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Abstract

Communication software middleware and distributed ser-
vices for next-generation applications must be reliable, flexi-
ble, reusable, and capable of providing the necessary quality
of service to applications like multimedia and telecommuni-
cation systems running over high-speed networks. Require-
ments for reliability, flexibility, and reusability motivate the
use of object-oriented middleware like the Common Object
Request Broker Architecture (CORBA).

This document provides an indepth analysis of DCE and
CORBA in terms of their key similarities and differences.
It evaluates the advantages of porting DCE applications to
CORBA, and describes the key areas where the porting effort
is most likely to face the hardest problems.

1 Introduction to CORBA

CORBA is an evolving standard for distributed object com-
puting [11]. The CORBA standard defines a set of compo-
nents that allow client applications to invoke operations (op)
with arguments (args) on object implementations. Flexi-
bility is enhanced by using CORBA since object implemen-
tations can be configured to run locally and/or remotely with
minimal impact on their implementation or use.

Figure 1 illustrates the primary components in the CORBA
architecture. The responsibility of each component in
CORBA is described below:

� Object Implementation: This defines operations that
implement a CORBA IDL interface. Object implementations
can be written in a variety of languages including C, C++,
Java, Smalltalk, and Ada.

� Client: This is the program entity that invokes opera-
tions on object implementations. Accessing the services of
a remote object should be transparent to the caller. Ideally,
this should be as simple as calling a method on an object,
i.e., result = obj->op(args). The remaining com-
ponents in Figure 1 help to support this location transparency.

� Object Request Broker (ORB): When a client in-
vokes an operation, the ORB is responsible for finding the
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Figure 1: Components in the CORBA Distributed Object
Computing Model

object implementation, automatically activating it if neces-
sary, delivering the request to the object, and returning the
response (if any) to the caller.

� ORB Interface: An ORB is a logical entity that may
be implemented in various ways (such as one or more pro-
cesses or a set of libraries). To decouple applications from
implementation details, the CORBA specification defines an
abstract interface for an ORB. This interface provides vari-
ous helper functions such as converting object references to
strings and vice versa, and creating argument lists for requests
made through the dynamic invocation interface (described
below).

� CORBA IDL stubs and skeletons: CORBA IDL
stubs and skeletons serve as the “glue” between the client and
server applications, respectively, and the ORB. The transfor-
mation between CORBA IDL definitions and the target pro-
gramming language is automated by a CORBA IDL compiler.
The use of a compiler reduces the potential for inconsisten-
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cies between client stubs and server skeletons and increases
opportunities for automated compiler optimizations [13].

� Dynamic Invocation Interface (DII): This interface
allows a client to directly access the underlying request mech-
anisms provided by an ORB. Applications use the DII to
dynamically issue requests to objects without requiring IDL
interface-specific stubs to be linked in. Unlike IDL stubs
(which only allow RPC-style requests), the DII also allows
clients to make non-blocking deferred synchronous (separate
send and receive operations) and oneway (send-only) calls.

� Dynamic Skeleton Interface (DSI): This is the server
side’s analogue to the client side’s DII. The DSI allows an
ORB to deliver requests to an object implementation that
does not have compile-time knowledge of the type of the
object it is implementing. The client making the request has
no idea whether the implementation is using the type-specific
IDL skeletons or is using the dynamic skeletons.

� Object Adapter: The Object Adapter assists the ORB
with delivering requests to the object and with activating the
object. More importantly, an object adapter associates ob-
ject implementations with the ORB. Object adapters can be
specialized to provide support for certain object implemen-
tation styles (such as OODB object adapters for persistence
and library object adapters for efficient access to non-remote
objects).

� Higher-level Object Services: These services include
the CORBA Object Services [10] such as the Name service,
Event service, Object Lifecycle service, and the Trader ser-
vice. The OMG is currently defining wide range of higher-
level object services.

In general, CORBA enhances conventional procedural
RPC middleware (such as OSF DCE and ONC RPC) by
supporting object-oriented language features (such as en-
capsulation, interface inheritance, parameterized types, and
exception handling) and advanced design patterns [5] for
distributed communication. In principle, these features and
patterns enable complex distributed and concurrent applica-
tions to be developed more rapidly and correctly. In practice,
however, existing CORBA implementations, and the OMG
CORBA standardization effort itself, is still relatively imma-
ture, as described below.

2 DCE vs. CORBA

Both DCE and CORBA support the development and inte-
gration of applications in heterogeneous distributed environ-
ments. This section summarizes the main features of DCE
and CORBA and describes their key similarities and differ-
ences [3].

