been decided to wait

for an already properly set up Netscape Communicator instead of spending time trying to �x the

not provided functionality of a commercial product.

7.8 Enhancing the DOVE Browser with JavaBeans function-

ality

7.8.1 Speci�cation

One basic idea of DOVE is to be very generic in displaying information. This requirement lead to

the idea of using JavaBeans as DOVE Visualization Components, as mentioned in the overview of

DOVE. To create a Java Bean no special classes are needed. The only thing that has to be obeyed is
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that the Java Bean should depend on as few as possible assumptions about the environment it will

use. The method names should also obey a certain naming convention so that reuse and con�guration

are as easy as possible. The naming convention is quite simple: A method that sets any parameter

of an Java Bean should be named as set<parametername> (<parametername>) and a method that

gets some parameter of a Java Bean should be named as <parametername> get<parametername>.

For further information about JavaBeans see [16].

Having a generic \front end" will not be enough when not being generic inside the DOVE

Browser, too. Therefore some considerations have been made and the �nal idea is to use an Observer

pattern. The two main components of an Observer pattern are Observables and Observers. Ob-

servers register with one or more Observables, which then inform one or more registered Observers

about changes as soon as its own state changes. So when this pattern is mapped to the DOVE

Browser the metrics supplied by the event data become Observables, which means that each metric

has a corresponding Observable. The visualization components become Observers. Now two things

have to be done to have this concept working. One is to demultiplex the event data into Observables.

This means several event data structure members could form one metric and therefore the metric

has to be computed �rst.

Observable

DemoObservable

Weapons Navigation Cpu_Usage
ObservableObservableObservable

DemoCoreDataHandler

NavWeap
DataHandler

Event
Channel

Observer

Navigation
VisComp

Weapons
VisComp

Visualization
Component

Double
VisComp

VisComp
Factory Repository

JavaBeans

Event Push
Consumer

Figure 7.2: Object Diagram of the DOVE Browser

Figure 7.2 shows the architecture of new DOVE Browser using the generic JavaBeans. As it

can be seen all concrete Observables inherit from the Observable object and all concrete Visualization

Components (JavaBeans) inherit from the Observer object. Because communication between Ob-

servables and Observers is done assuming the base object (Observable object, and Observer object)

functionalities only, indepencence between concrete Observables and Observers is guaranteed.

The NavWeapDataHandler object inherits from a neutral DataHandler object. This way it

can be assured that the PushConsumer object is independent from any concrete event data structure.

So the DataHandler object de�nes the basic interface.

The functional model of the new DOVE Browser is simple, Figure 7.3. The DemoCore

object tells the VisCompFactory to create a new Visualization Component with the properties
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Figure 7.3: Functional Model of the DOVE Browser

necessary to display the chosen Observable. After that the DemoCore is responsible for connect-

ing Observables with Observers (Visualization Components). Connecting Observables is done

through the DataHandlerwhich generic interface allows the DemoCore to ask for a list of Observables

and then to pick one speci�cally to connect it with an appropriate Visualization Component.

Updates of the Visualization Components take the following 
ow of control: The Event

Channel pushes events to the PushConsumer. The PushConsumer forwards the event data �eld

to the Data Handler, which is actually an concrete Data Handler (e.g. NavWeapDataHandler).

This Data Handler then demultiplexes the event data structure into several metrics. The metrics

in
uenced by this recognize that the value they contain has been changed and trigger a noti�cation

event to their Observers. This event contains then an object with the changed data. The observers

read the data �eld of the noti�cation event and update their graphical front end.

// inform the Observers about changes
private notifyObservers (XXX) {
   if changed then
      for all Observers do
         update (this, XXX)

public updateXXX() {
   do some calculations
   set the changed flag
   notifyObservers (XXX)

XXXObservable

Cpu_UsageObservable, ...)
 WeaponsObservable,

(NavigationObservable,

YYYObserver
(DoubleObserver,
 NavigationObserver,
WeaponsObserver, ..)Operations:

public update (Observable, YYY)
// get informed by an Observable
Operations:

Figure 7.4: Interface description between Observables and Observers

Figure 7.4 shows the interface between Observables and Observers. The Observables get

called by their update method. The method does some calculations, sets the changed 
ag and calls

then the method notifyObservers with a reference to an object. The object is in this use-case the

changed metric, e.g. a double, a long or a Navigation struct. The method notifyObservers checks
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the changed 
ag and calls the update method on all registered Observers. The called Observers read

then the object out of the parameter and update their display.

