
Towards Developing QoS-enabled Distributed Real-time and Embedded
Applications

Nanbor Wang Douglas C. Schmidt, Aniruddha Gokhale,
Christopher D. Gill and Balachandran Natarajan

fnanbor,cdgillg@cse.wustl.edu fschmidt,gokhale,balag@dre.vanderbilt.edu

Dept. of Computer Science and Engineering Institute for Software
Integrated Systems

Washington University Vanderbilt University
One Brookings Drive Box 1829, Station B

St. Louis, MO 63130, USA Nashville, TN 37203, USA

Joseph P. Loyall, Richard E. Schantz, and Craig Rodrigues
fjloyall,schantz,crodrigug@bbn.com

BBN Technologies
10 Moulton Street

Cambridge, MA 02138, USA

Overview

Distributed real-time and embedded (DRE) applications, such
as flight avionics systems, process control systems, and finan-
cial trading systems, have stringent quality of service (QoS)
requirements that must be satisfied simultaneously in real-
time. Examples of these QoS requirements include allocation
of processing resources and network latency, jitter, and band-
width. Failure to meet these QoS requirements can lead to
catastrophic consequences, such as failure to avoid a collision
in an avionics system or failure to reposition an actuator in a
process control system.

To ensure DRE applications can achieve their QoS require-
ments, the following types of QoSprovisioningare needed to
allocate and manage system computing and communication
resources end-to-end:

� Static provisioning, where the amount of resources re-
quired to support a particular degree of QoS is pre-
configured into an application. Examples of static QoS
provisioning include task prioritization and communica-
tion bandwidth reservation.

� Dynamic provisioning, where the amount of resources
required are determined and adjusted based on the run-
time system status. Examples of dynamic QoS provision-
ing include runtime reallocations to handle bursty CPU
load, primary and second storage, and network traffic de-

mands.

Our book chapter begins by describing the evolution of mid-
dleware over the past 10+ years to show how we got to where
we are today,e.g., from procedures to objects, which sets the
stage for where we are headed next in this area,e.g., compo-
nents and model driven architectures (MDA). It will then focus
specifically on how QoS resources can be provisioned stat-
ically and dynamically under the control of standards-based
commercial off-the-shelf (COTS) middleware, such as Real-
time CORBA and Real-time Java. The use of standard COTS
middleware is increasingly gaining acceptance in the DRE
community due to (1) the effort required to develop and ver-
ify complex DRE applications, which precludes developers
from implementing DRE applications from scratch and (2) the
maturation of implementations of standard COTS middleware
specifications, such as Real-time CORBA and Real-time Java.

Extending Object-Oriented Middleware

Although standard COTS middleware provides some mecha-
nisms to configure and control the underlying OS and network
to manage application resource requirements end-to-end, they
are not yet coordinated, do not yet adapt dynamically to run-
time variations, and do not yet provide sufficient abstractions
to separate real-time QoS policy configurations from applica-
tion functionality. DRE application developers therefore must

1



configure and coordinate QoS policies in anad hocway to-
day and the code to configure these policies is often scattered
throughout a DRE system. As a result, it is hard for develop-
ers to configure, validate, modify, and evolve complex DRE
systems consistently.

There are three areas of simultaneous improvement neces-
sary to address these needs:

1. Combined static and dynamic end-to-end QoS managed
behavior for DRE systems

2. Components for integrating bigger chunks and higher
level conformity than objects

3. Model-based software engineering as a means to deal
with increasing complexity and detail of these environ-
ments.

In recent years, component middleware (such as CORBA
Component Model (CCM), J2EE and .NET) has emerged to
address the limitations of building large-scale, complex ap-
plications with object-oriented middleware. Component mid-
dleware addresses these limitations by separating various con-
cerns of building complex applications into different aspects
that can be specified and composed at various lifecycle points
of application development. Component middleware achieves
these separation of concerns by:

� Expanding the object model with a newcomponent
metatype, which encapsulates individually-deployable
implementations of application functionality that interact
with each other through well-defined interfaces and

� Defining the mechanisms and standards for composing
and executing components in generic component servers.

Conventional component middleware technologies were de-
signed largely for applications with conventional business-
oriented QoS requirements, such as data persistence, encryp-
tion, and transactional support. Many DRE-relevant QoS
properties, such as task priorities, communication bandwidth
reservations, and power consumption, are therefore not con-
sidered in these component technologies. Moreover, QoS pro-
visioning in large-scale DRE applications cross-cuts multiple
system layers and requires end-to-end enforcement. It is there-
fore insufficient to implement QoS provisioning in isolated
component implementations.