2.1 Key DCE/CORBA Similarities

The key similarities between DCE and CORBA are described
below:

� Simplify common network programming tasks: Both
DCE and CORBA are designed to simplify common tasks of
building distributed applications such as service registration,
location, and activation, demultiplexing, framing and error-
handling, parameter (de)marshalling, and operation dispatch-
ing.

� Support for heterogeneous environments: Both DCE
and CORBA shield application developers from differences
in programming languages, operating systems, computer
hardware (particularly instruction byte ordering), and net-
working protocols.

� Use of Interface Definition Languages (IDLs): Both
DCE and CORBA support the definition of service compo-
nents, using high-level interface definition languages. The
main purpose of an IDL is to separate interface from imple-
mentation. In general, this separation of concerns makes it
possible to:

� Improve the modularity and specification of software
components;

� Transparently distribute implementation across process
and host boundaries;

� Write language-independent applications.

� Automatically generated stubs and skeletons: Imple-
mentations of DCE and CORBA provide IDL compilers that
automatically translate IDL definitions into client-side stubs
and server-side skeletons. Stubs serve as proxies [5] that
interact with the underlying runtime systems to allow clients
to access services defined by servers. Skeletons integrate
application-specific code with automatically generated code
that performs demarshalling, demultiplexing, and dispatch-
ing of client requests to target object implementations.

� Synchronous request/response communication: Both
DCE and CORBA support synchronous request/response
communication. In this approach, the client calls an op-
eration on the server. The client blocks until the server
completes the operation, at which point out or inout pa-
rameters and/or a return value is passed back to the client. In
theory, synchronous request/response communication helps
shield client applications from knowledge of whether the tar-
get object implementation is local or remote. In practice, it is
often difficult to completely hide the use of distribution from
clients due to differences in performance and reliability [2].

� Oneway communication: CORBA supports “oneway”
(send-only) calls, where the server does not return any in-
formation to the client (e.g., as part of the operation’s return
value or inout/out parameters). In DCE, oneway operations
can be achieved using “maybe” semantics, which are a spe-
cial case of “idempotent” operations.

� Common request path: Figure 2 shows the general path
that CORBA and DCE implementations use to transmit re-
quests from client to server for remote operation invocations.
The client code invokes the IDL compiler-generated stubs to
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Figure 2: General Path of CORBA and DCE Requests

access the services of the server. After the client invokes the
stub, it blocks until it receives a response from the server.
The presentation conversion layer encodes the request data
into a common data representation. The runtime system then
packetizes the encoded data by adding framing information.
This may include packet headers and trailers, checksums for
data integrity, encrypted data for security and information for
interoperability. The runtime system uses the underlying net-
work software provided by the operating system and device
drivers to send the packets to the destination.

On arrival at the server, the network software passes the
request to the runtime system. The runtime system removes
the framing information and passes the request to the pre-
sentation conversion layer. This layer converts the encoded
data into the native format of the host machine (if necessary)
and passes it over to the message demultiplexer. The demul-
tiplexer dispatches the request to the appropriate server stub
generated by the IDL compiler.

The response traces the reverse path of the incoming re-
quest message through the server and client. When the re-
sponse reaches the client, it unblocks the client stub that is
waiting for the reply.

� Higher-level services: Both DCE and CORBA build
upon their core communication infrastructure (called the “ex-
ecutive” in DCE and the “ORB” in CORBA) to provide
higher-level distributedservices. Common services provided
by both CORBA and DCE include a time service, event ser-
vice, and naming and directory services.

2.2 Key DCE/CORBA Differences

The following bullets describe the key differences between
DCE and CORBA.

QUOTEQUOTE

SERVERSERVER: Reuters: Reuters
QuoterQuoter

: DowJones: DowJones
QuoterQuoter

: Quoter: Quoter
FactoryFactory

QUOTE

CLIENT

: DowJones: DowJones
QuoterQuoter
ProxyProxy

: Quoter: Quoter
FactoryFactory
ProxyProxy

get_quote()get_quote()

destroy()destroy()

create_quoter()create_quoter()

namename

valuevalue

namename

QuoterQuoter

: Reuters: Reuters
QuoterQuoter
ProxyProxy

QUOTE  CLIENT QUOTE  SERVER

: Quoter: Quoter
ProxyProxy

: Quoter: Quoterget_quote()get_quote()