Observers, Observables pairs can be categoried into two classes depending on the data they

are responsible for. The �rst category uses only build in Java types like Double or Int. The second

category uses structs containing more sophisticated information like Weapon status or Navigaton

information. It is obvious that the �rst category is more generic than the second one. The concept

of JavaBeans is in the second category slightly lost because there is a heavy dependence between

Observables and Observers through the Weapon status structure (short only Weapons structure)

or the Navigation information structure (short only Navigation structure). The following should

give an example: Cpu UsageObservables, JitterObservables and OverheadObservables are all

displayable by a Double Visualization Component. Whereas the NavigationObservable can

only be connected to the NavigationObserver.

7.8.2 Implementation

As already mentioned in the speci�ation, JavaBeans have been used as generic DOVE Visualization

Components. It was mentioned in the speci�cation, though it is clearly an implementation decision.

But because the concept of JavaBeans is very basic for this project it has been decided to mention

it anyway.

Java provides the Observer pattern already. This means two classes called \java. util.

Observer" and \java. util. Observable" are part of the Java Development Kit. These classes are

used to implement the afore mentioned Observer pattern.

The implementation has been done straightforward to the speci�cation. The objects are

directly mapped to Java classes. The part of the DOVE Browser connecting to the Event Service

could be taken without many changes from the previous prototype. The Visualization Components

have to be customized in order to ful�ll the JavaBeans requirements.

7.9 Building a Management Information Base for DOVE

7.9.1 Speci�cation

The Analysis and Requirements phases stated already the need for a Management Information

Base, refered to as MIB from now on. The Ideas section of this document discussed several system

architectures of such a MIB. After a speci�c request for a MIB by Boeing at a meeting it has been

decided to choose the external object approach to implement the MIB. Which means an external

object is connected via Event Consumer to the Event Channel, which is serving as the DOVE Agent.

The MIB listens to all events sent on the Event Channel and stores the event data, in a format similar

to the format used for declarations in C++, on persistent storage.

The event data is contained in an CORBA::Any and no assumptions can be made about the

data inside. The MIB has to be able to handle every kind data inside the event data. Therefore

the MIB has to analyse the data contained in the CORBA::Any carefully. The CORBA::Any could

contain a struct, a double, long and so on. Several layers of types could be contained, e.g. a struct,

containing a struct, containing a string. Having several layers requires recursive analysis of the
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CORBA::Any. It has been decided to use the notion of a tree for this purpose. This means the nodes

contain the type and value information and links represent a parent-child relationship (a struct as

parent and and the members of the struct as children).

Methods:
visitStructNode (StructNode)
visitLongNode (LongNode)
visitStringNode (StringNode)
visitDoubleNode (DoubleNode)

Methods:
visitStructNode (StructNode)
visitLongNode (LongNode)
visitStringNode (StringNode)
visitDoubleNode (DoubleNode)

Node

Methods:
Accept (NodeVisitor)

DoubleNode

Methods:
Accept (NodeVisitor)
string getName ()
double getDouble ()

StringNode

Methods:
Accept (NodeVisitor)
string getName ()
string getString ()

Accept (NodeVisitor)
Methods:

LongNode

string getName ()
long getLong ()

Accept (NodeVisitor)
Methods:

StructNode

string getName ()
Node getChild (n)

NodeVisitor

PrintVisitor

Figure 7.5: Visitor and tree representing the content of a CORBA::Any

See Figure 7.5 for an object diagram of the the above mentioned nodes. So all types of

nodes (StructNode, DoubleNode, LongNode, ULongNode, StringNode..) inherit from Node. It

has been decided to use a Visitor pattern [3] to traverse the tree.

All Visitors inherit from NodeVisitor. which provides the basic functionality to traverse a

tree. The visitor PrintVisitor accepts a �le name and a tree as input. It prints the value of the

tree in a format similar to the declaration format in C++.

AnyAnalyser StructNode LongNode PrintVisitor

printVisitor->visitStructNode (this)

getName ()

getChild (n)

Accept (this)

printVisitor->visitLongNode (this)

getName ()

getLong ()

Accept (printVisitor)

Figure 7.6: Functional Model of the Visitor Pattern



CHAPTER 7. SPECIFICATIONS AND IMPLEMENATIONS 37

Figure 7.6 shows the relation between the objects and methods. The AnyAnalyser, creates a

tree out of the type code and value information of the CORBA::Any. It instantiates the PrintVisitor

and calls the root of the tree with a reference to the PrintVisitor. The node, in this case the

StructNode, calls then the PrintVisitor, which in turn calls the StructNode again to obtain the

properties of it. In this case the properties are the name and references to children. Now, the

advantage of the Visitor pattern is obvious: The nodes themselves do not depend on what is done

with the properties, if they are used for further computation, just printed or further traversed.

