CaDANCE: A Criticality-aware Deployment And Configuration Engine

Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale
Dept. of EECS, Vanderbilt University, Nashville, TN
{dengg, schm dt, gokhal e}@ir e. vanderbi | t. edu

Abstract

Predictable deployment and configuration (D&C)
of components in response to dynamic environmen-
tal changes or system mode changes is essential for en-
suring open distributed real-time and embedded (DRE)
system real-time QoS. This paper provides three con-
tributions to research on the predictability of D&C for
component-based open DRE systems. First, we describe
how the dependency relationships among different com-
ponents and their criticality levels can cause deployment
order inversion of tasks, which impedes deployment pre-
dictability. Second, we describe how to minimize D&C
latency of mission-critical tasks with a multi-graph de-
pendency tracing and graph recomposition algorithm
called CaDANCE. Third, we empirically evaluate the ef-
fectiveness of CaDANCE on a representative open DRE
system case study based on NASA Earth Science Enter-
prise’s Magnetospheric Multi-Scale (MMS) mission sys-
tem. Our results show that CaDANCE avoids deployment
order inversion while incurring negligible (<1%) perfor-
mance overhead, thereby significantly improving D&C
predictability.

Keywords: Component middleware, Open Distributed
Real-time and Embedded systems, Deployment and Con-
figuration.

1. Introduction

Emerging Trends and Challenges. Open DRE system are
often large and complex, e.g., a shipboard computing sys-
tem may consist of thousands of software components that
run a wide range of missions, such as ship navigation, ship
structural health monitoring, vision-based object tracking
and object characterization. To manage the overall com-
plexity of such systems, the missions are often decomposed
into many domain-related tasks that can be modeled as op-
erational strings [1]. An operational string is an assembly
of software components that capture the partial order and
workflow of a set of executing software capabilities for par-
ticular domain tasks.

In complex DRE systems, many operational strings must
often be deployed and configured dynamically and simul-
taneously in response to system operational mode changes

or environmental changes. Different operational strings can
have different criticality levels, which are determined by
the importance of the operational strings. In the context of
D&C, criticality of an operational string means the urgency
for its service startup, i.e., the latency of deploying and con-
figuring all components in an operational string is important
so the string can serve client requests.

Unfortunately, when dependencies exist among opera-
tional strings, deployment order inversions may occur dur-
ing the deployment and configuration (D&C) process. A
deployment order inversion occurs when a high-criticality
operational string is deployed after a low-criticality oper-
ational string due to one or more dependencies from the
high-criticality operational string to the low-criticality oper-
ational string. Deployment order inversions are problematic
for open DRE systems since they impede the predictability
of the D&C process. Existing D&C frameworks [2, 3] and
standards [4], however, only consider dependency relation-
ships between operational strings to determine service de-
ployment order while ignoring their criticality levels, which
can cause deployment order inversions that adversely affect
open DRE system QoS.

Solution Approach — Criticality-aware Deployment
and Configuration Engine (CaDANCE).

To address the D&C challenge described above, we de-
scribe a D&C framework called the Criticality-aware De-
ployment and Configuration Engine (CaDANCE), which
enhances our prior work on the DAnCE [5] open-source
D&C framework implementation of the OMG Deploy-
ment and Configuration of component-based distributed ap-
plications specification [4]. CaDANCE uses a multi-graph
based algorithm to analyze the dependency relation-
ships between operational strings and removes all the de-
pendencies from higher-criticality operational strings to
lower-criticality ones by promoting® components from
lower-criticality operational strings to higher-criticality
ones. By applying the operational string recomposition al-
gorithm, a D&C framework like CaDANCE can avoid de-
ployment order inversions when multiple operational

1 Inthe context of this paper, promoting a component means that be-
fore this component is deployed it istemporarily moved from alower-
criticality operational string to a higher-criticality operational string
for deployment purposes only.

strings with different criticality levels have complex depen-
dencies on each other.

