Evaluating Policies and Mechanisms to Support
Distributed Real-Time Applications with CORBA

Carlos O’Ryan and Douglas C. Schmidt Fred Kuhns, Marina Spivak, Jeff Parsons,
{coryan,schmidt@uci.edu Irfan Pyarali, and David L. Levine
Electrical & Computer Engineering Dept. {fredk,marina,parsons,irfan,levipn@cs.wustl.edu
University of California, Irvine Department of Computer Science, Washington University
Irvine, CA 92697, USA St. Louis, MO 63130, USA

This paper appeared in the Wiley & Sons ConcurrenBybject Areas: Real-time CORBA; Patterns and Frame-
and Computing: Practice and Experience Journal, Volume ®®yks; Distributed and Real-Time Middleware
Number 2, 2001.

1 Introduction
Abstract

. . hallenges for next-generation real-time systems: Due to
To be an effective platform for performance-sensitive real- . . .
. : o e need to handle stringent constraints on efficiency, pre-
time systems, commodity-off-the-shelf (COTS) distributed gb= _, =~ . . :
:) 4 .. dictability, memory footprint, and weight/power consumption,
ject computing (DOC) middleware must support application . .
) . : software techniques used to develop real-time systems have
quality of service (QoS) requirements end-to-end. However,, . ; i
X . , historically lagged behind those used to develop mainstream
conventional COTS DOC middleware does not provide this .
. . . - . . desktop and server software. As a result, real-time software
support, which makes it unsuited for applications with strin-_".""". e T
applications are difficult to evolve and maintain. Moreover,

gent latency, determinism, and priority preservation requir _gy are often so specialized that it is not cost effective to adapt

ments. Itis es;enﬂal, therefore, tp develop s't'and'ards-ba%ﬁem to leverage new technology innovations or to meet new
COTS DOC middleware that permits the specification, alloca-

X S ; rHarket opportunities.
tion, and enforcement of application QoS requirements end- . -
to-end. To exacerbate matters, a growing class of distributed real-

L . e . time systems require end-to-end support for various quality
The Real-time CORBA and Messaging specifications in %3 Service (QoS) aspects, such as latency, jitter, and through-

CORBA 2.4 standard are important steps towards definin S i i
standards-based, COTS DOC middleware that can deli\rpﬁgrt' These applications include the control and manage

. RN nt of telecommunication systems, commercial and militar
end-to-end QoS support at multiple levels in distributed anae yste C y
aerospace systems, and streaming audio/video over the Inter-

embedded real-time systems. These specifications still lac o o))
- . . net. In addition to requiring support for stringent QoS require-
sufficient detail, however, to portably configure and contrg
10CesSor. communication. and memory resources for a rr|1ents, these types of systems are often targeted for markets
pros Ny : ’ . Y PRhere deregulation, global competition, and/or R&D budget
cations with stringent QoS requirements.

Thi ides f ibut h (I:onstraints necessitate increased software productivity.
IS paper provides four contributions to research on real- Requirements for increased software productivity motivate

time DOC middleware. First, we illustrate how the CORB(he use of distributed object computing (DO@dleward1],

2.4 Real-time and Messaging specifications provide a starti&gch as CORBA [2] and Java RMI [3]. DOC middleware re-

pomt tq addr'ess the negds of an'|mportant class of appl'cs?aes between applications and the underlying operating sys-
tions with stringent real-time requirements. Second, we ill ms, protocol stacks, and hardware in complex distributed
trate how the CORBA 2.4 specifications are not suﬁicient&{ﬂd émbedded real—tir‘,ne systems. Tehnical goabf DOC

solve all the issues within this application domain. Third, iddleware is to simplify software development by shield-

describe how we have implemented portions of these Speﬁ{h'applications from component location, programming lan-

icatlo?s, asr,] wellras fevlet:?ri eggg%i‘mggt; llilsr:nﬁ TC\VO, v\v/% ge, OS platform, communication protocols and intercon-
S our oOpen-source rea € - Hinally, we € ects, and hardware dependencies [4]. Bhsiness goabf

uate the performance of TAO empirically to iIIustrgte how iEOC middleware is to decrease the cycle-time and effort re-
features address the QoS requirements for certain classealﬂed to develop real-time applications and services.

real-time applications. . L . .
PP In theory, middleware can simplify the creation, composi-

“This work was funded in part by AFOSR grant F49620-00-1-0330, BogOM'» @nd configuration of real-time applications without in-

ing, NSF grant NCR-9628218, DARPA contract 9701516, Motorola, Nort&Ur1ing significant time and Space overhead. In practice, how-
SAIC, Siemens, and Sprint. ever, technical challenges have impeded the development and

deployment of efficient, predictable, and scalable middlewaescy and throughput. Moreover, the OMG has recently ap-
for real-time systems. In particular, commodity-off-the-shgifoved the Real-time [18] and Messaging [19] specifications,
(COTS) DOC middleware generally lacks (1) support for Qaghich give application developers greater control over end-to-
specification and enforcement, (2) integration with high-speesd priority preservation and ORB predictability. Therefore,

networking technology, and (3) efficiency, predictability, and this paper, we evaluate these specifications to illustrate the
scalability optimizations [5]. These omissions have limited tlextent to which they do and do not satisfy the requirements
rate at which performance-sensitive applications, such as telean important class of real-time applications. For situations
conferencing and avionics mission computing, have been alisleere CORBA 2.4 is under-specified, we demonstrate how the
to leverage advances in DOC middleware. specification can be enhanced to allow greater application con-

Candidate solution — CORBA: First-generation DOC 1ol and portability.

middleware was not targeted for high-performance and reghper organization: The remainder of this paper is orga-
time systems. Thus, it was not appropriate for systems Wiifzed as follows: Section 2 presents an overview of the OMG
stringent deterministic and statistical real-time QoS requIEORBA specifications relevant to this paper; Section 3 out-
ments [5]. Over the past two years, however, the use|igls key design forces affecting an important class of real-
CORBA-based DOC middleware for real-time applicationfne applications and describes an avionics mission comput-
has increased significantly in aerospace [6], telecommuniggy [6] application that is representative of these types of ap-
tions [7], medical systems [8], and distributed interactive sirplications; Section 4 compares and contrasts two implementa-
ulation [9] domains. The increased adoption of CORBA stefiéns of this application based on the CORBA 2.3 and CORBA
from the following factors: 2.4 specifications; Section 5 evaluates the results of bench-
. ._marks that measure efficiency, predictability, and scalability
1. The maturation of patternsin recent years, a substantial f key CORBA real-time and messaging features in TAO; Sec-

amount of R&D effort has focused on patterns [10, 11]. 6 h on TAO with related work- and
For instance, research conducted as part of the DAR (! © compares our research on with refated work; an
ection 7 presents concluding remarks.

Quorum project [12, 7, 5, 13] has identified key pat-
terns [14] and optimization principles [15] for high-

performance and real-time systems. 2 Synopsis of CORBA 2.3 and 2.4 Fea-

2. The maturation of frameworks Recent progress in pat- t
terns R&D has enabled the creation of higher-quality ures
frameworks [16], such as ACE [17], that support the de- .)) .
velopment of QoS-enabled DOC middleware and app'ﬁhls section describes the CORBA reference model and high-
cations. lights the difference between CORBA 2.3 (and earlier CORBA

)) specifications) and CORBA 2.4, focusing on features pertain-
3. The maturation of standardsDuring the past decade, thqzng to quality of service (Q0S).

OMG's suite of CORBA standards has matured consider-
ably, particularly the Real-time [18] and Messaging [19
specifications that define components and QoS featuwded The CORBA 2.3 Reference Model

for high-performance and real-time systems. CORBA Object Request Brokers (ORBSs) allow clients to in-

4. The maturation of COTS CORBA produetéin increas- voke operations on distributed objects without concern for ob-
ing number of COTS ORBs [20] are applying patterrjéct location, programming language, OS platform, commu-
and frameworks to implement the CORBA Real-time [S]ication protocols and interconnects, and hardware [4]. Fig-
and Messaging [21] specifications. ure 1 illustrates the key components in the CORBA reference

model upto and including CORBA 2.3 [23] that collaborate to

The vehicle for our research on DOC middleware for highrovide this degree of portability, interoperability, and trans-
performance and real-time applications is TAO [5]. TAO isarency: Each component in the CORBA reference model is

an open-source CORBA-compliant ORB designed to suppeutlined below:

applications with stringent end-to-end QoS requirements. I? A licati lavs the cliemoleif it obtai f
our prior work on TAO, we have shown that it is possible fghent nappiication piays the cliemolet it obtains reter-

achieve high efficiency, predictability, and scalability in OR@FCGE‘ to ?bJECtSSSd |rt\vokesboperat|ct)ns on tnem tto dperlfotr.m atp-
middleware by applying appropriate concurrency [14], cot _|ca|!ont alz S'” Je$ S cian € remote or cotoca;).e tr.e atll\'/ke 0
nection [22] and demultiplexing [15] patterns [1]. e client. Ideally, a client can access a remote object just like a

Our ?ar“er WOI’K, hOWGV?ry has th agdresseq techniques fofrhis overview only focuses on the CORBA components relevant to this
balancing competing real-time application requirements for faper. For a complete synopsis of CORBA's components see [2].

in args

CLIENT operation()

REF / out args + return value
+—O0

S IDL | [L A
IDL COMPILER SKELETON| OBJECT
STUBS

ADAPTER

marshals application parameters into a common message-level
representation. Conversely, skeletons implemengithepter
pattern [10] and demarshal the message-level representation
back into typed parameters that are meaningful to an applica-
tion.

OBJECT
(SERVANT)

IDL Compiler: An IDL compiler transforms OMG IDL

(- éé] definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++

() STANDARD INTERFACE () stanparp Lancuace MappiNG OF Java. In addition to providing programming language trans-

O ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [24].

Figure 1. Key Components in the CORBA 2.3 Reference | i i)

Model Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-

local object,i.e., object —operation(args) . Figure 1 |aborates with the IDL skeleton to dispatch the appropriate

shows how the underlying ORB components described belggeration upcall on a servant. Object Adapters enable ORBs
transmit remote operation requests transparently from clientdosupport various types of servants that possess similar re-
object. Applications can play both the client and server roleguirements. This design results in a smaller and simpler ORB

éhat can support a wide range of object granularities, lifetimes,

gplicies, implementation styles, and other properties.

