Connector

A Design Pattern for Actively
Initializing Network Services

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130, USA
(314) 935-7538

This paper appeared in the January 1996 issue of the C++
Report magazine.

1 Introduction

Thisarticleispart of acontinuing seriesthat describes object-
oriented techniques for developing reusable, extensible, and
efficient communication software. Thetopic of thisarticleis
the Connector pattern. This design pattern enables the tasks
performed by network services to evolve independently of
the mechanisms that actively initialize the services. The
Connector pattern is a companion to the Acceptor pattern
[1], which enables network servicesto evolveindependently
of the mechanisms that passively establish connections used
by the services.

The Connector and Acceptor patterns are commonly used
in conjunction with connection-oriented protocols (such as
TCP or SPX). These protocols reliably deliver data between
two communi cation endpoints. Establishing connections be-
tween two endpoints involves both a passive role and an
activerole. The passiveroleinitializes an endpoint of com-
munication at a particular address (such as an Internet IP
address and port number) and waits passively for other end-
pointsto connect withit. Theactiveroleinitiatesaconnection
to the address of an endpoint playing the passiverole.

Theintent of the Connector and Acceptor patternsisto de-
couple the active and passive connection roles, respectively,
from the network services performed once connections are
established. Common connection-oriented network services
include remotelogin, filetransfer, and access to World-Wide
Web resources. This article describes how separating the
connection-related processing from the service processing
yields more reusable, extensible, and efficient communica-
tion software.

This article is organized as follows: Section 2 motivates
the Connector pattern by illustrating how it can be used
to actively establish connections with a large number of
peers in a connection-oriented, multi-service, application-
level Gat eway; Section 3 describes the Connector pattern
in detail and illustratesone way to implement itin C++; and
Section 4 presents concluding remarks.

TRACKING
STATION
PEERS

’

STATUS INFO /

/
WIDE AREA ¥ /

/ / s
NETWORK ’ / / Y
/
ry / BULK DATA

COMMANDS

/ s
/ / 4 TRANSFER

GROUND
STATION
PEERS

Figurel: A Connection-oriented, Multi-service Application-
level Gateway

2 Motivation

To illustrate the Connector pattern, consider the multi-
service, application-level Gat eway showninFigurel. This
Gat eway routes several types of data (such as status in-
formation, bulk data, and commands) between network ser-
vices running on Peer s that monitor and control a satellite
constellation.! These Peer s are located throughout local
area networks (LANSs) and wide-area networks (WANS).

The Gat eway is connected to the Peer s via reiable,
connection-oriented interprocess communication (IPC) pro-
tocols such as TCP. Using a connection-oriented protocol
simplifies application error handling and enhances perfor-
mance over long-delay WANSs. Each communication service

1in design patterns terminology, the Gat eway is a Mediator [2] that
coordinatesinteractions between its connected Peer s.

in the Peer s sends and receives status information, bulk
data, and commands to and from the Gat eway using sepa
rate TCP connections. The different services are connected
to unique port numbers. For example, bulk data sent from
aground station Peer through the Gat eway is connected
to a different port than status information sent by a track-
ing station peer through the Gat eway to a ground station
Peer . Separating connections in this manner allows more
flexiblerouting policiesand morerobust error handling when
connectionsfail.

In this system, the Gat eway is responsible for initiat-
ing connections to the Peer s. Thus, the Gat eway plays
the active connection role and the Peer s play the passive
role. In alarge configuration, the Gat eway must connect
to dozens or hundreds of Peer s. Once the connections are
established, the Gat eway routes data from Peer to Peer
for each type of serviceit supports.

To decouple the various types of routing services from
the mechanisms that actively establish connections, the
Gat eway usesthe Connector pattern. This pattern resolves
the following forces for network clients that explicitly use
connection-oriented communication protocols:

e How to reuse active connection establishment code for
each new service — The Connector pattern permits key
characteristicsof services(such astheconcurrency strat-
egy or the data format) to evolve independently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms
this separation of concerns helps reduce software cou-
pling and increases code reuse.

e How to make the connection establishment code
portableacross platformsthat contain different network
programminginterfaces— Thisis particularly important
for asynchronous connection establishment, which is
hard to program portably and correctly using lower-
level network programming interfaces (such as sockets
and TLI).

¢ Howto actively establish connectionswith large number
of peers efficiently — The Connector pattern can employ
asynchrony to initiate and complete multiple connec-
tions in non-blocking mode. By using asynchrony, the
Connector pattern enables applicationsto actively estab-
lish connectionswith alarge number of peersefficiently
over long-delay WANS.

o How to enable flexible service concurrency policies —
Once a connection is established, peer applications use
the connection to exchange datato perform some type
of service (eg., remote login, WWW HTML document
transfer, etc.). A service can run in asingle-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established.

The following section describes the Connector pattern in
detail, using amodified form of the design pattern description
format presented in [2].