namename

valuevalue

R
P

C
R

P
C

---S
T

Y
L

E
S

T
Y

L
E

O
B

J
E

C
T

O
B

J
E

C
T

---S
T

Y
L

E
S

T
Y

L
E

Figure 3: RPC-style vs. Object-style Communication

�Programming model: One important difference between
DCE and CORBA is that DCE was designed to provide a pro-
cedural programming model, whereas CORBA was designed
to provide an object-oriented programming model. This dif-
ference in programming models is analogous to the difference
between the C and C++ programming models. For instance,
while it is possible to implement object-oriented programs
using C, the effort required to do so is high and the results are
often hard to program and error-prone. In contrast, the effort
required to implement object-oriented programs with C++
is much lower, because the language supports the features
directly.

The difference between DCE’s procedural programming
model and CORBA’s object-oriented programming model is
often overstated, however. In particular, there are extensions
to DCE that provide an OO veneer (such as OODCE [4] and
DCE Objects [1]). There are, however, a number of restric-
tions inherent in using DCE in an object-oriented manner.
To illustrate these, consider the following ways in which the
DCE and CORBA programming models differ:

� Support for multiple inheritance of interfaces and poly-
morphism – CORBA provides these features to support
the specialization and reuse of existing interfaces. De-
velopers can use inheritance to form new composite in-
terfaces, which can be implemented flexibly using poly-
morphism. In contrast, DCE does not directly support
interface inheritance or polymorphism of implementa-
tion.

� Accessing distributed resources via Object References
– In CORBA, Object References are “first class” enti-
ties that can be passed to clients throughout a network
and used to flexibly access server objects. DCE does
not provide this degree of flexibility without additional
programming effort.
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� Object-style vs. RPC-style communication – Figure 3
illustrates the difference between RPC-style communi-
cation (supported by DCE) and Object-style communi-
cation (supported by CORBA) [15].1 There are several
benefits to Object-style communication:

– Customized quality of service – Clients can use
a factory to create different types of product ob-
jects that support a range of functionality or per-
formance characteristics (such as real-time quality
of service, high-bandwidth, etc.) tailored to their
individual needs.

– Flexible lifecycle control – Object-style commu-
nication gives clients more flexibility to control
the lifecycle of object implementations, compared
with RPC-style communication. For instance,
servers accessed via RPC-style interfaces often
must make inefficient or non-robust assumptions
about the lifecycle of clients that access their ser-
vices.

� Ability to associate cohesive operations into modular
and reusable components – CORBA’s programming
model encourages the association of related operations
to form modular and reusable components. Although it
is possible to achieve much the same effect in DCE via
developer conventions, the standard DCE programming
model is not as conducive to supporting OO design and
implementation.

� Communicationmodel: CORBA supports the “deferred
synchronous” communication, which separates the send op-
eration from the server’s reply. DCE does not support de-
ferred synchronous operations, though it is possible to ap-
proximate this to some extent using multiple threads. How-
ever, DCE supports the notion of “idempotent” operations,
which can be used to optimize duplicate detection on a server.
CORBA does not provide support for idempotent operations.

� Interface Definition Languages (IDLs): CORBA IDL
is designed to allow interoperability between a range of tar-
get languages (such as C, C++, Smalltalk, Java, Ada, and
COBOL). In contrast, DCE IDL is focused primarily on C
(and C++ to the extent that the type system of C is a subset
of C++).

� Type systems: An important consequence of CORBA’s
emphasis on language independence is that its type system is
much simpler (and inherently more restrictive) than DCE. In
particular, there is no direct support for:

� Passing pointers or structures containing pointers

� Streaming data – e.g., via the DCE pipe mechanism.

� Conformant arrays – i.e., arrays of varying sizes.

On the other hand, unlike DCE, CORBA support the “any”
type, which allows clients and servers to pass arbitrary data
values whose type is determined at run-time.

1Note that CORBA also supports RPC-style communication.

� Dynamic invocation: CORBA supports the dynamic in-
vocation of requests that can be created and called at run-time.
The correctness of these requests can be checked at run-time
using the CORBA Interface Repository. In contrast, DCE
does not provide support for dynamic invocation or interface
repositories.

� Interface and Implementation Repository: CORBA
provides an interface repository that stores information
present in the IDL files. Applications can query an inter-
face repository for information about the interfaces. This
feature is useful for tools such as browsers and debuggers
that have no prior knowledge of the interfaces offered by a
server. By querying the interface repository, they can find the
services offered by different servers and construct requests
dynamically.

