CORBA Comparison Project
Final Project Report

Partners: MLC Systeme GmbH
Kaiserwertherstrasse 115

Rattingen, Germany

Distributed Systems Research Group
Department of Software Engineering

Faculty of Mathematics and Physics
Charles University
Malostranske namesti 25

Prague, Czech Republic

Date: June 17 1998

Pages: 88

1 Table of Contents

1

2

TABLE OF CONTENTS 2
INTRODUCTION 6
2.1 PROJECT OBJIECTIVESteteiutteeeteeesteeeseteeeaseeesseeessseesasesesseesasseesasssesssssessssesssssssessssesanssesasssesssssesesssessssesssnses 6
2.2 INVOLVED PARTIES ...c..ctiitiititeeetie ettt eeiteeeteeseteeesiteeseteesesseeeanseesensseessssaeanseesanssassnssasanssesanssessnssesenssessnssessnnses 6
2.3 DOCUMENT ORGANIZATIONveiiuieeesiieeeaieeesteeesteeeaseesaseeesseesasseessssseessseesssssesssssessnssesasssesssssesssssessssesssnses 6
OVERVIEW 7
3.1 OBJECT MANAGEMENT ARCHITECTURE
3.1.1 Object Request Broker...............ccccccccooviciaviiniiiniiann.
3.1.1.1 Client Side (Stubs, DII, Interface Repository)
3.1.1.2 Implementation Side (Skeletons, DSI, Implementation Repository, Object Adapters).......cceevecvevverrerererenens 8

3.1.1.3 ORB Interface
3.1.14 ORB Core, Interoperability

3.1.2 OBJECTE SEFVICES ..ottt
3.1.2.1 Naming Service..
3,122 EVENLES SEIVICE. ...iiuiutiuietirtiieitetestetei ettt ettt ettt ettt b st et eb s bttt b e sa et et e bt sa et e st bt et e st e bt sb et et e st sbeebeneeneesennens
3.1.2.3 TTAAING SETVICE ...uvetiiieititieteet ettt ettt ettt et ettt s bt bt e e e bt e bt e st et e sbe e bt et e e bt eat et e sbeemeemtenbeebeensenaenee
3.1.2.4 Transaction Service...
3.1.2.5 POISISIENCE SEIVICE .. ueeutiiiriieitetitieitet ettt ettt ettt b e sb et sb e bt et e e s b s bt et e b e e bt eat e b e s bt e st et e e bt emtensesbesaeensenneas
3.1.2.0 LIfECYCIE SEIVICE. ..cueiuiiiiiienieiirtit ettt sttt ettt ettt sttt a et b e et s a st sa st enentenens
CRITERIA DISCUSSION 13
4.1 OBJECT REQUEST BROKER.......couiiiiiiiiiiiiiiiiini ettt sttt sttt
4.1.1 Standardized Functionality
4.1.2 Nonstandard Extensions.............................
4.1.2.1 CommUNICAION EXTENSIONS. .. .cuiutiuiieiiiirtiteitet sttt ettt ettt ettt b bbbttt e bt e bt e bt e b e sa et ebesbeeen
4.1.2.2 Multi-threading EXTENSIONS ..c..ccuertiruieuieiiienieeiteterieeteeit ettt ettt ettt e s b st esbe bt e bt et et e sbeestebesbesneensentenee
4.1.23 Management Extensions
4.1.3 Performance CPIEFIQlc..cccocuiiiii ettt ettt ettt
414 BENCRIMAVKING............oocoeiiiiioiiieie oottt ettt ettt
4.2 OBJECT SERVICES ..ottt sttt ettt sttt ettt ettt ettt sb e s a s st e aeeb b e saesaenens
4.3 IMISCELLANEAc.ceutiiiiiiitiitiitt sttt ettt sttt et b e a sttt e ae bbb e b e s e et e st e st eatenesbesaebenennent
EVALUATION CRITERIA 19
5.1 OBJECT REQUEST BROKER.......couiiiiiiiiiiiiiiiiini ettt sttt st 19
5.1.1 Standardized FUNCLIONALILYcccocccviiiiiiieii ettt ettt 19
5.1.1.1 Interface Definition LANZUAZEccceeueiererierieiiitinteiietertetet ettt ettt sttt ettt st et be bt et e sbesbe e ebesbenaens 19
5.1.1.2 Basic REMOLE INVOCALIONeeruiieiiieieetiesieeeieete e et et esteesteesaeesbeebeesseesseesssessseasseesseesseesseesssassseesseenseenseensss 19
5.1.1.3 Dynamic Type ManipUIBtIONcceeverieriieieierienieseetesteseetetesteseesseesaessesseessessessesseessessessessesssessessesseensensenses 22
5.1.1.4 RepoSItOries.......ccccerverrereeruenuenens
5.1.1.5 Interoperability
5.1.2 NONSIANAQVA EXTEISIONSccvi ettt ettt ettt ettt ettt et e eebe e seeenseenrean 23
5.1.2.1 ComMUNICAtION EXTENSIONS. ..c..eeuteutitietieiieienterieetetest ettt sttt ettt bttt sbe et et et e e bt e st et e sbeeseenaesbeeueensenaenne 23
5.1.2.2 Multi-threading EXTENSIONSc.evtiriirieierieetietietestesieeteste st et et etesteseeetestesbesseessessessesseestensansesssensessesseensensenses 23
5.1.2.3 Management EXTENSIONSc.eoueerieierierierietertentteitet et st et te st et et estesbesbteste bt esee st esbesbesaeesee st eseensensesbeeseensenseas 23
5.1.3 Scalability
5.1.3.1 Speed VS. NUMDEL OF ODBJECLSc..eutruiieuieiirieieiintiteeeiertet ettt ettt ettt sttt sttt e aeebe e sesaesne e enesaenaens 24
5.1.3.2 Resources vS. NUMDET Of ODJECLSccueuveuiriirieietirieieierieie ettt ettt sttt b st e e sb e be e eneebenaens 24
5.1.33 Resources vs. QUEUEd REQUESEScc.ceeuirieriiiiiiieicinecte ettt ettt st s ee 24
5.1.4 RODUSINEGSS ...,
5.1.4.1 Reliable Servers
5.1.4.2 LLIMIIES 1 tteitee ettt ettt e e et et eett e st e eateebe et e eesseesseesseesse e seeesseeaseenseeesaeesaeent e e st eneeesbeeaseense e taeanteenteenseenseennean

52

5.3 MISCELLANEA......cccoveeeeernrrenn.
5.3.1 Requirements
5.3.2 Development................
.33 VOIAOF ...ttt
6 ORL OMNIORB 26
6.1 OBJECT REQUEST BROKER.......couiiiiiiiiiiiiiiiiii sttt 26
6.1.1 Standardized FURCIHONAIILYcc.ccooiiiiiiiii oottt 26
6.1.1.1 Interface Definition LANGUAZEcceecverieriieieieieriesieeteteste ettt st et e ae s e ese et e besbeeseesbesseessensessesseensensenses 26
6.1.1.2 BasiC ReMOLE INVOCALIONccueeuieuiiiiriiriietiteettetet ettt ettt ettt b e bttt sb e e bt eb e et e b ebe e s e sbesaeemeenbenaes 26
6.1.1.3 Dynamic Type ManipUlatiOnccccocoieirierieininieinenietetetestet ettt sttt st s see e eb s e st tete e sbesseseenesaennens 31
6.1.1.4 REPOSIIOTIES. c..eueeuvitieiieierierteeiteteet ettt et st e ebt et s bt sb et et e s bt e at et e bt e bt e et e eesbeemeem e e bt ebtemtesbeestemtebeebeensenbesmeeneensenaes 31
6.1.1.5 INEEIOPETADIIILY . .eovitinieiiititeieiertet ettt ettt ettt sttt s a ettt a et s b ettt ea bt ese e nens 32
6.1.2 NONSIANAAUAd EXIENSIONS ..ottt ettt 32
6.1.2.1 CommUNICAION EXTENSIONS.ceutitirtieiiriieientirteeteterte ettt ettt et ettt et sb e st sb e b et esaeemeesaesbeeseenesaenne 32
6.1.2.2 Multi-threading EXTENSIONScc.eevuirtiriiiieieetietieterte sttt ettt ettt st et e e b eb et et e sbesbeestenbesbeestentesbesseensanbesaes 33
6.1.2.3 ManagemMeNt EXLENSIONScouerieiririeiriirteieieetetetet sttt ettt et b et b b et et be st et e bt b e s e e e e bt ebesae e ebeebeneen 34
0.1.3 SCAIADIITLY ... oiiee ettt 34
6.1.3.1 Speed VS. NUMDET OF ODJECESccuiriiriiiiiiiiietteteterteet ettt ettt ettt ettt et et s bt et e b s bt e bt et e sbesbeeeenbeenes 34
6.1.3.2 Resources VS. NUMDET OF ODJECLSceviiiruieieierienieiteiesiesttetetesteste st etestesteeseesestessesseeseensessesssensessesssensensenses 36
6.1.3.3 Resources vs. Queued Requests
6.1.4 Robustness......................
6.1.4.1 Reliable Servers
6.1.4.2 LAIMIIES cueeteeuieitenteeteetest ettt ettt ettt et s bt et b e s b e a et e s bt s at et e bt e bt eae e b e e bt e at et e e bt e bt et e nb e ebeen e e b e eh e e a b et e sbe et ebenbes
6.1.4.3 B S et et et b e bt sttt h e h e e et e bt e h e e e et e et e et e e bt e s ateeabeente e beenaaes
0.2 OBIECT SERVICES ...coiuiiuiiiiiiiieititetet ettt sttt ettt ettt sh ettt s b e a ettt et aeebe b saesaenens
6.2.1 LIfECYCLE SCIVICE. ..ottt ettt
6.2.2 INAIING SCFVICE. ..o oottt ettt ettt ettt e et e bt e st e e abe et eenbeebeeetaeenbeennee e
0.2.3 PEFSISIENCE SEIVICE...........ccui ittt
6.3 MISCELLANEA ..ottt sttt sttt s sb bbb e s a bttt b b sae st ss s
0.3.1 ROQUITEIMEILS ...t ettt et ettt ettt ettt et e et e bt e e s e et e et e e st e et e eteeenbeennee e
6.3.2 Development....................
6.3.2.1 Development Support....
6.3.3 Vendor.......cccceoeuen...
6.3.3.1 PLICINE ¢ttt b et b e s bt et e b e e bt st e b e e bt e bt et e bt b et b e bt e st et e bt eat et beeaeetenbeas
6.3.3.2 COMPAIY ..ttt ettt et et et e sttesub e et e et e esutesabeeat e e bt ebaesaseeaeeeab e e bt esseesateeaseen bt ebe e st e sabesabeenbeenstesaseeseenseens
7 IONA ORBIX 40
7.1 OBJECT REQUEST BROKERG........eiiittieitieeeiteeeitteeeitteeesiteeeesseeesssesasssesesssssesssesasssesssssssessssssssssssssssssssssessssseesnsns
7.1.1 Standardized FUNCHONALILYccocceiiiiiieee ettt ettt eeas
7.1.1.1 Interface Definition Language
7.1.1.2 Basic Remote Invocation
7.1.1.3 Dynamic Type Manipulation
TiL1i4 REPOSIEOTIES. c..eueeueintieuieieriestteateteettett et e tesbe e st et e s bt eb e eat e be s bt e st et e bt e bt e st et e sbeeaten b e bt eatenbesbeentenbenbeebtenbesbeeneentenbenas
7.1.1.5 TN ETOPETADIIILY c.eveeereeieieeiieieste ettt ettt et et e e et ete s e s et et e b e saeeseessessesseeneesseaseesaessensesseeseensenseesaensansesssensansenses
7.1.2 Nonstandard Extensions
7.1.2.1 ComMMUNICAtION EXTENSIONS. .. .eeutiutitietieiieierterieetete sttt ettt et ettt at et et e s bt e bt et et e e bt e st et e sbeemeenbesbeeneenbenaenne
7.1.2.2 Multi-threading EXTENSIONSccvervirtirieieriietieietentesteeteste st et et etesteseeestestesseeseessessessesseessensensesssensessesseensensenses
7.1.2.3 Management EXTENSIONS «...cueruierieierierierieitertenteeitet et ste ettt sbeebe et et e sbeebt e te bt ebee st esbesbesaeestenbeebeentenbesbeeseensenseas
713 SCALADIIILY ... et
7.1.3.1 Speed vs. Number of Objects
7.1.3.2 Resources Vs. NUMDET OF ODJECLScc.ueruiruirmiriirieniiriieteiesieeie ettt ettt ettt b st see e sbesaes 51
7.1.3.3 Resources vs. QUEUEA REQUESESc.ccueuieuiriiieiienieieicntetetetentet ettt ettt et ee b e sttt sae st saennens 51
Todod RODUSINESS ... ettt 51
T 1Al REHADIE SEIVELS .euveuiuitiiiiieieetertetet ettt sttt ettt b et b et eeb e st e bt b e a et e bt s bt et e e e bt s bt et et e bt sbebeneebentetens 52