By analyzing dependency relationships among opera-
tional strings and temporarily promoting components across
them, CaDANCE provides two key benefits: (1) deployment
order inversion of operational strings can be avoided, which
improves the predictability of D&C, and (2) both the func-
tional behavior and QoS behavior of the component-based
DRE system are preserved. The novelty of CaDANCE also
stems from its transparency to system deployers, i.e., no
additional input is required from system deployers besides
standard deployment descriptors.

2. The Design of CaDANCE

To avoid deployment order inversion, CaDANCE uses
a multi-graph operational string recomposition algo-
rithm. This algorithm is an integral part of CaDANCE’s
Execut i onManager object in the OMG D&C specifica-
tion, which runs as a daemon and manages the operational
string deployment workflow. An Execut i onManager
also manages NodeManagers in a DRE system exe-
cution environment, which run as daemon processes and
handle the deployment of components to applications re-
siding on each node. This section gives an overview of
CaDANCE and then describes the operational string recom-
position algorithm used in CaDANCE.

2.1. Overview of CaDANCE

CaDANCE converts a set of operational strings into a set
of graphs, one graph for each operational string. Each ver-
tex and edge of the graph represents a component and
a connection/dependency between two components, re-
spectively. The operational string recomposition algorithm
in CaDANCE promotes components from one opera-
tional string to another based on two factors: (1) the
criticality level of the operational string and (2) the de-
pendency relationship between operational strings. After
graphs for all the operational strings are recomposed to ac-
count for the component promotion, a new set of opera-
tional strings are populated from these recomposed graphs
to avoid deployment order inversion.

Figure 1 outlines the operational string recomposition al-
gorithm in CaDANCE via an example with three operational
strings having criticality levels: high, medium, and low. The
dotted arrows in the figure represent criticality-inverted de-
pendencies, i.e., dependencies from higher-criticality oper-
ational strings to lower-criticality operational strings. Like-
wise, the solid arrows represent external dependencies that
do not cause such inversions.

The algorithm recomposes the graphs by parsing the in-
put set of graphs and removing dotted arrows by pro-
moting some component(s) from a lower-criticality op-
erational string to a higher-criticality string. This process

High Priority

Medium Priority

Low Priority

c{j@%

@5

Partial Priority Inheritance via
Graph Recomposition
(After Processing High Priority String)

db

Medium Priority

1st
Iteration

High Priority Low Priority

Y e

1!

Partial Priority Inheritance via
2nd =
lteration Graph Recomposition
(After Pr i i Priority String)

High Priority

Medium Priority Low Priority
ro ﬁ N MT
—»G—(\}—G

---------- + Dependency from Higher Priority to Lower Priority

— Dependency from Lower Priority to Higher Priority

Figure 1: CaDANCE’s Algorithm in Action

may introduce some new dependencies between opera-
tional strings due to component promation. The algorithm
only introduces solid arrows, however, i.e., only de-
pendencies from lower-criticality operational strings
to higher-criticality strings exist after the recomposi-
tion.

When the algorithm finishes, all dotted arrows in the
graphs will be removed and there will be no dependen-
cies from higher-criticality operational strings to lower-
criticality operational strings. As a result, the deployment
order inversion is avoided.

2.2. Characteristicsof CaDANCE

CaDANCE recomposes operational strings by promoting
components, as described above. The following characteris-
tics make it particularly applicable for open DRE systems:

1. CaDANCE does not affect the functional behav-
ior of component-based DRE systems. CaDAnCE recom-
poses operational strings to avoid deployment criticality in-
version. When components are promoted from one oper-
ational string to another, however, no connections to/from
these components are changed and no component port in-
terfaces are modified. The topology of all components in all
operational strings thus remains the same, i.e., CaDAnCE
does not affect the functionality of operational strings be-
cause the topology of the strings (including all components
and connections) that provide the system’s functional be-

havior remains unchanged. Moreover, the operational string
recomposition effect by CaDANCE is visible only within the
CaDANCE D&C framework itself at deployment time, but
is transparent to system deployers.

2. CaDANCE does not affect the QoS behavior of op-
erational strings. When components are promoted from
a lower-criticality operational string to a higher-criticality
one, component criticality is also increased to match the
criticality of the higher-criticality string, which is essential
to avoid criticality inversion at deployment-time [6]. Since
CaDANCE promotes components only at deployment time,
it does not change the actual real-time QoS configurations
(such as thread priorities, component placement and collo-
cation) used later during runtime, i.e., CaDANCE does not
affect the QoS behavior of operational strings.