T -

‘ Y | Sve Handler |
- ——_ Svc Handler
(Sve Handler , \/ —ove oA Rl
| ! ~ Connector \
b connect(sh, addr) /\

1 (\ complete() e

~ —

HANDLE ASYNC
CONNECTION COMPLETION

peer_stream__ /l

\\\\\ n ACTIVATES

(
) Reactor

-
AN —_—————

Figure 2: Structure of Participantsin the Connector Pattern

3 TheConnector Pattern

3.1 Intent

Decouples active service initidization from the tasks per-
formed once aservice isinitiaized.

3.2 Applicability

Use the Connector pattern when connection-oriented appli-
cations have either or both of the following characteristics:

e The behavior of a network service does not depend on
the steps required to actively initialize a service;

e An application must establish a large number of con-
nectionswith peers connected over long-del ay networks
(such as satellite WANS).

3.3 Structureand Participants

The structure of the participants in the Connector pattern is
illustrated by the Booch class diagram [3] in Figure 2 and
described below:2

e Connector

— Connects and activates a Svc Handl er. The
Connect or’s connect method implements
the strategy for actively connecting the Svc
Handl er with itsremote peer. The conpl et e
method is used to activate Svc Handl ers
whose connections were initiated and completed
asynchronously.

e SvcHandler

2In this diagram dashed clouds indicate classes; dashed boxes in the
clouds indicate template parameters; and a solid undirected edge with a
hollow circle at one end indicates a uses relation between two classes.

sh:
con :

Client Sve (
Connector sh:

Handler Client con : S . Reactor

Connector ve :

} ‘ | | Ha‘ndler

FOREACH CONNECTION | |

|

connect(sh, addr) } }
I |

|

]

FOREACH CONNECTION |

|

l '

: connect(sh, addr)
[

|

|

— 1
|

Hﬂ, !

|

|

|

|

INITIATE CONNECTION
SYNCHRONOUSLY

INITIATE CONNECTION
ASYNCHRONOUSLY

register_handler(con)

get_handle() T
-—

handle_events() }

»-

select()

handle_event()

ACTIVATE SERVICE INSERT IN REACTOR

CONNECTION INITIATION &
SERVICE INITIALIZATION
PHASE

CONNECTION
INITIATION
PHASE

EXTRACT I/O HANDLE

START EVENT LOOP
PROCESS DATA FOREACH EVENT DO

CONNECTION COMPLETE

SERVICE
PROCESSING
PHASE

@
Iﬂ_:l
a
~
<
SERVICE
INITIALIZATION
PHASE

ACTIVATE SERVICE open()

- J

T
|
[
|
.
t
|
|
|
Il
|
|
|
|
|

Figure 3: Collaborations Among Participants for Syn-
chronous Connections

PROCESS DATA

SERVICE
PROCESSING
PHASE

Utl sve()
I

— Defines a generic interface for a service. The
Svc Handl er contains a communication end-
point (peer _st r eam) that encapsulates an I/0
handle (dso known as an “1/O descriptor”).
This endpoint is used to exchange data be-
tweentheSvc Handl er and itsconnected peer.
The Connect or activatestheSvc Handl er’s
peer stream endpoint by calling its open
method when aconnection completessuccessfully.

Figure 4. Collaborations Among Participants for Asyn-
chronous Connections

initialization and service processing phases are inde-
pendent of whether the connection was initiated syn-
chronously or asynchronoudly.

3. Service processing phase — Once the connection has
been established actively and the service has been ini-
tialized, the application enters into a service process-
ing phase. This phase performs application-specific
tasks that process the data exchanged between the Svc
Handl er and its connected peer(s).

e Reactor

— Handles the completion of connections that were
initialized asynchronoudly. The React or allows
multiple Svc Handl er s to have their connec-
tionsinitiated and completed asynchronously by a
Connect or configured within asingle thread of
control.

3.5 Consequences
The Connector pattern provides the following benefits:

¢ Enhances the reusability, portability, and extensibil-
ity of connection-oriented software — The application-
independent mechanisms for actively establishing con-
nections are decoupled from application-specific ser-
vices. Thus, the application-independent mechanisms
intheConnect or arereusable componentsthat know
how to establish a connection actively and activate
its associated Svc Handl er. In contrast, the Svc
Handl er knows how to perform application-specific
Service processing.
Thisseparation of concerns decoupl es connection estab-
lishment from service handling, thereby allowing each
part to evolve independently. The strategy for estab-
lishing connectionsactively can be written once, placed
into a class library or framework, and reused via in-

3.4 Collaborations

The collaborations among participants in the Connector
pattern are divided into the following three phases:

1. Connection initiation phase — which actively connects
one or more Svc Handl er s with their peers. Con-
nections can either be initiated synchronously or asyn-
chronoudly. The Connect or determines the strategy
for actively establishing connections.