7.1.4.2

7.1.4.3
7.2 SERVICES
7.2.1.1 LITRCYCIE SEIVICE.cueeuiiiieiieiieiertciett ettt ettt sttt st st et be e et ene e e 53
72,12 NAMING SEIVICE ..cuviuieuietitiietietertetet ettt ettt sttt e ettt e st b et et es e e bt st et ebesb et e st ebesb et estebeeseneebesb e bentesesbensentenentetens 53
7.2.13 TTAAING SETVICE ...ttt ettt ettt ettt a e s b e e e st be s se e st ene e e e ebennennen 53
7214 EVENLS SEIVICE. ...iuiuieuiitiieiieieetestet ettt ettt sttt h et s bttt eb s bt e e e bt s bt e st e bt s b et e st bt e e e bt e bt be st entebeebe st eneebennens 54
T.2.1.5 PEISISTEIICY SEIVICE ...euverueriiiuieiirtietteterte st et et et eut et et e s bt e st et e b e e bt eat et e sbesbeeat et e bt ebeeabesbeestenbenbeebtensenbesbeentenbennes 54
7.2.1.6 TranSACHION SEIVICEc.eruirteuieueriiteitetertet et rtee et ettt eb et ettt e b et et e bt se et e bt e b et et e bt st e st et e bt s bt et et ebesbenseseenentenens 54
7.2.1.7 Security SEIVICececcervererreerueneeieienieneneeneens e 55
7.3 MISCELLANEA.......cetiuiiiiitiitiite ittt sttt a e d e sb bbbt b ss e ea e b b sa et e b e nnns 55
7.3] REQUIFEIMENLS ..ot ettt et a et ettt ettt et e h ettt ettt ene e neas 55
7.3.2 DeVelOPMENt SUDPOFTc..ccuoiiiieiiei ettt 56
7321 DOCUMENEALION ...ttt ettt ettt ettt ettt b et et e st st e st ea e et e e et ea et et se et e st eaesbeebentesesaeseneenesaennens 56
7.3.2.2 DeVElOPMENT SUPPOIL...c.eiiiriiriietiriiiterteniteterteet ettt ettt et et s bt et et e sbesb e et e beebe e bt et esbeeseemtenbesseeasesbesseeneensenses 56
7.3.2.3 TECHNICAL SUPPOTL ...ttt ettt ettt ettt et s bt et et et e e bt ea b et e st e sae et et esbeeatenbesbeentensenbeeneensensenee 56
7.3.3 V@HAOF ... 56
7.3.3.1 PrICING POLICY .ttt ettt b ettt b et b e bbbt ettt et st e bt b et st ebenaens 56
7.3.3.2 COMPANY ..ttt et ettt e ettt et e ebe e bt e sbtesab e e bt e beeeateeabe e bt e bt esatesabeeabe e beenaseeaeembe e st e eabesabeebeensbesaseeseensaens 57
8 INPRISE VISIBROKER 58
8.1 OBJECT REQUEST BROKER.......couiiiiiiiiiiiiiiiiii ittt 58
8.1.1 Standardized FUNCHONAIILYc..ccocciiiiiiiiiiii oot 58
8.1.1.1 Interface Definition Languagec.ccoenue.... ettt sttt et sae e aesae s
8.1.1.2 Basic Remote Invocation
8.1.1.3 Dynamic Type Manipulation
8.1.1.4 RepOSItOries......ccouervereeeuerueruenuenne
8.1.1.5 Interoperability..............
8.1.2 Nonstandard Extensions...........
8.1.2.1 CommUNICAION EXTENSIONS. ..c..ceutititierieiieientirieetetente ettt ettt ettt ettt et sb et et e bt e b e et e sbeeseenaesbeeneennesaene
8.1.2.2 Multi-threading EXtENSIONSc..ccietirieiiirieieietirtee ettt ettt sttt sttt a ettt be et naenee
8.1.2.3 Management EXLENSIONSccueiruirterteuirtintetetistertett ettt ettt st ettt st et e st st et e st ebeste e e st e be st et ebese et eseebesbe s eseeneneenes
813 SCAIADIIILY ..ottt
8.1.3.1 Speed vs. Number of Objects
8.1.3.2 Resources vs. NUMDET Of ODJECLSecveriiverieieriieiieieierieseetetetesteeteesestestesseeseessessessesssessessesseessensessesssensensens 69
8.1.3.3 Resources vs. QUEUEA REQUESEScoueruiiiiriiriieieierierit ettt ettt ettt ettt ettt s e st et e et e sbe e e eneennean 69
8.1.4 RODUSINESS ..o
8.1.4.1 Reliable Servers
8.1.42 LimitS..cccvoervervuennene
8.1.4.3 B ES ettt et b e h e ettt e bt e h e et e bt e ht e s bt e e at e e bt e bt e s ateeabe et e e beenaaes
8.2 STANDARDIZED SERVICES FUNCTIONALITY ..utiuiiiiiiiiiieieiiiiieiinie sttt ettt ss et sas v s sae s 70
8.2.1.1 Naming ServiCe.......ceoereremierrereneereenreereerennenne
8.2.1.2 Events Service............
8.2.1.3 Transaction Service....
8.2.1.4 PEISISTEBINCY SEIVICEcuveuiriiieiieiirieieitetestetete sttt sttt et ettt sa e bbbt s s s st b e b st be s e st ebesae s st enenaenee
8.2.1.5 UNSUPPOILEA SEIVICES. .e.utviienieuirtiteitettrteteit et ettt st ettt st et s e ebe st et e st e bt et et e bt sttt e st e b et et e bt s e et eseebe st et eneeneneenes
83 MISCELLANEA.......cccovtrrenrennene

8.3.1 Requirements
8.3.1.1 Supported Platforms And Compilers

8.3.2 DeVelOPMENE SUPDOFE ...ttt ettt
8.3.2.1 DOCUMENEALION ...ttt ettt ettt ettt et b e st eb e b s et e bt e b ettt e b e st e bt et e e ebesbe st et enesbetens
8.3.2.2 Development Support....
8.3.2.3 Technical SUpportcceceevecverennenne

8.3.3 Vendor........cccoovviiiiiiiiiiiiiiiiiae.
8.3.3.1 PrICING POLICY .ttt ettt b et b et b e s bt et a e bt et e b b et eennean
8.3.3.2 COMMPANY ...ttt b et b e s b e s et b e b e b e s e b sh e e b e b eas e b e b e et e b e sbeeate b e beeasebesaeene

9 COMPARISON SUMMARY 74

9.1 OBJECT REQUEST BROKER.........cciitiiiiitiittittteeieeeee et ee e et eeeeeeesaaasaaaeeeeeeeeeeeeeeeesessssssssssssseseseesaseeseeeesensnnsnssnnes
9.1.1 Standardized Functionality
9.1.1.1 Basic Remote Invocation
0.1.1.2 THEIOPETADIIILY . .cveteniiirtitetet ettt ettt b ettt b et b e bt e st bt e st e bt e bt et e e e st ebeebe st eneebeanens
9.1.2 NONSLANAAVA EXTEISIONS ..ottt ettt ettt ae e
9.1.2.1 Multi-threading Extensions
9.1.2.2 ManaZemMENt EXTENSIONS ...c.vevviririeiiriieietenteseetetesteetetestessesseessessesseessessessessesssensessesseessensessesssessensesssensensanss
9.1.3 SCAIADIIILY ..o ettt
9.1.3.1 Speed vs. Number 0f ODJECES.....ccueeuirieriererieieienieeteiere et
9.1.3.2 Resources vs. Number of Objects
9.1.3.3 Resources vs. QUEUE TEQUESESeeueruteruerrieiieienientenitetentesseestetentesteestessesseeseetessesbesseenseneens
914 RODUSINESS ...
9.14.1 REIIADIIILY ..ottt ettt ettt ettt e a e et e s b e e ae e st et e st e estenb e bt e st enb e besseenbebeeseensansesseenbensenaean
9.2 SERVICES
9.3 IMISCELLANEA ..ottt sttt ettt sttt et b e a ettt et ea b b s e e b e s st en e e b e sbesaesbenennent
9.3.1 DevelOPmMENt SUDPOTEcueeue ettt ettt ettt ettt ettt et et e et e e e e be e et e beenrae et

10 ACKNOWLEDGEMENTS 85

11 REFERENCES 86

2 Introduction

In 1990, the Object Management Group (an international consortium now consisting of over 800 companies) has
introduced its Object Management Architecture (OMA), a standardized architecture for distributed computing in a
heterogeneous environment. In OMA, a pivotal role is played by the Object Request Broker (ORB), specified by the
Common ORB Architecture (CORBA).

Over the years, both the CORBA standard (whose current version is CORBA/IIOP 2.2) and the implementations of
CORBA have evolved considerably. Right now, major CORBA vendors offer a range of C++ and Java ORBs, that (while
usually still CORBA 2.0 compliant) differ in many significant aspects. For a customer who is not intimate with the many
OMG standards, it is becoming increasingly difficult to assess the practical impact of the differences between various
ORB implementations.

2.1 Project Objectives

It is a goal of this project to identify a set of criteria that would help a customer to evaluate an ORB implementation, and
to evaluate a set of ORBs using these criteria. The criteria cover those aspects of the ORB functionality that are important
from the application developer’s point of view (this includes functionality specified in the OMG standards, together with
useful proprietary extensions). The impact of each criterion is discussed with respect to different ORB usage scenarios.
For measurement and testing purposes, a suite of benchmarking applications is developed.

2.2 Involved Parties

The CORBA comparison project is done for MLC Systeme GmbH, Ratingen, Germany (http://www.mlc.de) by the
Distributed Systems Research Group at the Department of Software Engineering, Charles University, Prague, Czech
Republic (http://nenya.ms.mff.cuni.cz).

2.3 Document Organization

The document starts with a brief overview of the major OMA architecture features, putting a special emphasis on the
Object Request Broker (CORBA) and Object Services (CORBAservices) standards. Following the overview, chapter 4
identifies important evaluation points with respect to functionality, performance, code portability, and application
interoperability, as these are the major topics an application developer will most likely be interested in.

The core part of the report is organized using a template concept. In chapter 5, a generic template for ORB comparison
is presented, with the individual comparison criteria listed and explained in detail (the criteria serve to evaluate the points
identified in chapter 4). Then, each of the subsequent chapters focuses on a single ORB (omniORB in chapter 6, Orbix
in chapter 7, VisiBroker in chapter 8), using the template introduced in chapter 5 to evaluate the ORB. In chapter 9, the
results of the individual measurements are compared and summarized.

3 Overview

3.1 Object Management Architecture

The Object Management Group, Inc. (OMG), founded in 1989, is an international organization grouping system vendors,
software developers, and end-users. The main goal of OMG is to promote object-oriented technology by defining "a
living, evolving standard with realized parts, so that application developers can deliver their applications with off-the-
shelf components for common facilities like object storage, class structure, peripheral interface, user interface, etc."
[OMA]. To achieve this goal, OMG has defined the Object Management Architecture (OMA) characterized by definition
of two models: the Core Object Model (and its extensions called profiles) and the OMA Reference Model.

OMG's understanding of the object-oriented paradigm is reflected in the Core Object Model. The model defines such
concepts as object, inheritance, subtyping, operations, signatures, etc. Additional concepts can be added to create an
extension (component). A component should not replace, duplicate, and remove concepts. Components should be
orthogonal to each other. A profile is a combination of the Core Object Model and one or more components (typical
examples of profiles are e.g. the CORBA profile, the ODP Reference Model).

With the intention to provide a broad object-oriented architectural framework for the development of object technology,
OMG defined the OMA Reference Model, published in 1992. The OMA Reference Model is comprised of the following
five components:

- The Object Request Broker component serves as a means for delivering requests and responses among objects.
It is a backbone of the OMA Reference Model, interconnecting all the remaining components.

- The Object Services component provides a standardized functionality (defined in the form of object interfaces),
e.g. for class and instance management, storage, integrity, security, query, and versioning.

- The Common Facilities component defines a collection of end-user facilities (such as a common mail facility)
that a group of applications is likely to have in common.

- The Domain Interfaces component contains a set of application-domain-specific interfaces (such as a support
for healthcare or electronic commerce).

- The Application Objects component is not standardized by OMG. Application Objects use Domain Interfaces,
Common Facilities, and Object Services via the Object Request Broker.

3.1.1 Object Request Broker

CORBA was adopted by OMG in December 1991 as a joint submission of DEC, HP, etc. The first version' was denoted
as CORBA 1.1 and was, in 1994, replaced by CORBA 1.2 which brought more or less "cosmetic changes" with respect
to CORBA 1.1. A much more important development step was CORBA 2.0, which was adopted in December 1994 and
which overcomes the drawbacks of CORBA 1.2 by specifying ways for interconnecting different ORBs, and also by
suggesting means for establishing interoperability between CORBA-based and non-CORBA-based environments, such
as Microsoft's COM/OLE. CORBA 2.1 followed in August 1997, CORBA 2.2 (which is the current standard) in
February 1998. Throughout the paper, we will mostly talk about CORBA 2.0 and 2.1, because these are the versions of
the standard that are most widely available (CORBA 2.2 is still not implemented by most vendors).

! CORBA 1.0 was more of a working draft than a usable specification

7

The structure of a CORBA ORB is depicted on figure 1. The OMG standard defines the structure in terms of interfaces
and their semantics. In an actual implementation, however, there is no obligation to reflect the structure; it is only
necessary to preserve the interfaces and their semantics.

@l e opact implemantabon
' -
r v —— —— !
i]l irlaf. CHE BOA C:5l =k alel irFipl.
1225, inter. <4 | Rpas.
DRA Core
CORBA CRB

Fig. 1: Structure of the CORBA ORB

3.1.1.1 Client Side (Stubs, DII, Interface Repository)

To request a service from an object, the client can use either static or dynamic invocation. The static invocation
mechanism (SII) requires the client to know the IDL definition of the requested service at compile time. The definition
is used to automatically generate stubs for all requestable operations. To request an operation, the client calls the
appropriate stub which passes the request to the ORB Core for delivery.

As opposed to static invocation, the dynamic invocation mechanism requires the client to know the IDL definition of
a requested service at run time. To request an operation, the client specifies the target object, the name of the operation,
and the parameters of the operation via a series of calls to the standardized Dynamic Invocation Interface (DII). Again,
the request is then passed to the ORB Core for delivery. The semantics of the operation remains the same regardless of
the invocation mechanism used. To obtain an IDL interface definition at run time, the client can use the Inferface
Repository. The repository makes IDL definitions (e.g. module, interface, constant and type definitions) available in form
of persistent objects accessible via standardized interfaces. The ORB is responsible for finding the target implementation,
preparing it to receive the request, and communicating the data of the request. The client need not care about the location
of the object, language of the implementation, or other things not described in the interface.

On the client side, a target object is usually represented as a proxy (object) [Sha86] supporting the same interface as the
target object. In the case of static invocation of an operation m, the proxy's method m calls the stub associated with m; the
stub is responsible for creating the request and passing it to the ORB Core for delivery to the target object. In case of
dynamic invocation, the client's code creates the request dynamically by calling the DII interface; in principle, no proxy
and stub are necessary.

3.1.1.2 Implementation Side (Skeletons, DSI, Implementation Repository, Object Adapters)

Again, either the static or the dynamic mechanism can be used to convey the request to the actual service implementation.
The static mechanism (SSI) requires the IDL definition of the requested service to be available at compile time. An
automatically generated operation-specific skelefon is then used by the ORB to call the implementation of the requested
service.