Object: In CORBA, an object is an instance of an OM
Interface Definition Language (IDL) interface. Each obje
is identified by anobject referencewhich associates one or

more paths through which a client can access an object 0h 3 QoS-related Enhancements to CORBA 2.4
server. Anobject ID associates an object with its implemen-" '

tation, called a servant. Over its lifetime, an object has one@HRBA specifications upto and including CORBA 2.3 [23]
more servants associated with it that implement its interfacgycked features that allow applications to allocate, schedule,

Servant: This component implements the operations d@Pd control key CPU, memory, and networking resources nec-
fined by an OMG IDL interface. In object-oriented (OO) larESsary to ensure end-to-end quality of service. The CORBA
guages, such as C++ and Java, servants are implemented-@sstandard [2] includes the Messaging [19] and Real-time
ing one or more class instances. In non-00 languages, sG&RBA specifications [18] that support many of these fea-
as C, servants are typically implemented using functions dHEES: The Messaging specification defines asynchronous op-
struct s. A client never interacts with servants directly, b@ation models [21] and a QoS framework that allows appli-

always through objects identified by object references. Cations to control many end-to-end ORB policies. The Real-
time CORBA specification defines interfaces and policies for

ORB Core: When a client invokes an operation on an olnanaging ORB processing, communication, and memory re-
ject, the ORB Core is responsible for delivering the requeglurces. Figure 2 illustrates how these various CORBA 2.4
to the object and returning a response, if any, to the cliefdatures interact.

An ORB Core is usually implemented as a run-time library as shown in Figure 2 an ORB endsystem [5] consists of net-
linked into client and server applications. For objects execyork interfaces, operating system I/O subsystems and commu-
ing remotely, a CORBA interoperability compliant ORB Corgication protocols, and CORBA-compliant middleware com-
communicates via a version of the General Inter-ORB Proigsnents and services. The CORBA 2.4 specification identi-
col (GIOP), such as the Internet Inter-ORB Protocol (IOkiks capabilities that must hertically (i.e., network interface
that runs atop the TCP transport protocol. In addition, custQm gpplication layer) antiorizontally(i.e., peer-to-peer) inte-
Enviro.nment-Specific Inter-ORB protocols (ESIOPs) can al§ated and managed by ORB endsystems to ensure end-to-end
be defined. predictable behavior factivitieg that flow between CORBA

OMG IDL Stubs and Skeletons: IDL stubs and skeletonsClients and servers.

serve as a "glue” between the client and servants, reSpecuve')é’An activity represents the end-to-end flow of information between a client

and 'the ORB. Stubs impl(:-"m?m tmé_OXY_pattem [10] and and its server that includes the request when it is in memory, within the trans-
provide a strongly-typedtatic invocation interfacéSIl) that port, as well as one or more threads.

END-TO-END PRIORITY buffers for message queueing, transport-level connections, and
PROPAGATION network signaling, in order to control ORB behavior.

in args
operation()

4. Real-time services and applications: Having a real-time
ORB manage endsystem and communication resources only
provides a partial solution. Real-time CORBA ORBs must
also preserve efficient, scalable, and predictable behavior end-
to-end for higher-level services and application components.
For example, a global scheduling service [5, 28] can be used
to manage and schedule distributed resources. Such a schedul-
[§§ ing service can intera.c.t Wi'Fh an ORB to provide mechanisms
A A that support the specification and enforcement of end-to-end
PROTOCOL operation timing behavior. Application developers can then
PROPERTIES structure their programs to exploit the features exported by the
real-time ORB and its associated higher-level services.

out args + return value
+— O

STANDARD
EXPLICIT SYNCHRONIZERS

BINDING

=

OS KERNEL

0S 1/0 SUBSYSTEM

OS KERNEL

0S 1/0 SUBSYSTEM
NETWORK ADAPTERS

To manage the ORB endsystem capabilities outlined above,
CORBA 2.4 defines standard interfaces and QoS policies that

NETWORK ADAPTERS,

i allow applications to configure and control the following re-
sources:
Figure 2: CORBA 2.4 QoS Support for Real-Time Applica-
tions e Processor resourcesia thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling

. .) service;
Below, we outline these capabilities, starting from the low-

est level abstraction and building up to higher-level services®
and applications.

Communication resourcesa protocol properties and ex-
plicit bindings; and

S e Memory resourcesia buffering requests in queues and
1. Communication infrastructure resource management: bounding the size of thread pools.
A CORBA 2.4 endsystem must leverage policies and mech-
anisms in the underlying communication infrastructure thatApplications can specify these CORBA 2.4 QoS policies
support resource guarantees. This support can range froma(@hg with other policies when they call standard ORB oper-
managing the choice of the connection used for a particudgions, such agalidate _connection orcreate _POA
invocation to (2) exploiting advanced QoS features, suchFs instance, when an object reference is created using a QoS-
controlling the ATM virtual circuit cell pacing rate [25]. enabled portable object adapter (POA), the POA ensures that

))) any server-side policies that affect client-side requests are em-

2. OS scheduling mechanisms: ORBs exploit OS mecha-peqded within atagged corponentin the object reference.
nisms to schedule application-level activities end-to-end. Tﬂ?gged components are name/value pairs that can be used to
real-time CORBA features in CORBA 2.4 target fixed-prioritgxnort attributes, such as security or QoS values, from a server
real-time systems [26]. Thus, these mechanisms correspgils clients within object references [2]. Clients who invoke
to managing OS thread scheduling priorities. The Real-tijggerations on such object references implicitly use the tagged

CORBA specification in CORBA 2.4 focuses on operatinggmponents to honor the policies required by the target object.
systems that allow applications to specify scheduling priorities

and policies. For example, the real-time extensions in IEEE
POSIX 1003.1c [27] define a static priority FIFO scheduli@ Meeting the Demands of Real-time,

olicy that meets this requirement. . .
PoteY q Embedded Applications

3. Real-Time ORB endsystem: ORBs are responsible for
communicating requests between clients and servers transpal- Design Forces

ently. A real-time ORB endsystem must provide standard in- o .
terfaces that allow applications to specify their resource f& important class of distributed and embedded real-time ap-

quirements to the ORB. The QoS policy framework defined l@cations require stringent real-time end-to-end QoS support.

the OMG Messaging specification [19] allows applications f@" €xample, hot rolling mills, sophisticated medical modal-

configure ORB endsystem resources, such as thread prioritfS: avionics mission computers, and complex command &
control systems share the following characteristics [28]:

4

Scheduling assurance prior to run-time: Failure to meet

deadlines can result in loss of life or significant loss of prop- 1553
erty. Therefore, the system must be analyzed off-lineto ensure Y=ot
that no timing failures will occur at run-time.

TERMINALS

Stringent resource limitations: The hardware is typically ‘
less powerful than that available for desktop and server com-
puters due to power restrictions, the need to work in hostile en- Figure 3: A Real-time Embedded Avionics Platform
vironments, and/or the complexity and cost of validation pro-

cesses.

INTER-ORB communIcaTION viA VME Bus

board 1 has a 1553 interface to communicate with remote ter-
Distributed processing: To overcome the CPU constraintgninals such as aircraft sensors for determining global position,
outlined above, and to improve availability and fault toleinertial navigation, and forward-looking infrared radar [29].
ance, real-time embedded systems may be composed of muivionic mission computers typically collect aircraft sensor
tiple CPUs, each with its own local memory. These CPUsita at periodic rates, such as 30 lHe.(30 times a second),
communicate via buses, such as compact PCI or VME, andibrHz, and 5 Hz. When data is available from a sensor, the
networking hardware, such as ATM or Fibrechannel. mission computer is notified of the event via a hardware in-
terrupt. These sensor-initiated events can trigger subsequent
L L . application-generated events that designate specific control or
3.2 Avionics Application Scenario monitoring operations, such as weapons targeting and heads-
up display (HUD) processing. Generally, the processing trig-
gered by the application-generated events has stringent com-
To evaluate the pros and cons of the CORBA 2.4 specificatigfgtion deadlines that must be enforced throughout the dis-
we describe how they are being applied in practice to develfiputed mission computing system.
an avionics mission computing [6] system. The characteristics
of this system are representative of the distributed and embgg-4 Key Design Challenges
ded real-time application requirements outlined in Section 3.1.

In this context, an avionics mission computer manages sBgveloping a solution that provides end-to-end QoS guar-
sors and operator displays, navigates the aircraft's course, antges requires careful consideration of operational require-
controls weapon release, within a distributed airframe envirdnents. To enforce end-to-end application QoS guarantees,
ment. DOC middleware for avionics mission computing afer instance, DOC middleware for avionics mission comput-
plications must support deterministic mission computing reélg must support the application architecture described above
time tasks that possess stringent deadlines. In addition, avieyi{1) preserving priorities end-to-end, (2) supporting reliable
ics middleware must support tasks, such as built-in-test &g¥ynchronous communication, and (3) ensuring sufficient op-
low-priority display updates, that can tolerate minor fluctugration throughput [30], as outlined beldw.

tions in scheduling and reliability guarantees, but nonethele,srgserving priorities end-to-end: A key DOC middleware

require QoS support [28]. ; ; 7 o
S - . . . hall h f I -
While in theoryit is possible to develop solutions sausfyqeygn challenge Is to preserve the priority of application re

. X uests end-to-end so that consumers can process all the pub-
ing these requirements from scratch, contemporary econoS%

3.2.1 Key Requirements

o . R . fied events by their deadlines. In particular, the client thread
and organizational constraints are making it implausible to

; ; . . at sends a request, the ORB Core thread that receives incom-
soin practice It is therefore necessary to integrate (rathﬁ{

than develoo f tch i . 2 ‘ requests, and the ultimate application server thread that
an develop from scratch) next-generation avionics sys eegu\%cesses the requests must run at the same priority. To en-

usr:ng pre-exsn%gl) C(é‘gs_rgard'\év;re and _sotfrt1ware| COMPONEL{Fe this constraint is met, off-line rate monotonic scheduling
whenever possioie. midaieware 1S thus playing an |y S) analysis is performed to determine a feasible sched-

craﬁa\ljmgly ftrat¢g|c rc')Ie'm ththe\;elop:jmen;[f[).f manyttypesLH . Application developers then apply the resulting schedule
software-intensive, mission-critical, and real-ime systems. ., statically map periodic events, activities, and ORB threads
to fixed real-time priorities, based on the rate at which opera-

3.2.2 System Hardware Configuration i A — _ _ _
Other key design challenges include constant-time request demultiplex-

15], integrating 1/O subsystems [31] and ORB pluggable protocol frame-

Figure 3 depicts a distributed and embedded real-time aVIOthvgr s [32], static [5] and dynamic [28] operation and event scheduling. We

mission computing Con_ﬁguration [6]. In .this scenario, thegg not examine these topics in detail in this paper because our other papers
are three CPU boards interconnected via a VME bus. CRédcribe solutions to these challenges.

Achieving Reliable asynchronous communication: To
simplify end-to-end system scheduling and design, it is co
mon for real-time clients and servers to communicate asy
chronously. This strategy decouples clients from servers to in-
crease concurrency and prevent unnecessary client blocking. 2: Demarshaled data
Depending on the underlying transport mechanism, however, \

it may be necessary to use some form of end-to-end acknqg Sensor Sensor Sensor
edgment to ensure that requests are delivered reliably ac Proxy Proxy Proxy
the communication medium.

