
Double-Checked Locking

An Optimization Pattern for Efficiently
Initializing and Accessing Thread-safe Objects

Douglas C. Schmidt Tim Harrison
schmidt@cs.wustl.edu harrison@cs.wustl.edu

Dept. of Computer Science Dept. of Computer Science

Wash. U., St. Louis Wash. U., St. Louis

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3” ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

Abstract

This paper shows how the canonical implementation [1] of
the Singleton pattern does not work correctly in the pres-
ence of preemptive multi-tasking or true parallelism. To
solve this problem, we present the Double-Checked Lock-
ing optimization pattern. This pattern is useful for reducing
contention and synchronization overhead whenever “critical
sections” of code should be executed just once. In addition,
Double-Checked Locking illustrates how changes in under-
lying forces (i.e., adding multi-threading and parallelism to
the common Singleton use-case) can impact the form and
content of patterns used to develop concurrent software.

1 Intent

The Double-Checked Locking optimization pattern reduces
contention and synchronization overhead whenever “critical
sections” of code need to acquire locks just once, but must
be thread-safe when they do acquire locks.

2 Also Known As

Lock Hint [2]

3 Motivation

3.1 The Canonical Singleton

Developing correct and efficient concurrent applications is
hard. Programmers must learn new mechanisms (such as
multi-threading and synchronization APIs) and techniques
(such as concurrency control and deadlock avoidance algo-
rithms). In addition, many familiar design patterns (such as
Singleton or Iterator [1]) that work well for sequential pro-
grams contain subtle assumptions that do not apply in the

context of concurrency. To illustrate this, consider how the
canonical implementation [1] of the Singleton pattern be-
haves in multi-threaded environments.

The Singleton pattern ensures a class has only one instance
and provides a global point of access to that instance [1]. Dy-
namically allocating Singletons in C++ programs is common
since the order of initialization of global static objects in C++
programs is not well-defined and is therefore non-portable.
Moreover, dynamic allocation avoids the cost of initializing
a Singleton if it is never used.

Defining a Singleton is straightforward:

class Singleton
{
public:

static Singleton *instance (void)
{

if (instance_ == 0)
// Critical section.
instance_ = new Singleton;

return instance_;
}

void method (void);
// Other methods and members omitted.

private:
static Singleton *instance_;

};

Application code uses the static Singletoninstance
method to retrieve a reference to the Singleton before per-
forming operations, as follows:

// ...
Singleton::instance ()->method ();
// ...

3.2 The Problem: Race Conditions

Unfortunately, the canonical implementation of the Single-
ton pattern shown above does not work in the presence of
preemptive multi-tasking or true parallelism. For instance,
if multiple threads executing on a parallel machine invoke
Singleton::instance simultaneouslybefore it is ini-
tialized, the Singleton constructor can be called mul-
tiple times because multiple threads will execute thenew
Singleton operation within thecritical section shown
above.

1

A critical sectionis a sequence of instructions that obeys
the following invariant:while one thread/process is execut-
ing in the critical section, no other thread/process may be
executing in the critical section[3]. In this example, the ini-
tialization of the Singleton is a critical section. Violating the
properties of the critical section will, at best, cause a memory
leak and, at worst, have disastrous consequences if initializa-
tion is not idempotent.1

3.3 Common Traps and Pitfalls

A common way to implement a critical section is to add a
staticMutex 2 to the class. ThisMutex ensures that the al-
location and initialization of the Singleton occurs atomically,
as follows:

class Singleton
{
public:

static Singleton *instance (void)
{

// Constructor of guard acquires
// lock_ automatically.
Guard<Mutex> guard (lock_);

// Only one thread in the
// critical section at a time.

if (instance_ == 0)
instance_ = new Singleton;

return instance_;
// Destructor of guard releases
// lock_ automatically.