This chapter will show how standard COTS component
middleware can be extended to support static and dynamic
resource provisioning. Our approach in this chapter will be
through weaving together three threads of discussion:

� Describing the need and mechanisms for managing and
coordinating end-to-end behavior in a predictable man-
ner, and providing an integrated software engineering ap-
proach toward establishing it.

� Describing the state-of-the-art/practice in component
middleware to provide coherent “large chunks of integrat-
able functionality” with a common approach to separat-
ing aspects of concern, leading to our current focus on
QoS-enabled component middleware.

� Describing how even a component middleware solution
still requires substantial manual provisioning and config-
uration, which motivates the focus on model driven ar-
chitecture approaches.

Extending Component Middleware

The new QoS-enabled CCM middleware provides mecha-
nisms for composing QoS provisioning policies and config-
uring QoS support mechanisms. This middleware by itself,
however, does not effectively resolve the following three key
configuration and integration challenges:

� Choosing, customizing, and assembling the appropriate
set of semantically compatible QoS-enabled DRE mid-
dleware components tailored to application QoS require-
ments.

� Coordinating among the selected components for appro-
priate end to end behavior under static and changing con-
ditions, for both single activity and aggregate activities
sharing resources.

� The obsolescence of infrastructure technologies and its
impact on long-term DRE application lifecycle costs.

An emerging trend for addressing these challenges is to com-
bine Model Driven Architecture (MDA) technologies with
QoS-enabled component middleware. MDA is an emerging
paradigm for expressing application functionality and QoS re-
quirements at higher levels of abstraction than is possible us-
ing third-generation programming languages, such as Visual
Basic, Java, C++, or C#. In the context of DRE applications,
MDA methods and tools can be applied to

1. Analyze different–but interdependent–characteristics of
DRE system behavior, such as scalability, predictabil-
ity, safety, and security. Tool-specific model interpreters
translate the information specified by models into the in-
put format expected by analysis tools. These tools can
check whether the requested behavior and properties are
feasible given the specified application and resource con-
straints.

2. Synthesize platform-specific code that is customized for
particular component middleware and DRE application
properties, such as end-to-end timing deadlines, recovery
strategies to handle various runtime failures in real-time,

2



and authentication and authorization strategies modeled
at a higher level of abstraction.

Combining MDA and QoS-enabled component middleware
effectively is essential to resolve key configuration and inte-
gration challenges of complex DRE applications. Our book
chapter will therefore provide the following three contribu-
tions to the successful combination of MDA and QoS-enabled
component middleware that is essential to address these chal-
lenges:

� We illustrate how enhancements to standard component
middleware can simplify the development of DRE ap-
plications by composing QoS provisioning policies stati-
cally with applications. Our discussion focuses on a QoS-
enabled enhancement of the standard CORBA Com-
ponent Model (CCM) called the Component-Integrated
ACE ORB (CIAO), which is being developed at Wash-
ington University, St. Louis and Vanderbilt University as
extensions to the ADAPTIVE Communication Environ-
ment (ACE) and The ACE ORB (TAO).

� We describe how dynamic QoS provisioning and adap-
tation can be addressed using middleware capabilities
called Qoskets, which are enhancements of the Quality
Objects (QuO) middleware developed by BBN Technolo-
gies. Our discussion focuses on how Qoskets can be com-
bined with CIAO to compose adaptive QoS assurance
into DRE applications dynamically. In particular, Qos-
kets manage modular QoS aspects, which can be com-
bined with CIAO and woven to create an integrated QoS-
enabled component model.

� We discuss how QoS-enabled component middleware en-
ables MDA tools to rapidly develop, generate, assemble,
and deploy flexible DRE applications, yet can be tailored
readily to meet the needs of multiple simultaneous QoS
requirements. Our discussion focuses on the Component
Synthesis with Model-Integrated Computing (CoSMIC)
tools being developed by the Institute for Software Inte-
grated Systems (ISIS) at Vanderbilt University.

All the material presented in this book chapter is
based on the ACE, TAO, CIAO, and QuO middle-
ware, which is available in open-source format from
deuce.doc.wustl.edu/Download.html and quo.
bbn.com/quorelease.html . This middleware has been
applied to many production systems worldwide in many do-
mains, including telecommunications, aerospace, financial
services, process control, scientific computing, and distributed
interactive simulations.

3