The dynamic request delivery mechanism expects the implementation to conform to the standardized Dynamic Skeleton
Interface (DSI). Through this interface, the ORB dispatches the request to the target object (to the service

implementation). In analogy to the dynamic invocation mechanism on the client side, no compile time information about
the interfaces is needed. The information necessary to locate and activate implementations of requested services is stored
in the Implementation Repository. The implementation repository is specific to a particular ORB and environment and
is not standardized by CORBA.

To access services provided by the ORB itself, an implementation uses the Object Adapter. To satisfy the needs of
diverse environments, the ORB can be equipped with several different object adapters. Each ORB, however, must
provide the standardized Object Adapter interface—Basic Object Adapter (BOA) for pre-CORBA 2.2 ORBs and
Portable Object Adapter (POA) for CORBA 2.2 ORBs. The operations of the Object Adapter include generation and
interpretation of object references, authentication of clients, and activation and deactivation of target objects.

3.1.1.3 ORB Interface

For accessing the general services provided by an ORB, both client and implementation use the ORB interface. The
operations of this interface include converting object references to strings and vice-versa, determining the object
implementation and interface, duplicating and releasing copies of object references, testing object references for
equivalence, and ORB initialization.

3.1.1.4 ORB Core, Interoperability

The initial CORBA standard left the implementation of the ORB Core totally to the ORB vendor. It was hence almost
impossible to interconnect two or more CORBA-compliant ORBs released by different vendors. This lack is remedied
by the CORBA 2.0 specification that defines two approaches for achieving interoperability: the General Inter-ORB
Protocol (GIOP) and Inter-ORB bridging.

The General Inter-ORB Protocol specifies a set of low-level data representations and message formats for communication
between ORBs. It is designed to be simple enough to work on top of any underlying connection-oriented transport
protocol, such as TCP/IP and IPX/SPX. The GIOP based on TCP/IP is called the Internet Inter-ORB Protocol (I1OP).
CORBA 2.0 requires GIOP as the mandatory protocol. To allow "out of the box" interoperability, CORBA 2.0 specifies
the optional Environment Specific Inter-ORB Protocol (ESIOP) as an alternative to the GIOP. It has been mainly
specified to allow integration of DCE with CORBA (DCE/ESIOP).

The main idea of bridging lies in mapping requests from one vendor's format to another when crossing ORB boundaries.
Bridging can be performed either at the ORB Core level as an ad hoc solution for every ORB;-ORB; pair (in-line
bridging), or at the application level (request-level bridging). Request-level bridges mediate requests by utilizing DII
and DSI mechanisms to dynamically create and dispatch requests. Bridges are currently mainly used for connecting
CORBA with non CORBA-compliant platforms, such as COM/OLE.

3.1.2 Object Services

3.1.2.1 Naming Service
The purpose of the Naming Service is to provide applications with means to locate objects in a network. With the help

of the Naming Service, applications can assign hierarchical names to objects and look up objects using thus assigned
names.

31211 Typical Usage

Typically, the Naming Service is used to obtain initial access to prominent server objects, such as factories. When
launched, a server explicitly assigns well known names to the objects that are to be used by clients to obtain access to

the server. To access a server, a client then queries the Naming Service using the well-known name and uses the objects
thus obtained.

3.1.2.1.2 The Standard

The OMG Naming Service Standard [OMG93C] defines the general format of names, the naming contexts that allow
names to be grouped within a context hierarchy, and the operations to manipulate (create, bind, look up, delete) names
and contexts. The standard also defines a special set of operations for lightweight name manipulation in a form of an
optional names library.

The standard defines a simple name as a pair of strings, denoted as the identifier string and the kind string. When an
object is assigned a name, the identifier string should describe its identity and the kind string its type (this is analogous
to file name suffixes in Unix or file name extensions in DOS).

Simple names can be grouped within a context (again, this is analogous to the directory concept of Unix or DOS).
Contexts can also refer to other contexts, thus creating a naming context hierarchy. Compound names can be used to
navigate through the hierarchy (analogous to paths in Unix or DOS).

The standard also defines an optional API, called the Names Library. The purpose of the Names Library is to provide
an easy-to-use interface for manipulating name objects handled by the service. The Names Library is not vital to the
Naming Service, all functions provided by the service can be used without the Naming Library.

3.1.2.2 Events Service

The purpose of the Events Service is to provide applications with a loosely-coupled communication mechanism. Using
the Events Service, applications can broadcast and receive asynchronous messages using a number of different models
(e.g. push or pull model, untyped or typed events).

3.1.2.2.1 Typical Usage

In a typical Events Service usage scenario, event channels are created and registered with the Naming Service for
individual event types or for classes of related event types. Applications interested in broadcasting or receiving events
register themselves with the channels as event suppliers or consumers, the channel then takes care of delivering events.

3.1.2.2.2 The Standard

The OMG Events Service Standard [OMG93A] defines the roles of event suppliers and event consumers for objects that
generate and process events, respectively. Two communication models are defined depending upon who is active in the
communication process—in the push model, a supplier calls its consumer to deliver data, whereas in the pull model, a
consumer calls its supplier to request data.

Although principally possible, neither supplier nor consumer is expected to call the other communicating object directly.
Instead, all events are passed through an event channel. From the supplier's point of view, the event channel acts as a
consumer; from the consumer's point of view, the event channel acts as a supplier. The event channel also provides
operations to register both suppliers and consumers. Subject to the actual quality of service, the event channel can
provide one-to-one, one-to-many, or many-to-many communication, and other additional features.

Communication among objects can be either untyped or typed. Untyped communication relies on suppliers and
consumers having a standardized interface capable of passing an object of the class any as an event data. With typed
communication, suppliers and consumers are expected to agree on a proprietary oneway operation to pass event data in
a suitable format.

10

3.1.2.3 Trading Service

The purpose of the Trading Service is to provide applications with means to locate a service that meets specific criteria.
With the help of the Trading Service, servers can describe themselves using a set of properties. Clients can then use the
Trading Service to locate a server with specific properties.

3.1.23.1 Typical Usage

In a typical scenario, a server gives the Trading Service a description of a service and the location of an interface where
that service is available. To locate the service, a client asks the Trading Service for a service having certain
characteristics. The Trading Service checks against the service descriptions it holds and responds to the client with the
location of the selected service's interface.

3.1.2.3.2 The Standard

The OMG Trading Service Standard [OMG96G] defines the Trader interface (Trader is an object through which the
Trading Service is accessed), the Property objects used to describe a service (a Property object is a named any value),
and the Standard Constraint Language to be used by Trader clients to formulate a service query.

Apart from specifying the core functionality of the Trader, the OMG Trading Service Standard also defines a mechanism
through which different traders can interoperate, creating a federation of traders capable of jointly responding to a client
query. The mechanism supports defining explicit link among traders and providing proxy offers.

3.1.24 Transaction Service

The purpose of the Transaction Service is to provide applications with a support for ACID (atomic, consistent, isolated,
durable) transactions. With the help of the Transaction Service, clients can encapsulate individual operations within a
transaction (provided the objects these operations are invoked upon cooperate with the Transaction Service).

3.1.24.1 Typical Usage

In a typical scenario, the Transaction Service client begins a transaction by issuing an explicit request to an object
defined by the service. The client then issues requests, these are implicitly associated with the transaction. The client ends
the transaction by issuing another explicit request to the service, depending upon circumstances the transaction is then
either committed or rolled back.

3.1.24.2 The Standard

The OMG Transaction Service Standard [OMG94A] defines the roles of individual objects within a transaction, together
with the scenario of their interaction and the necessary interfaces that ensure the client and server code portability.

Objects that can participate in a transaction are called transactional objects. A special case of a transactional object is
a recoverable object, by definition an object whose state is directly influenced by transaction commit or rollback.
Recoverable objects cooperate with OTS by registering resources during transaction, OTS will then synchronize the
commit and rollback operations upon registered resources. Finally, a recent OTS update introduces the Synchronization
interface used to notify objects prior to transaction commit.

The Transaction Service does not deal with locking of resources. For this purpose, OMG provides the Concurrency
Control Service [OMG94E]. The service implements an interface for hierarchical locking of objects.

11

3.1.2.5 Persistence Service

The purpose of the Persistence Service is to equip servers with means to provide persistency for objects. Relying on the
Persistence Service, servers can provide objects whose lifetime is not limited by the server execution time.

3.1.25.1 Typical Usage
Typically, the support for persistence includes means to preserve the state of implementation objects and means to

activate and deactivate the implementation objects as needed. This involves a varying level of cooperation on the server
implementor side.

31252 The Standard

With the OMG Persistent Object Service standard [OMG94D] being phased out of the CORBA environment and its
successor still in design phase (a deadline for accepting revised submissions to the Persistent State Service RFP ends May
1998), no relevant OMG standard exists.

3.1.2.6 Lifecycle Service

The purpose of the Lifecycle Service is to provide applications with basic operations related to object lifecycle. The
lifecycle operations include creating, deleting, copying and moving of objects.

3.1.2.6.1 Typical Usage
Typically, objects are created using object factories (an object factory is simply an object used to create other objects)

and deleted either explicitly, or automatically using a reference counting mechanism. Operations to copy and move
objects are not provided by typical ORB implementations.

3.1.2.6.2 The Standard
The OMG Lifecycle Standard [OMG93B] defines the role of object factories together with an interface through which

the object deletion, copy and move operations are provided. Unfortunately, the text of the standard describes little of how
the service is to be implemented. Hence, except for some of the high-level concepts, the standard is rarely (if ever) used.

12

4 Criteria Discussion

The evaluation criteria are separated along the same lines as is the Object Management Architecture—the individual sets
of criteria focus on the Object Request Broker and the Object Services (the report does not evaluate other parts of the
OMA architecture). In addition to that, the criteria also list points of general interest to an application developer, such
as the quality of documentation, development support, reliability.

4.1 Object Request Broker

4.1.1 Standardized Functionality

Of the entire OMA architecture, an application developer will probably be most interested in the properties of the ORB.
The basic criteria related to the ORB functionality, as described in the CORBA standard, include:

- Adherence to the OMG Interface Definition Language (IDL) specification and the appropriate language
mapping.

- Basic remote invocation functionality (e.g. support for remote calls, exceptions, contexts, the functionality
of the ORB and object adapter (BOA or POA) interfaces).

- The interfaces for manipulation with dynamically defined types (the Dynamic Invocation Interface (DII)
on the client side, the Dynamic Skeleton Interface (DSI) on the server side, CORBA 2.2 ORBs should
also provide the DynAny data type).

- Functionality of the Interface Repository (IR) and the Implementation Repository.

- Interoperability.

4.1.2 Nonstandard Extensions

Due to the incremental nature of OMG standards' evolution, ORB vendors were forced to offer proprietary solutions to
many open problems in their early ORB implementations. For backward compatibility, cost efficiency and other reasons,
some of the proprietary solutions persist (as do some of the open problems related to ORB implementation). Often, the
proprietary mechanisms provide important functionality, and thus cannot be overlooked simply for being proprietary.

4.1.2.1 Communication Extensions

4.1.2.1.1 Locating Objects

One of the very basic features required by ORB clients is the ability to locate an object given a set of criteria (e.g. server
host, interface). In the standardized OMA architecture, this feature is to be provided by the Trading Service (see section
3.1.2.3), but since this service was standardized relatively late (August 1996, which is 5 years after the first CORBA
standard appeared), many vendors have introduced proprietary solutions in the meantime.

41212 Binding To Objects

The standard way to bind to an object is to get a bootstrap reference to the Naming or Trading Service and to use that
reference to obtain whatever other references are necessary. Alternatively, the string to object () operation of

13

the ORB can be used to import stringified object references. In addition to (or in place of) these functions, the ORB
vendors often introduce proprietary binding mechanisms.

4.1.2.1.3 Instantiating Implementations

The instantiation of a CORBA object on the server side of an application consists of
(1) creating of the actual implementation object
(2) creating of the unique object reference
(3) registering of the implementation object with the reference

The mechanism to do this was described poorly in the original CORBA standard (this is fixed in CORBA 2.2) and thus
its implementations differ in the individual ORBs. The same goes for the object deletion mechanism.

4.1.2.14 Persistent References
An important feature of the ORB is the support for persistent object references. These are necessary when implementing

persistent objects and are usually tied to some sort of a server activation mechanism. Again, the original CORBA
standard is not detailed enough in this area (fixed in CORBA 2.2) and thus most ORBs offer proprietary solutions.

4.1.2.1.5 Automatic Activation

An important part of the ORB functionality, used especially with persistent servers and servers that are to provide a
higher degree of reliability, is the ability to launch a server on demand.

4.1.2.1.6 Automatic Reconnection

Related to the automatic activation mechanism is a mechanism that allows a client to automatically reconnect to a server
in case of a communication failure.

4.1.2.1.7 Invocation Extensions

Extensions to the standard invocation mechanism (e.g. asynchronous invocations, callbacks, proxy objects modified by
programmer) are provided by most ORBs as well.

41218 Customizability
Last but not least, it is important to have the possibility to customize the ORB behavior (e.g. intercepting and filtering

of messages, piggybacking of data onto messages, event hooks).

4.1.2.2 Multi-threading Extensions

4.1.2.2.1 Multi-threaded Servers

The most common case of a multi-threading extension is a support for multi-threaded server implementations. Here,
several basic strategies of server implementation behavior appear:

- single thread - all incoming requests are serialized and processed by a single thread.

- thread per request - for every incoming request a new thread is created. After processing a request, the thread
terminates.

14

- pool of threads - during the start of the server, a pool of threads is created to handle incoming requests. Each
thread waits for an incoming request, handles it and loops back to repeat this sequence. This strategy allows
for parallel processing, while limiting the server's use of resources.

- thread per client - a separate thread is created for each client process that connects to a server. This could be
useful e.g. when consecutive requests from the same client form a single transaction. A simple modification
of this strategy is thread per client connection.

- thread per object - a separate thread is created to handle requests for one server object only (or for a subset of
server objects). This could be useful e.g. in real-time processing, where the thread associated with one object
has higher priority than the others.