For example, VME buses are designed to provide reliable | /
transport between boards on the same bus. Inter-board re- ~ 1: /O viainterrupt

High Level
/O Facade) { 1/O Facade) Abstraction

f

1/0 Facade

/
guests can be lost, however, due to buffer mismanagement, 01 LK
overflow, or transient VME bus anomalies that occur under Aircrait T = Al_t())g\t/rla_(e:t\i/g:]
heavy load. In systems where such failures must not go unde- Se"s°'s —
tected, the use of a higher-level reliability protocol above the o o o
transport layer is required. Figure 4: Example Avionics Mission Control Application

Ensuring adequate operation throughput: Aircraft sensor
devices, such as navigation devices and radar sensors, geoming data and notifies 1/0 facade objects that depend on
erate data at regular periodic intervals [6]. Real-time appiie sensor’s data. Since modern aircraft can be equipped with
cations may be limited to relatively low operation throughptiundreds of sensors, a large number of sensor proxy objects
per-period, however, due to per-operation overhead. This oveay exist in the system.

head can arise from OS 1/O subsystem and network interface

processing, as well as from the propagation delay across the VO facades: I/O facades represent objects that depgnd
communication media. on data from one or more sensor proxies. 1/0O facade objects

Fortunately, due to the periodic nature of certain real-ting. data from sensor proxies to provide higher-level views

applications, it is possible to delay some requests, while sijj °ter application objects. For instance, the aircraft posi-

X . : . tion computed by an I/O facade is used by the navigation and
meeting overall timing constraints. For example, display up-
apons release subsystems.

dates can be deferred until shortly before their deadlines. SUs
requests can be buffered and sent in a single data transfeThe pushdriven model described above is commonly used
thereby minimizing transport overhead and increasing opgrmany real-time environments [33], such as industrial pro-
ation throughput. cess control systems and military command/control systems.
One positive consequence of this push-driven model is its ef-
3.2.4 Evaluating Avionics Application Software Architec- ficient and predictable execution of operations. For instance,
tures I/O facades only execute when their event dependencies are

A . satisfiedj.e., when they are called by sensor proxies.
Overview: Figure 4 shows a conventional non-CORBA ar- |, contrast, using aull-driven model to design mission ap-

chitecture for distributing periodic I/O events throughout gflications would require I/O facades that actively acquire data
avionics application. This example has the following partigism sensor proxies. If data were not available to be pulled,

pants: the calling 1/0 facade must block awaiting a result. Thus,

e Aircraft sensors: Aircraft-specific devices generatdor 1/O facades to pull, the system must allocate additional
sensor data at regular intervadsg, 30 Hz, 15 Hz, 5 Hzetc threads to allow the application to progress while 1/0O facade
The arrival of sensor data generates interrupts that notify tagks block. Adding threads to the system has many negative
mission computing applications to receive the incoming dateonsequences, however, such as increased context switching
overhead, synchronization complexity, and complex real-time

* Sensor proxies: Mission computlpg systems mu;t pr?jfhread scheduling policies [22]. Conversely, by using the push
cess data to and from many types of aircraft sensors, inclu nadel blocking is largely alleviated, which reduces the need

global position system (GPS), inertial navigation set (IN% g .
and forward looking infrared radar. To decouple the detal d additional threads. Therefore, this paper focuses on the

2 L ush model.

of sensor communication from the applications, sensor proxy

objects are created for each sensor on the aircraft. When Df@wbacks with conventional avionics architectures: A
interrupts occur, data from a sensor is given to an approgtisadvantage to the architecture shown in Figure 4 is the

ate sensor proxy. Each sensor proxy object demarshalsstineng coupling between suppliers (sensor proxies) and con-

sumers (I/O facades). For instance, to call back to I/O facadegents to application-level consumers on behalf of the sen-
each sensor proxy must know which 1/O facades dependsmms generating the events. When consumers subscribe with
its data. As a result, changes to the 1/O facade layer, sachevent channel, they indicate what types of events they are
as adding/removing consumers, require sensor proxy modifterested in receiving by supplying the filtering criteria. The
cations. Likewise, consumers that register for callbacks denefit of using an event channel is that sensor proxies are un-
tightly coupled with suppliers. If the availability of new hardaffected when I/O facades are added or removed.
ware, such as forward looking infrared radar, requires a nevBefore running production mission computing applications,
sensor proxy, the I/O facades must be altered to take advantagesystem is analyzed and events are assigned priorities by
of the new technology. a real-time (RT) scheduling service [5]. Since the same con-
sumer can receive events at different priorities, the DOC mid-
Alleviating drawbacks with the CORBA Event Service: dleware must support this use-case, thereby allowing applica-
Figure 5 shows how the CORBA Event Service [34] can halgns to use the same object reference to access a service at
different priority levels.
Consumers Another benefit of a CORBA event channel-based architec-

ture is that an 1/O facade need not know which sensor prox-
ies supply its data. Since the channel mediates on behalf of
I/O Facade . . .
/O Facade) { 1/O Facade the sensor proxies, 1/0 facades can register for certain types
\ P of events €.g, GPS and/or INS data arrival) without know-
A

! ing which sensor proxies actually supply these types of events.
3: push (demarshaled data) Once again, the use of an event channel makes it possible to

\ ﬁ add or remove sensor proxies without changing I/O facades.

4 Evaluating CORBA for Real-time
2: push (demar\shaled data) App"C&tiOﬂS

S | . .
uppliers During the past several years, we developed two variants of
Sensor the real-time avionics mission computing application [6] de-
Proxy scribed in Section 3.2. Each variant used a different version

4 ad of TAO based on different versions of the CORBA specifica-

1\J/O via interrupts/ tion, The initial variant was based on CORBA 2.3 [23] and
— is outlined in Section 4.1. The later variant was based on the
Aircraft - T*EQ Real-time [18] and Messaging [19] specifications defined in
Sensors ﬂﬁi CORBA 2.4 and is described in Section 4.2.

Figure 5: Example Avionics Application with CORBA Evenft-1 Synopsis of the Original CORBA 2.3-based
Channel Solution
alleviate the disadvantages of the tightly coupled consumfal'r%'1 Overview
and suppliers shown in Figure 4. The CORBA Event ServiGr original solution for the avionics mission computing ap-
definessupplier, consumer and event channeparticipants plication described in Section 3.2 was developed several years
so that distributed applications can exchange requests agyo using the CORBA 2.3-based version of TAO ORB and
chronously via arevent-baseéxecution model [33]. Suppli- TAO’s Real-time (RT) Event Service [6] and RT Scheduling
ers generate events, consumers process events sent by si@giidce [5]. This solution was developed before the OMG
ers, and event channels propagate events to consumers oadiepted the CORBA 2.4 Real-time and Messaging specifica-
half of suppliers. tions. Therefore, it supported real-time mission computing ap-
The architecture of our example avionics mission computications via several non-standard CORBA extensions, such
ing application [6] centers on the Publish/Subscribe [11] pais pre-establishing connections [22] to particular connection
tern shown in Figure 5. As shown in this figure, sensors gemdpoints and allowing multiple ORBs to share a single ob-
erate an interrupt to indicate data availability. Sensor prgeet adapter to simplify object activation across rate groups, as
ies then push the event to an event channel, which dispatcttesvn in Figure 6.

(cons(CONS(_ CONSUMER) 4.1.2 Evaluation of the CORBA 2.3-based Solution

(A) CONSUMER EVENT CHANNEL . X))
APPLICATION »0; »r; »P3 »Xps | The CORBA 2.3-based solution described above met its orig-
(B) SUPPLIER APPLICATION E B M E inal objectives,i.e, it minimized key sources of unbounded
%v SHARED OBJECT ADAPTER prlorlty inversion and was fl'own su'ccessfully inan o.peratlonal
CLIENT THREADS SINGLE-PROFILE OBJECTS test-flight [35]. However, this solution had the following draw-
_‘ipl —;iPZ —>iP3 _>iP4 EP{Py | (EPyP; | (EP3P3 | (EP4P4 baC kS :
push() push() push() push((ACTIVE OBJECT MAP DEMUXER
(EP1Py) (EP2Py) (EP3P3) (EP4Py) 20 HZ 10 HZ S5HZ 1 HZ ; i .
SINGLE-PROFILE OBJECT REFERENCES ORB ORB ORB ORB N l\o/lverltycomplexltar:d gORnBStatndard programdrntlng n(;OdE| t
aintaining multiple s to preserve end-to-end priori
GG RSt 4 out to be hard for missio i ication de
Crescron) rescton) rescrod) weacron) turned out to be hard for mission computing application de-
CLIENT ORBS

velopers. In the server, an ORB in each thread had to be ini-

EPy EP3

— — W tialized. Moreover, servants had to be activated multiple times,

i.e, once under each ORB, to obtain a different object refer-

1/0 SUBSYSTEM /0 SUBSYSTEM ence for each rate group. In the client, the application kept
. i i multiple object references for each object, one for each rate

Figure 6: TAO's Original CORBA 2.3 Solution group. Moreover, the application was responsible for manag-

ing the association between these object references and prior-
ities, e.g, using amad hoclocation service.

In the original CORBA 2.3 solution, multiple supplier
threads on one CPU board ran at different prioritiegy, Excessive memory consumption: Each ORB maintained a
Py...P;. One-way operations were used to push evesgparate copy ofits resources, such as its active object map and
to consumer threads that ran at corresponding prioritiesitsnconnection cache. Although this design minimized con-
other CPU boards. Each ORB on the server createdeation and priority inversion, it required excessive duplication
Reactor [14]. This component was responsible for accep¥f resources. For example, there were as many copies of ac-
ing connections at a particular connection endpoint, demultie object maps as there were threads because each servant
plexing connections at the associated ORB’s priority level, an@s activated on each ORB.
dispatching incoming client requests to ORB Core connection
handlers. Inefficient initialization: In addition to consuming exces-

During off-line system scheduling, priorities were calcisive memory resources, the use of multiple ORBs also in-
lated for each of the rate groups using TAO's static RTeased the time required to initialize the avionics system.
Scheduling Service [5]. Then, during on-line system initial-his overhead is particularly problematic because the avionics
ization, a thread for each calculated priority was spawned anigsion computers reinitialize rapidly to recover from tran-
multiple ORBs — one per thread — were created on each Cglent power cyclese.g, due to sudden aircraft deceleration
board and associated with a particular connection endpothtfing carrier landings.
e.g, EP, ... EP,. This configuration enabled each ORB to
process events associated with its thread’s rate group. Findllght coupling between threads and ORBs: Each thread
all the ORBs on each CPU board pre-established connecti@mositained its own instance of an ORB, as shown in Figure 6.
e.g, C; ... C4, to all other ORBs listening on connection endAlthough this design minimized synchronization within the
points on other CPU boards. ORB, it hampered the usability of the system by application

The mission computing application software itself watevelopers. For instance, object references created in one
responsible for mapping each request onto the appropri@feB could be used only in the thread of that ORB. Therefore,
ORB/connection in accordance with its priority. This desigapplication developers could not pass object references be-
ensured that individual invocations and event channel procdgsen threads on the same CPU board because client/servant
ing occurred at the correct real-time priorities. For exarpeollocation did not work transparently [15].
ple, if a consumer processed a 20 Hz event, it used its 20
Hz ORB and the object references generated by server ORRBsbiguous one-way invocation semantics: The seman-
that correspond to the thread priorit#? () of the 20 Hz rate tics of one-way method invocations in CORBA 2.3 were am-
group. Moreover, by statically configuring all inter-ORB corbiguous and could be implemented differently by different
nections and mapping them to specific thread priorities, tldRkBs [4]. Therefore, applications could not control the re-
design avoided head-of-line-blocking in the socket connectigability of requests, nor could they control overall system
gueues. throughput.