2. Service initialization phase — which activates a Svc
Handl er by caling its open method when the con-
nection associated with it completes successfully. The
open method of theSvc Handl er performsservice-

specific initialization.

Figures 3 and 4 illustrate the collaborations between
components for synchronous and asynchronous con-
nection initiation, respectively. The synchronous form
combines connection initiation and service initidiza
tion, whereas the asynchronous form splits them into
two phases. Note, however, that the stepsin the service

heritance, object composition, or templateinstantiation.
Thus, the same active connection establishment code
need not be rewritten for each application. Services, in
contrast, may vary according to different applicationre-
quirements. By parameterizing theConnect or witha
Svc Handl er,theimpact of thisvariationislocalized
toasingle point in the software.

o Efficiently utilizetheinherent parallelismin the network
and hosts — A large distributed system may have sev-
eral hundred Peer s connected to asingle Gat eway.
One way to connect all these Peer s to the Gat eway
is to use the synchronous mechanisms shown in Fig-
ure 3. However, the round trip delay for a 3-way TCP
connection handshake over along-delay WAN, such as
a geosynchronous satellite, may take several seconds
per handshake. In this case, synchronous connection
mechanisms cause unnecessary delays since the inher-
ent parallelism of the network and computers is under-
utilized. In contrast, by using the asynchronous mech-
anisms shown in Figure 4, the Connector pattern can
actively establish connections with a large number of
peers efficiently over long-delay WANS.

The Connector pattern has the following drawbacks:

o Additional instructions — compared with overhead of
programming to the underlying network programming
interfaces directly. However, if parameterized typesare
used, there is no significant overhead as long as the
compiler implements templates efficiently.

o Additional complexity — this pattern may add unneces-
sary complexity for simple client applicationsthat con-
nect with a single server and perform a single service
using asingle network programming interface.

3.6 Implementation

This section describes how to implement the Connector pat-
ternin C++. Theimplementati ondescribed below isbased on
the ACE OO network programming toolkit [4]. In addition
to illustrating how to implement the Connector pattern, this
section shows how the pattern interacts with other common
communi cation software patterns provided by ACE.

Figure5 divides participantsin the Connector pattern into
the Reactive, Connection, and Application layers® The Re-
active and Connection layers perform generic, application-
independent strategies for handling events and establishing
connections actively, respectively. The Application layer
instantiates these generic strategies by providing concrete
template classes that establish connections and perform ser-
vice processing. This separation of concerns increases the
reusability, portability, and extensibility of thisimplementa
tion of the Connector pattern.

There is a striking similarity between the structure of
the Connector class diagram and the Acceptor class dia
gram shown in [1]. In particular, the Reacti ve Layer
is identical in both and the roles of the Svc Handl er
and Concrete Svc Handl er are dso very similar.
Moreover, the Connect or and Concr et e Connect or
play roles equivalent to the Accept or and Concrete

3This diagram illustrates addition Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge
indicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.

~

~N

—~—__ —— |Concrete_Svc_Handler
r// n SOCK Stream ’(1 [SOCK_Connector

Z

e { ; ,

>F= , Concrete /| \ Concrete

©% {Sve Handler) / Connector ’

= \ open() | P R

a \\r/"—-\\d/ \

< T Ve e
/ //:‘l ________ |

jSVC HANDLER |

‘PEER CONNECTOR I
_) \

J lNle,// / Connector

—————— \ | connect_svc_handler() \\
_______ y| activate_svc_handler() |

\ Svc Handler \\ /Ohandle_output() {//
) N connect(sh, addr)O,
open() W /
o ——~_ 7

/ ~——— A

~-

\

I 1: connect_svc_handler

I Lol (sh,adar)y

/

. | activate_sve_handler)
(sh);

CONNECTION
LAYER

E /™ -
=& ’Event \ e
(SR \ /—Q \
<< Handler; 1 Reactor)
E /handle output()\n e ——_7

. \ =l)

Figure5: Layering of Participantsin the Connector Pattern

Accept or classes. IntheConnector pattern, however, these
two classes play an active role in establishing a connection,
rather than a passive role.

3.6.1 ReactivelLayer

The Reactive layer isresponsiblefor handling eventsthat oc-
cur on endpoints of communication represented by 1/0 han-
dles (aso known as “descriptors’). The two participants at
thislayer, theReact or and Event Handl er , arereused
from the Reactor pattern [5]. This pattern encapsulates OS
event demultiplexing system cdls (such assel ect , pol |
[6],and Wi t For Mul ti pl eObj ect s [7]) with an exten-
sible and portable callback-driven object-oriented interface.
The Reactor pattern enabl es efficient demultiplexing of mul-
tiple types of events from multiple sources within a single
thread of control. An implementation of the Reactor pattern
isshown in [8] and thetwo omain rolesin the Reactive layer
are describe below.

e Reactor: This class defines an interface for registering,
removing, and dispatching Event Handl er objects(such
asthe Connect or and Svc_Handl er). Animplementa
tion of the React or interface providesa set of application-
independent mechanisms that perform event demultiplexing
and dispatching of application-specific event handlersin re-
sponseto events.

e Event Handler: This class specifies an interface that
the React or usesto dispatch callback methods defined by
objectsthat are pre-registered to handle events. These events

signify conditionssuch asthe compl etion of an asynchronous
connection or the arrival of data from a connected peer.