}

private:
static Mutex lock_;
static Singleton *instance_;

};

TheGuard class employs a C++ idiom (described in [5])
that uses the constructor to acquire a resource automatically
when an object of the class is created and uses the destruc-
tor to release the resource automatically when it goes out
of scope. SinceGuard is parameterized by the type of
lock (such asMutex), this class can be used with a fam-
ily of synchronization wrappers that conform to a uniform
acquire /release interface. By usingGuard , every ac-
cess toSingleton::instance will automatically ac-
quire and release thelock .

Even though the critical section should be executed just
once, every call to instance must acquire and release the
lock . Although this implementation is now thread-safe,
the overhead from the excessive locking may be unaccept-
able. One obvious (though incorrect) optimization is to place
theGuard inside the conditional check ofinstance :

static Singleton *instance (void)

1Object initialization is idempotent if an object can be reinitialized mul-
tiple times without ill effects.

2A mutex is a lock which can be acquired and released. If multiple
threads attempt to acquire the lock simultaneously, only one thread will suc-
ceed; the others will block[4].

{
if (instance_ == 0) {

Guard<Mutex> guard (lock_);

// Only come here if instance_
// hasn’t been initialized yet.

instance_ = new Singleton;
}
return instance_;

}

This reduces locking overhead it, but doesn’t provide thread-
safe initialization. There is still a race condition in multi-
threaded applications that can cause multiple initializa-
tions of instance . For instance, consider two threads
that simultaneously check forinstance == 0. Both
will succeed, one will acquire thelock via the guard ,
and the other will block. After the first thread initial-
izes theSingleton and releases thelock , the blocked
thread will obtain thelock and erroneously initialize the
Singleton for a second time.

3.4 The Solution: the Double-Checked Lock-
ing Optimization

A better way to solve this problem is to useDouble-Checked
Locking, which is a pattern for optimizing away unnecessary
locking. Ironically, the Double-Checked Locking solution is
almost identical to the previous one. Unnecessary locking
is avoided by wrapping the call tonew with another condi-
tional test, as follows:

class Singleton
{
public:

static Singleton *instance (void)
{

// First check
if (instance_ == 0)
{

// Ensure serialization (guard
// constructor acquires lock_).
Guard<Mutex> guard (lock_);

// Double check.
if (instance_ == 0)

instance_ = new Singleton;
}
return instance_;
// guard destructor releases lock_.

}

private:
static Mutex lock_;
static Singleton *instance_;

};

The first thread that acquires thelock will construct
Singleton and assign the pointer toinstance .
All threads that subsequently callinstance will find
instance != 0 and skip the initialization step. The sec-
ond check prevents a race condition if multiple threads try
to initialize the Singleton simultaneously. This handles the
case where multiple threads execute in parallel. In the code
above, these threads will queue up atlock . When the

2

if (Flag == FALSE)
 {
 Mutex.acquire ();
 if (Flag == FALSE)
 {
 critical section;
 Flag = TRUE;
 }
 Mutex.release ();
 }

Figure 1: Structure and Participants in the Double-Checked
Locking Pattern

queued threads finally obtain the mutexlock , they will find
instance != 0 and skip the initialization ofSingleton .

The implementation of
Singleton::instance above only incurs locking over-
head for threads that are active inside ofinstance when
the Singleton is first initialized. In subsequent calls to
Singleton::instance , singleton is not0 and the
lock is not acquired or released.

By adding aMutex and a second conditional check, the
canonical Singleton implementation can be made thread-
safe without incurring any locking overhead after initializa-
tion has occurred. It’s instructive to note how the need for
Double-Checked Locking emerged from a change in forces,
i.e., the addition of multi-threading and parallelism to Sin-
gleton. However, the optimization is also applicable for non-
Singleton use-cases, as described below.

4 Applicability

Use the Double-Checked Locking Pattern when an applica-
tion has the following characteristics:

� The application has one or more critical sections of code
that must execute sequentially;

� Multiple threads can potentially attempt to execute the
critical section simultaneously;

� The critical section is executed just once;

� Acquiring a lock on every access to the critical section
causes excessive overhead;

� It is possible to use a lightweight, yet reliable, condi-
tional test in lieu of a lock.