4.2 Synopsis of the CORBA 2.4-based Solutiona) server (2) prooriry 15 ORB YOELGS
FORTED N TRSNDEYE Y| PRORTY

4.2.1 Overview MODEL () et 'S ProRTY B 19 PRESET

ISNOT PROPAGATED

To address the limitations of the solution described in Sec- Y INVOcATION

tion 4.1, the avionics mission computing application was reim-

plemented using a version of TAO that is based on the CORBA

2.4 Real-time [18] and Messaging [19] specifications. BelGu,

we describe and evaluate how well suited CORBA 2.4 fe&) CLIENT CLIENT PROPAGATED CORBA PRIORITY =100

h - . dreliabl PROPAGATED
tures, such apriority preservatiorandreliable one-waysare \ope.

to meeting key challenges of this class of applications. For
each set of challenges we outline the changes made to TAO
during this effort and motivate several enhancements we de—LYNXOS
veloped to provide more precise control over the CORBA 2.4 z0rTy
real-time and messaging features. =100

SERVICE SERVICE
CONTEXT CONTEXT
PRIORITY = PRIORITY =

SOLARIS
PRIORITY
=135

PRIORITY
=5

4.2.2 Preserving Priorities End-to-End PriorityMapping:: PriorityMapping:: PriorityMapping::
to_native(100) => 100 to_native(100) => 5 to_native(100) => 135

Conte>.<t: . Sys‘gems with strlngent QqS re;qwrements, such as Figure 7: Real-time CORBA Priority Models
our avionics mission computing application, often must exe-
cute a request at the same priority, end-to-end, as described

in Section 3. In the following paragraphs we outline the Red@igure 8. If buffering is enabled for the pool, the request will
time CORBA mechanisms in CORBA 2.4 intended to preserve

request priorities end-to-end. Thead Pool A Thead Pool B

e Priority mapping: The specification defines a univer- > >
sal, pIatfo)r/m—in%%pgndent pri(F))rity representation called the _)2-)2 [-)2_)2 2] [-)2_)2 2 ’
CORBA Priority This feature allows applications to make pri- rrorm 1) rowmy s PRIORITY 20
oritized CORBA invocations in a consistent fashion between
nodes running on operating systems with different priority —
schemes.Priority mapping functionsre used to map prior- — —
ity values specified in terms &ORBA priorityinto native OS E —

[|

priority.

e CORBA priority models: The Real-time CORBA
specification defines RriorityModel policy that determines
the priority at which server handles requests from clients. TRigjure 8: Buffering Requests in Real-time CORBA Thread
policy can have one of the two valueSERVERDECLARED Pools
Of CLIENT_PROPAGATED In the SERVERDECLARED model
shown in Figure 7 (A), the server handles requests at the pg-queued until a thread is available to process it. If no queue
ority declared on the server side at object creation time. TBRace is available or request buffering was not specified the
priority is communicated to the client in an object referenceORB should raise @RANSIENT exception, which indicates

The Real-time CORBA specification also defines tteetemporary resource shortage. When the client receives this
CLIENT_PROPAGATED Model shown in Figure 7 (B). In thise€xception it can reissue the request at a later point.

model, the client encapsulates its priority in the service context, Priority banded connections: This feature allows a

list of the operation invocation and the server then honors m’r:ént to communicate with the server via multiple transport

priority of the invocation. When a server ORB parses the Igsnhactions. Each connection is dedicated to carrying invo-
quest, it extracts the priority from the service context and S€lSions of distinct CORBA priority or range of priorities, as

the priority of the processing thread to match the requesiggn, in Figure 9. A client ORB establishes a priority banded

priority. connection by sending a server thend _priority ~ _band

e Thread pools: A Real-time CORBA server can assorequest, which specifies the range of priorities the connection
ciate each POA with a pool of pre-allocated threads runningali be used for. This feature allows the server to allocate the
appropriate priorities. A pool can optionally be pre-configuregcessary resources for the connection and to configure these
for a maximum buffer size or number of requests, as showrr@sources to provide service for the specified priority range.

SERVER ORB CORE

CLIENT SERVER e An application-specific client convention would be re-
ORB CORE ORB CORE quired to (1) fetch all the object references for the same
object and (2) map priorities to the corresponding object
references.
P15 P10-20 P21-10g

| A A In our CORBA 2.3-based implementation, we faced similar
| PRIORITY-BANDED challenges in managing multiple object references correspond-

CONNECTIONS ing to multiple server ORBs. Our experiences indicated that
Figure 9: Priority Banded Connections such an approach yielded complex code that was hard to main-

tain, thereby negating several advantages of DOC middleware.

The selection of the appropriate connection for each invoca® Thread pool problems: The Real-time CORBA spec-
tion is transparent to the application, and is done by the ORf§ation does not provide any policies to ensure that threads
based on the value of ttiriorityModel policy. in a poql receive reques?s directly from connections. Thus,

))) a compliant implementation may choose to separate threads
Problems: As outlined above, the mechanisms defined {qa¢ perform all the 1/0, parse the request to identify the tar-
the Real-time CORBA chapter of the CORBA 2.4 specificgzt poa and priority, and hand off the request to the appro-
tion provide application developers with greater control OVEfiate thread in the POA thread pool, as shown in Figure 10.

ORB endsystem resources than earlier CORBA 2.3 specifjjc, an implementation can increase average and worst-case
cations. For many real-time applications these mechanisms

are s_ufﬁment Fo p_rowde_the necessary QoS ggarantees. FON(™ Default T T A ol R
real-time applications with stringent QoS requirements such |Thread Pool

as those outlined in Section 3, however, this lack of speci- >= [>2’2] (,2’2_)2] =3 _>§>2')§
PRI(S)RITY

DEFAULT PRIORITY PRIORITY PRIORITY

ficity can lead to ineffective anon-portablémplementations, o = = =
POA C
20 25 15
~

as discussed below:

e Priority mapping problems: Although Real-time
CORBA mandates each ORB to provide default priority map-
ping functions, as well as a mechanism to allow users to over- [POAA

ride these defaults, it does not state how those mappings func-]
k\
N

tions are accessed and set. Thus, application developers are

forced to use proprietary interfaces. "
e CORBA priority model problems: The Real-time v A
CORBA CLIENT_PROPAGATED model can be inappropriate (DES\LLT)(DEFSAZULJ(DE&J Root POA J
for applications with hard real-time requirements due to op-
portunities for priority inversion [36]. In particular, it is pos- 10

HREADS SERVER ORB CORE

sible that the initial priority of the thread reading the request
is too high or too low, relative to the priority of the thread thatigure 10: An Inappropriate CORBA Thread Pool Architec-
processes the servant in an upcall. ture for Hard Real-time Applications

Likewise, theSERVERDECLARED priority model is not ap-
propriate for applications that invoke tisameoperation on |atency and create opportunities for unbounded priority inver-
the sameobject, but atlifferentpriorities fromdifferentclient sions [15], however. For instance, even under a light load,
threads. For example, if our avionics mission computing ape server ORB incurs a dynamic memory allocation, multi-
plication were to use theERVERDECLARED priority model, ple synchronization operations, and a context switch to pass a
it would have to activate the same servant multiple times, usguest between a network 1/O thread and a POA thread.

ing a different priority for each activation. The client appli- o Priority banded connection problems: There is no

cation WOUId, thep (?hoose 'Fhe object referenpe based on taehdard APl in Real-time CORBA that allows server appli-
client thread’s priority, and invoke the operation on the rig

object. However, this solution is unnecessarily complicat§8
for the following reasons: Y

tions to control how thread pools are associated with prior-
banded connections. For instance, a server application can
not control whether its ORB assigns each connection a sepa-
¢ It would interact poorly with CORBA location servicesrate thread, or whether a pool of threads can be pre-allocated to
such as Naming or Trading, because each object mussberice multiple connections that have the same priority range.
registered multiple times. Unfortunately, this lack of detail in the specification makes

10

it hard to write real-time applications that behave predictatdypplier thread makes a call on the consumer object reference

across different ORB platforms. exported by the server, the ORB finds a pre-established con-
The Real-time CORBA specification also lacks a standardction for that endpoint and uses it to send the request. The

API that would allow a server application to control how itpriority is preserved end-to-end because on the server-side the

ORB associates a thread at a pre-specified priority to reada@anection is serviced by a thread at the same priority as the

guests from a priority banded connection. Thus, the acttlaead making the request on the client-side.

ORB thread that performs I/O operations could be diﬁerqm

from the thread processing the request, and could executg Bw, we describe key mechanisms provided by TAO to im-

the wrong priority, thereby incurring priority inversion. Thigyament prioritized connection endpoints in client and server
lack of specificity in the Real-time CORBA priority bande RBs:

connections mechanism can lead to implementations that suf-

fer from problems similar to those with POA thread pools ® Server ORB support for binding thread priorities to
shown in Figure 10. listen-mode connection endpoints: TAO allows servers to

have multiple listen-mode [37] connection endpoints, each as-

tShqutlorl;I—> Prllpr;uéedbconnecnodnfgndgomts;] T.o a"e.v'e}lt_zosociated with a CORBA priority. Each connection endpoint is
€ probiems fisted above, we detined mechanisms in ,a‘igo statically associated with a pool of threads running at na-
explicitly map thread pools and thread priorities to connecti

e OS priority corresponding to the CORBA priority of the
endpoints. These mechanisms extend the Real-time CO P Y P g b Y

e . o point. Pool threads are responsible for accepting and ser-
specification to give TAO applications greater control over tb/?cing connections on the associated endpoint
mapping of connections to thread priorities within the ORB '

C F 11 ” le of th L ~ .~ When an object is activated in a server with multiple end-
ore. Figure L1 provides an example ot the avionics MiSSiBntg the generated object reference contains multiple pro-
computing application shown in Figure 6 revised to use TA

L))) ifes, one for each endpoint. Each profile stores the CORBA
prioritized connection endpoints mechanism. priority of its endpoint in a tagged component. This design al-
lows a client to receive service at its desired priority by simply
selecting and using the profile containing that priority.