Clearly, it is helpful when the ORB supports at least some of the strategies listed above. It is also important that the ORB
is flexible enough to allow other (proprietary) strategies to be implemented.

4.1.222 Multi-threaded Clients

Apart from employing multi-threaded servers, there are at least two strong benefits from employing multi-threaded
clients:

- non-blocking call - a special thread is created to make a (time consuming) remote operation. The client can
continue processing without waiting for the result of the operation. Similar semantics can be achieved using

(several) oneway or deferred operations.

- call-back receive - a special thread can be created to handle all incoming call-backs without having to poll for
communication events.

41223 Multi-threaded ORB

Finally, the issue of employing multi-threading inside the underlying ORB is also important. Here, two questions arise:
- does an ORB employ threads to process its internal actions ?
- what is an ORB internal policy for managing TCP/IP connections between clients and servers ?

For client or server programmers, a possibility to setup (or change the default) internal ORB behavior is also important.

4.1.2.2.4 Concurrency

Closely related to the multi-threading is the issue of concurrency control. The shared data structures have to be protected
to avoid corruption by parallel processing. This protection has to apply both at the ORB level and at the application level.

4.1.2.3 Management Extensions

In most cases, the installation of an ORB running on a single computer (or in a relatively small network) is simple to
configure and manage. With the growing number of network hosts running ORB clients and servers, however, the
management becomes complicated and a need for a sophisticated configuration and management tool arises. As there
are no OMG standards for ORB configuration and management, the configuration and management tools (when
provided) are proprietary and offer functions specific to a given ORB.

15

4.1.3 Performance Criteria

With the purpose of the ORB being the delivery of requests to objects, the performance criteria are (naturally) related
to the request delivery mechanism. Since the exact character of an object invocation may differ (e.g. using SII/DII,
SSI/DSI, objects collocated/distributed), the number of combinations is too large to be covered in this paper. Thus, we
have decided to only cover what we see as the most common usage case, that is the static request delivery mechanism
run over a network (most of the notes are relevant to the other cases as well).

Application Application

umrllarshalling

CORBA marshalling CORBA

dispatching

—emee———————- 3 Network receiving

v

Network sending

Client Server

Fig. 2: Simplified CORBA invocation path

When a CORBA client invokes an operation upon a server, the call goes through several phases:

A call to the object proxy.

Typically, this is a standard language call and does not differ from what a local call to the same object would
look like. The proxy object is responsible for communicating the request to the actual object implementation.

The proxy marshals the client's request.

Marshalling is a translation of the procedure call to a network message, consisting of initializing the request
and filling in the object name, operation name, and the arguments of the call. In general, two of the most
important performance issues related to marshalling are the speed of marshalling and the efficiency of the
encoding of marshaled data. As the encoding of the marshaled data is standardized (IIOP mandates use of the
CDR format for data representation), it is the speed of marshalling that is the most important comparison
criterion here.

The speed of marshalling depends on the basic nature of the ORB implementation (e.g. management of network
buffers, avoidance of excessive data copying) on the data types that are marshaled (e.g. some types may be
more expensive to marshal than others). While the first factor is generally exhibited by all calls, and is
especially visible on calls that transfer a small number of simple arguments, the second factor can be evaluated
by comparing the invocation times of calls with different argument types.

The marshaled form of the request is sent over the network.

With most ORBs today being built atop TCP/IP, the performance related to the network traffic is mostly
determined by the quality of the TCP/IP protocol stack. As the amount of data passed as a part of the request
is (with a negligible number of exceptions, such as the object IDs) standardized, the ORB can only influence
the speed of the data transfer in a limited number of ways (e.g. by carefully arranging the calls to the TCP/IP

16

stack, by setting the parameters of the transport protocols). Unfortunately, these different individual approaches
are difficult to compare, because their impact varies with many circumstances.

In addition to the basic communication mechanism built using IIOP over the TCP/IP protocol stack, some of
the ORBs also provide further communications extensions. Among these, most interesting is the local
optimization of the communication protocol. As the purpose of the optimized local communication mechanism
is usually to improve the ORB’s performance by bypassing the TCP/IP protocol stack (and certain parts of the
marshalling as well), the simplest way to evaluate the mechanism is by comparing its performance with that
of the basic network communication mechanism provided by the ORB.

- On arrival to the server, the request is dispatched by the ORB.

Here, dispatching means locating the object implementation the request should be passed to (and what operation
should be invoked). This decision is made based on the object reference and the operation name, both are
enclosed in the request packet.

Strictly speaking, the process of dispatching really begins within the network layer of the operating system (or,
in some cases, even within the network hardware), the ORB on the server side of a distributed application is
usually involved only after the IIOP message is delivered to it by the network protocol stack. The ORB needs
to decide what object instance to contact and what code to use for unmarshalling of the request arguments (since
this implies searching, scalability is also an issue).

- Unmarshalling the request packet.

As the name indicates, unmarshalling is a process opposite to marshalling—the arguments of the call are
converted from the encoded network request form to the data types that the object implementation understands.

In many respects, unmarshalling is similar to marshalling. The important differences are
- The memory allocation (usually, ORB needs to allocate memory for the unmarshalled data)

- The unmarshalling of object references (when unmarshalling an object reference, the table of objects
present in the target address space is searched, or a proxy is created, or both, which again raises the
issue of scalability).

- Upcall to the object implementation.

The steps taken during the delivery of the call results from the server back to the client are very similar to those just
described. The reply from the server is marshaled and sent across the network; on the client side it is received,
unmarshaled and delivered to the client code. The difference here is that there is no dispatching on the client side (except
for locating an outstanding request that matches the reply for ORBs that are capable of serving multiple requests over
the same connection).

To summarize, the most important features of the ORB with respect to the performance of the request delivery
mechanism are the speed of marshalling, the efficiency of the communication mechanism, the speed of dispatching
(especially with respect to scalability), and the speed of unmarshaling.

4.1.4 Benchmarking

As is clear from the previous section, the performance of an ORB is influenced by a number of more or less independent
factors. Although this influence can often be measured (by hooks within the ORB code or the operating systems
primitives), it is not trivial to combine the results of the individual measurements into a comprehensive picture of the
ORB performance. On the other hand, the measurements that evaluate the overall ORB performance (e.g. end-to-end
performance, roundtrip times) are not enough to characterize the influence of the individual environment features.

17

Roughly speaking, the first kind of measurements (focus on details) is useful mostly for ORB developers, while the
second kind of measurements (focus on overall results) gives an overview of the ORB performance in a specific
environment to application programmers.

As the purpose of this report is to provide information for application developers, we have decided to orient most of the
benchmarks as end-to-end. However, the end-to-end performance benchmarks alone would only be relevant for a small
set of applications (those that run in the same environment as our tests and that use the ORB in a similar manner). Thus,
we try to illustrate the dependency of the results on the environment with additional measurements. As a result, we hope
to obtain a set of benchmark measurements that characterize an ORB in a realistic environment and that can be used to
judge on the behavior of an ORB even in an environments that differs from the one that was used to do the benchmarks.

The individual benchmarks described in this report are (for a detailed description, see the template chapter 5):

- CALL — evaluates the behavior of the dispatcher, verifies the correctness of the benchmarks with simple
invocation patterns.

- IDL.DEEP, IDL.LONG, IDL.NAMES — evaluate the dispatching ability of the ORB, also serve to discover some
of the limitations of the IDL compiler with respect to the structural complexity of the IDL source.

- IDL.ENCAP, THROUGH.IN — evaluate the speed of the ORB when passing different data types and different
amounts of data in the direction from client to server.

- PROXY, PROXY.LOT —evaluate the scalability of both the client and the server with respect to the number of
object implementations or proxy objects, also discover scalability limitations and behavior of the proxy creation
operations.

- ONEWAY — evaluates robustness of the server with respect to the number of pending request, also tests the
behavior of oneway calls.

- MT.CLIENT, MT.CONN, MT.POOL — evaluate the behavior of the support for multi-threaded clients and
servers.

4.2 Object Services

The spectrum of the Object Services is too large to be covered in sufficient detail here. Hence, we only limit ourselves
to summarizing the major features of the services offered by individual ORB vendors, with more detailed attention paid
to the database and transactions area, as requested by MLC Systeme GmbH. For a detailed discussion of some of the
services, see e.g. [Bal96A], [Har97A], [Hri96A], [Kle96B], [Kle96C], [OMG97J], [Tum97A].

4.3 Miscellanea

Apart from the criteria specific to the Object Management Architecture and CORBA in particular, we also consider the
following points important for application developers:

- Technical requirements (e.g. supported platforms, compilers, resource consumption).
- Support for developers (e.g. quality of documentation, technical support, debugging features).

- Vendor characteristics (e.g. expertise, pricing policy).

18

5 Evaluation Criteria

Broker: Template
Vendor: N/A
Version tested: N/A

Platforms used: N/A

This is a template chapter, describing the individual comparison criteria used to evaluate the various object request
broker implementations. A brief overview of the ORB is presented in the first paragraph of each specific chapter.

5.1 Object Request Broker

In this section, the ORB's compliance to OMG standards is evaluated. Nowadays, most ORB vendors have no problems
coping with the core of the CORBA 2.0 specification, but certain (usually recent) additions to the standard might not
be implemented. Importance of this criterion depends on whether the customer minds tying himself to a specific ORB
implementation (in most cases, ORBs provide proprietary functionality as a substitute for the missing standardized parts).

5.1.1 Standardized Functionality

5.1.1.1 Interface Definition Language

This section focuses on the support for the Interface Definition Language within the ORB, including its mapping to the
implementation language (C++ in our cases). Some of the limitations of the IDL compilers with respect to the structural
complexity of the IDL sources are mentioned as well (these are obtained using the IDL.NAMES, IDL.LONG and
IDL.DEEP benchmarks, see section 5.1.1.2.2).

5.1.1.2 Basic Remote Invocation

This section focuses on the basic remote invocation functionality of the ORB (e.g. support for remote calls, exceptions,
contexts, object adapter functionality). The section also includes the following three groups of benchmarks:

5.1.1.2.1 Measurement Verification

To verify the validity of the benchmark results, it is important to test whether the areas in which the benchmarks are over-
simplified (e.g. calling the same object over and over again, calling the object in predictable patterns) do not influence
the results. Thus, we have devised a simple suite of benchmarks that tests the dependence of the invocation times on the
invocation strategy used in the benchmark.

CALL

The benchmark employs the following five invocation strategies (regardless of strategy, the total number of objects and
calls used in the benchmark remains constant):

- As Thru, Rev Thru — a single object is called 10 times, this is repeated for 1000 objects in their creation order
and reverse creation order (this is similar to the behavior of e.g. the THROUGH.IN benchmark).

- As Proxy, Rev Proxy — 1000 objects are called once in their creation order and reverse creation order, this is
repeated 10 times (this is similar to the behavior of e.g. the PROXY benchmark).

19

- Random — 10000 calls are made to 1000 objects, targets are randomly selected.

The results of the benchmark show the influence of the invocation pattern on the results.

51122 Dispatcher Performance

The nature of the IDL-to-C++ mapping and of the IIOP protocol implies dependencies between the structural complexity
of the IDL interfaces and the performance of the applications based on these interfaces. The exact nature of this
relationship depends mostly on the quality of the ORB dispatcher code (partially a part of the object adapter, partially
produced by the IDL compiler).

The IDL.NAMES, IDL.LONG and IDL.DEEP benchmarks are aimed at discovering weaknesses within the dispatcher
code, especially with respect to the complexity of dispatching algorithms (e.g. linear searches through a potentially large
amount of data).

IDL.NAMES

In the IDL.NAMES benchmark, a single IDL interface within a single IDL module is defined. The interface defines
several operations that differ in the length of their name, in a single character at the beginning of the operation name or
at the end of the operation name, in the length of the argument name:

module test
{
interface iface
{
double x ();
double x2345<500chars>7890 ()
double xAAAA<500chars>AAAA ()
double yAAAA<500chars>AAAA ()
()
)

Ne Ne o Ne N

double AAAAA<500chars>ARAX
double AAAAA<500chars>AAAy
double shorta (in long a, in long Db);

double longa (in long a<500chars>, in long b);

’

};
};

The round trip time (RTT) needed to return from an invocation of the operations is measured.

IDL.LONG
A single IDL interface with a large number of operations is defined:

module test

{

interface ifacelong

{
double x1();
double x2();

double x94 () ;
double x95();
}i
}i

The difference in RTT when invoking operations from different positions within the interface is measured.

20

IDL.DEEP

Several interfaces are defined in different depths of an IDL module:

module test {
interface ifacel { double x(); };
module mod2 {
module mod3 {
module mod4 {
module mod5 {
interface iface5 { double x(); };
module mod6 {
module mod7 {
module mod8 {
module mod9 {

}i

The difference in RTT between invocations of interfaces from different depths in the module is measured.
5.1.1.2.3 Performance

IDL.ENCAP

To compare the times needed to pass data individually, in an array, in a bounded sequence, and in a structure, the
IDL.ENCAP benchmark was made. The benchmark compares invocation time of the following four operations:

typedef long Arr [100];
typedef sequence <long, 100> Seqg;
struct Str { long X0; ... long X99; };

interface Encap
{
void NoEncap (in long X0, ... in long X99);
void ArrEncap (in Arr A);
void SegEncap (in Seqg S);
void StrEncap (in Str S);
i

THROUGH.IN

To provide information on how fast does an ORB transfer data, a series of benchmarks on passing of a large amount of
arguments is included. In these benchmarks, the basic data types (integers, reals, characters, octets, anys) are transferred
as separate entities, within arrays, or within sequences. The arrays and sequences (bounded sequences are used) all
encapsulate 1kB (1024 bytes) of data, regardless of the type transferred.

21

module test

{
typedef float float arr [256];
typedef double double arr [128];

typedef sequence<float, 256> float seq;
typedef sequence<double, 128> double seq;

typedef string<1024> str;
interface through {
long infloat (in float x);
long indouble (in double x);
long floatArray (in float arr x);

long doubleArray (in double arr x);

long floatSeq (in float seq x);
long doubleSeq (in double seq x);

long StringString (in str x);
}i
}i

The results of the benchmark show both the throughput of the ORB and the overhead associated with individual data
types being passed. Both the time of delivery of the request and RTT of the request completion are measured by the
benchmarks' (the time of delivery hints at the raw throughput of the ORB implementation, while the RTT is what
interests client application programmers).