This independence assures that new Visitors can be added without any change in the node objects.

To go on in the explanation of the example, the PrintVisitor uses the references to the children

of the StructNode to further traverse the tree. The �rst child is a LongNode, it gets called by

the PrintVisitor on its Accept method and replies with the visitLongNode method call of the

PrintVisitor. In turn the PrintVisitor gets the properties of the LongNode and prints them.

The LongNode does not have to care about what is done with its properties.

A wrapper called AnyAnalyser wraps the building of the trees with the PrintVisitor

together, so that the AnyAnalyser can be seen as one object to which CORBA::Anys can be given.

The content of the CORBA::Any will be written to a �le.

StructNode LongNode

.....

AnyAnalyserConsumer
Event Push

Channel
Event 

DOVE
Management
Information

Base

NodePrintVisitor

Figure 7.7: Object Diagram of the DOVE Management Information Base

The MIB application itself, see Figure 7.7, consists out of a Event Push Consumer and an

AnyAnalyser. This way the two basic functionalities are separated as much as possible. Which

means a change in the Event Push Consumer does not in
uence the AnyAnalyser and vice versa.

Figure 7.7 shows the relations between the objects.
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7.9.2 Implementation

Because the MIB does not need a user interface it has been decided to implement it using C++

and TAO. The Event Push Consumer part can be taken from the previously written prototypes for

the Event Service functionality. The afore mentioned objects like Node, fStruct, Double, Long ..

gNode, NodeVisitor, PrintVisitor and AnyAnalyser are mapped directly to C++ classes. The

MIB accepts two parameters: a name for the �le on a persistent storage and a number of events.

The number of events tells the MIB how many events have to be monitored until it shuts down itself.

This restriction has been made because limited space on the persitent storage has to be assumed.

The AnyAnalyser has detailed knowledge about the internals of a CORBA::Any. The CORBA::Any

in TAO holds the value in two di�ent ways, depending on if the ORB owns the data or not. If the

ORB does own the data, a simple pointer to an allocated memory area can be retrieved. If the

ORB does not own the data, it has to be copied into a newly allocated memory area and decoded.

Explaining decoding is beyond the scope of this document.

Analysing the CORBA::Any involves checking the type code information and creating a tree

node with a proper pointer to the actual memory location. Then skipping a number of bytes de�ned

by the type code size and repeatedly applying this sceme.
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Chapter 8

Common Object Service: LifeCycle

Service

8.1 Overview

The COS speci�cation [8] describes the LifeCycle Service in the following way:

Lifecycle services de�ne services and conventions for creating, deleting, copying and moving

objects. Because CORBA-based environments support distributed objects, lifecycle services de�ne

services and conventions that allow clients to perform lifecycle operations on objects in di�erent

locations.

Clients are not allowed to create objects themselves by speci�cation. The objects have to

be created by factories. Factories are dependent on the objects they create. A factory has to know

how to initialize and how to support resources. The COS speci�cation introduces the concept of

Generic Factory in order to introduce a generic way of creating objects. The Generic Factory

interace can be either supported directly by a concrete and object implementation dependent factory

or by a separate factory implementing only the interface. The separate object then needs to have

a way to �nd concrete factories to create the requested object. Factories implenting the Generic

Factory interface must implement a generic operation, named create object Instead of invoking

an object speci�c operation on a factory with statically de�ned parameters, the client invokes the

create object operation whose parameters can include information about resource �lters, state

initialization, etc.

In many environments resources are scarce or certain contraints have to be ful�lled by a

factory. A constraint could concern the architecture like intel, sun, etc. As a standardized inter-

face for factories the Generic Factory interface was introduced by OMG as part of the LifeCycle

speci�cation.

Figure 8.1 shows how the Generic Factory interface can be used to implement a \creation

service" which distributes creation requests using the \Criteria" to a set of concrete factories.