TAQ's prioritized connection endpoints extension is particu-
larly attractive for applications, such as avionics mission com-
puting, that invoke operations on the same object at different
priority levels. In particular, these applications can specify a
set of prioritized connection endpoints on the command-line,
effectively defining the set of priorities supported on the server
) a priori, thereby allowing the ORB to schedule and allocate
resources more effectively end-to-end. Moreover, this pro-
gramming model is much simpler than creating multiple ob-
jects and object references and trying to assign them different
thread priorities.

lementing prioritized connection endpoints in TAO:

CONS(CONS(CONSUMER
EVENT CHANNEL

> wIPy PPy PP
= 8 B

OBJECT ADAPTER
(EPIPI ‘ EP,P, ’ EP3P3 ‘ EP4P4)

(4) CONSUMER
APPLICATION

(B) SUPPLIER APPLICATION

MULTI-PROFILE OBJECT

CLIENT THREADS
—»'iPl —»'iPz —»'in, —»'iP“
push() push() push() push()

(EPiPy |EPP; | EP3P3| EPgPy)
MULTI-PROFILE OBJECT REFERENCE

(ACTIVE OBJECT MAP DEMUXER)

20 HZ 10 HZ SHZ 1 HZ
S Ak SR
REACTOR) REACTOR) (REACTOR } (' REACTOR

EPy EP3

Cq Cy C3 Cy

[PRE-ESTABLISHED CONNECTIONS j

¢ Client ORB support for connections with priorities:
When a client makes an invocation, the client-side ORB must
select one of the profiles from an object reference before send-
ing the request to the server. The profile is selected based on
the priority at which the client wants the request serviced. To
allow clients to specify this desired priority, TAO defines a
As shown in this figure, the server application is an eveQlientPriority policy. Clients can set th€lientPriority policy
channel consumer with four connection endpoii€, ... to one of the following values:
EP,. Each endpointis assigned a CORBA prioréyg, EP;] o o
has priorityP1, and is serviced by a thread of the correspond-® USE-NO-PRIORITY —i.e, priority information is not used
ing native OS priority. Object references for servants acti- When a client ORB selects a profile from an object refer-
vated in this server contain four profiles, one for each end- €Nc€-
point, as shown in the object adapter portion of the server ine USE_.THREAD_PRIORITY — i.e,, the priority of the client

—
ENDPOINT DEMUXER

1I/0 SUBSYSTEM

I/0 SUBSYSTEM

Figure 11: TAO's New CORBA 2.4-based Solution

Figure 11 (A).

The client application in Figure 11 (B) is an event channel

supplier. It has four threads with prioritiésl . .. P4. When a

thread sending a request is used to select the profile. This
option is used when the priority of request must be pre-
served end-to-end. For example, we use this option in

11

Figure 11 (B), where th€lientPriority policy is checked
before the client ORB selects a profile from the objeq
reference. In that case, when a client thread with priority JECT
P1 invokes an operation on a consumer object, the ORB [3) ADAPTER
selects the profile corresponding to that prioritg,, the

A
one that contains connection endpaif; . %

O— .
oneway op() ((s)lilvl?&(l\l:%

e USE_PRIORITY_RANGE — In this case, a range of prior-
ities to be used for profile selection is specified by th
application inside the policy. This option allows appli-m NETWORK m

cations to request services at a priority thatdiffer-
entthan that of the client thread invoking an operation.
For example, a high-priority client thread can generate #) syNc_wWiTH_TRANSPORT @) SYNC_WITH_TARGET
low-priority event, such as a display update. This high- . o

priority thread can post the message in a remote server atFigure 12: Reliable One-way Synchronization Scopes
a low-priority, to minimize the effect on more critical pro-
cessing. However, it need not change its own priority to

P this task. which ids local briofity i . e SYNC_NONE: With this policy value, the client ORB re-
pertorm this task, which avoids focal priority INVErSIonSy s control to the client application before passing the re-

TAO’s prioritized connection endpoints ar@ientPrior- duest to the transport layer. This value minimizes the amount
ity policy extend the standard Real-time CORBA priorit9f time a client spends blocking on the one-way operation,
models and its priority banded connections mechanismPi¢f provides the lowest level of delivery guarantee. The
achieve an effective balance betweensE®VERDECLARED SYNC-NONE policy is useful for applications that require min-
and CLIENT_PROPAGATED models. In particular, TAO pro_?mal client operation latency, while tolerating reduced reliabil-
vides the same degree of control to the server as theguarantees.

SERVERDECLARED model by restricting clients to use well- o synNC.WITH_TRANSPORT With this policy value, the
known priorities. However, it also allows clients to select @RB returns control to the client only after the request is
priority published by the server that best meets their requifRyssed successfully to the transport layeg, the client's
ments. TAO's design avoids priority inversions and ensuregp protocol stack. A client can incur unbounded latencies
ORB endsystem resources are strictly controlled, while sfflly connection endpoint flow controls due to a limited buffer

@ syNC_NONE ® SYNC_WITH_SERVER

retaining a simple programming model. space. When used with a connection-oriented transport, such
Section 5.1 illustrates the performance of TAO's prioritizegs TCPsyNC_wITH_TRANSPORTCan provide more assurance
connection endpoint architecture. than SYNC_NONE. This policy is appropriate for clients that

require a compromise between low latency and reliable deliv-
4.2.3 Achieving Reliable Asynchronous Communication ery.

Context: Embedded real-time CORBA applications often ® SYNC-WITH_SERVER With this policy value, the client

use one-way operations to simulate message-passing via d4¢kes a one-way operation and then blocks until the server
dard CORBA features. For example, avionic mission cof?RB sends an acknowledgment. The server ORB sends
puting applications [6] process periodic event messages, stith acknowledgment after invoking any servant managers,
as sensor updates and heartbeat messages from redundarRéyfefore dispatching the request to the servant. The

tems. Typically, clients send these messages to serversSHNC-WITH_SERVERpolicy value provides clients with assur-
CORBA one-way operations, which require no response. ance that the remote servant has been located. This feature is

_ .) particularly useful for real-time applications that require some
Problems: The semantics of conventional CORBA One'Waé{ea%ree of reliability,e.g, because they run over backplanes
opergtllon.s are often unacgeptable because the CORBA (841 l0se packets occasionally, but need not wait for the entire
specification does not require an ORB to guarantee that OB ant upcall to complete.

way operations will be delivered [4]. _ . _ _
e SYNC_WITH_TARGET: This policy value is equivalent to

Solution — CORBA 2.4 reliable asynchronous features: a synchronous two-way CORBA operatide,, the client will

To alleviate the problem outlined above, the CORBA Messagg ek until the server ORB sends a reply after the target object
ing specification defines a policy call&yncScopthat allows a5 processed the operation. If no exceptions are raised, the
clients more control over the degree of reliability for one-wayient can assume that the target servant processed its request.

operation invocations. Figure 12 illustrates the following fous synchronization level is appropriate for clients that need
levels of reliability for one-way operations:

12

assurance that the upcall was performed and can tolerateréiad-time applications may be limited to a relatively low num-
additional latency. ber of remote operations per time period.

Implementing reliable one-ways in TAO: The SyncScope e Blocking flow control: Itis important that periodic real-
policy controls the reliability of one-way requests. It can kéme applications not block indefinitely when ORB endsystem
set at the object-level, thread-level, or ORB-level. As witind network resources are unavailable temporarily. However,
any CORBA policy, the more specific levels can overrid@RB transport protocols, such as IIOP, often implement reli-
the more general levels. To implement reliable one-way @ble data delivery using a sliding window flow control algo-
guests, TAO's IDL compiler [38] generates client stub codighm [37]. Thus, they may block the client from transmitting
that checks th&yncScopgpolicy value and sets the appropriadditional data when the communication channel is congested,
ate bits in theresponse _flags field in the GIOP requestor if the server is slow. Although some transport protocols
header. buffer a limited number of bytes or requests, they will typi-

If the SyncScopepolicy is SYNC_NONE, the request is cally block client threads after this limit is reached.
buffered, as described in Section 4.2.4. If the policy value

iS SYNC_WITH_SERVER Of SYNC_WITH_TARGET, the client o .) .
ORB must wait for a reply from the server and check forca{;\tmns IDL interfaces and reimplement the clients so they
uffer data at the application-level. This solution works well

LOCATION_FORWARD response or a CORBA system excep- . L L -
tion or certain periodic applications that can sacrifice some la-

On the server, the ORB's behavior is based solely B%ncy for increased operation throughput. Buffering at the

the value of theresponse flags field of the request application-level increases the burden on application develop-

header. If the flags are set toSyncScopeolicy value of ers, however, thereby increasing the implementation, valida-

SYNC_WITH_TARGET, the request is treated as a two-way dion, and maintenance effort. Moreover, if two or more appli-
quest, whether it originated as a one-way or as a 'two-way.c"f'ftlon IDL interfaces reqire buffering, code can be duplicated
the flags are set to a value ®FNC_WITH_SERVER however, a unnecessarily, which increases application footprint.
response will be initiated by the Object Adapter immediateBolution ¢ ORB-level request buffering: Often, a more ef-
after it locates the servant, but before dispatching the upcalfective solution is to have the ORB buffer one-way and asyn-
Section 5.3 presents benchmarks illustrating the perfonronous invocations transparerftlyAt some later time, the
mance of TAO'’s reliable one-way implementation. buffered requests can be delivered massdo the server.
There are several benefits to ORB-level request buffering:

One way to solve these problems is to revise the appli-

4.2.4 Ensuring Adequate Operation Throughput ¢ By buffering requests, a client ORB amortizes the per-

Context: Distributed real-time applications often have strin- operation processing overhead and increases effective
gent timing requirements, where critical operations must begin network utilization.

and/or complete within specified time intervals. For example,, The ORB can use Ofather write operations, such as
aircraft sensor devices, such as navigation devices and radar yritey [37], to minimize the number of mode switches
sensors, generate data that must be processed at regular perineeded to transmit the buffered requests.

odic intervals [6]. Such applications often have a fixed time
period in which to invoke remote one-way operations. After
invoking each operation, the client must perform other pro-
cessingj.e, it does not wait synchronously for the server to
process the operation and respond.

e ORB-level buffering can increase application control
over the buffering of CORBA requests. This feature is
important when the buffering provided by the transport
protocol is inadequate, thereby forcing indefinite block-
ing of the client due to flow control.

Problems: The following two problems can arise when ap-

pl_ying ORB middlewgre to di§tributed real-time applicatior]ﬁ]mementing ORB-level request buffering in TAO: The

with periodic processing requirements: CORBA 2.4 Messaging specification introduces several mech-
e Inadequate operation throughput: The time spent de- anisms to give application developers more control over QoS

livering a one-way or asynchronous operation to a server pgrameters than in CORBA 2.3 specifications. In particular,
cludes the overhead of invoking one or mevete calls to applications can use CORBA 2.4 features, such asSyre-

the client OS. In turn, this incurs protocol stack and netwoB¢opepolicy, to control latency/reliability tradeoffs. For ex-

interface processing, as well as the propagation delay aciw¥le, applications can use tB&NC_WITH_SERVER policy

the communication media. This per-operation overhead comgg : .

ynchronous two-way requests and reliable one-way operations should

Stitu.tes a non-trivial amount of the total end'to'_end laten@yy be buffered. The ORB must deliver these request immediately to the server
particularly for small requests. As a result of this overheaggcause the client waits for the server's response before continuing.

13

value to achieve reliable transport delivery, without waiting 5. Out-of-Band Requests: Applications can skip buffer-

for the entire servant's computation to complete. Likewisg for some requests. This approach allows applications to

the application can ensure non-blocking behavior by using theiver urgent requests to the server immediately, bypassing

SYNC_NONE policy value, which TAO implements by buffer-the buffered requests.

ing multiple requests before sending them to the server. Section 5.2 presents benchmarks illustrating the perfor-
Unfortunately, neither the CORBA Messaging or the Rfance of TAO’s buffered requests implementation.