The benchmarks are collectively referred to as THROUGH.IN. The measurement results are split into groups covering
e.g. the basic types, sequences, arrays.

5.1.1.3 Dynamic Type Manipulation

This section lists the ORB’s support for manipulation of dynamically defined types, that is the Dynamic Invocation
Interface, the Dynamic Skeleton Interface, and for CORBA 2.2 ORBs also the DynAny Interface.

5.1.1.4 Repositories

This section describes the Interface Repository and the Implementation Repository of the ORB.

5.1.1.5 Interoperability

The IIOP protocol support is evaluated in this section. We use the THROUGH.IN (see section 5.1.1.2.3) benchmark to
test the interoperability of different ORBs (the test passes a wide variety of data types between the client and the server).
Interoperability with non-CORBA-based environments (e.g. Microsoft COM, Java) is briefly outlined as well.

The delivery time is measured in local configurations only.

22

5.1.2 Nonstandard Extensions

This section focuses on the nonstandard extensions provided by the ORB, as listed in section 4.1.2. The following
extension groups are covered:

5.1.2.1 Communication Extensions

This section is divided into several subsections: Locating Objects, Binding To Objects, Instantiating Implementations,
Persistent References, Automatic Activation, Automatic Reconnection, Invocation Extensions, Customizability.
5.1.2.2 Multi-threading Extensions

Here, the individual subsections discuss four features related to multi-threading: Multi-threaded Servers, Multi-threaded

Clients, Multi-threaded ORB, Concurrency. We use three benchmarks to test the behavior of the multi-threading support
within the ORB:

51221 MT.CLIENT

The MT.CLIENT benchmark tests the multithreading capabilities of the ORB client when multiple threads access
different servers. The benchmark uses five servers, each providing a synchronous operation that takes 10 seconds to
complete. The client creates five threads, each of the threads invokes the operation five times on one server. The
benchmark takes 50 seconds to complete when the client issues the requests from different threads in parallel, and 250
seconds when the requests are serialized.

51222 MT.CONN

The MT.CONN benchmark tests the multithreading capabilities of the ORB client when multiple threads access the same
server. The benchmark is similar to MT.CLIENT, but uses only one server providing five objects with a synchronous
operation that takes 10 seconds to complete. The client creates five threads, each of the threads invokes the operation

five times on one object. The benchmark takes 50 seconds to complete when the client issues the requests from different
threads in parallel, and 250 seconds when the requests are serialized.

51223 MT.POOL

The MT.POOL test does not actually measure anything. Instead, it implements the “pool of threads” server threading
strategy (if possible) to test the functionality of server-side multi-threading support.

5.1.2.3 Management Extensions

The ORB configuration and management tools (if any) are described in this section.

5.1.3 Scalability

In this section, we analyze various aspects of the ORB’s scalability that were not touched by previous benchmarks. Three
aspects of scalability are mentioned—speed with respect to number of objects, resource consumption with respect to
number of objects, and resource consumption with respect to the number of incoming (asynchronous) requests.

23

5.1.3.1 Speed vs. Number of Objects

An important part of the remote invocation mechanism defined by CORBA is the ability to pass objects by reference.
Whenever an ORB receives a new object reference, a proxy object is created and passed to the target application. The
application can then invoke operations upon the proxy (these get forwarded to the object represented by the proxy).

Both the time needed to create the proxy object and the time needed to open a connection to the object represented by
the proxy vary in different ORBs. The performance of some of the operations performed by the ORB (dispatching, object
reference unmarshalling, proxy creation) depends on the number of existing objects and proxies as well.

5.1.3.1.1 PROXY

The PROXY benchmark measures the time it takes to create and return a sequence of objects and to invoke an operation
on these objects (the first and all subsequent invocation times differ) This is measured for 1000, 2000 and 3000 objects
on the server. The measurement results are split into three groups covering the proxy creation time (PROXY.CREATE)
and the difference between the first (PROXY.FIRST) and second (PROXY.NEXT) call to a newly created proxy.

51312 PROXY.LOT

The PROXY.LOT benchmark was designed to test the degradation in request delivery speed when handling a large
number of objects. A client and two servers are involved in the test—the client and the first server increase the number
of their objects by a thousand each test run, while the second server keeps its number of objects constantly low. A
difference in invocation speed is measured for two operations:

interface factory {
long nop();
long op5(in helo hl, ... in helo hb);
}i
5.1.3.2 Resources vs. Number of Objects
The consumption of memory per object on both the server and the client is measured using a slightly modified code of

the PROXY benchmark.

5.1.3.3 Resources vs. Queued Requests

5.1.3.3.1 ONEWAY
The ONEWAY benchmark was made to test the number of oneway calls that can be issued until the client blocks. The

benchmark client keeps issuing oneway void calls that take a long time to complete at the server side and measures the
time it takes to issue the call. Long delays indicate the client being blocked, these are registered by the benchmark.

5.1.4 Robustness

This section is dedicated to the issue of ORB robustness. The subsections discuss the support for building reliable servers
using the ORB, measure some of the limits of the ORB implementation (size of requests, number of objects). We also
list some of the bugs we have found here.

5.1.4.1 Reliable Servers

The support for building reliable servers using the ORB is discussed in this section.

24

5.1.4.2 Limits

5.1.4.2.1 SIZE

This benchmark tries to send data packets of increasing size in a single request to find out if there are any limits imposed
on the request size and to test whether the server can cope with large requests.

51422 Number of Objects

The maximum number of objects the server and the client are able to cope with is tested using a slightly modified code
of the PROXY benchmark.

5.1.43 Bugs

Some of the bugs discovered during the testing of the ORB are listed in this section.

5.2 Object Services

In this section, we evaluate the Object Services provided by the vendor of the ORB (this does not necessarily imply that
another vendor’s service cannot be used with the ORB though). The evaluation lists the range of services available, their
degree of functionality, and the replacements for standard services. Individual subsections focus on specific services (for
a description of evaluated services, see section 3.1.2).

5.3 Miscellanea

5.3.1 Requirements

This section lists the general requirements of the ORB (e.g. supported platforms, compilers).

5.3.2 Development

This section discusses development and debugging support provided by the individual ORB implementations. The focus
is on support for short-term development and debugging rather than for long-term project maintenance and management.

5.3.3 Vendor

This section provides brief information on the vendor of the ORB (e.g. short company profile, pricing policy).

25

6 ORL omniORB

Broker: omniORB
Vendor: Olivetti & Oracle Research Laboratory
Version tested: omniORB 2.5.0
Platforms used: Windows NT 4.0 Workstation
= 200MHz AMD K5 64MB RAM
= 166MHz Intel Pentium 64MB RAM
= 179MHz Intel Pentium Pro 64MB RAM
AIX 4.1 on IBM RS6000-595
network: 10BASE-T Ethernet
compilers:
= Microsoft Visual C++ 4.2
= IBMC Set++3

OmniORB is a lightweight CORBA implementation—it supports the basic CORBA core (ORB and partially BOA)
which is fully functional, but does not provide the Dynamic Invocation Interface (DII), the Dynamic Skeleton Interface
(DSI), the Interface Repository (IR), and the Implementation Repository.

6.1 Object Request Broker

6.1.1 Standardized Functionality

6.1.1.1 Interface Definition Language

The omniORB IDL conforms to the OMG IDL specification. OmniORB only supports C++, hence only the IDL-to-C++
mapping is provided. The mapping is CORBA 2.0 conformant, IDL exceptions are mapped to C++ exceptions, IDL
modules are mapped to C++ classes (instead of namespaces).

OmniORB 2.5 has problems with IDL names longer than 500 characters (the IDL compiler does not compile the
IDL source). It also has problems with IDL interfaces that contain a large number of operations (the C++ sources
generated by the IDL compiler do not compile under VC++ 4.2 if more than 95 operations are declared within a
single interface, the limit is slightly higher for VC++ 5.0).

6.1.1.2 Basic Remote Invocation

OmniORB supports both the “at most once, synchronous” and the “best effort, asynchronous” invocations as defined
by the CORBA standard. It supports exceptions. It does not support context handling.

The ORB module is implemented completely according to the standard (with the exception of the calls related to DII,
IR and the Implementation Repository).

The BOA module is rather incomplete—only the calls for registering object implementations (obj is ready (),
impl is ready ()) and for disposing object implementations (dispose ()) are provided. The semantics of the
obj 1is ready () call differs from the standard specification—in omniORB, obj is ready () should be called
to individually register object implementations. The dispose () call has a modified semantics as well—it unregisters

26

the object implementation with BOA (as specified by the standard) and deletes the object only after its reference count
reaches zero. With omniORB, the dispose () call is the only call that should be used to delete the object
implementation.

6.1.1.2.1 Measurement Verification

CALL

The results of the CALL benchmark indicate there is no significant dependence between the invocation times and the
object invocation pattern. This means that the results of the other benchmarks can be applied to applications with
different invocation patterns as well.

5000
4000 +— —
g 3000 +—— —
[
E 2000 — -
1000 — —
0
As Thru | As Proxy | Rev Thru | Rev Proxy | Random
‘l:l Time [ms] 4559 4601 4592 4627 4620
Fig.3: CALL NT Int179 local (10.000 calls)
6.1.1.2.2 Dispatcher Performance

IDL.NAMES

The most important result from the IDL.NAMES benchmark is the demonstration of the fact that calling operations with
longer (500 characters) names takes longer time to complete. This is due to the fact that the marshalling, unmarshalling,
transport and dispatching algorithms all use a plain string form of the operation names. The test shows that:

- For normal-length names (10-30 characters), the difference in invocation time is insignificant (about 1%).

- The difference in invocation time is more significant when running over a network (this is due to the fact that
the operation name is transported in a plain string form).

27

700 1400
1300
600 1200
1100
500 1000
900
T 400 T 800
o ‘o 700
E 300 E 600
500
200 400
300
100 200
100
0 0
X xxxx |XAAA |yAAA |AAAx |[AAAy X xxxx |XAAA |yAAA |AAAx |AAAy
mTime[us] | 549 | 614 | 617 | 611 | 622 | 636 mTime[us] | 749 | 1245 | 1247 | 1246 | 1245 | 1255
Fig. 4: IDLNAMES NT AMD200 local (1 call) Fig. 5: IDL.NAMESNT Int166 -> AMD200 idle network (1 call)
IDL.LONG

The IDL.LONG benchmark shows that the operation that is defined later in the IDL interface takes longer time to
complete. The reason for this is that the dispatcher code (generated from the IDL definition) looks up the operation name
using a sequential (linear) search. The test shows that:

- For medium-sized interfaces (100 operations), the difference in invocation time between the first and the last
operation may be significant.

- The difference in invocation time does not change when running over a network (clearly, only server side code
matters).

= 3
E]
1.0p 50. op 95. op 1. 0p 50. op 95. op
DTime[us] | 547 577 610 @Timefus]| 732 759 788
Fig. 6: [DL.LONG NT AMD200 local (1 call) Fig. 7: IDL.LONG NT Int166 -> AMD200 idle net (1 call)

28

IDL.DEEP

This benchmark indicates there is no relationship between the interface nesting depth and the time it takes to complete
an operation of that interface.

600 800
500 700
600
400
E 7 500
o 300 ‘o 400
E £
[= 200 [S 300
200
100
100
0 0
1.mod | 5.mod | 10. mod | 15. mod 1.mod | 5.mod | 10. mod | 15. mod
@ Time [us] 557 560 557 558 @ Time [us] 731 727 731 732
Fig. 8: IDL.DEEP NT AMD200 local (1 call) Fig. 9: IDL.DEEP NT Int166 -> AMD200 idle net (1 call)
6.1.1.2.3 Overall Performance
IDL.ENCAP

The IDL.ENCAP benchmark compares the invocation time when passing 100 longs individually, in an array, in a
bounded sequence, and in a structure. Overall, the test shows that:

- The deviation in invocation times is within 10%, with sequence having the fastest and individual longs the
slowest invocation time.

700
600
500

400

Time [us]

300

200

100

0

Not Encap Array Sequence Structure

@ Time [us] 603 550 540 562

Fig. 10: IDL.ENCAP NT AMD200 local (1 call)

29

THROUGH.IN
The tests show that:

- Time to pass a basic IDL data type stays roughly the same regardless of the type being passed (deviation is
about 10%)

- Time to pass an array of a basic IDL data type depends mostly on the number of items. This dependence is not
exhibited for sequences.

- Encapsulating an argument within any adds a substantial overhead. Hence, when passing an array or a sequence
of anys, the invocation time primarily depends on the number of anys.

Running the same test suite over an idle 10BASE-T Ethernet shows that:

- Unless a very large number of complex arguments is passed, the constant overhead of an invocation
overshadows the impact of argument sizes and types. Hence, it pays off to call less often with more arguments
than vice versa.

- Local roundtrip times are roughly 206% of local delivery times (except for any data types). Remote RTT is
roughly 142% of local RTT for basic data types, 254% of local RTT for arrays, 268% of local RTT for
sequences. Large (1000 elements) arrays and sequences of any are passed faster over the network (upto 20%
in our configuration).