In addition, CORBA supports an implementation reposi-
tory that the ORB uses to map client requests to object imple-
mentations. An implementation repository holds information
that allows the ORB to locate and activate implementations
of objects. In addition, it is useful to store other information
such as resource allocation, security, debugging information,
etc. DCE does not define an interface or implementation
repository explicitly.

�Component identity: In DCE, all components (e.g., IDL
definitions, IDL implementations, servers, etc.) are identi-
fied by “universal unique identifiers” (UUIDs). CORBA has
no notion of a UUID. Instead, components in CORBA are
“identified” via Object References, which only grant access
to a CORBA object, but provide no notion of unique identify.
For more information on the pros and cons of this issue see
[14] and [9], respectively.

� Infrastructure services: DCE defines a multi-threading
API that is part of its core “executive” infrastructure, whereas
CORBA does not define a standard API for multi-threading.
Therefore, it is not possible to write portable CORBA multi-
threaded applications. Likewise, DCE also defines a security
service (based on Access Control Lists) in its core infrastruc-
ture, whereas CORBA defines this as a higher-level service.

� Higher-level services: The higher-level services defined
by DCE and CORBA are different. For instance, DCE defines
a distributed file service (DFS) in its extended services com-
ponent, whereas CORBA does not provide this service. On
the other hand, the OMG has completed specifications for a
much wider range of distributed services, including Concur-
rency Control, Event Service, Externalization Service, Life
Cycle Services, Naming Service, Persistent Object Service,
Query Service, Relationship Service, Transaction Service,
Licensing Service, Property Service, Security Service, Time
Service, Trading Service.
In addition, the OMG is currently defining standards for even
higher-level, application-specific services, known as CORBA
facilities. These facilities will cover domains such as user-
interface, compound documents, and task management. As
described in Section 4.1, however, the CORBA services and
facilities are not well defined at this point.
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� Interoperability and portability: The DCE specifica-
tion and its various implementations were designed a priori
to be interoperable and portable. In contrast, the original
CORBA 1.x specification was not sufficiently detailed to en-
sure interoperability and portability of CORBA implementa-
tions. Although CORBA 2.0 addresses this weakness via the
UNO specification [12], many CORBA implementations do
not yet implement UNO robustly. In addition, non-portable
aspects of the CORBA server-side Object Adapter specifica-
tion remain including:

� Non-portable mapping of skeletons onto implementa-
tions – There is no standard way to map the automati-
cally generated IDL skeletons onto application-specific
target object operation implementations.

� Incomplete Object Adapter Interface – The existing in-
terface for the Basic Object Adapter in the CORBA 2.0
standard is woefully incomplete. Therefore, each ORB
vendor has added non-standard features in order to make
it possible to utilize important OS platform resources
such as threads or dynamic linking.

This lack of specificity in the CORBA 2.0 specification makes
it impossible to develop portable server implementations.
However, the client-side CORBA 2.0 specification does sup-
port the development of relative portable clients.

� Context: The notion of context in DCE and CORBA
is different. Contexts in DCE are used to maintain server
states during a series of logically related requests from a sin-
gle client. The runtime system understands the information
stored in the contexts. DCE contexts in a distributed applica-
tion is analogous to a file handle in a local application. These
contexts are maintained by the stubs and the RPC runtime li-
braries and not by the application code. In contrast, CORBA
contexts are opaque to the runtime system. They are used to
carry user information along with the request and are similar
to UNIX “environment variables.” Programmers responsible
for managing and interpreting CORBA context information.

The key differences between DCE and CORBA are sum-
marized in Table 2.2.

3 Advantages of Moving to CORBA

3.1 Simplifying Software Development

CORBA offers an object-oriented distributed computing en-
vironment. The following are the advantages of using
CORBA:

� The use of object oriented technology makes it reliable,
flexible, extensible and reusable;

� CORBA allows flexible client-server relationships and
consumer/supplier roles that can be interchanged easily
and flexibly;

� CORBA allows easier integration of services. Since
CORBA IDL can be inherited, it is possible to integrate
higher level services easily;

� CORBA’s use of an object request broker obviates the
need to discover a server and route requests to it;

� CORBA servers need not be active at all times. They
can be activated by daemons whenever a request arrives;

� CORBA supports both synchronous, as well as quasi-
asynchronous (i.e., deferred synchronous) communica-
tions styles;

� CORBA IDL supports inheritance from interfaces;

� CORBA IDL allows interoperability between a wide
range of target languages;

� The OMG has specified a wide range of distributed ser-
vices and higher-level application-specific facilities for
CORBA.