3.6.2 Connection Layer

The Connection layer is responsible for actively connecting
a service handler to its peer and activating the handler once
it's connected. Since all behavior at thislayer is completely
generic, theseclassesdel egateto the concrete| PC mechanism
and concrete service handler instantiated by the Application
layer. Likewise, the Connection layer delegates to the Reac-
tor pattern in order to establish connections asynchronously
without requiring multi-threading. The two primary rolesin
the Connection layer are described bel ow.

e Svc Handler: This abstract class provides a generic in-
terface for processing services. Applicationsmust customize
thisclass to perform a particular type of service.

tenpl ate <cl ass PEER_STREAM> // Concrete | PC nech.
class Svc_Handl er : public Event_Handl er

{

publi c:
/1 Pure virtual nethod (defined by a subcl ass).
virtual int open (void) = 0;

/'l Conversion operator needed by
/'l Acceptor and Connector.
operator PEER STREAM &() { return peer_stream; }

protected:
b

The open method of a Svc Handl er is caled by the
Connect or factory after a connection is established. The
behavior of this pure virtua method must be defined by a
subclass, which performs service-specific initidizations. A
subclass of Svc Handl er is aso responsible for deter-
mining the service's concurrency strategy. For example,
a Svc Handl er may employ the Reactor [5] pattern to
process data from peers in a single-thread of control. To
enable this, Svc Handl er inherits from the Reactor pat-
tern’'sEvent Handl er, which the React or to dispatch
itshandl e_event method when events occur onthe PEER
STREAM endpoint of communication. Conversely, a Svc
Handl er might usethe Active Object pattern[9] to process
incoming datain adifferent thread of control than the onethe
Connect or objectusedtoconnectit. Section 3.7 illustrates
several different concurrency policies.

e Connector: This abstract class implements the generic
strategy for actively initializing network services. The fol-
lowing class interface illustrates the key methods in the
Connect or factory:

tenpl ate <class SVC HANDLER, // Type of service

cl ass PEER_ CONNECTOR> // Active Conn. Mech.

cl ass Connector : public Event_Handl er
publi c:
enum Connect _Mode {
SYNC, // Initiate connection synchronously.
ASNYC // Initiate connection asynchronously.

h

PEER_STREAM peer _stream_; // Concrete | PC mechani sm

/1 Initialization nmethod stores Reactor *.
Connector (Reactor *r): reactor_ (r) {}

/1 Actively connecting and activate a service.

int connect (SVC HANDLER *sh,
const PEER CONNECTOR: : PEER_ADDR &addr ,
Connect _Mode node) ;

/1 Defines the active connection strategy.
virtual int connect_svc_handl er
(SVC_HANDLER *sh,
const PEER CONNECTOR: : PEER_ADDR &addr ,
Connect _Mode node) ;

/'l Register the SVC_ HANDLER so that it can be
/1 activated when the connection conpl etes.
int register_handl er (SVC HANDLER *sh,

Connect _Mode node) ;

/1 Defines the handler’s concurrency strategy.
virtual int activate_svc_handl er
(SVC_HANDLER *sh) ;

/1 Activate a SVC_HANDLER whose non- bl ocki ng
/1 connection has conpl eted successful ly.
virtual int handl e_event (HANDLE sd);

protected:
/1 Event denulti pl exor.
Reactor *reactor_;

/1 I PC nech. that establishes connections actively.
PEER_CONNECTOR connect or _;

/1 Collection that maps HANDLEs to SVC HANDLER *s.
Map_Manager <HANDLE, SVC_HANDLER *> handl er _map_;

}s

/1 Useful "short-hand" nacros used bel ow.
#define SH SVC_HANDLER
#defi ne PC PEER_CONNECTI ON

Since Connect or inherits from Event Handl er, the
React or canautomatically call back totheConnect or’ s
handl e_event method when a connection completes.
The Connect or is parameterized by a particular type
of PEER CONNECTOR and SVC HANDLER. The PEER
CONNECTOR provides the transport mechanism used by
the Connect or to actively establish the connection syn-
chronously or asynchronously. The SVC HANDLER pro-
videsthe service that processes data exchanged with its con-
nected peer. Parameterized types are used to decouple the
connection establishment strategy from the type of service
handler, network programming interface, and transport layer
connection acceptance protocol.