5 Structure and Participants

The structure and participants of the Double-Checked Lock-
ing pattern is best shown with pseudocode. Figure 1 il-
lustrates the following participants in the Double-Checked
Locking pattern:

ApplicationApplication
ThreadThread FlagFlag

CHECK FLAGCHECK FLAG

MutexMutex
Just OnceJust Once

Critical SectionCritical Section

ACQUIRE MUTEXACQUIRE MUTEX
acquire

CRITICAL SECTIONCRITICAL SECTION
perform

check

false

RELEASE MUTEXRELEASE MUTEX
release

CHECK FLAGCHECK FLAG

check

false

SET FLAGSET FLAG
set

Figure 2: Participant collaborations in the Double-Checked
Locking Pattern

� Just Once Critical Section – The critical
section contains code that is executed just once.
For instance, a Singleton is typically initialized only
once. Thus, the call tonew Singleton in Sec-
tion 3 is executed rarely, relative to the accesses to
Singleton::instance .

� Mutex – A lock that serializes access to the critical
section of code. Using the Singleton example from Sec-
tion 3, theMutex ensures thatnew Singleton only
occurs once.

� Flag – A flag that indicates whether theCritical
Section has been executed already. In the Singleton
example, the Singletoninstance pointer is used as
the flag.

If, in addition to signaling that the event occurred, the
Flag is used for an application-specific reason (as in
the Singleton example), it must be an atomic type that
can be set without interruption. This issue is discussed
in Section 7.

� Application Thread – This is the thread attempt-
ing to perform theCritical Section . It is im-
plicit in the pseudocode in Figure 1.

6 Collaborations

Figure 2 illustrates the interactions between the partic-
ipants of the Double-Checked Locking Pattern. The
Application Thread first checks to see ifFlag has
been set as an optimization for the common case. If it has
not been set,Mutex is acquired. While holding the lock,
the Application Thread again checks that theFlag
is set, performs theJust Once Critical Section ,

3

and setsFlag to true. Finally, theApplication
Thread releases the lock.

7 Consequences

There are several advantages of using the Double-Checked
Locking pattern:

� Minimized locking– By performing twoFlag checks,
the Double-Checked Locking pattern optimizes for the
common case. OnceFlag is set, the first check ensures
that subsequent accesses require no locking. Section 8.2
shows how this can affect application performance.

� Prevents race conditions– The second check ofFlag
ensures that the event is performed only once.

There is also a disadvantage of using the Double-Checked
Locking pattern:

� Potential for subtle portability bugs– There is a sub-
tle portability issue that can lead to pernicious bugs if
the Double-Checked Locking pattern is used in soft-
ware that is ported to hardware platforms that have non-
atomic pointer or integral assignment semantics. For
example, if aninstance pointer is used as theFlag
in the implementation of aSingleton , all the bits
of theSingleton instance pointer must be both
read and written in single operations. If the write to
memory resulting from the call tonew is not atomic,
other threads may try to read an invalid pointer. This
would likely result in an illegal memory access.

Such scenarios are possible on systems where mem-
ory addresses straddle alignment boundaries, thereby
requiring two fetches from memory for each access. In
this case, it may be necessary to use a separate, word-
aligned integralFlag (assuming that the hardware sup-
ports atomic integral reads and writes), instead of using
the instance pointer.

A related problem can occur if an overly-agressive com-
piler optimizesFlag by caching it in some way (e.g.,
storingFlag in a register) or by removing the second
check ofFlag == 0 . Section 9 explains how to solve
these problems by using thevolatile keyword.

8 Implementation and Sample Code

The ACE toolkit [6] uses the Double-Checked Locking
pattern in several library components. For instance, to
reduce code duplication, ACE uses a reusable adapter
ACESingleton to transform “normal” classes to have
Singleton-like behavior. The following code shows how
the implementation ofACESingleton uses the Double-
Checked Locking pattern.