2.3. Design of the CaDANCE Operational String
Recomposition Algorithm

The goal of CaDANCE is to remove all dependen-
cies from higher-criticality operational strings to lower-
criticality strings by promoting components. To avoid
the overhead of promoting the same components multi-
ple times, the operational string recomposition algorithm
in CaDANCE processes each operational string in decreas-
ing criticality order. The algorithm thus starts with an oper-
ational string having the highest criticality value and pro-
cesses all its external dependencies by finding all its reach-
able components. After all external dependencies from the
highest-criticality operational string are removed, the algo-
rithm then processes the operational string with the next
highest criticality, etc.

We define a dependency trace as a total ordered sequence
where an element is a component of an operational string
that has a criticality value associated with it. The starting
element of the sequence is the source component of the ex-
ternal dependency of interest. CaDANCE operational string
recomposition algorithm analyzes all the dependency traces
in the operational strings and recomposes the operational
strings based on dependency trace characteristics.

A dependency trace that spans across multiple opera-
tional strings can be further decomposed into the follow-
ing two situations:

e Ordered dependency trace. In an ordered depen-
dency trace, the criticality levels of the elements in the se-
quence appear in decreasing order, i.e., all external depen-
dencies in the sequence are criticality-inverted. As a re-
sult, all criticality-inverted external dependencies must be
removed through component promation. Figure 2 shows an
ordered dependency trace.

e Unordered dependency trace. In an unordered de-
pendency trace criticality levels of elements in the depen-
dency trace have no order. Figure 3 shows an unordered
dependency trace where some external dependencies are

Can have other external
dependencies.

Can have other external
dependencies.

High Priority Medium Priority Low Priority

-

----------- » Dependency from Higher Priority to Lower Priority
— Dependency from Lower Priority to Higher Priority

Figure 2: An Ordered Dependency Trace

criticality-inverted (shown as dotted lines) and others are
not (shown as solid lines).

Cannot have other
external dependencies.

Can have other external
dependencies.

Medium Priority Low Priority High Priority
%}wﬁm ----------- o Jos () o)
.) C—=C e)

---------- - Dependency from Higher Priority to Lower Priority
—— Dependency from Lower Priority to Higher Priority

Figure 3: An Unordered Dependency Trace

2.4. Analysisof the Algorithm

The time complexity of the algorithm is nearly linear to
the input of the sum of the total number of components and
total number of connections, which make CaDANnCE well-
suited for deploying operational strings even at run-time.?
To show how CaDANCE can deploy operational strings dy-
namically in an open DRE system, we now analyze two ef-
fects of the algorithm on the predictability of operational
string deployment:

e Operational string growth effect. This effect mea-
sures the cost of promoting components from lower-
criticality operational strings to higher-criticality strings.
The deployment of each component takes time and con-
sumes resources. The fewer components promoted, there-
fore, the more benefits the algorithm can provide since
criticality-inverted dependencies can be satisfied with-
out deploying many components in lower-criticality
strings.

In the worst case, all components from lower-criticality
operational strings could be promoted to higher-criticality

2 Due to space limitations, we do not include the complete analysis of
the algorithm in this paper (see [7] for more details).

operational strings, which essentially merges differ-
ent operational strings together. To handle such a situa-
tion, CaDANCE applies an optimization technique that
uses the original deployment descriptors to deploy op-
erational strings to avoid D&C latency increase of the
lower-criticality operational string. In production DRE sys-
tems, such worst cases happen rarely, i.e., all the compo-
nents in all operational strings have only one dependency
trace.

e Component host distribution effect. This ef-
fect arises due to component promotion, whereby com-
ponents that can be deployed by contacting the node
once now contact the same node multiple times dur-
ing deployment. As a result, the overall deployment time
grows due to the increasing number of round trip de-
lays. One way to alleviate this problem is to leverage
parallel processing among different nodes by using asyn-
chronous techniques, such as CORBA’s Asynchronous
Method Invocation (AMI) messaging mechanisms [8], be-
tween the Execut i onManager and NodeManager s.
For example, AMI can coordinate the parallel deploy-
ment of operational strings to NodeManagers in a
domain, thereby alleviating component host distribution ef-
fects.