The use of parameterized types helps improve portability
by allowing the wholesa e replacement of the mechanisms
used by the Connector. This makes the connection establish-
ment code portable across platforms that contain different
network programming interfaces (such as sockets but not
TLI, or vice versd). For example, the PEER CONNECTOR
template argument can be instantiated with either a SOCK
Connect or oraTLlI Connect or , depending onwhether
the platform supports socketsor TLI. An even more dynamic
type of decoupling could be achieved via inheritance and
polymorphism by using the Factory Method and Strategy
patterns described in [2]. Parameterized types improve run-
time efficiency at the expense of additiona space and time

overhead during program compiling and linking.
Theimplementation of theConnect or 'smethodsis pre-
sented below. To save space, most of the error handling has
been omitted.
The main entry point for aConnect or isconnect :

tenpl ate <class SH, class PCs int
Connect or <SH, PC>:: connect
(SVC_HANDLER *svc_handl er,
const PEER_CONNECTOR : PEER_ADDR &addr,
Connect _Mbde npde)
connect _svc_handl er (svc_handl er,

addr, node);

Thismethod del egatestotheConnect or 'sconnection strat-
egy, connect _svc_handl er, which initiates a connec-
tion:

tenpl ate <class SH, class PCs int
Connect or <SH, PC>::connect_svc_handl er
(SVC_HANDLER *svc_handl er,
const PEER CONNECTOR : PEER_ADDR &r enot e_addr,
Connect _Mbde npde)

/1 Delegate to concrete PEER CONNECTOR
// to establish the connection.

if (connector_.connect (*svc_handler,
renot e_addr,
node)
if (node ASYNC && errno == EWOULDBLOCK)
/1 1f the connection hasn't conpleted and
/1 we are using non-blocking senantics then
Il register ourselves with the Reactor so
/1 that it will callback when the
/1 connection is conplete.
reactor_->register_handler (this,

VRl TE_MASK) ;

/] Store the SVC_HANDLER in the nap of
/1 pendi ng connections.
handl er _map_. bi nd

(connector_.get_handl e (), svc_handler);

}

el se
/1 Activate if we connect synchronously.
activate_svc_handl er (svc_handl er);

}

If the value of the Connect Mode parameter is SYNC the
SVC HANDLERwill be activated after the connection com-
pletes synchronoudly, asillustrated in Figure 6.

To connect with multiplePeer s efficiently, however, the
Connect or must be able to actively establish connections
asynchronousdly, i.e., without blocking the caller. Asyn-
chronous behavior is specified by passing the ASYNC con-
nection modeto Connect or : : connect , asillustratedin
Figure7.

The concrete PEER CONNECTOR class provides the low-
level mechanism for initiating connections asynchronously.
The implementation of the Connector pattern shown here
usesasynchronous!/O mechanismsprovided by theoperating
system and communication protocol stack (e.g., by setting
sockets into non-blocking mode).

The Connect or maintainsa map of Svc Handl ers
whose asynchronous connections are pending completion.
Oncean asynchronous connection compl etes successfully the

<
z Z
s
S
E § FOREACH CONNECTION
=N INITIATE CONNECTION
A

SN SYNC CONNECT
Z <X
E g~ ACTIVATE OBJECT
[
g
E : INSERT IN REACTOR
8 “ EXTRACT HANDLE

START EVENT LOOP

FOREACH EVENT DO

DATA ARRIVES

SERVICE
PROCESSING
PHASE

PROCESS DATA

Figure 6: Collaborations Among

chronous Connections

Client

s

con :
Connect

connect(sﬁ, addr, SYNC) |

:SOCK sh
or Connector Sve : Reactor
Handler

connect_jsvc_handler(sh, addr)

Client

FOREACH CONNECTION

INITIATE CONNECTION

ASYNC CONNECT

INSERT IN REACTOR

CONNECTION
INITIATION
PHASE

START EVENT LOOP

FOREACH EVENT DO

CONNECTION COMPLETE

ACTIVATE OBJECT

SERVICE
INITIALIZATION
PHASE

INSERT IN REACTOR

EXTRACT HANDLE

DATA ARRIVES

PROCESS DATA

SERVICE
PROCESSING
PHASE

con :

Connector Connector

connect(sil, addr, AS\‘(NC) }

|
|
|
|
|
connect() | | |
——— I !
< activate_‘svcihandler(sh) }
open() } |
4>[] |
‘ register_handler(sh) |
| getﬁhand]e() }
| |
| handle_events()
T
} select() .
|

handle_event()
; sve()

|
|
|
|
|
T
|
|
|
|
|
|
|
| |

Participants for Syn-

sh:

:SOCK : Reactor

| Handler
|

i]
‘ connect_svc_handler(sh, addr)

connect() ! ‘
——»!

|
register_handler(con) |
gl

handle_events()

- — — — I

select() »

| handle_event()

- — —

|
|
Il
|
|
1
|
|

‘ activate_svc_handler(sh)

open() !