Objects who want to comply to the lifecycle speci�cation have to support the LifeCycleObject

interface. The LifCycleObject interface is shown in Figure 8.2.
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specific code
implementation

specific code
implementation

creation service

GenericFactory

GenericFactoryGenericFactory

resources resources

Figure 8.1: GenericFactory interface

interface LifeCycleObject {

LifeCycleObject copy (in FactoryFinder there,

in Criteria the_criteria)

raises (NoFactory, NotCopyable,

InvalidCriteria,

CannotMeetCriteria);

void move (in FactoryFinder there,

in Criteria the_criteria)

raises (NoFactory, NotMovable, InvalidCriteria,

CannotMeetCriteria);

void remove ()

raises (NotRemovable);

};

Figure 8.2: IDL de�nition of LifeCycleObject
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A client that wishes to remove an object, invokes the objects remove operation. A client

that wishes to move or copy an objects issues a move or copy request on an object. The user of the

lifecycle service must be aware of the consequences for other clients of the moved object.

Client

Factory
Finder

Document
LifeCycleObject

HERE

THERE

Figure 8.3: Lifecycle services de�ne how a client can move or copy an object from here to there

In the example of Figure 8.3, client code would simply issue a copy request on the document

and pass it an object supporting the FactoryFinder interface as an argument.

Factory Finders are used to �nd factories in environments. They support an operation,

find factories, which returns a sequence of factories. Clients pass factory �nders to the move and

copy operations, which typically invoke the find factories operation to �nd a factory to interact

with.

The client of the GenericFactory interface invokes the create object operation and can

express criteria for creation. The GenericFactory then forwards the creation request to a more

concrete factory. There exists also the possiblity that several GenericFactories are invoked until

�nally a conrete factory creates the requested object. However, all of this is transparent to the client.

Figure 8.4 explains the create object operation, which accepts two parameters. The �rst

is the key of the factory to be used and the second is a constraint expression.

8.2 Context

The outcome of this project will serve as research object and as an example of the LifeCycle Service

as part of the TAO package.

The main goals of this project are:

� Providing an example for the use of the COS LifeCycle Service.

Object create_object (in Key key,

in Criteria the_criteria)

raises (NoFactory,

InvalidCriteria,

CannotMeetCriteria);

Figure 8.4: IDL de�nition of the create object operation of the GenericFactory interface
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� Get �rst some experience and later ideas for approaches and optimizations.

� Provide, if possible, support for Generic Factories and Factory Finders.

� Build a generic creation service, named \lifecycle service" and try to factor out its code to

have it as separate component available for all applications.

8.3 Starting point: The Quoter example - Version 1.0

QuoterClient Quoter

Client side

access

QuoterFactory

Server side

get initial
reference

Figure 8.5: Object Diagram of the �rst Quoter example

Figure 8.5 shows the �rst version of the Quoter example. It consists out of a Quoter client,

a Quoter factory and an actual Quoter object. The Quoter object itself is not very sophisticated,

it just o�ers a method called get quote, which gives the quote of the stock speci�ed. So the focus

will not be on the Quoter object itself but on the lifecycle of it.

8.4 Analysis and Requirements

The Quoter example version 1.0 does not support any LifeCycle operations beside the create quoter

operation of the Quoter Factory to get a reference of the actual Quoter. In order to achieve the

above mentioned goals the following schedule has been devised:

� The Quoter object should support the lifecycle operations.

� A Factory Finder should be provided for �nding Quoter Factories.

� Support for Generic Factories and Factory Finders should be provided.

� Support the \Lifecycle Service", a very generic creation service, which will be explained in

detail later.

As in the DOVE project, this project will use incremental developement, too. This means,

that the prototypes are incrementally enhanced to �nally achieve the full functionality.
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8.4.1 Analysis for a Generic Factory and a LifeCycle Service

The implementation of a Factory Finder is pretty straightforward. One way to �nd factories in a

certain environment is to use the Naming Service. This is the easiest way to �nd a object reference

to a suitable factory.

In the case of a Generic Factory, which is supposed to forward creation requests to more

speci�c and concrete factories this would work too. But the disadvantage using this sceme is that

the Criteria are worthless in this case. The Naming Service cannot use the Criteria to select any

speci�c factory. Remembering other COSs, there is the idea of a Trading Service. After looking in

detail over the Criteria speci�cation [8] it was found out that the criteria language is a subset of

the Trading service constraint language. The trading service provides everything needed to build

a generic creation service. Also the Trading Service supports registering objects with describing

properties and searching for objects, which ful�ll the speci�ed constraints. Though this is only

part of the Trading Service functionality, it is exactly what is needed by a Generic Factory to

make use of the Criteria speci�ed. The idea is to force all concrete factories to comply to the

Generic Factory interface and make them registering with the creation service, our lifecyle service.