Section 3 shows empirical results of how CaDANCE al-
leviates the two effects described above.

3. Empirical Results

To evaluate the benefits of the CaDANCE D&C frame-
work, we applied it to a representative open DRE system
prototype of the NASA MMS mission system [9]. This sec-
tion summarizes our hardware/software testbed and then
presents the results of using it to evaluate the effectiveness
of CaDANCE empirically.

3.1. Experiment Testbed

Our experiments were conducted in the 1SISlab testbed
(www. dr e. vander bi | t. edu/ | SI Sl ab), using up to
6 nodes configured with Linux FC4 patched with Ingo Mol-
nar’s real-time kernel enhancements. Up to 64 operational
strings and 960 components in MMS prototype were de-
ployed and configured using CaDANCE D&C framework.
Each experiment compared CaDANCE with our baseline
D&C framework DANCE, which is a standards-compliant
D&C framework based on OMG D&C specification [4].

3.2. D&C Latency vs. Criticality

Hypothesis. The hypothesis of this experiment is
that CaDANCE can avoid deployment order inver-
sion when deploying multiple operational strings, where
higher-criticality operational strings have dependen-
cies on lower-criticality operational strings.

Experimental design. We conducted two experiments
with different configurations of operational string depen-
dencies. The first experiment consisted of 3 operational
strings with criticality level high, medium, and low, respec-
tively. Each operational string had 15 components evenly
distributed across 5 nodes, i.e., each node had 9 compo-
nents. The high-criticality operational string had one depen-
dency on the medium-criticality operational string, which in
turn had one dependency on the low-criticality operational
string. The dependency between these operational strings
had a low growth rate, i.e., only 1 component in a lower-
criticality operational string required promotion.

Our second experiment had two operational strings with
criticality level high and low, respectively. The configura-
tion of each operational string is the same as our first ex-
periment. The dependency between these two strings had
worst-case operational string growth rate. All components
in the lower-criticality operational string thus required pro-
motion to the higher-criticality operational string to avoid
deployment order inversion.

Empirical results and analysis. Figures 4 and 5 show
the end-to-end D&C latency for each operational string in
the two experiments described above. As shown in Fig-

End-to-End Deployment Latency of Operational String Deployment

5000000
4500000
4000000
3500000

3000000
2500000
2000000

Latency

(us)

@ Without CaDAnCE

B With CaDAnCE

1500000
1000000

500000
ol

Low Medium High Total Low Medium High Total-
Prio Prio Prio Prio- Prio- Prio- AMI
AMT AMT AMI

Figure 4: D&C Latency Changes by CaDANCE

ure 4, without using CaDANCE, the high-criticality oper-
ational string yielded the highest D&C latency, whereas the
low-criticality operational string yielded the lowest D&C
latency. The medium-criticality operational string lies in
between the other two. This result occurs due to the de-
pendency relationships among the 3 operational strings.
Without using CaDANCE, the low-criticality operational
string must be deployed first among the three, followed by
medium-criticality and high-criticality operational strings,
respectively.

Figure 4 shows that when using CaDANCE, the high-
criticality operational string incurs the smallest D&C
latency among the three. CaDANCE therefore effec-
tively avoids deployment order inversion. This figure also

shows how the component host distribution effect intro-
duced by the operational string recomposition algorithm
in CaDANCE is masked by applying CORBA AMI, as de-
scribed in Section 2.4.

Applying AMI improves CaDANCE deployment perfor-
mance in two ways. First, the D&C latency of each opera-
tional string is reduced because the Execut i onManager
coordinates with the NodeManager s to parallelize de-
ployment. Second, AMI masks the component host distri-
bution effect, which reduces total D&C latency of all the
operational strings, as shown in Figure 4.