// A Singleton Adapter: uses the Adapter
// pattern to turn ordinary classes into
// Singletons optimized with the
// Double-Checked Locking pattern.
template <class TYPE, class LOCK>
class ACE_Singleton
{
public:

static TYPE *instance (void);

protected:
static TYPE *instance_;
static LOCK lock_;

};

template <class TYPE, class LOCK> TYPE *
ACE_Singleton<TYPE, LOCK>::instance ()
{

// Perform the Double-Checked Locking to
// ensure proper initialization.
if (instance_ == 0) {

ACE_Guard<LOCK> lock (lock_);
if (instance_ == 0)

instance_ = new TYPE;
}
return instance_;

}

ACESingleton is parameterized byTYPE and LOCK.
Therefore, a class of the givenTYPEis converted into a Sin-
gleton using a mutex ofLOCKtype.

One usage of ACESingleton is in the ACE
Token Manager . TheToken Manager performs dead-
lock detection for local or remote tokens (such mutexes and
readers/writers locks) in multi-threaded applications. To
minimize resource usage, theToken Manager is created
“on-demand” when first referenced through itsinstance
method. To create a SingletonToken Manager simply re-
quires the followingtypedef :

typedef ACE_Singleton <ACE_Token_Manager,
ACE_Thread_Mutex>

Token_Mgr;

The Token Mgr Singleton is used to detect deadlock
within local and remotetoken objects. Before a thread
blocks waiting for a mutex, it first queries theToken Mgr
Singleton to test if blocking would result in a deadlock sit-
uation. For each token in the system, theToken Mgr
maintains a record listing the token’s owning thread and all
thread’s blocked waiting for the token. This data is sufficient
to test for a deadlock situation. The use of theToken Mgr
Singleton is shown below:

// Acquire the mutex.
int Mutex_Token::acquire (void)
{

// ...
// If the token is already held, we must block.
if (mutex_in_use ()) {

// Use the Token_Mgr Singleton to check
// for a deadlock situation *before* blocking.
if (Token_Mgr::instance ()->testdeadlock ()) {

errno = EDEADLK;
return -1;

}
else

// Sleep waiting for the lock...
}

4

// Acquire lock...
}

Note that theACESingleton can be parameterized
by the type ofMutex used to acquire and release the
lock (e.g., Singleton<ACE Thread Mutex>). This
allows ACESingleton to be parameterized with an
ACENull Mutex for single-threaded platforms and a reg-
ularACEThread Mutex for multi-threaded platforms.

8.1 Evaluation

The above example highlights several advantages to the
ACESingleton implementation:

� Avoids implementation errors– Reusing the thread-safe
algorithm for Singletons inACESingleton guaran-
tees that Double-Checked Locking pattern is applied.

� Adapts non-Singletons– Classes that were not origi-
nally implemented as Singletons can be adapted with-
out altering code. This is especially useful when the
source code is not accessible.

There is also a disadvantage with this implementation:

� Intent violation– Use ofACESingleton does not
ensure that a class has only one instance. For instance,
there is nothing to prevent multipleToken Manager s
from being created. When possible, it may be safer to
modify the class implementation directly rather than us-
ing theACESingleton adapter.

8.2 Performance Tests

To illustrate the potential performance gains of implement-
ing the Double-Checked Locking pattern we’ve profiled the
access to various implementations of Singleton. For these
tests, we used the following implementations:

� Mutex Singleton– This implementation of Singleton ac-
quired a mutex lock for every call to theinstance
accessor.

� Double-Checked Singleton– This implementation used
the Double-Checked Locking pattern to eliminate un-
necessary lock acquisition.

� ACE Singleton– This implementation of Singleton uses
ACESingleton (which is a template that uses the
Double-Checked Locking pattern), to test for any over-
head associated with the additional abstraction.