Il
|
|
Il
|
|
|
|
C

|

register_handler(sh)

gelihandle()

handle_event()
; sve()

Figure 7: Collaborations Among Participants for Asyn-

chronous Connections

React or cadlsback totheConnect or 'shandl e_event
method:

/1 Activate a SVC_HANDLER whose non- bl ocki ng
/1 connection has conpl eted successful ly.

tenpl ate <class SH, class PCs int
Connect or <SH, PC>:: handl e_event (HANDLE handl e)

SVC_HANDLE *svc_handl er = 0;

/1 Locate the SVC _HANDLER correspondi ng
/1 to the HANDLE.
handl er _map_.find (handl e, svc_handler);

/1 Transfer 1/0O handle to SVC HANDLE *.
svc_handl er- >set _handl e (handl e);

/! Rermove sd from Reactor.
reactor_->renove_handl er (handl e, WRI TE_MASK);

/1 Renove sd fromthe map.
handl er _map_. unbi nd (handl e);

/1 Connection is conplete, so activate handl er.
activate_svc_handl er (svc_handl er);

}

The handl e_event s method finds and removes the con-
nected svc handl er from its interna map, transfers
the 1/0 HANDLE to the svc handl er, and initializes
it by calling activate_svc_handl er. This method
delegates the concurrency strategy designated by the SVC
HANDLER: : open method:

tenpl ate <class SH, class PCs int
Connect or<SH, PC>::activate_svc_handl er
(SVC_HANDLER *svc_handl er)

svc_handl er - >open ();

}

Notethatact i ve_svc_handl er iscalled when aconnec-
tion is established successfully, regardless of whether con-
nections are established synchronously or asynchronously.
This uniformity of behavior makes it possible to write ser-
vices whose behavior does not depend on the manner by
which itis connected.

3.6.3 Application Layer

The Applicationlayer isresponsiblefor supplying aconcrete
interprocess communication (IPC) mechanism and a con-
crete service handler. The IPC mechanisms are encapsul ated
in C++ classes to simplify programming, enhance reuse, and
to enable wholesale replacement of |PC mechanisms. For
example, the SOCK Accept or, SOCK Connect or , and
SOCK St reamclasses used in Section 3.7 are part of the
SOCK SAP C++ wrapper library for sockets[10]. Likewise,
the corresponding TLI _* classes are part of the TLI SAP
C++ wrapper library for the Transport Layer Interface [6].
SOCK SAP and TLI SAP encapsulate the stream-oriented
semantics of connection-oriented protocols like TCP and
SPX with a efficient, portable, and type-safe C++ wrappers.

The two main rolesin the Application layer are described
bel ow.

e Concrete Svc Handler: This class implements the con-
crete application-specific service activated by a Concr et e
Connector. A Concrete Svc Handl er isinstanti-
ated with a specific type of C++ IPC wrapper that exchanges
data with its connected peer. The sample code examples
in Section 3.7 use a SOCK St r eamas the underlying data
transport delivery mechanism. It easy to vary the datatrans-
fer mechanism, however, by parameterizing the Concr et e
Svc Handl er with adifferent PEER STREAM(such as a
TLI Stream.

o Concrete Connector: Thisclass instantiates the generic
Connect or factory with concrete parameterized type ar-
guments for SVC HANDLER and PEER CONNECTOR. In
the sample code in Section 3.7, SOCK Connect or isthe
underlying transport programming interface used to estab-
lish a connection actively. However, parameterizing the
Connect or with adifferent PEER CONNECTOR (such as
aTLlI Connect or)isstraightforward sincethe |PC mech-
anisms are encapsulated in C++ wrapper classes. Therefore,
theConnect or 'sgeneric strategy for passively initiaizing
services can bereused, while permitting specific detail s (such
as the underlying network programming interface or the cre-
ation strategy) to change flexibly. In particular, note that
no Connect or components must change when the concur-
rency strategy is modified.

The following section illustrates sample code that im-
plementsthe Concr et e Svc Handl er and Concr et e
Connect or.

3.7 SampleCode

The sample code below illustrates how the Gat eway de-
scribed in Section 2 uses the Connector pattern to simplify
the task of actively initializing services by connecting with
alarge number of Peer s. The Gat eway plays the active
role in establishing connectionswith Peer s (an implemen-
tation of a Peer using the Acceptor pattern appearsin [1]).
Figure8illustrateshow participantsin the Connector pattern
are structured in the Gat eway .

3.7.1 SvcHandlersfor Routing

Theclasses shownbelow, St at us Rout er ,Bul k Dat a
Rout er, and Command Rout er, route data they receive
fromasourcePeer tooneor moredestinationPeer s. Since
theseConcret e Svc Handl er classesinheritfromSvc
Handl er they can be actively connected and initialized by
aConnect or. To save space, these examples have been
simplified by omitting most of the error handling code.