Figure 5 shows the D&C latency results of the worst case
scenario, where an operational string merge occurs. In this

Operational String M erge (Worst Case Scenario)

700
600

500
400 @ Low Criticality
300 - O High Criticality
200

100
0

Latency (Miliseconds)

Without CaDANCE wio | CaDANCE w/

CaDANCE Optimization Optimization
‘D Low Criticality 216942 629922 220942
‘D High Criticality 636233 629922 625662

Figure 5: D&C Latency Changes by CaDANCE

experiment, the dependency between the two operational
strings caused all components in the low-criticality opera-
tional string to be promoted to the high-criticality string,
essentially merging the two operational strings together. As
a result, the latency of deploying the high-criticality op-
erational string is nearly the same as our baseline. With-
out applying the optimization technique described in Sec-
tion 2.4, the D&C latency of the low-criticality operational
string increases without decreasing the D&C latency of the
high-criticality operational string. With such an optimiza-
tion, however, the D&C latency of the low-criticality op-
erational string is the same as our baseline D&C frame-
work. These results validate our hypothesis that CaDAnCE
can preserve the D&C latency of low-criticality operational
strings, even in the worst-case scenario.

4. Concluding Remarks

The predictability of deployment and configura-
tion (D&C) is essential to support run-time QoS de-
mands of open DRE systems. This paper describes how the
CaDANCE D&C framework can minimize D&C latency
of mission-critical operational strings, thereby improv-
ing the predictability of D&C. At the heart of CaDANCE

is a multi-graph dependency tracing and graph recom-
position algorithm that promotes components from one
operational string to another to ensure D&C predictabil-
ity. By using information available at deployment time,
D&C frameworks can effectively identify the complex de-
pendency relationships among operational strings and
perform on-line optimizations, such as the multi-graph al-
gorithm presented in Section 2 of this paper.

The CaDANCE D&C framework is available in open-
source form at ww. dr e. vander bi | t . edu/ ci ao.

References

[1] P. Lardieri, J. Balasubramanian, D. C. Schmidt, G. Thaker,
A. Gokhale, and T. Damiano, “A Multi-layered Resource
Management Framework for Dynamic Resource
Management in Enterprise DRE Systems,” Journal of
Systems and Software: Special Issue on Dynamic Resource
Management in Distributed Real-time Systems, vol. 80,
pp. 984-996, July 2007.

[2] M. Desertot, H. Cervantes, and D. Donsez, “FROG:i: Fractal
Components Deployment over OSGi,” in Software
Composition, pp. 275-290, 2006.

[3] V. Quéma, R. Balter, L. Bellissard, D. Féliot, A. Freyssinet,
and S. Lacourte, “Asynchronous, hierarchical, and scalable
deployment of component-based applications,” in
Proceedings of Second International Working Conference on
Component Deployment, (Edinburgh, UK), pp. 50-64, May
2004.

[4] OMG, Deployment and Configuration of Component-based
Distributed Applications, v4.0, Document
formal/2006-04-02 ed., Apr. 2006.

[5] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and
A. Gokhale, “DANCE: A QoS-enabled Component
Deployment and Configuration Engine,” in Proceedingds of
the 3rd Working Conference on Component Deployment (CD
2005), (Grenoble, France), pp. 67-82, Nov. 2005.

[6] R. Bettati and J. W.-S. Liu, “End-to-end scheduling to meet
deadlines in distributed systems,” in International Conference
on Distributed Computing Systems, pp. 452-459, 1992.

[7]1 G. Deng, D. C. Schmidt, and A. Gokhale, “Ensuring
Deployment Predictability of Distributed Real-time and
Embedded Systems,” Tech. Rep. ISIS-07-814, Vanderbilt
University, November 2007.

[8] A.B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and
J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,” in
Proceedings of the Middleware 2000 Conference, ACM/IFIP,
Apr. 2000.

[9] D. Suri, A. Howell, D. C. Schmidt, G. Biswas, J. Kinnebrew,
W. Otte, and N. Shankaran, “A Multi-agent Architecture for
Smart Sensing in the NASA Sensor Web,” in Proceedings of
the 2007 IEEE Aerospace Conference, (Big Sky, Montana),
Mar. 2007.