CORBA specifications provide mechanisms to control the size

or duration of buffers, nor does it provide explicit interfaces P, 5 Evaluation of the CORBA 2.4-based Solution
flush buffers. These semantics are insufficient for applications” '

OUTGOING
ONINODNI

that require precise control over the ORB utilization of men@ur CORBA 2.4-based avionics mission computing solution
ing buffered requests via a néBufferingConstrainpolicy. .
More standard programming model: The CORBA 2.4
When application-specified buffering limits are reached, tl
threads. As a result, application programming is simplified
PARAMS . A
Reduced memory footprint: Our original CORBA 2.3-
OS KERNEL OS KERNEL had multiple object references, one for each global priority.
and server application to create a single ORB. Thus, only one

ory and network resources. Therefore, we have extended TA&} the following improvements over the original CORBA 2.3-
to allow applications to specify multiple strategies for delivebased design:
Figure 13 illustrates how TAO uses this policy to buffer on L ification def dard 4el for imol
way invocations inside the ORB Core for subsequent deliveRz2-ime specification defines a standard model for imple-
nting many features required for avionics mission comput-
ing using only a single ORB per CPU. This model supports the
mapping of priorities to particular invocations, objects, and
o)
onrep e oewarsra [—b and the portability of application software increases because
B # (skereron) || o the system is based on a standard.
MARSHAL DATACOPY DATA COPYI h
|
ORB MESSAGING based solution required multiple ORBs be created within each
EEE client and server, once for each rate group. Moreover, servants
\ This design resulted in a relatively large application footprint.
In contrast, our CORBA 2.4-based solution allows each client
1 NETWORK
Figure 13: One-way and Asynchronous Request Bufferin%blea reference is createq per servant, which further reduces
e overall memory footprint.

buffers are flushed and the queued requests are deliveredff@ient initialization: In addition to simplifying the pro-

the SEIVEISS . N ~gramming model and minimizing the required memory re-
A combination of the following conditions can be specifiegources, the use of one ORB per-process reduces the time re-
simultaneously using TAO'BufferingConstrainpolicy: quired to initialize the avionics mission computing applica-

tions. Reducing this overhead is particularly important when

1. Message Count: When the number of buffered mes i
the,system must recover from transient power cycles.

sages reaches an application-specified high-water mark,

buffered requests are delivered to the server. This approggfipiified client threading model: Clients are greatly sim-
allows applications to batahrequests together. _ plified because they manage only one set of object references.
2. Message Bytes: When the number of bytes in thepglicies and object references contain sufficient information

buffered messages reaches an application-specified high-wigfiethe ORB to determine the appropriate connection to use on
mark, the buffered requests are delivered to the server. Thisggch request.

proach allows applications to buffabytes at the ORB layer. o _ _ _
Improved priority preservation: By supporting multiple

3. Periodic Timeout: After an application-specified timeConnection endpoints within server ORBS, the CORBA 2.4-

interval, the ORB delivers any buffered requests to the ser&#Sed implementation has several benefits. For example, the
This approach allows applications to pace the delivery of méi§stination service access point, such as the TCP port num-
sages to the server even when the requests are produc&$atcan be mapped to a global CORBA priority thereby en-
irregular intervals. suring that all CORBA requests within a connection queues
4. Explicit Flushing: Applications can flush any queued'@ve the same priority. This early demultiplexing [31] tech-
messages explicitly. This approach allows applications to d#due, combined with client and server ORBs' respect of a

liver the batched messages to the server in response to sBiflHests priority, results iertically (i.e., network interface
external event.

14

+ application layer) andhorizontally (i.e., peer-to-peer) in- 5 The Performance of the TAO Real-
tegrated ORB endsystems. The resulting DOC middleware time CORBA ORB
environment preserves invocation priorities end-to-dred,

throughout the ORB endsystems and inter-ORB connectiorés.l Preserving Priorities End-to-End

Overview: The benchmarks in this section compare the per-
af&gnance of TAO's CORBA 2.3-based solutiarg., the ORB-
r-thread approach described in Section 4.1, with TAO’s
%@RBA 2.4-based solutiomg., using the prioritized connec-
n

Improved one-way invocation semantics: Real-time appli-
cations must often balance the competing needs of reli
communications, network throughput, and invocation laten
The improved semantics added by the CORBA 2.4 Mess
ing specification [19] gives clients greater control over theg
tradeoffs.

mechanism described in Section 4.2.2. In particular, to
etermine how well each approach preserves priorities end-to-
end, we compare the latency and jitter of a high-priority client

. thread as it competes with a variable number of low-priorit
In addition to alleviating the drawbacks with our ongmail]ient threads P P y

CORBA 2.3-based solution, the new CORBA 2.4-based ver-
sion of TAO also provides the following benefits: Hardware/OS Benchmarking Platforms: All benchmarks
in this section were performed between two 266 MHz Pow-
o , ,)) erPC boards with 32 MBytes of RAM, running the LynxOS
Easier integration with CORBA common object services: 3 g g gperating system and connected by a 100 Mbps Ethernet.
To use CORBA common object services, such as Naming i tests were run with real-time, preemptive, FIFO thread

Trading, in the CORBA 2.3-based approach, a server must &xequling, which provides strict priority-based scheduling to
port multiple object references to the same servant, one égrplication threads.

each priority. Then, to locate the object reference correspond-
ing to the desired priority, a client must useahhocmecha- Measurement techniques: Below we describe the client-
nism to retrieve the desired object references at the appropiéle and the server-side parts of the benchmark.
ate priorities. In contrast, in the CORBA 2.4-based approach, cjient-side: On the client, a single high-priority thread
there is no need for multiple object references. Therefore, iy a variable number of low-priority threads run concur-
ad hocprotocol for mapping priorities to object references igntly. Both CORBA 2.3-based solution and CORBA 2.4-
required. based solution were benchmarked with 1, 3, 6, 9, 12, and 15
With other services, CORBA 2.3-based approach may lew-priority client threads. Each low-priority thread has a dif-
quire modification to the service itself. For example, the Eveetent priority value. The range of LynxOS native priorities
Service invokes operations on application-provided objeaised by these threads is 64 to 79. The high-priority thread
To invoke these operations at the appropriate priorities the sans at priority 128.
vice must: (1) have access to multiple object references fowhen the test program creates the client threads, these
each application object and (2) select object references ghreads block on a barrier lock so that no client thread starts
responding to desired priorities using the application defingntil the others are created and are ready to run. When all
protocol. In contrast, in the CORBA 2.4-based approach thetient threads are ready to send requests, the main thread un-
tasks are all performed by the ORB transparently to appli¢gsiecks them. Each client thread issues 20,000 requests to the
tions and services. server at the fastest possible rate.

e Server-side: On the server, a servantis created and con-

Easier integration with real-time scheduling services: figured to service client requests at the same priorities as those
The CORBA 2.4 Real-time specification supports higher-lexdlits client peers. In the original CORBA 2.3-based approach,
CORBA scheduling services that allocate resources enditos is achieved by creating an ORB-per-thread for each test
end. For example, TAO'’s static scheduling service [5] camiority. In the CORBA 2.4-based approach, this is achieved
associate application activities with global CORBA prioritiedy mapping connection endpoints to threads possessing the ap-
Such scheduling services can use the priority transformatigngpriate priorities.
and the policy framework defined in the CORBA Messag- Regardless of the approach, each request is serviced at the
ing [19] to create sophisticated and adaptive real-time apgime priority as that of the invoking client thread. This map-
cations. ping is achieved using different mechanisms in the two con-

figurations. In CORBA 2.3 configuration, each client thread

51tis still possible that implementations of these services are unsuitable #i€S 2 different object reference,, the one published by the

real-time applicatione.g, due to excessive priority inversion. server ORB running in the thread with corresponding priority.

15

150 1000 -
135 900 |
3 o [
g 120 2 800 .
£ 108 5 N 2 700 1
Y 5
3 s ‘ N T 600 -
g 75 -
o Y brd
g 60 N N H § 500 |
> o
400 |
%5 45 &)
g 307 T g 300 -
F s 4 a 2
3 o 4
g 200
0 T T T T T =
0 3 6 9 12 15 1007
Load, Low Priority Client 0+ T T
1 3 6 9 12 15

\ CORBA 3.0 based solution a CORBA 2.x based solution\

Load, Low Priority Clients

Figure 14: Jitter for High-Priority Client Thread

‘I:I CORBA 3.0 based solution BCORBA 2.x based solution ‘

In CORBA 2.4 configuration, the client sets the value of the Figure 15: Latency for High-Priority Client Thread

ClientPriority policy to USE_ THREAD_PRIORITY.

d'f,fbxs W?s mgtrmonled earllée;, gsacht IovSv-pr;]orltytthread pas4.aol This OS, unlike most UNIX systems, does not limit the
merent priority valueg.g, o4, oo, €1C. Such system configuy,,) o 4,0 _wmax, which is the maximum size of the vector

ration is more demanding than simply having all low-priorit

thread tth iority. By using diff toriorit sed ingather-write operations. Thus, Windows NT is bet-
reads run at the same priority. By using ditterent priority vays, equipped to demonstrate the full potential of performance
ues for the low-priority threads, concurrency can be increa

. i) _gains from buffering one-way requests in the ORB. The timer
on the server. Thus, this design provides more opportuni uttering way requ I ;

ST f$&d on both platforms was the high-resolution timer of the
for priority inversion to occur if the underlying ORB is Qi chip, accessed by the Penti@mTscinstruction.
designed and implemented properly. '

Results: Each solution was benchmarked with a diﬁGTQMeasurement techniques: A timestamp was obtained im-
number of low-priority client threads: 1, 3, 6, 9, 12, and 1sediately before and after the execution of the request it-
For each solution and each number of client threads, the ggtion loop. Throughput values were then calculated in
periment was repeated three times. Figure 14 shows the jilglis/second for each test run of 2,000 requests. To closely
results. Figure 15 shows average latency (over three sampl@gllate a real-time transport mechanism, such as VME, cer-
with average jitter shown as error bars. The results in thegg configuration policies were followed when conducting the
figures illustrate that the CORBA 2.4-based Iatency is S”ghwe_way request benchmarks. In particu|ar, Nag|e’s a|gorithm
lower than the CORBA 2.3 version, though its jitter is slightlyas disabled and the TCP window size was set to 8 kilobytes,
higher. In general, therefore, the CORBA 2.4-based configuighich was the minimum supported on Windows NT. The size
tion provides a simpler programming model, smaller footprirgf each request was set to a larger value (9 kilobytes plus the
and faster initialization, with negligible impact on efficiencyeader size) so that TCP would flow-control on each request
and predictability. and not buffer additional requests.