- Paradoxically, local invocation times may sometimes be longer than network invocation times (e.g. when
passing arrays of anys). This is caused by the high computational intensity of the marshalling and unmarshalling

operations.
1000
800 ' — — — —
o 600 4 |_ |_ r |_ r |_ r L
=
£
= 400 - ||
200 L
0 L
Float |Double| Long | ULong | Short |UShort| Char | Octet Any - | Any - | Any - | Any - | Any - Any - | Any - Any -
Float |Double| Long | ULong | Short |UShort| Char | Octet
O Local deliv. 228 226 206 220 236 240 212 230 264 296 266 258 258 252 256 254
W Local RTT 514 518 536 520 520 520 520 540 562 590 564 558 576 558 560 562
ORemote RTT | 752 763 752 748 748 755 748 748 785 832 786 785 782 782 782 782

Fig. 11: THROUGH.IN NT AMD200 local and Int166 -> AMD200 idle net (time to pass basic data types—1 call)

30

2500

2000 — — ["
v 1500 - o
=
g
= 1000 | L
500 | i
0 | | | | | | | | | | | | | |

seq< | seq< | seq< | seq< | seq< | seq< | seq< | seq< | String
Float, |Double| Long, |ULong | Short, [UShort| Char, | Octet, | <1024
256> |, 128>| 256> |, 256>| 512> |, 512>| 1024> | 1024> >

Float |Double| Long | Ulong | Short |Ushort| Char | Octet
[256] | [128] | [256] | [256] | [512] | [512] |[1024] |[1024]

MLocal deliv. 372 354 378 396 460 470 574 608 340 366 348 350 346 350 338 334 372
W Local RTT 668 658 680 704 766 776 888 918 640 660 640 640 656 644 636 638 686
ORemote RTT | 1806 | 1749 | 1810 | 1816 | 1928 | 1939 | 2115 | 2109 | 1726 | 1723 | 1722 | 1726 | 1728 | 1728 | 1725 | 1731 | 1793

Fig. 12: THROUGH.IN NT AMD200 local and Int166 -> AMD200 (idle net, time to pass compound data types+string—1 call)

18000

16000

14000 - -
_ 12000 - =
El 10000 4 —
g 8000 - -
= 6000 | - =

4000 - - L

= [l B IS IS &

0 4
Any [1024] -|Any [1024] -| Any [512] - | Any [256] - | Any [256] - sj‘é;ﬁ"y' Sj‘é;ﬁ"y' seq <Any, | seq <Any, | seq <Any,
Char Octet Short Long Float 512> - Short | 256> - Long | 256> - Float
Char Octet

@Local deliv. 11548 11834 5814 3018 2996 13176 13630 5884 3054 3042
mLocal RTT 14340 14648 7474 3886 3844 15546 15990 7254 3886 3878
ORemote RTT | 12366 12406 7166 4560 4562 12304 12440 7332 4424 4423

Fig. 13: THROUGH.IN NT AMD200 local and Int166 -> AMD200 (idle net, time to pass any types—1 call)

6.1.1.3 Dynamic Type Manipulation

OmniORB provides neither the Dynamic Invocation Interface nor the Dynamic Skeleton Interface.

6.1.1.4 Repositories

OmniORB provides neither the Interface Repository nor the Implementation Repository.

31

6.1.1.5 Interoperability
OmniORB uses IIOP as its native communication protocol. The interoperability tests did not indicate any problem with

the ITOP implementation'. There is no support for interoperability with Microsoft COM. Java interoperability is implied
by using I1OP.

6.1.2 Nonstandard Extensions

6.1.2.1 Communication Extensions

6.1.2.1.1 Locating Objects

OmniORB provides no specialized mechanism to locate object implementations. It is, however, equipped with a fully
functional Naming Service implementation that can (together with the 1ist initial services () call) be used
to locate object implementations.

6.1.2.1.2 Binding To Objects

OmniORB provides no proprietary calls for binding, the standard string to object() and
resolve initial references () calls are supported though.

6.1.2.1.3 Instantiating Implementations

When creating a new object implementation to be accessible from outside of the server address space, the following steps
are necessary:

(1) create a new object (obj = new XXX i)

(2) register the object with BOA->0bj is ready (obj) or with the obj is ready () static member
function (cbj-> obj is ready (BOA)).

(3) at this point, the object reference can be exported

When deleting the object implementation, it is necessary to delete the object using the dispose () method, the method
calls the de1ete operator upon the object that is being deleted when it is safe to do so (BOA->dispose (obj))

The BOA: :0bj is ready () call (normally used to tell BOA the server is ready to handle requests in the unshared
activation mode) has a non-standard semantics in omniORB. It should be called on all CORBA objects to notify the ORB
of their existence.

6.1.2.1.4 Persistent References

When creating an object reference, it is possible to specify the object key from which the IOR is constructed. Hence, it
is possible to re-create an object with the same IOR on subsequent server runs.

Using an undocumented feature of omniORB 2.5 (referred to as loaders), it is also possible to instantiate objects on
demand. More information can be found at http://www.orl.co.uk/omniORB/archives/1998-Mar/0102.html.

For a comparison table listing the results of the interoperability test, see section 9.1.1.2.

32

6.1.2.1.5 Automatic Activation

OmniORB has no support for an automatic activation of servers on demand.

6.1.2.1.6 Automatic Reconnection

OmniORB has no support for an automatic reconnection of a client in case of a communication failure. Whenever a
failure occurs, an exception is raised.

6.1.2.1.7 Invocation Extensions

The client side proxy object can be customized in omniORB. This allows the client to change the default invocation
semantics and introduce optimizations such as caching when needed. When writing the customized proxy code, the
communication mechanism of the default proxy object is usually reused.

Callbacks can easily be implemented using the omniORB multi-threading support.

6.1.2.1.8 Customizability

OmniORB has no direct support for customization through hooks. As the complete source code of the ORB is freely
available, an experienced programmer should be able to introduce custom modifications when necessary though.
6.1.2.2 Multi-threading Extensions

OmniORB is provided in a multi-threaded version only. The libraries shipped with omniORB are thread-safe, and are
built upon the OMNIthread abstraction. The OMNIthread package is a wrapper around the underlying POSIX or
POSIX-like thread package provided by the operating system.

More information about the omniORB threading model can be found at http://www.orl.co.uk/omniORB/archives/1997-
Jun/0048.html.

6.1.2.2.1 Multi-threaded Servers

Although a server application can be multi-threaded (underlying libraries are thread-safe), there is no support for
employing different threading strategies (see section 4.1.2.2.1) to handle incoming requests. Threads are created
automatically by omniORB for every new connection (the thread-per-connection strategy).

6.1.2.2.2 Multi-threaded Clients

The omniORB client can be multi-threaded (ORB itself is thread-safe). The omniORB client locks a network connection
during the remote invocation. If another thread attempts to use a locked connection for remote invocation, a new
connection will be created and used for delivering the request.

MT.CLIENT

The MT.CLIENT benchmark take 50 seconds to complete, indicating that omniORB clients can issue parallel requests
(and receive replies) over multiple connections.

MT.CONN

The MT.CONN benchmark shows that omniORB is capable of parallelizing requests from multiple threads (the
benchmark takes 50 seconds to complete). The threads that run in parallel open additional network connection—on one

33

hand, this slows down the performance a bit, on the other hand, the client is able to issue requests in parallel even to
servers that use the “thread per connection” strategy (e.g. omniORB servers).

This benchmark indicates a problem with the multi-threading support at the client side of the application. When more
than five threads issue a request to the same server in parallel, the client crashes (there is no such limitation when
communicating with more servers).

6.1.2.2.3 Multi-threaded ORB

A network connection is created on demand (on the client side) and closed automatically when it is idle for a given
period of time (on the server side). Inside the ORB, two separate threads are dedicated to scanning for idle connections
(one thread is responsible for outgoing connections and the other looks after incoming connections). The thread for
incoming connections is only created when BOA is initialized, because only then an incoming connection may occur.
The inactivity period of the two threads can be configured by the idleConnectionScanPeriod () call.

6.1.2.2.4 Concurrency

Both at the client and at the server side, it is the application programmer who is responsible for protecting shared data
structures at the application level (using the underlying operating system's synchronization primitives, or those from
OMNIthread package).

6.1.2.3 Management Extensions

OmniORB does not provide any management utilities. The configuration of the ORB itself is very simple, as it does not

support dynamic activation policies (the server application must be running before a client request arrives at the server
host).

6.1.3 Scalability

6.1.3.1 Speed vs. Number of Objects

PROXY

This benchmark indicates dependence between the number of objects and the object creation time both on the server and
the client sides. There is also a significant difference between the time it takes to invoke an operation for the first time
and for all subsequent times.

PROXY NT local NT idle net
objects| 1000 [2000 [3000 | 1000 | 2000 | 3000
CREATE 105 204 311 121 233 350
FIRST 9591 1950 3035 1381 2724 4187
NEXT 464 1001 1566 717| 1414 2159

Fig. 14: Table PROXY NT AMD200 and Int166 -> AMD200 idle net (time in ms)

34

PROXY.LOT

The PROXY.LOT benchmark shows that:

- There is a linear dependence between the number of objects handled by the server and the time it takes to create
and register a new object. The dependence becomes significant with thousands of objects handled.

- There is no measurable dependence between the number of objects handled by the client and the time it takes

to receive a new object reference.

- There is a linear dependence between the number of objects handled by the server and the time it takes to invoke
a request on the server. The dependence becomes significant with thousands of objects handled.

250
"E—
200 — —
pe—
E 150 s -1 1 — =
[
£ 100 —_— o 1
[
50 — — — —1 — —
0
1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000
mGet | 146 139 149 167 173 182 191 205 210 221
Objects on server & proxies on client
Fig. 15: PROXY.LOTNT Int166 local
1500
g
(]
£
[
1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 |10000
@EF1nop | 747 849 | 854 863 873 874 | 883 886 901 906
mF1op 1193 | 1325 | 1300 | 1310 | 1317 | 1315 | 1365 | 1337 | 1344 | 1347

Objects on server & proxies on client

Fig. 16: PROXY.LOT NT Int166 local

35

25000

20000 -

15000 -

10000 -

Time [us]

5000 -

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

mEF2nop | 729 735 | 739 735 738 735 | 735 731 736 | 734
mF2op | 18063 | 19727 | 19861 | 19820 | 19836 | 19768 | 19844 | 19820 | 19801 | 19788

Proxies on client

Fig. 17: PROXY.LOT NT Int166 local

6.1.3.2 Resources vs. Number of Objects
For 10000 objects, the client consumes 313 bytes per object proxy, the server consumes 238 bytes per object (the most

trivial implementation object with no attributes and one operation void x ()).

6.1.3.3 Resources vs. Queued Requests

ONEWAY

When testing the number of oneway void calls that can be issued to an omniORB server, the results indicated that
regardless of the client used (omniORB, Orbix and VisiBroker clients were tested), about 500 oneway calls with no
arguments can be issued before the client blocks.

6.1.4 Robustness

No unexpected crashes and no bugs were encountered in omniORB under normal usage conditions. The ORB exhibited
a stable performance in our tests, except for occasional server crashes on AIX (these might have been caused by an
incorrect AIX port though).

6.1.4.1 Reliable Servers

OmniORB provides no means for automatic invocation of servers on demand. Although in principle possible, it would
be difficult for the application programmer to write a useable substitute for the automatic invocation mechanism.

To provide restartable servers, a programmer can use persistent object references. A server can assign the same object
reference to its objects every time it starts, a support for object activation on demand is provided as well.

The omniORB LifeCycle support can be used to move object implementations, e.g. for the purposes of load balancing.
The forwarding mechanism, however, relies on the original object server being able to redirect all incoming requests to
the new object server (and this for a potentially infinite period of time). Thus, it would be difficult to use this mechanism
to improve reliability by replication.

The Naming Service can be used to find multiple implementations of the same object, this can be used in load balancing.
The limited LifeCycle support can be used for moving of object implementations.

36

6.1.4.2 Limits

SIZE

By default, omniORB limits the maximum size of the message that can be sent or received, to 2MB. The limit can be
queried and set using the omniORB: :MaxMessageSize () call. If an incoming message exceeds this limit, it is not
unmarshaled and the COMM_FAILURE exception is raised. If an outgoing message exceeds this limit, the MARSHAL
exception is raised.

Number of Objects
The OmniORB 2.5.0 server works OK with 250000 objects (more objects were not tested), the client works OK with

50000 objects (more objects were not tested).

6.1.43 Bugs

6.1.4.3.1 Long IDL names bug

OmniORB 2.5 has problems with IDL names longer than 500 characters (IDL compiler does not compile the IDL
source).

6.1.4.3.2 Long IDL interfaces bug
OmniORB 2.5 has problems with IDL interfaces that contain a large number of operations (the C++ sources generated

by the IDL compiler do not compile under VC++ 4.2 if more than 95 operations are declared within a single interface,
the limit is slightly higher for VC++ 5.0).

6.1.4.3.3 Parallel connections bug

The MT.CONN benchmark indicates a problem with the multi-threading support at the client side of the application.
When more than five threads issue a request to the same server in parallel, the client crashes (there is no such limitation
when communicating with more servers).

6.1.4.3.4 Stability problems

OmniORB 2.5 on AIX occasionally crashed in the THROUGH.IN and PROXY.LOT benchmarks. The NT version,
however, has been stable throughout all tests. It is worth noting that the AIX port is not officially supported by ORL.

6.2 Object Services

Of the standardized services, only the Naming Service (omniNames) is provided. A partial support for the Lifecycle
Service is also incorporated within omniORB.

6.2.1 Lifecycle Service
As a part of omniORB, a support for moving and deleting of objects is provided. The lifecycle support automates

creation of proxies capable of redirecting requests to objects that have been moved, making it possible to transparently
(with respect to clients) migrate objects on request.

37

6.2.2 Naming Service

The implementation of the Naming Service in omniORB is called omniNames. OmniNames claims full compliance with
the OMG Naming Service specification and provides all interfaces defined by the standard except for the names library
(which is not vital to the service functionality).

The OmniNames server is persistent—both the database of name-to-object bindings and the object reference of the server
are preserved across server invocations. This allows the OmniNames server to be restarted transparently in case of
failure, thus increasing the overall robustness of the system.

The rebind () call is implemented incorrectly. It fails (NotFound exception is raised) when the caller is not bound
to the Naming Service. To conform to the Naming Service specification, the service should simply bind () to the
Naming Service instead of raising an exception. The workaround is simple (catch the exception and try to call bind ()).

6.2.3 Persistence Service

There is no implementation of a separate Persistence Service for omniORB. All by itself, omniORB supports persistent
object references, but does not support launching servers on demand. Although this allows persistent servers to be
implemented, the process incurs significant amount of coding. An undocumented feature of the omniORB is the concept
of loaders (mechanism for activating object implementations when a request arrives)—see the section 6.1.2.1.4.