To illustrate the flexibility of the Connector pattern, each
open routine in a Svc Handl er implements a differ-
ent concurrency strategy. In particular, when the St at us
Rout er is activated it runs in a separate thread, the
Bul k Data Router runs as a separate process, and
the Command Rout er runs in the same thread as the
React or that demultiplexes connection completion events
for the Connect or factory. Note how changes to these

r

|

|
I
|
|
|

|
|
|

|
|
|

-
S~ - ;7 ™| Command_Router
\ 7 \
1 Command' n 1) Command §
! Router !/ ACTIVATES L COHHCCtOl’//
\. Route r oonnger
% | T - — _ | Bulk_Data_Router
=" | < -t Strea % SOCK_Connector
<= | (‘
Sz | ! Bulk Data ,n 1) Bulk Data i
== ‘. Router | ACTIVATES 7 Connector .|
% 1‘ | ~— N |
‘ { f// //\ ‘\ :
! \ - SOCK_C t
| l, y Status 4 = ‘mm,'Ir || !
Lol n 1\ Status | !
[outer ” \ 1 !
\ ! \——“'7_,/ ACTIVATES ([Connector < 1 |
(I / MmN | !
e W e e
\ |
Z I B tveet C_v_¥
=] P 1 PEER_STREAM
; o - [l | 71 SVC_HANDLER
3 E \, Sve () —7 | PEER_CONNECTOR
B2 andAlaw | T T T T T, V2
|
z3 \ Handler |) Connector \
E \\ // ///// ~= 7
]
~——_
= - N -
;E { Event N
33 / Handler 'n 1) Reactor)
z (N ST

~N

Figure8: Structure of Participantsinthe Gat eway Connec-
tor Pettern

concurrency strategies do not affect the architecture of the
Accept or, which is generic and thus highly flexible and
reusable.

We |l start by definingaSvc_Handl er thatisspecidized
for socket-based datatransfer:

typedef Svc_Handl er <SOCK_Strean> PEER ROUTER;

This class forms the basis for al the subsequent routing ser-
vices. Forinstance, theSt at us_Rout er classroutesstatus
datafrom/to Peer s:

class Status_Router publ i c PEER ROUTER
publi c:
/1 Activate router in separate thread.
virtual int open (void) {
/1 Thread::spawn requires a pointer to a static
/1 nmethod as the entry point for the thread).
Thread: : spawn (&Status_Router::svc_run, this);

}

// Static entry point
/1 on the handle_event() call inits own thread.
static void *svc_run (Status_Router *this_) {
/1 This nethod can block since it
/1 runs in its own thread.
whil e (this_->handl e_event ()
conti nue;
}

/! Receive and route status data fromto Peers.
virtual int handl e_event (void) {

char buf [MAX_STATUS_DATA] ;

peer _stream .recv (buf, sizeof buf);

/1 Routing takes place here...

1= -1)

}
/1

into the thread, which bl ocks

The Bul k_Dat a_Rout er
Peers:

routes bulk data from/to

cl ass Bul k_Dat a_Rout er publ i ¢ PEER_ROUTER

publi c:
/] Activates router in separate process.
virtual int open (void) {
if (fork () >0) // In parent process.
return O;
else // In child process.

/1 This method can bl ock since it

/1 runs in its own process.

while (handle_event () != -1)
conti nue;

}

/! Receive and route bulk data fromto Peers.
virtual int handle_event (void) {

char buf [MAX_BULK_DATA] ;

peer _stream_.recv (buf, sizeof buf);

/1 Routing takes place here...

}
}s

The Command_Rout er
from/to Peer s:

class routes Command data

/1 Singleton Reactor object.
extern Reactor reactor;

cl ass Conmand_Rout er publ i ¢ PEER _ROUTER

{

publi c:
/1 Activates router in same thread as Connector.
virtual int open (void) {

reactor.register_Router (this, READ_MASK);

/'l Receive and route command data fronmto Peers.

virtual int handl e_event (void) {
char buf [MAX_COVMVAND_DATA ;
/1 This nethod cannot bl ock since it borrows
/1 the thread of control fromthe Reactor.
peer _stream_.recv (buf, sizeof buf);
/1 Routing takes place here...

}

s

3.7.2 Themain() Function

The main program for the Gat eway is shown below. The
get peer _addrs function creates the St at us, Bul k
Dat a,and Conmand Rout er s that route messagesthrough
the Gat eway. This function (whose implementation is not
shown) reads a list of Peer addresses from a configura-
tion file. Each Peer address consists of an IP address
and a port number. Once the Rout er s are initialized, the
Connect or factories defined aboveinitiateal the connec-
tions asynchronoudly (indicated by passing the ASYNC flag
totheconnect method).

/1 Main programfor the Gateway.

/1 Singleton Reactor object.
React or reactor;

/1 Define a Connector factory specialized for
/| PEER_ROUTERS.

typedef Connect or <PEER ROUTERS, SOCK Connect or >

PENDING
CONNECTIONS

ACTIVE
CONNECTIONS

-

Figure9: Object Diagram for the Peer Connector Pattern

PEER_CONNECTOR:

/1l Ootain lists of Status_Routers,
/1 Bul k_Data_Routers, and Command_Rout ers
/1 froma config file.

voi d get _peer_addrs (Set <PEER ROUTERS> &peers);

int main (void)
{
/1 Connection factory for PEER_ROUTERS.