5.2 Buffered Request Benchmarks Results: InFigure 16, the throughput of unbuffered one-way
requests is shown in the leftmost bar and is used as a baseline

Overview: We conducted benchmarks to compare the: .,mnarison with the throughput of buffered one-way re-
throughput of various buffered one-way request configuigiests To measure the effect of the buffer size, we set it to

tions. TheSyncScoppolicy value was set teYNC.NONEaNd 5 jiferent value in each test run. The other variables remain

the maximum message count of the buffer was increased {thangede., in all test runs the same number of messages

each test run. is sent, and all the messages are identical. The figure shows
Hardware/OS Benchmarking Platforms: We used two that significant throughput gains (over 100% in the rightmost
Dell computers, each with four Pentium Xeon CPUs rubar) can be realized by TAO’s request buffering mechanism.
ning at 400 MHz and connected by a 100 bps Ethernklfowever, tuning the queue size for each use-case is crucial to
The operating system of both machines was Windows Miaximize performance.

16

2.50

1.6
5 2.00 14
o
% o 12
é 150 | % '
= < 1
E .00 T] —] 1 3 08
2 S
-_— c
[J]
[0 0.50 +— — E
o
S o4
0.00 T T T T T T 0.2
unbuffered 10 50 100 500 1000 2000 '
Buffer Size (requests) 0
two-way SYNC_WITH_TARGET SYNC_WITH_SERVER
Figure 16: Throughput for Buffered One-way Requests SyncScope

Figure 17: Throughput For Reliable One-way Requests
5.3 Reliable One-ways Benchmarks

Overview: We also conducted benchmarks to compare tﬁe Related Work
performance of one-way requests configured with various '$¥é

S : al-time middleware is an emerging field of study. An in-
els of reliability. Test runs were made with one-way requesctrseasin number of research efforts are focusing on integratin
using theSyncScopeolicy valuessYNC_WITH_SERVERand 9 9 g 9

SYNC_WITH_TARGET. In addition, a test run was made usingOS and' real-time scheduling into mlddleware I|}<e CO.RBA'
ur previous work on TAO has examined many dimensions of

two-way requests via an operation C&.l” having the same SdﬂiB middleware design, including static [5] and dynamic [28]
nature as the one-way request used in the previous test runs.

Throughput values were measured for each test run of 288 ration scheduling, event'process'mg [6], /O subsystem [31]
requests and pluggable protocol [32] integration, synchronous [22] and
q ’ asynchronous[21] ORB Core architectures, IDL compiler fea-

Measurement techniques: Timestamps, calculation oftures [38] and optimizations [1], systematic benchmarking of
throughput, and TCP configuration policies for the reliabfgultiple ORBs [39], patterns for ORB extensibility [14] and
one-way benchmarks were the same as those for buffered GHgB Performance [15]. In this section, we compare our work
way benchmarks. To simulate the work that an actual apfiP TAO with related QoS middleware integration research.
cation would perform, the servant in this test executed 1,000

times a simple function that determines if an integer is a prilfel CORBA-related QoS Research

number. The hardware/software platform was identical to the

one used for the buffered request benchmarks presente8f TDMI: Wolfe et al. developed a real-time CORBA
Section 5.2. system at the US Navy Research and Development Labora-

tories (NRaD) and the University of Rhode Island (URI) [40].
Results: In Figure 17, the throughput of two-way requestEhe system supports expression and enforcement of dynamic
is shown in the leftmost bar and is used as a baselemd-to-end timing constraints through timed distributed opera-
for comparison with the throughput of reliable one-way ré&on invocations {DMIs) [41]. ATDMI corresponds to TAO's
guests that use thfgyncScopealuessyYNC_WITH_SERVEROr RT_Operation [5]. Likewise, an RT_Environment
SYNC_WITH_TARGET. This figure shows that the performancstructure contains QoS parameters similar to those in TAO’s
of two-way requests and one-way requests witiShecScope RT_Info
policy value ofSYNC_WITH_TARGET is almost identical. This One difference between TAO and the URI approachesis that
result is expected because the processing of these two typeRiflls express required timing constrairggg, deadlines rel-
requests is identical on the server, and nearly identical on #iire to the current time, where&JT_Operation s publish
client. Significant gains in throughput can be made, howeviieir resourceg.g, CPU time, requirements. The difference in
at the expense of complete end-to-end reliability, by settingproaches may reflect the different time scales, seconds ver-
the SyncScoppolicy value tosYNC_WITH_SERVER The fig- sus milliseconds, respectively, and scheduling requirements,
ure shows that the latter type of request obtains a throughgynamic versus static, of the initial application targets. How-
increase of more than 50%, compared with synchronous twwer, the approaches should be equivalent with respect to sys-
way requests. tem schedulability and analysis.

17

In addition, NRaD/URI supply a new CORBA Global PriordIUC Epig: The Epiq project [44] defines a real-time
ity Service, analogous to TAO’s Scheduling Service, and al©®RBA mechanism that provides QoS guarantees and run-
ment the CORBA Concurrency and Event Services. The initithe scheduling flexibility. Epiq explicitly extends TAO's off-
implementation useEDF within importance levetlynamic, line scheduling model to provide on-line scheduling. In addi-
on-line scheduling, supported by global priorities. A glob#ibn, Epiq allows clients to be added and removed dynamically
priority is associated with eadfDMI, and all processing assovia an admission test at run-time.

ciated with the TDMI inherits that priority. In contrast, TAO'’s .]))
initial Scheduling Service was static and off-line; it uses iy!C! TMO: The Time-triggered Message-triggered Objects

portance as a “tie-breaker” following the analysis of other retMO) project[45] at the University of California, Irvine, sup-
quirements such as data dependencies. Both NRaD/URI BRES the integrated design of distributed OO systems and real-
TAO readily support changing the scheduling policy by efime simulators of their operating environments. The TMO

capsulating it in their CORBA Global Priority and Schedulingode! provides structured timing semantics for distributed
Services, respectively. real-time object-oriented applications by extending conven-

tional invocation semantics for object methods, CORBA

BBN QuO: The Quality Objects(QuO) distributed object operations, to include (1) invocation of time-triggered oper-
middleware is developed at BBN Technologies [7]. QuO &ions based on system times and (2) invocation and time
based on CORBA and provides the following support for agounded execution of conventional message-triggered opera-
ile applications running in wide-area networks: (1) providé®ns.
run-time performance tuning and configuratithrough the TAO differs from TMO in that it provides a complete
specification of operating regions, behavior alternatives, S6@RBA ORB, as well as CORBA ORB services and real-time
reconfiguration strategies that allows the QuO run-time eéatensions. Timer-based invocation capabilities are provided
adaptively trigger reconfiguration as system conditions charigeough TAO's Real-Time Event Service [6, 9]. Where the
(represented by transitions between operating regions), TR)JO model creates new ORB services to provide its time-
gives feedbackacross software and distribution boundaridmsed invocation capabilities [13], TAO provides a subset of
based on a control loop in which client applications and serveese capabilities by extending the standard CORBA COS
objects request levels of service and are notified of changeEwent Service. We believe TMO and TAO are complementary
service, and (3) supportonde mobilitythat enables QuO totechnologies because (1) TMO extends and generalizes TAO’s
migrate object functionality into local address spaces in oraeisting time-based invocation capabilities and (2) TAO pro-
to tune performance and to further support highly optimizeéies a configurable and dependable connection infrastructure
adaptive reconfiguration. needed by the TMO CNCM service. We are currently collabo-

The QuO model employs sevel@b$S definition languagesrating with the UCI TMO team to integrate the TAO and TMO
(QDLs) that describe the QoS characteristics of various dhiddleware as part of the DARPA Quorum integration project.
jects, such as expected usage patterns, structural details of
objects, and resource availability. QuO’s QDLs are based
the separation of concerns advocated by Aspect-Oriented Iﬁt? Non-CORBA-related QoS Research
gramming (AoP) [42]. The QuO middleware adds significant)]
value to adaptive real-time ORBs such as TAO. We are ciRMADA: The ARMADA project [46, 47] defines a set
rently collaborating with the BBN QuO team to integrate tHf communication and middleware services that support fault-

TAO and QuO middleware as part of the DARPA Quorum if0/erantand end-to-end guarantees for real-time distributed ap-
tegration project. plications. ARMADA provides real-time communication ser-

vices based on the X-kernel and the Open Group’s MK micro-
UCSB Realize: The Realize project at UCSB [43] supportkernel. This infrastructure provides a foundation for construct-
soft real-time resource management of CORBA distributéf) higher-level real-time middleware services.
systems. Realize aims to reduce the difficulty of developingTAO differs from ARMADA in that most of the real-time
real-time systems and to permit distributed real-time prograinfastructure features in TAO are integrated into its ORB
to be programmed, tested, and debugged as easily as si@gike [22] and I/O subsystem [31], rather than in a micro-
sequential programs. Realize integrates distributed real-tikegnel. In addition, TAO implements the OMG CORBA stan-
scheduling with fault-tolerance, fault-tolerance with totallydard, while also providing the hooks necessary to integrate
ordered multicasting, and totally-ordered multicasting withith an underlying real-time 1/0O subsystem and OS. Thus,
distributed real-time scheduling, within the context of OO prthe real-time services provided by ARMADAS communica-
gramming and existing standard operating systems. The Ben system can be utilized by TAO to support standards-based
alize resource management model can be hosted on toppgflications running over a vertically and horizontally inte-
TAO [43]. grated real-time system.

18

CMU Publisher/Subscriber: Rajkumaret al.[33] at CMU specification [18] adopted for CORBA 2.4 allows implementa-
developed a real-time Publisher/Subscriber model that is sitions to provide end-to-end guarantees, but it does not require
lar to the TAO’s Real-time Event Service [@.9, it uses real- them. Moreover, it does not provide explicit mechanisms to
time threads to prevent priority inversion within its commungontrol how I/O threads in an ORB Core map to thread priori-
cation framework. The CMU model does not utilize any Qaes and connections.
specifications from publishers (event suppliers) or subscriberSection 4.2.2 describes the policies and mechanisms we
(event consumers), however. Therefore, scheduling is bagedd in TAO's prioritized connection endpoints extension to
on the assignment of request priorities, which is not addrespesecisely define these associations and ORB configurations.
by the CMU model. Application developers can use this extension to ensure that
In contrast, TAO’s Scheduling Service and real-time Eveitfite client and server ORBs process the request at the appropri-
Service utilize QoS parameters from suppliers and consurmeks priority end-to-end. In previous work [31], we described
to assure resource access via priorities. One interesting aspeat TAO can be integrated with aarly demultiplexindea-
of the CMU Publisher/Subscriber model is the separationtafe in the operating system’s 1/0 subsystem to ensure that the
priorities for subscription and data transfer. By handling the®S kernel and network interfaces also preserve the priority of
activities with different threads, with possibly different priorithe request.

ties, the impact of on-line scheduling on real-time processing . . _
can be minimized. One-way semantics must be specified precisely:The

CORBA 2.3 specification defines the semantics of one-way
operations to receive best-effort service. However, it pro-

7 Concluding Remarks vides no further end-to-end delivery guarantees to applica-
tions. Thus, a CORBA 2.3-compliant ORB can simply drop

Real-time distributed object computing (DOC) middleware /€Y request, deliver it at some arbitrary future time (but out
a promising solution for key challenges facing research@sOrder with subsequent requests), or send it immediately.
and developers of real-time applications. Designing and oﬂihe CORBA 2.4 Messaging specification provides better con-
mizing standards-based and commodity-off-the-shelf (COT@' over the semantics of oneway operations, but' it falls short
DOC middleware that can meet the QoS requirements of rd3|{N€ SYNC_NONE case, where it does not provide mecha-
time applications requires an integrated architecture that Q&M to control buffering limits and/or flushing policies. Sec-
deliver end-to-end QoS support at multiple levels in real-tinj@" 4-2-4 describe the policies and mechanisms we used in
and embedded systems. The Real-time CORBA [18] and M&&O 10 define one-way buffering semantics precisely and en-
saging [19] specifications in CORBA 2.4 are an important st8p€ @dequate throughput for certain types of real-time appli-
in this direction. cations.