So all factories must know how to handle the generic create object call and how to extract the

information speci�ed in the Criteria.

Two kind of factories, implementing the GenericFactory interface, are conceivable: A simple

Generic Factory using no registering of concrete factories using simple Naming Service lookup or a

sophisticated creation service like the LifeCycle Service shown in Figure 8.6. The LifeCycle Service

is supporting an interface to register factories implementing the Generic Factory interface.

Figure 8.6 also introduces the idea of having a concrete factory which forwards the creation

request to the LifeCycle Service because it cannot handle the create request. The reason for that

might be scarce resources for example. The create object request from a client, or a forwarded

request from a concrete factory, then issues a query on the best matching concrete factory. For more

details see the speci�cation [8].

8.5 Speci�cations and Implementations

8.5.1 Speci�cation: Adding a Factory Finder

The addition of the COS LifeCycle operations was done by an other team member. The Quoter must

inherit from the LifeCycleObject and implement the lifecycle operations. So the starting point is a

Quoter object, which inherits from the LifCycleObject, and a concrete Quoter Factory, specialized

to create only Quoter objects. Both objects are registered with Naming Service, so that the Naming

Service can be used to �nd either one of them.

Figure 8.7 shows the relations between the Quoter Factory Finder, the Quoter Factory and

the actual Quoter. It can be seen that the Factory Finder introduces an additional level of indirection.

The additional level of indirection cannot be prohibited following the COS speci�cation.
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Figure 8.6: Generic Factories - lifecycle service
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Figure 8.7: Object Diagram of the Quoter example with a Quoter Factory Finder
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8.5.2 Speci�cation: Adding a Generic Factory

As already stated in the analysis and requirements part, one way to implement a Generic Factory

is to use the Naming Service to �nd a proper concrete factory. This is the �rst step towards the

full functionality. In more detail this means, the �rst prototype of a Generic Factory for the Quoter

example will inherit from the LifeCycle Service GenericFactory. The create object method uses

the Naming Service to �nd a factory with the proper name, like Quoter Factory. As it can be

seen, this approach is not very generic and not very dynamic. The Criteria is not used. The

implementation should be pretty straightforward. How to access the Naming Service is a well

known issue.

Quoter

LifeCycle

Object

Quoter
Factory

Naming

FactoryFinder

Service

"Quoter_Generic_Factory"

GenericFactoryFactoryFinder

Quoter
GenericFactory
Quoter create_quotercreate_object

"Quoter_Factory"

there

Figure 8.8: Object Diagram of the Quoter example with a Generic Factory

Figure 8.8 shows how the Generic Factory �ts into the Quoter example.

8.5.3 Speci�cation: Adding a LifeCycle Service

The LifeCycle Service implements the Generic Factory interface and uses the Trading Service as

lookup engine. As already stated, the Trading Service provides all functionality needed:

� An interface to create a new \type". \Types" in Trading Service terminology are descriptions

of objects, which are traded.

� An interface to register concrete factories with the lifecycle service, which is in Trading Service

terminology \exporting".

� An interface to query object, depending on constraints/criteria.

The Trading Service is used as a colocated object, which means, no networking overhead is

introduced. Trading Service properties have to be speci�ed in order to establish criteria for selection.

For the �rst version of such the Lifecycle Service a �xed set of criteria is assumed. The properties
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Figure 8.9: Object Diagram of the Quoter LifeCycle Service

are: name, description and location. These properties can be easily exchanged for more sophisticated

ones, as soon as the Lifecycle Service is properly running.

Figure 8.9 shows the LifeCycle Service in more detail with the Trading Service as a colocated

object.

8.5.4 Implementation

This is part of the documentation provided with the implemenation of the Quoter example. Several

processes exist, each holding one or two objects.

The following processes exist:

� server

� Factory Finder

� Generic Factory

� Life Cycle Service

� client

and the following objects exist:

� Quoter (inherits from CosLifeCycle::LifeCycleObject)

� Quoter Factory (dependent on Quoter)

� Quoter Factory Finder (inherits from CosLifeCycle::FactoryFinder)

� Quoter Generic Factory (inherits from CosLifeCycle::GenericFactory)

� Quoter Life Cycle Service (inherits from CosLifeCycle::GenericFactory)
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Server

The server process contains two kind of objects: Quoter and Quoter Factory. A Quoter is a very

simple Object, supporting only one method get quote. The focus is not on building a sophisticated

object, but on showing how lifecycle policies work. The object Quoter Factory serves as a factory

for Quoters.