3.2 Marketability

Although, CORBA is an emerging technology for distributed
systems, it has already attracted a large customer base. A
number of customers are demanding that their products be
“CORBA compliant”. Efforts are also underway in the OMG
to achieve interworking between OLE/COM and CORBA.
Since OLE/COM is the de facto standard for modern desktop
computing, it is crucial that the distributed object computing
technology interoperate with OLE/COM.

3.3 Support from Third Party Vendors

One of the main strengths of CORBA, relative to DCE, is
its current force in the marketplace. There are over a dozen
ORB vendors who are actively developing CORBA products
on many OS and hardware platforms. Table 2 shows the
different CORBA implementations available in the market,
along with their URL addresses. Amongst these, IONA’S
ORBIX is the most widely used ORB, which an estimated
80% share of the marketplace.

These ORBs are now available for most OS and hardware
platforms. The ubiquity of ORB implementations increases
competition, which should result in better quality and lower
cost implementations. In contrast, the DCE marketplace is
much leaner, and there are fewer vendors who are actively
developing and enhancing DCE products.

4 Concerns with Moving to CORBA

This section focuses on problems that may arise when using
CORBA to support current Bellcore MediaVantage architec-
ture and requirements.

4.1 Immaturity of Higher-level Services and
Facilities

CORBA defines a number of higher-level services mentioned
in Section 2.2 and a number of higher-level application-
specific facilities. The higher-level services have been re-
cently adopted, whereas the facilities are still being discussed
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Category Sub Category CORBA DCE

Programming Model Object-oriented Procedural
Aspect Interface supported not supported

inheritance (including mult.
inheritance)

IDL design interoperability only for C
between many (C++ minimal)
languages

Communication Model object style RPC style
Aspect Idempotent ops not supported supported

Component object unique ids
Identification references (UUID)
Dynamic supported not supported
Invocation
Deferred supported not supported
Synchronous
Repository supported not supported
(impl and i/f)
Interoperability optional required

(UNO specs)
contexts opaque to used solely by

runtime system runtime system
Services Infrastructure no thread API built in

thread API
security external built-in

Market Force Vendor support active, large restricted
Customer base large restricted

Table 1: Summary of Key Differences between DCE and CORBA

ORB URL
Orbix, Iona Tecnologies http://www-usa.iona.com/www/Orbix/index.html
CORBUS, BBN http://www.bbn.com/offerings/corbus.html
ILU, Xerox PARC ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
ORBeline, Post Modern Computing http://www.pomoco.com/orbinfo.html
PowerBroker, Expersoft http://www.expersoft.com/home pag.htm
CHORUS/COOL, Chorus http://www.chorus.com/Products/Cool/index.html
HP ORB Plus, HP Labs http://www.dmo.hp.com/cgi-bin/fe.pl/gsy/orbplus.html
DOME, Object Oriented Technologies http://www.octacon.co.uk/onyx/external/oot.co.uk
NEO, Sun http://www.sun.com/sunsoft/neo
ObjectBroker, DEC http://www.dec.com/info/objectbroker
Electra, Cornell University http://www.cs.cornell.edu/Info/People/maffeis/electra.html
SOM, IBM http://www.software.ibm.com/objects/somobjects
DAIS, ICL http://www.icl.com/dais
Fresco, Faslabs http://www.faslabs.com/fresco/HomePage.html
OpenBase, Prism Technologies http://www.prismtech.co.uk

Table 2: Available Vendor ORBs
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by the various OMG domain-specific task groups. As a re-
sult, most implementations of CORBA either do not support
these services and facilities, or provide minimal and possibly
non-interoperable support.

In addition, it is important to recognize that the existing
specifications of CORBA services have very weakly defined
semantics. This makes it impossible to purchase non-trivial,
plug-compatible services from multiple vendors and expect
them to work together in a robust, efficient, and semantically
meaningful manner.

4.2 Inter-ORB Portability and Interoperabil-
ity

The Open Systems Foundation (OSF) supplied a reference
implementation to vendors of DCE. To ensure interoperabil-
ity, the only condition for vendor implementations of DCE
was to achieve interoperability with the reference implemen-
tation. The Object Management Group (OMG) did not sup-
ply any reference implementation to the vendors. In addition,
earlier versions of the CORBA specification were not precise
enough to ensure interoperability. Instead, the OMG chose
to let the vendors develop their ORB implementations and
experiment with the new technology. Interoperability was
added to CORBA version 2.0 through the Universal Net-
works Object (UNO) proposal [12].