Each of the tests used the following algorithm:

timer.start ();
for (i = 0; i < 100000000; i++)

My_Singleton::instance ()->do_nothing ();
timer.stop ();

The code for all of these tests are available at
http://www.cs.wustl.edu/ schmidt/ACEwrappers/performance-
tests/Misc/testsingleton.cpp. The table below shows results
from an UltraSparc 2, with two 70 MHz processors, and 256
MB memory. The following are the optimized performance
results:

Singleton Mutex Double- ACE
Implementation Checked
real time (secs) 442.64 30.22 30.88
user time (secs) 441.47 30.12 30.86
system time (secs) 0 0 0
time per call (usecs) 4.43 0.30 0.31

These results illustrate the performance impact of using the
Double-Checked Locking pattern compared with using the
“standard” practice of acquiring and releasing a lock on ev-
ery instance call. Both theACESingleton and hand-
coded implementations of the Double-Checked Locking pat-
tern are over 15 times faster than the standard mutex version.
These tests were run with only a single thread to compute
the base-line overhead. If multiple threads were contending
for the lock the performance of the mutex implementation
would decrease even more.

9 Variations

A variation to the implementation of the Double-Checked
Locking pattern may be required if the compiler optimizes
Flag by caching it in some way (e.g.,storingFlag in a
register). In this case, cache coherency may become a prob-
lem if copies ofFlag held in registers in multiple threads
become inconsistent. In this case, one thread’s setting of the
value might not be reflected in other threads’ copies.

A related problem is that remove the second check of
Flag == 0 since it may appear superfluous to a highly op-
timizing compiler. For instance, in the following code an
aggressive compiler may skip the second memory read for
Flag and assume thatinstance is still 0 since it is not
declaredvolatile .

Singleton *Singleton::instance (void)
{

if (Singleton::instance_ == 0)
{

// Only lock if instance_ isn’t 0.
Guard<Mutex> guard (lock_);

// Dead code elimination may
// remove the next line.
// Perform the Double-Check.
if (Singleton::instance_ == 0)

// ...

A solution to both these problems is to declareFlag as a
volatile data member in theSingleton , as follows

class Singleton
{

// ...

5

private:
static volatile long Flag_; // Flag is volatile.

};

The use ofvolatile ensures that the compiler will not
place theFlag into a register, nor will it optimize the second
read away. The downside of usingvolatile is that all ac-
cess toFlag will be through memory, rather than through
registers.

10 Known Uses

� The Doubled-Checked Locking pattern is a special case
of a very widely used pattern in the Sequent Dynix/PTX
operating system.

� The Double-Checked Locking Pattern can be used to
implement POSIXonce variables [7].

� The Double-Checked Locking pattern is used exten-
sively throughout the ACE object-oriented network pro-
gramming toolkit [6].

� Andrew Birrell describes the use of the Double-
Checked Locking optimization in [2]. Birrell refers to
the first check ofFlag as a lock “hint.”

11 Related Patterns

The Double-Checked Locking pattern is a thread-safe vari-
ant of theFirst-Time-In idiom. The First-Time-In idiom is
often used in programming languages (like C) that lack con-
structors. The following code illustrates this pattern:

static const int STACK_SIZE = 1000;
static T *stack_;
static int top_;

void push (T *item)
{

// First-time-in flag
if (stack_ == 0) {

stack_ =
malloc (STACK_SIZE * sizeof *stack);

assert (stack_ != 0);
top_ = 0;

}
stack_[top_++] = item;
// ...

}

The first time thatpush is calledstack is 0, which
triggers its initialization viamalloc .

Acknowledgments

Thanks to Jim Coplien, Ralph Johnson, Jaco van der Merwe,
Duane Murphy, Paul McKenney, Peter Sommerlad, and John
Basrai for their suggestions and comments on the Double-
Checked Locking pattern.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-

terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[2] A. D. Birrell, “An Introduction to Programming with Threads,”
Tech. Rep. SRC-035, Digital Equipment Corporation, January
1989.

[3] A. S. Tanenbaum,Distributed Operating Systems. Prentice
Hall, Enflewood Cliffs, New Jersey, 1995.

[4] A. S. Tanenbaum,Modern Operating Systems. Englewood
Cliffs, NJ: Prentice Hall, 1992.

[5] Bjarne Stroustrup,The C++ Programming Language, 2nd Edi-
tion. Addison-Wesley, 1991.

[6] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[7] IEEE, Threads Extension for Portable Operating Systems
(Draft 10), February 1996.

6