6.3 Miscellanea

6.3.1 Requirements
Currently, ORL provides omniORB for the following operating systems and compilers:

- Solaris 2.5/ Sun SparcCompiler C++ 4.2

- Digital Unix 3.2/ DEC C++ compiler 5.5

- Linux 2.0 (x86)/ GNU C++ compiler 2.7.2 / Linuxthreads 0.5
- MS Windows NT / MS Windows 95 / MS Visual C++ 5.0

OmniORB for these platforms is provided in a binary form (sources are available as well). Ports to following platforms
are done by external contributors and are not provided in binary form:

- IBM AIX 4.2/ IBM C Set++ 3.1.4

- HPUX 10.20/ aC++ (B3910 A.01.04)

- OpenVMS Alpha 6.2/ DEC C++ compiler 5.5 (UCX 4.1 ECO 8)
- OpenVMS Vax 6.1/ DEC C++ compiler 5.5 (UCX 4.0 ECO 1)

- NextStep 3.3/ gee-2.7.2

It should be straightforward to port omniORB to any platform that supports POSIX-style threads, BSD-style sockets and
has a C++ compiler that supports exceptions.

6.3.2 Development

The quality of documentation is intermediate (perhaps most missing is the reference guide). The User's Guide, a
description of the OMNIthread abstraction, a description of the OMNI Naming Service and LifeCycle support, and a

38

short description of the omniORB utilities are provided. In spite of brevity, the documentation is sufficient. When all
else fails, the ORB sources are available.

Useful features with respect to debugging include activity logging, range checking on sequence types, safety checks on
reference counts, and object reference parsing utilities.

Technical support is not provided, omniORB is free. Queries, suggestions, or problems concerning omniORB can be
sent to ORL at omniorb@orl.co.uk. ORL maintains a mailing list dedicated to omniORB. More information about
the list is at http://www.orl.co.uk/omniORB/mailingList.html.

6.3.2.1 Development Support

Feature

Access to the reference count value No reference count is private attribute
Warn when negative reference count Yes

Range checking on sequences Yes exception raised

Generation of skeleton implementation No

Symbolic exception dumping to stream No

Broker activity logging Yes very verbose logging possible
Reference parsing utilities Yes genIOR and catIOR

6.3.3 Vendor

6.3.3.1 Pricing

OmniORB is copyright Olivetti & Oracle Research Laboratory. It is a free software provided under the GNU General
Public License version 2 (or later) as published by the Free Software Foundation.

OmniORB contains source code that is derived from the SunSoft OMG IDL Compiler Front End (CFE) version 1.3. The
IDL CFE is copyright Sun Microsystems and is distributed under conditions similar to those of GNU.

6.3.3.2 Company

Established in 1986 as Olivetti Research Laboratory, ORL is now a jointly funded research laboratory of Ing. C. Olivetti
& C., S.p.A, and the Oracle Corporation. Over 50 research staff are employed at the company's facilities in central
Cambridge, England. The company specializes in networking and communications, multimedia, mobility, and distributed
systems.

39

7 lTona Orbix

Broker: Orbix
Vendor: Iona Technologies PLC
Version tested: Windows NT:

= Orbix 2.2¢01 Desktop
= Orbix 2.3¢ Desktop
AIX:
* Orbix 2.2MT AIX
Platforms used: Windows NT 4.0 Workstation
= 200MHz AMD K5 64MB RAM
* 166MHz Intel Pentium 64MB RAM
= 179MHz Intel PentiumPro 64MB RAM
AIX 4.1 on IBM RS6000-595
network: 10BASE-T Ethernet
compilers:
= Microsoft Visual C++ 4.2
= IBMC Set++3

As one of the first implementations of the CORBA standard, Orbix is a widely used ORB produced by IONA
Technologies PLC. The chief characteristics of Orbix are a wide range of supported platforms and availability of a
number of accompanying products (e.g. object services).

7.1 Object Request Broker

7.1.1 Standardized Functionality

7.1.1.1 Interface Definition Language

Orbix IDL conforms to the CORBA 2.0 specification. The set of supported data types is extended by allowing opaque
data types to be defined using a new IDL keyword opaque. An argument of an opaque data type is always passed by
value, the value itself is marshaled and unmarshaled by user-supplied code.

Orbix is a CORBA implementation for C++. Other IONA products (not tested here) support mappings from IDL to Java,
Ada, C, COBOL, and Smalltalk. The IDL-to-C++ mapping conforms to the CORBA 2.0 specification.

7.1.1.2 Basic Remote Invocation

Orbix is a full implementation of the CORBA 2.0 standard. Orbix provides complete ORB, BOA, DII, DSI, Interface
Repository (IR) and Implementation Repository modules. Orbix supports both the “at most once, synchronous” and the
“best effort, asynchronous” invocations defined by the standard. It also supports server activation policies, exceptions
and context handling.

The Orbix implementation of both the ORB and the BOA interfaces conforms to the standard. The semantics of the BOA
dispose () call differs from the standard—it unregisters the object implementation with BOA (as specified by the
standard) and deletes the object. Apart from using dispose (), an object implementation can also be deleted by
decreasing its reference count to zero using release ().

40

Orbix supports IDL exceptions' regardless of whether the C++ compiler offers native exception handling or not. For
compilers that do not support exceptions, a set of macros is provided as a replacement for the try-catch clauses; the
information about exceptions is passed within an environment as a part of each call. Orbix supports context handling.

7.1.1.2.1 Measurements Verification

CALL

The results of the CALL test indicate there is no significant relationship between the pattern of the calls issued to the
server and the times measured by the benchmark. This means that it is possible to apply the results of other benchmarks
to applications with different invocation patterns.

45000
40000 ———= —

35000 +— —

30000 +— —

25000 +—— —
20000 +— —

Time [ms]

15000 — —
10000 +— —

5000 +— —

As Thru | As Proxy | Rev Thru | Rev Proxy | Random

mTime [ms] | 40559 40755 40472 40299 41063

Fig. 18: CALL NT Int179 (10.000 calls)

7.1.1.2.2 Dispatcher Performance

IDL.NAMES

The most important result from the IDL.NAMES benchmark is the demonstration of the fact that calling operations with
longer (tested for 500 characters) names takes longer time to complete. This is due to the fact that the marshalling,
unmarshalling, transfer and dispatching algorithms all use a plain string form of the operation names. The test shows that:

- For normal-length names (10-30 characters), the difference in invocation time is insignificant (about 1%).

- The difference in invocation time is more significant when running over a network (more data is passed).

Note that user defined exceptions are not supported when using DII.

41

5000 5500

4500 5000 - .
4000 ,7“7-_-7-_-7-— --7-_-7 4500 — - — —1 —
3500 +— +H— +H— — I R 4000 +— 1 +—1 1 1 |
3500 +— ! —1 —1 1 [
T 3000 1 E L T 3000 || R
g 2500 4 | S ® 5500 || e
= 2000 +—+H +H—— +H——1 I 1 [- 2000 1| —— ! — —
1500 +—+ +— +— |— — 1500 1| 1 1
1000 +—+4 +— +—— |— 1 1000 1| R .
500 +— — H— — 500 1| I D I [SN B SN
0 0
X xxxx |XAAA |[yAAA |AAAx |[AAAy X xxxx |XAAA |yAAA |AAAx |AAAy
mTime[us] | 4148 | 4293 | 4295 | 4290 | 4287 | 4302 m Time[us] | 4378 | 5006 | 5006 | 5006 | 5006 | 5008
Fig. 19: IDL.NAMES NT AMD200 local (1 call) Fig. 20: [IDL.NAMESNT Int166 -> AMD200idle net (1 call)
IDL.LONG

The IDL.LONG benchmark shows that the operation that is defined later in the IDL interface takes longer time to
complete. The reason for this is that the dispatcher code (generated from the IDL definition) looks up the operation name
using a sequential (linear) search. The test shows that:

- For medium-sized interfaces (100 operations), the difference in invocation time between the first and the last
operation may be significant.

- The difference in invocation time does not change when running over a network (clearly, only server side code

matters).
4500 5000
4000 == — 4500
3500 — — 4000 +—| I
3000 +— - 3500 || |
% 2500 || - g 3000 +— |
g 2000 - s 2500 -
T 1500 || £ 2000 i —
1500 |
1000 ==) 1000 +—] -
500 . 500 +—| -
0 0
1. 0p 50. op 95. op 1.0p 50. op 95. op
@Time [us]| 4128 4170 4204 mTime [us] | 4368 4403 4445
Fig. 21: IDL.LONG NT AMD200 local (1 call) Fig. 22: IDL.LONG NT Int166 -> AMD200 idle net (1 call)
IDL.DEEP

The IDL.DEEP benchmark indicates a relationship between the interface nesting depth and the time it takes to complete
an operation of that interface. The test shows that:

- The difference in invocation time between operations in non-nested and nested interfaces is significant only
for relatively deeply nested interfaces (10 levels).

)

- The difference in invocation time is more significant when running over a network (more data is passed).

5000 5000
4000 4000
T 3000 g 3000
o o
E 2000 E 2000
1000 1000
0 0
1.mod | 5.mod | 10. mod | 15. mod 1.mod | 5.mod | 10. mod | 15. mod
mTime[us] | 4193 | 4203 | 4287 | 4391 mTime [us] | 4322 | 4405 | 4510 | 4621
Fig. 23: IDL.DEEP NT AMD200 local (1 call) Fig. 24: [IDL.DEEP NT Int166 -> AMD200 idle net (1 call)
7.1.1.2.3 Overall Performance
IDL.ENCAP

The IDL.ENCAP benchmark compares the invocation time when passing 100 longs individually, in an array, in a
bounded sequence, and in a structure. Overall, the tests show that:

- The deviation in invocation times is usually within 10%, with arrays having the fastest and individual longs the
slowest invocation time.

5000
4000

3000

Time [us]

2000

1000

Not Encap Array Sequence Structure

@ Time [us] 4432 4090 4188 4225

Fig. 25: IDL.ENCAP NT AMD200 local (1 call)

THROUGH.IN
The tests show that:
- Time to pass a basic IDL data type stays roughly the same regardless of the type being passed.
- Time to pass an array or a sequence of a basic IDL data type depends mostly on the length of data in octets.

- Encapsulating an argument within any adds a substantial overhead. Hence, when passing an array or a sequence
of anys, the invocation time primarily depends on the number of anys.

43

Running the same test suite over an idle 10BASE-T Ethernet shows that:

- Unless a very large number of complex arguments is passed, the constant overhead of an invocation
overshadows the impact of argument sizes and types. Hence, it pays off to call less often with more arguments
than vice versa.

- Local roundtrip times are roughly 133% of local delivery times (except for any data types). Remote RTT is
roughly 103% of local RTT for basic data types, 123% of local RTT for arrays and sequences. Large (1000
elements) arrays and sequences of any are passed faster over the network (about 16% in our configuration).

- Paradoxically, local invocation times may sometimes be longer than network invocation times (e.g. when
passing arrays of anys). This is caused by computational intensity of marshalling and has been explained by
IONA in the Knowledge Base (article number 434.994).

6000
5000 +
4000 -
@
=X
© 3000 -
E
= 2000 -
1000 -
0
Float |Double| Long | ULong | Short |UShort| Char | Octet Any - | Any - | Any - [Any - Any - | Any - ANy - Any -
Float |Double| Long | ULong | Short |UShort| Char | Octet
M Local deliv. 3178 | 3166 | 3140 | 3146 3324 | 3370 | 3148 | 3384 | 3532 | 3760 | 3692 | 3554 3562 | 3598 | 3592 | 3608
W Local RTT 4264 | 4258 | 4252 | 4252 4494 | 4466 | 4248 | 4534 | 4660 | 4890 | 4824 | 4674 4682 | 4712 | 4704 | 4722
ORemote RTT | 4453 | 4457 | 4443 | 4447 4440 | 4443 | 4437 | 4440 | 4887 | 4937 | 4917 | 4907 4923 | 4930 | 4927 | 4937

Fig. 26: THROUGH.INNT AMD 200 and Int166 -> AMD200 idle net (time to pass basic data types—1 call)

7000

6000 F

5000 -
4000 -

3000 -

Time [us]

2000 -
1000 -

o | | | | | | | | | | | | | |
Float |Double| Long | Ulong | Short |Ushort| Char | Octet Fsleq: Dsec:; Lseq< UsLeq< Ss:q: USSe:<rt ;E“ Osetq: Ztg;i
[256] | [128] | [256] | [256] | [512] | [512] |[1024] |[1024] | o2 |Poubie] Long, jLmong) shor, ° ar, joctet,

256> |, 128>| 256> |, 256> | 512> |, 512>| 1024> | 1024>| >

dLocal deliv. 3296 | 3280 | 3284 | 3306 | 3284 | 3326 | 3314 | 3280 | 3520 | 3416 | 3578 | 3474 | 3810 | 3668 | 4180 | 4080 | 3492

WLlocal RTT 4396 | 4402 | 4400 | 4406 | 4410 | 4428 | 4546 | 4398 | 4642 | 4538 | 4750 | 4612 | 4932 | 4776 | 5274 | 5188 | 4632

ORemote RTT | 5457 | 5443 | 5443 | 5467 | 5443 | 5440 | 5457 | 5453 | 5733 | 5653 | 5850 | 5747 | 6070 | 5937 | 6500 | 6393 | 5547

Fig. 27: THROUGH.INNT AMD 200 and Int166 -> AMD200 idle net (time to pass compound data types+string—1 call)

44

450000
400000 |—
350000 |
_ 300000 - - -
5 250000 - -
g 200000 — —
F 150000 1 - ||
100000 || - -
== 0l S Frer= S El e
0 1|
Any [1024] -|Any [1024] -| Any [512] - | Any [256] - | Any [256] - s‘j’;;ﬁ"y' s‘j‘g;ﬁ"y’ seq <Any, | seq <Any, | seq <Any,
Char Octet Short Long Float 512> - Short | 256> - Long | 256> - Float
Char Octet
Olocal deliv. | 397680 402164 161926 82968 83080 404498 405894 164904 84732 84836
mLocal RTT 405898 410452 166624 85908 86036 413040 414576 169806 87784 87856
ORemote RTT | 336847 338167 172810 89853 89757 345277 347473 177070 91107 90977

Fig. 28: THROUGH.IN NT AMD 200 and Int166 -> AMD200 idle net (time to pass any types—1 call)

7.1.1.3 Dynamic Type Manipulation

Orbix fully supports DII and DSI. In addition to the standard DII and DSI calls, it also provides a stream-based user-
friendly interface to both DII and DSI. User defined exceptions are not supported when using DII.