4.3 Security

DCE defines a security model that provides:

� Protection levels for various levels of security;

� Authentication services;

� Authorization services;

� Data privacy and integrity services using cryptography
and checksums.

CORBA also defines a security model that provides a num-
ber of services for ensuring security. The CORBA security
model provides the following features:

� Identification and authentication – ability to identify
and authenticate users and objects using the system;

� Authorization and access control – ability to provide
authorization and access control to individual or groups
of users and objects;

� Security accounting – ability to make users account-
able for their security related actions;

� Security of communications – ability to provide secure
communication over unreliable links. In addition, this
also includes preserving the integrity of the data;

� Security administration – functionality to manage and
administer the various security policies used.

This model supports the authentication and access control
security requirements of the Bellcore products. This security
model was adopted very recently, however, and is not yet
available with currently available CORBA implementations.
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4.4 Scalability and Performance

Our studies measuring the performance of CORBA for
throughput, latency and scalability [6, 7, 8] indicate that cur-
rent implementations of CORBA suffer from the following
sources of overhead that degrade their performance:

� Inefficient presentation layer conversions;

� An excessive number of data copying operations;

� Non-optimal choice of internal buffers that leads to dis-
continuous latency behavior;

� Inefficient choice of request demultiplexing strategies;

� Long chains of virtual function calls.

As a result, our performance measurements reveal that:

� Static stubs and the Dynamic invocations perform
poorly compared to low level networking software (such
as sockets);

� The DII performs worse than the static stubs;

� CORBA implementations were unable to scale to a large
number of objects;

� Latency for invokingclient-side requests increased with
the number of objects handled by a server;

� Latency for sending different data types was different.

Figures 4, 5, and 6 depict the throughput performance of
three versions of the TTCP benchmarking test suite - a low-
level socket version implemented in C, IONA’s ORBIX ver-
sion, and Visigenic’s VISIBROKER FOR C++ (formerly known
as ORBELINE) version, respectively.

Figures 7 and 8 depict the the path a CORBA request takes
through the client and server using the IDL compiler gener-
ated stubs for Orbix and ORBeline, respectively. The figures
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Figure 7: Whitebox Throughput Performance of Orbix ver-
sion of TTCP
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version of TTCP
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Figure 9: Blackbox Latency Performance of Orbix

also show how these two ORBs implement the generic re-
quest path shown in Figure 2. Percentages at the side of each
figure indicate the contribution to the total processing time
for a oneway call to the sendStructSequencemethod.2

Figures 9 and 10 depict the blackbox latency measurements
for Orbix and ORBeline, respectively. These figures illus-
trate the latency for invoking the sendNoParams 1way
method, which was used to perform a oneway operation con-
taining no parameters. Figures 11 and 12 illustrate the cor-
responding whitebox latency measurements. These figures
depict the path traced by the requests through the client and
the server.

We are currently preparing to compare the performance of
DCE and CORBA for a representative set of benchmarks over
high-speed and low-speed networks. A subsequent version
of this paper will present these results.

4.5 Management and Administration

Currently available DCE implementations are interoperable
since they adhere to the reference implementation. In con-
trast, the original CORBA standard did not discuss interoper-

2The percentages may not add up to 100 since we have not shown the
entire contribution of the OS and network device overhead.
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Figure 10: Blackbox Latency Performance of ORBeline
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Figure 11: Whitebox Latency Performance of Orbix
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Figure 12: Whitebox Latency Performance of ORBeline

ability and the implementations thus lacked interoperability.
Interoperability was adopted in the CORBA 2.0 standard.
Since then, interoperability to a certain extent has been added
to the implementations. In addition, the CORBA standard
does not specify how to manage and monitor such heteroge-
neous CORBA systems. Due to this, it is difficult to manage
and monitor these CORBA systems.

With emerging technologies such as TME 10, the task of
managing CORBA systems will become easier. TME 10 is
a new product from Tivoli Systems (http://www.tivoli.com)
that has become a de-facto industry standard for manage-
ment of large-scale distributed systems. The principal goals
addressed by TME 10 are:

� Heterogeneity and integration – The ability to integrate
the management of various elements such as networks,
operating systems, hardware platforms, databases, ap-
plications, and middleware.

� Scalability – i.e., able to manage a system containing
a large number of servers, desktops, and other network
resources;

� Standardization – a uniform means for managing dis-
tributed systems;
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