PEER_CONNECTOR peer _connector (&reactor);

/1 A set of PEER _ROUTERs that perform
/1l the Gateway's routing services.

Set <PEER_ROUTER> peers;

PEER_ROUTER * peer;

/] Get set of Peers to connect with.
get _peer_addrs (peers);

/1 lterate through all the Routers and
[/ initiate connections asynchronously.

for (Set_lter<PEER ROUTER> set _iter (peers);
set _iter.next (peer) != 0;
set _iter++)
peer _connect or . connect (peer,
peer->address (),
PEER_CONNECTOR: : ASYNC) ;

/'l Loop forever handling connection conpletion
/1 events and routing data from Peers.
for (;;)

reactor. handl e_events ();

/* NOTREACHED */
return O;

All connections are invoked asynchronously. They compl ete
concurrentlyviaConnect or : : handl e_event callbacks
within the React or’s event loop, which also demulti-
plexesand dispatchesrouting eventsfor Comrand_Rout er
objects. The Status Routers and Bul k Data
Rout er s execute in separate threads and processes, respec-
tively.

Figure 9 illustrates the relationship between objects in
the Gat eway after four connections have been established.*
Four other connectionsthat have not yet compl eted areowned
by the Connect or . When al Peer connections are com-
pletely established, theGat eway canrouteand forward mes-
sages sent to it by Peer s.

3.8 Known Uses

The React or, Svc Handl er, and Connect or classes
described in this article are al provided as reusable C++
components in the ACE toolkit [4]. The Connector pattern
has been used in the following systems:

e TheEricsson EOS Call Center Management system[11]
uses the Connector pattern to alow application-level
Call Center Manager Gat eways to actively establish
connections with passive Peer hosts in a distributed
system.

e The high-speed medical image transfer subsystem of
project Spectrum [12] uses the Connector pattern to ac-
tively establish connections and initialize application
services for storing large medical images. Once con-
nections are established, applicationsthen send and re-
ceive multi-megabytemedical imagesto and from these
image stores.

3.9 Rdated Patterns

The Connector pattern utilizes several other patterns [2]. It
is a Factory that implements a generic Strategy for actively
connecting to peers and activating a service handler when
the connection is established. The connected service handler
then performsits tasks using data exchanged on the connec-
tion. Thus, the service is decoupled from the protocol used
to establish the connection.

The Connector pattern has an intent similar to the
Client/Dispatcher/Server pattern described in [13]. They
both are concerned with separating active connection estab-
lishment from the subsequent service. The primary differ-
enceisthat the Connector pattern addressesboth synchronous
and asynchronous connection establishment.

The Connector pattern is aso closely related to the Ac-
ceptor pattern, which enables network servicesto evolvein-
dependently of the mechanisms that passively establish con-
nections used by the services. These two patterns are duals
of each other, in that the Connector handles the “active’
side of connection establishment and the Acceptor handles
the “passive’” side. Thus, the intent, applicability, structure,
collaborations, and consequences are very similar.

4This diagram uses additional Booch notation, where solid cloudsindi-
cate objects and undirected edges indicate some type of link exists between
two objects.

4 Concluding Remarks

This paper describes the Connector pattern and gives an ex-
ample of how this pattern decouples connection initiation
from service initiaization and service processing. When
used in conjunction with other patterns like the Reactor
and Acceptor, this pattern enables the creation of flex-
ible and efficient communication software. UNIX ver-
sions of the Connector, Acceptor, and Reactor patterns
are freely available via the World Wide Web a URL
http://ww. cs. wstl.edu/"schm dt/. Thisdis
tribution contai ns compl ete source code, documentation, and
example test drivers for the C++ components developed as
part of the ACE object-oriented network programming toolkit
[4] developed at the University of California, Irvine and
Washington University. ACE iscurrently being used in com-
munication software at many companies including Bellcore,
Siemens, Motorola, Ericsson, and Kodak.
Thanks to Tim Harrison for comments on this paper.

References

[1] D.C. Schmidt, “Design Patternsfor Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

G. Booch, Object Oriented Analysis and Design with Ap-
plications (2" Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994,

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX 1/0O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

R. G. Lavender and D. C. Schmidt, “ Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2"¢ Annual Conference on the Pattern Languages
of Programs, (Monticello, lllinais), pp. 1-7, September 1995.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

D. C. Schmidt and T. Suda, “ An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280293, December 1994.

(2]

(3]

[4]

(5]

(6]

(8]

[9]

[10]

[11]

10

[12] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71-81, 1994.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture- A System of
Patterns. Wileys and Sons, to appear 1996.