Factory Finder

The COS speci�cation introduces the concept of a Factory Finder, which is capable to �nd proper

factories. The Naming Service is used as lookup-mechanism. A reference to the Factory Finder is

passed as parameter to every copy or move request of an object supporting the LifeCycleObject,

like the Quoter does for example.

Generic Factory

This process holds the object Quoter Generic Factory. The Quoter Generic Factory implements

the GenericFactory interface introduced by the COS speci�cation. It forwards create object

requests to more concrete factories, e.g. the Quoter Factory. The concrete factories are found via

Naming Service.

LifeCycle Service

This process is very similar to the Generic Factory process. It also supports an Object, which

conforms to the GenericFactory interface. The Quoter Life Cycle Service conforms to the idea

of a Lifecycle Service" as it is introduced by the COS speci�cation. The Quoter Life Cycle Service

is neutral against the Quoter example. It is not dependent on the interfaces de�ned in the Quoter

IDL �le. It uses only interfaces de�ned by the CosLifeCycle module. The implementation uses the

COS Trading Service to manage registered Generic Factories, as the Quoter Generic Factory for

example. A lookup on the Trading Service is performed when a create object request is invoked

on it.

Client

Creates a Quoter using the Quoter Factory Finder to �nd a suitable factory. After that, the copy

method of Quoter is invoked to copy the Quoter to an other location, which is in this example the

same location, but that does not matter so much. The concept is important in this example.

The objects are invoked in the following order: client! Quoter! Quoter Factory Finder

! Quoter Life Cycle Service! Quoter Generic Factory ! Quoter Factory
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Chapter 9

Conclusion

The concept of DOVE proved to be very 
exible and generic. It has been easy to extend and imple-

ment the concept. CORBA technology and especially TAO have proven to be the right frameworks

to do such a task. The CORBA::Any type allowed to have very generic interfaces, which are still

type-safe.

Many design lessons have been learned and a lot of experience gained. Implementing a COS

service helped to understand the absolute need for exact and complete speci�cations, as it is good

software engineering practice.
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9.1 Future work

9.1.1 Future of the DOVE demo

The DOVE demo will serve as a showcase and starting point for many new projects. One these

projects will be the monitoring of the Audio/Video streaming service, which is part of TAO. An

other project will be to display debugging information of the Event Service used by Boeing.

9.1.2 Future of the LifeCycle Service

The move operation has been implemented using the location forwarding technique.

After this document was closed, TAO has been enhanced to support location forwarding.

TAO provides location in two di�erent ways, one is through replacement of the object with an

object, that causes a GIOP Location Forward reply, the other approach is to use a so called \servant

locator" (part of the Portable Object Adapter Speci�cation) and have it to send GIOP Location

Forward reply. For details, please refer to the TAO documentation at

http://www.cs.wustl.edu/ schmidt/ACE wrappers/TAO/docs/releasenotes/index.html.
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Chapter 10

Appendix

10.1 Presentations and talks

� March 17 1998: Presentation of DOVE to people of Boeing Research Laboratory at Boeing,

Saint Louis.

� April 20 1998: Presentation of DOVE to people of Siemens Research Laboratory at the DOC

laboratory, Washington University, Saint Louis.

� April 21 1998: Presentation of the LifeCycle Service to people of Siemens Research Laboratory

at the DOC laboratory, Washington University, Saint Louis.

� June 15,16 1998: Presentation of the DOVE demo to people of Motorola Research Laboratory

at Schaumburg, near Chicago, Illinois. The DOVE demo is going to be modi�ed and will serve

as a prototype of a feasability study.

10.1.1 Learned design lessons

� Patterns are a valuable tool for software development. They make resusing and extending code

easier. Though they should be applied carefully [1], to extensive use of one design pattern -

\Golden Hammer" - can lead to poor software quality again.

� Exception handling is one of the most valuable concepts. Doing the job proper shortens the

time of debugging dramatically.

� Memory management is still one of the main problems in dynamic applications. Design Pat-

terns should also support proper memory management.

� Incremental development has been proven to be successful for developing prototypes.

� Proper exception handling pays o� many times later during the use and while testing. Points

of failure can quickly be tracked down to the source.
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� There are many ways to do a speci�c task, but there is always a proper and e�cient (real-time

constraints) way of doing things. Using macros, using inlining, using as little as possible virtual

functions and much more, see ACE and TAO for hundreds of examples.

� When handling complex tasks, solve �rst the simple subtasks, then combine them to a complex

solution.
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