Unfortunately, the CORBA 2.4 specification lacks Sumde%ttandards-based COTS DOC middleware solutions must
specificity toportablymanage processor, communication, ang, \;saple: COTS DOC middleware is motivated by the need
memory resources for applications with stringent Q0S requifg+oqy;ce maintenance and development costs, as well as im-
ments. For examp'le, Section 4.2.2 descrjbes outlines a NURve time-to-market cycles. These same forces also make
ber of problems with the standard Real-time CORBAOI- o0y complex or non-scalable DOC middleware solutions
ity mapping priority mode thread poo] andpriority banded | \jeirable. Thus, COTS DOC middleware must not only

gonnec(tjionmec(:jhanif]ms i;?teqdeddFo preserve request prigliide a standardized programming model, but it must also
ties end-to-end. The following discussion summarizes Qyltine precise semantics to meet stringent end-to-end QoS re-
lessons learned developing and deploying an implementaliphte mentsand implement these semantics via a convenient
of CORBA and representative applications that are based g5 oy experience developing standards-compliant CORBA
the CORBA 2.4 specifications. middleware shows that it is possible to achieve both these

Control over thread priority must be end-to-end: Ensur- goals, although the CORBA 2.4 specification can be improved

ing appropriate end-to-end QoS for real-time applications R aPPlying the TAO enhancements described in this paper.

qguires more than just the implementation of the Real-time

CORBA specification and the mapping of global priorities be- The open-source code, benchmarks, and documentation for
tween ORBs. It also requires control over end-to-end threB&O is freely available and can be downloaded from URL
priorities, connection~ thread pool associations, and othewww.cs.wustl.edu/ ~schmidt/TAO.html . Our fo-
ORB endsystem resources used to process a request. Maus-on the TAO project has been to research, develop, and op-
over, applications must be able to control these resourcesiraize policies and mechanisms that allow CORBA to support
each layer of an DOC middleware. The Real-time CORB#pplications with hard real-time requirements. These require-

19

ments motivate many of the optimizations and design strats;
gies presented in this paper.

TAO has been used on a wide range of distributed redf!
time and embedded systems, including an avionics miss[
computing architecture for Boeing [6], the next-generation
Run Time Infrastructure (RTI) implementation for the Dg21]
fense Modeling and Simulation Organization’s (DMSO) High
Level Architecture (HLA) [48], and high-energy physics ex-
periments at SLAC [49] and CERN [50]. [22]

References

[1] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol [23]
Engine for Minimal Footprint Multimedia Systemslournal on
Selected Areas in Communications special issue on Service Enablingp4]
Platforms for Networked Multimedia Systemsl. 17, Sept. 1999.

[2] Object Management Groupphe Common Object Request Broker:
Architecture and Specificatio2.4 ed., Oct. 2000.

[3] Sun Microsystems, Inclava Remote Method Invocation Specification [25]
(RMI), Oct. 1998.

[4] M. Henning and S. VinoskiAdvanced CORBA Programming With
C++. Addison-Wesley Longman, 1999.

[5] D.C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeZaimputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

[6] T.H.Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,Pioceedings of
OOPSLA '97 (Atlanta, GA), ACM, October 1997.

[7] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for[
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, 1997.

[8] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and Performanggg)
of an Object-Oriented Framework for High-Performance Electronic
Medical Imaging,”"USENIX Computing Systeml. 9,
November/December 1996.

[9] C. O'Ryan, D. C. Schmidt, and D. Levine, “Applying a Scalable
CORBA Events Service to Large-scale Distributed Interactive
Simulations,” inProceedings of th&*" Workshop on Object-oriented
Real-time Dependable Systertidontery, CA), IEEE, Nov. 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. ViissidEsign Patterns:
Elements of Reusable Object-Oriented Softw&eading, MA:
Addison-Wesley, 1995.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, [32]
Pattern-Oriented Software Architecture - A System of Pattewiky
and Sons, 1996.

[12] DARPA, “The Quorum Program.”
http://www.darpa.mil/ito/research/quorum/index.html, 1999. [33]

[13] K. Kim and E. Shokri, “Two CORBA Services Enabling TMO
Network Programming,” iffourth International Workshop on
Object-Oriented, Real-Time Dependable SystéEiSE, January 1999.

[14] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, (34]
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume New York, NY: Wiley & Sons, 2000. [35]

[15] I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,” [36]
Concurrency Magazinevol. 8, no. 1, 2000.

[16] M. Fayad, R. Johnson, and D. C. Schmidt, e@hject-Oriented
Application Frameworks: Problems & Perspectivééew York, NY:

[26]

[27]

28]

[30]

[31]

Wiley & Sons, 1999. [37]
[17] D. C. Schmidt, “ACE: an Object-Oriented Framework for Developing
Distributed Applications,” ifProceedings of thét" USENIX C++ [38]

Technical ConferencgCambridge, Massachusetts), USENIX
Association, April 1994.

20

Object Management GrouRealtime CORBA Joint Revised
SubmissionOMG Document orbos/99-02-12 ed., March 1999.

Object Management Grou@ORBA Messaging Specificatic@MG
Document orbos/98-05-05 ed., May 1998.

96] R. Callison, M. Goo, and D. Butler, “Real-time CORBA Trade Study,”

Tech. Rep. D204-31159, The Boeing Company, 1999.

A. B. Arulanthu, C. O’'Ryan, D. C. Schmidt, M. Kircher, and

J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging, Rroceedings of
the Middleware 2000 Conferenc@CM/IFIP, Apr. 2000.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokeisirnal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Interneto appear 2001.

Object Management Grouphe Common Object Request Broker:
Architecture and Specificatio2.3 ed., June 1999.

E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A
Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
'97 Conference on Programming Language Design and
Implementation (PLDI)(Las Vegas, NV), ACM, June 1997.

Z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach to
High Performance Network Interface Design: Protected DMA and
Other Techniques,” iffroceedings of INFOCOM '9{Kobe, Japan),

pp. 179-187, IEEE, April 1997.

D. C. Schmidt and F. Kuhns, “An Overview of the Real-time CORBA
Specification,”[EEE Computer Magazine, Special Issue on
Object-oriented Real-time Computingune 2000.

“Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application: Program Interface (API) [C
Language],” 1995.

C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Servitag
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middlewar€o appear 2001.

B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from
Execution Dependencies,” Proceedings of the 11th Annual Software
Technology Conferencépr. 1999.

D. L. Levine, D. C. Schmidt, and S. Flores-Gaitan, “An Empirical
Evaluation of OS Support for Real-time CORBA Object Request
Brokers,” inProceedings of Multimedia Computing and Networking
2000 (MMCNOO) (San Jose, CA), ACM, Jan. 2000.

F. Kuhns, D. C. Schmidt, C. O’'Ryan, and D. Levine, “Supporting
High-performance 1/O in QoS-enabled ORB Middlewar@lister
Computing: the Journal on Networks, Software, and Applicatidns
appear 2001.

C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for
Real-time Distributed Object Computing Middleware,”Rnoceedings

of the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time
Publisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementatiorfirst
IEEE Real-Time Technology and Applications SymposiMay 1995.

Object Management Grou@ORBAServices: Common Object
Services Specification, Revised Editieh-3-31 ed., Mar. 1995.

R. Lachenmaier, “Open Systems Architecture Puts Six Bombs on
Target.” www.cs.wustl.eda/schmidt/TAO-boeing.html, Dec. 1998.

M. de Sousa, “Mapping Synchronisation Protocols onto Real-Time
CORBA,” in Proceedings of the™?! International Symposium on
Distributed Objects and Applications (DOA 2000)ntwerp,
Belgium), OMG, Sept. 2000.

W. R. StevensUNIX Network Programming, Second Edition
Englewood Cliffs, NJ: Prentice Hall, 1997.

A. B. Arulanthu, C. O'Ryan, D. C. Schmidt, and M. Kircher, “Applying
C++, Patterns, and Components to Develop an IDL Compiler for
CORBA AMI Callbacks,”C++ Report, vol. 12, Mar. 2000.

[39] A. Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,Pimceedings
of SIGCOMM 96 (Stanford, CA), pp. 306-317, ACM, August 1996.

[40] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,
I. Zykh, and R. Johnston, “Real-Time CORBA,” Rroceedings of the
Third IEEE Real-Time Technology and Applications Sympagsium
(Montréal, Canada), June 1997.

[41] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp, “Real-time
Method Invocations in Distributed Environments,” Tech. Rep. 95-244,
University of Rhode Island, Department of Computer Science and
Statistics, 1995.

[42] G. Kiczales, “Aspect-Oriented Programming,”Pmoceedings of the
11th European Conference on Object-Oriented Programmiloge
1997.

[43] V. Kalogeraki, P. Melliar-Smith, and L. Moser, “Soft Real-Time
Resource Management in CORBA Distributed Systems,” in
Proceedings of the Workshop on Middleware for Real-Time Systems
and Services(San Francisco, CA), IEEE,d&zember 1997.

[44] W. Feng, U. Syyid, and J.-S. Liu, “Providing for an Open, Real-Time
CORBA,” in Proceedings of the Workshop on Middleware for
Real-Time Systems and Servijg&an Francisco, CA), IEEE,
December 1997.

[45] K. H. K. Kim, “Object Structures for Real-Time Systems and
Simulators,”|EEE Computerpp. 62—70, Aug. 1997.

[46] A. Mehra, A. Indiresan, and K. G. Shin, “Structuring Communication
Software for Quality-of-Service GuaranteedgEE Transactions on
Software Engineeringvol. 23, pp. 616—634, Oct. 1997.

[47] T. Abdelzaher, S. Dawson, W.-C.Feng, F.Jahanian, S. Johnson,
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, and H. Zou,
“ARMADA Middleware Suite,” inProceedings of the Workshop on
Middleware for Real-Time Systems and Servi¢8an Francisco, CA),
IEEE, December 1997.

[48] F. Kuhl, R. Weatherly, and J. Dahmar@reating Computer Simulation
SystemsUpper Saddle River, New Jersey: Prentice Hall PTR, 1999.

[49] SLAC, “BaBar Collaboration Home Page.”
http://www.slac.stanford.edu/BFROQT/.

[50] A. Kruse, “CMS Online Event Filtering,” il€omputing in High-energy
Physics (CHEP 97)Berlin, Germany), Apr. 1997.

21