7.1.1.4 Repositories

The Interface Repository is provided as a standalone server, capable of parsing IDL definitions when launched or on-the-
fly when queried. The repository complies with the CORBA specification.

All standard server activation policies are supported by the Implementation Repository. The Implementation Repository
also provides a level of security by protecting server launch and invoke operations by access rights based on user names
and hosts.

7.1.1.5 Interoperability

Starting from version 2.3, Orbix uses the IIOP protocol as default (earlier versions use a proprietary protocol, called
POOP—Plain Old Orbix Protocol, but all versions starting from 2.0 support [IOP).

The IIOP protocol implementation inside the Orbix daemon has problems responding to the ITOP 1.0 Location Request
message, thus the Orbix 2.2 and 2.3 servers on Windows NT appear to be unable to interoperate with other than Orbix
clients (this can be worked around but the solution is cumbersome' and disables the automatic server activation
mechanism). Orbix 2.2 on AIX has problems passing sequences. The detailed results of the interoperability test can be
found in section 9.1.1.2.

! The workaround that worked in our tests was based on substituting the real server port for the demon port in

the object references. According to IONA technical support, this can be done automatically using the undocumented
useTransientPort () call, butin our tests this call caused the server to crash. The latest patch for Orbix 2.3 (#12)
should fix the problem as well.

45

Orbix for Windows has a built-in support for interoperability with OLE/COM/ActiveX. Orbix programmer can
implement any combination of CORBA/COM server/client. Orbix is able to communicate with Java applications using
the IIOP protocol. IONA also provides a Java-based ORB called OrbixWeb.

7.1.2 Nonstandard Extensions

7.1.2.1 Communication Extensions

7.1.2.1.1 Locating Objects

To locate object implementations, Orbix provides a proprietary solution called Locator. When using the Locator, a client
asks for available object implementations by giving a service name. The Locator then returns a list of hosts running the
given service.

Orbix comes with a default Locator implementation that uses a static configuration file (the file contains tuples of service
names and addresses of hosts that can potentially run the service). A host that does not run the advertised service can
forward incoming Locator requests according to their configuration file. A client programmer can replace the default
Locator implementation.

7.1.2.1.2 Binding To Objects

The bind () call in Orbix allows the client side code to bind to an object of a given interface even when the server
or the object key is not specified. The actual binding can be deferred until the first request is sent
(CORBA: :ORB: :pingDuringBind ()).

7.1.2.1.3 Instantiating Implementations

On the Orbix server, all instances of the CORBA: : Object class are registered automatically by the ORB at the time
of their creation. Hence, it is not necessary to register objects explicitly (indeed, no call for explicit object registration
is provided).

To delete an object implementation, the server programmer should decrease its reference count to zero. When the count
reaches zero, Orbix releases the resources associated with the object implementation and deletes the implementation
object. It is also possible to call the BOA: : dispose () operation to delete the object implementation (but this is not
recommended in the documentation). By default, it is not possible to delete an object implementation using the C++
delete operator (an exception is raised), but this behavior can be changed using the set unsafeDelete () call.

7.1.2.14 Persistent References

In Orbix, persistent object references are provided by a mechanism based on Loaders. A Loader is consulted whenever
an inactive object implementation is contacted by a client, and whenever the object implementation is about to be deleted.
By supplying its own loader, the server programmer can specify the behavior of the ORB in these two situations (e.g.
create the object implementation to be contacted, or save the current state of the object implementation to be deleted).

7.1.2.1.5 Automatic Activation
The Orbix daemon is able to launch a server automatically whenever a request for the server comes in and the server is

not running. Orbix 2.2¢01 automatic activation only works on the servers that use the proprietary Orbix protocol. This
is most likely a bug, and is fixed in Orbix2.3c, where the automatic activation works OK.

46

7.1.2.1.6 Automatic Reconnection

If the connection is lost while the server is idle, it is re-established transparently (the client will not know about the
failure). If the connection is lost while the server processes a call, an exception is raised and the connection can be
re-established simply by retrying the call (the operation completion status is returned as a part of the exception). This
behavior is not documented though and is valid for multi-threaded versions of Orbix only, single-threaded Orbix throws
the COMM_FAILURE exception whenever the connection is lost and re-establishes the connection when the call is
retried.

The automatic reconnection can be turned off using the CORBA: : ORB: : noReconnectOnFailure () call. The
timeout for a single connection attempt and the number of maximum retries can be set as well.

7.1.2.1.7 Invocation Extensions

The client side proxy object can be customized in Orbix by supplying a proxy factory (multiple factories can be
installed). This allows the client to change the default invocation semantics and introduce optimizations such as caching
when needed. The default proxy object is usually reused to provide the communication support.

Callbacks can easily be achieved using the Orbix multi-threading support. Single-threaded Orbix versions can implement
callbacks as well, this is done by the client explicitly polling for events during the remote invocation and requires extra
coding from the application programmer.

7.1.2.1.8 Customizability

In Orbix, various hooks along the request processing path can be set using filters and request transformers. In addition
to this, the server event processing loop (obj is ready() and impl is ready ()) can be integrated with a
foreign events handler.

The Orbix filters can be used for filtering and adding data to requests. Filters are of two kinds: per-process (all requests
within a process are filtered) and per-object (only requests for a specific object are filtered). The two kinds of filters can
co-exist within a single server, in such a case the per-object filters are architecturally closer to the object implementation
(are invoked after per-process filters when an invocation arrives and before per-process filters when the invocation
returns). Note that the per-process filters cannot access arguments of the requests—only the operation name and the
target object reference is available.

Per-process filters can be installed in eight points along the request processing path:

- client side - before and after marshalling data into an outgoing request, before and after unmarshalling data from
an incoming reply

- server side - before and after unmarshalling data from an incoming request, before and after marshalling data
into an outgoing reply

When the client and the server are collocated in the same address space, only per-object filters can be used. Per-object
filters require the implementation to be bound to the skeleton class using the TIE approach.

Another way to modify incoming or outgoing requests (by adding data new data or by modifying the existing data within
the request) is provided by request transformers. Transformers are invoked upon all sent or received requests within a
process. Unlike filter, a transformer does not operate directly upon the Request class, but only upon a data buffer (array
of octets).

Orbix supports integration of the server event processing loop with a foreign events handler. There are two ways to
achieve this integration—either the foreign event handler polls for Orbix events (see the processEvents () set of
calls), or the code that polls for foreign events is called from within the Orbix event loop (see the addForeignFD ()
set of calls). This is especially useful in single-threaded applications.

47

7.1.2.2 Multi-threading Extensions

Orbix is available in two basic versions: single-threaded (Orbix) and multi-threaded (OrbixMT)'. The only significant
difference between the two versions is that all libraries provided with OrbixMT are thread-safe (an application code
written for the single-threaded Orbix will execute correctly if linked with OrbixMT libraries).

The thread-safe libraries are built upon the underlying operating system's thread package. Both the client and the server
can be multi-threaded (provided their code also relies on the operating system's thread package). Multi-threaded and
single-threaded clients and servers can be combined in any fashion.

7.1.2.2.1 Multi-threaded Servers

An Orbix server can support all of the threading strategies listed in section 4.1.2.2.1. Using the request filtering
mechanism (special per-process filter of the CORBA: : ThreadFilter class), Orbix allows the server programmer
to arbitrarily create threads to serve incoming requests or to pass the request to any of the existing threads. Thus, the
programmer can choose the best-fitting strategy for dispatching of incoming requests.

The flexibility of this approach is paid for by the fact that none of the threading strategies from section 4.1.2.2.1 is
supported automatically (the programmer has to implement them by hand by inheriting from the
CORBA: : ThreadFilter base class and by rewriting the inRequestPreMarshall () method). On the other
hand, it is not difficult to implement the most common strategies (e.g. pool of threads) once and reuse the code whenever
it is useful (e.g. as a library)*.

The MT.POOL test verifies the ability of the ORB to create pool of threads. The implementation of the threading strategy
is fully in the server programmer's hands.

7.1.2.2.2 Multi-threaded Clients

The Orbix client can be multi-threaded. Both the MT.CLIENT and the MT.CONN benchmarks take 50 seconds to
complete, indicating that Orbix clients can issue parallel requests both over single and multiple connections.

7.1.2.2.3 Multi-threaded ORB

At the ORB level, a single TCP/IP connection is used to transfer all requests between two address spaces. The application
programmer can limit the number of threads handling the incoming connections (connection threads) by using the
CORBA: :ORB.maxConnectionThreads () operation, and the number of connections per connection thread by
using the CORBA: : ORB.maxFDsPerConnectionThread () call

7.1.2.2.4 Concurrency

Both at the client and at the server side, it is the application programmer who is responsible for protecting shared data
structures at the application level (using the underlying operating system's synchronization primitives).

As for locking the ORB's internal data structures, a programmer can control the locking of every CORBA: : Object
instance using its _enableInternallock () operation.

Orbix for Windows is shipped with both the single-threaded and the multi-threaded libraries.
For an example implementation, see the MT.POOL benchmark.

48

7.1.2.3 Management Extensions

Alone, the Orbix installation provides a set of command line utilities to manage the Implementation Repository, used
by the Orbix daemon to implement dynamic activation policies (apart from the dynamic activation, the Implementation
Repository also provides a level of security by requiring each server to be registered with explicit launch and invoke
rights based on user and host names).

The basic installation of Orbix 2.3c Desktop also contains the GUITools 3.1 package, functionally similar to the
command line utilities mentioned above encapsulated in a comfortable graphical suite. The GUITools 3.1 package
contains the following tools:

- Orbix Configuration Tool - for basic configuration of the local ORB installation (network configuration,
directories, logging and other basic settings).

- Orbix Interface Repository Browser - to browse the contents of the Interface Repository server (see section
5.1.1).

- Orbix Naming Service Browser - to browse the contents of the Naming Service database (see section 5.1.2.2).

- Orbix Server Manager - to manage the Implementation Repository, and also to configure remote Orbix object
implementations (provided the user has the necessary rights).

A separate management package, called OrbixManager, is also available. Through the graphical user interface of the
OrbixManager suite, a system administrator can monitor and manage the Orbix applications running on various hosts
throughout the network. In addition to the graphical interface, OrbixManager also provides access to the monitoring and
management information through the Simple Network Management Protocol (SNMP) Management Information Base
(MIB). Hence, the system administrator can manage Orbix using any SNMP system management platform.

Apart from allowing the system administrator to access the configuration and management information from a single
location, OrbixManager also monitors Orbix components and notifies the administrator about unexpected events, such
as server shutdowns or exceptions (to notify the management service of an exception, the application must be linked with

a management library). OrbixManager can also collect statistical information (e.g. number of invocations, number of
exception raised, throughput, number of connections, queue lengths) from a running application.

7.1.3 Scalability

7.1.3.1 Speed vs. Number of Objects

7.1.3.1.1 PROXY

The PROXY.CREATE benchmark indicates dependence between the number of objects and the object creation time both
on the server and the client sides. The PROXY .FIRST and PROXY .NEXT benchmarks show that:

- There is a significant difference between the time it takes to invoke an operation for the first time and for all
subsequent times.

49

PROXY NT local NT idle net
objects [1000 | 2000 | 3000 1000 2000 | 3000

CREATE 8949 | 27154 59816 12394 | 37036 82242
FIRST 4706 9611 | 14496 5167 10266 | 16089
NEXT 4393 8477 12804 | 4462 9601| 13514

Fig. 29: Table PROXY NT AMD200 and Int166 -> AMD200 idle net (time in ms)

7.1.3.1.2 PROXY.LOT
The PROXY.LOT benchmark shows that:

- There is a linear dependence between the number of objects handled by the server and the time it takes to create
and register a new object. The dependence becomes significant with hundreds of objects handled.

- There is a linear dependence between the number of objects handled by the client and the time it takes to receive
a new object reference. The dependence becomes significant with hundreds of objects handled.

- There is a linear dependence between the number of objects handled by the server and the time it takes to invoke
a request on the server. The dependence becomes significant with thousands of objects handled.

- The dependency between the number of objects and invocation times is less dramatic on the Pentium Pro
machine than it is on others we have had the chance to test.

30000 6000
25000 5000
’_.’
— 20000 =] — — 4000 el I R
[} [}
£ £
‘o 15000 - 5 3000 +- 1 —1
E E
F 10000 i I— F~ 2000 { 1 — |-
5000 ;‘ﬁﬂ‘ — - 1000 A) S B
0 0
1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000 1000 | 2000 | 3000 | 4000 | 5000
‘D Get | 5035 | 6721 | 8902 | 11069 | 13059 | 15226 | 16876 | 18920 |21133|23222 mGet | 3286 | 3509 | 3947 | 4272 | 4960
Objects on server & proxies on client Objects on server & proxies on client
Fig. 30: PROXY.LOT NT AMD200 local Fig. 31: PROXY.LOT NT PentiumPro Int179 local

50

20000

15000

10000 -

Time [us]

5000 -

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 |10000

mF1nop | 6162 | 6174 | 6172 | 6237 | 6255 | 6211 | 6276 | 6269 | 6266 | 6271
mF1op | 1374113888 | 13925 | 14166 | 14273 | 14324 | 14315 | 14396 | 14411 | 14442

Objects on server & proxies on client

Fig. 32: PROXY.LOT NT AMD200 local

70000
60000
50000
40000 -
30000
20000

10000 -
0 | | | | | | | |
1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

Time [us]

mF2nop | 6031 | 6146 | 6318 | 6175 | 6195 | 6061 | 6332 | 6169 | 6138 | 6260
WmF2op |57376 |57369 | 57869 | 58476 | 58059 | 58530 | 58546 | 58582 | 59314 | 59045

Proxies on client

Fig. 33: PROXY.LOTNT AMD200 local

7.1.3.2 Resources vs. Number of Objects

For 10000 objects, the client consumes 1232 bytes per object proxy, the server consumes 1141 bytes per object (a trivial
implementation object with no attributes and one operation void x ()).

7.1.3.3 Resources vs. Queued Requests

7.1.3.3.1 ONEWAY

When testing Orbix 2.2¢01, the number of oneway void calls that could be issued before the client blocked was only
limited by machine resources. The calls were queued until all available virtual memory was consumed (in our tests,
30000 queued oneway calls consumed 100MB RAM).

Details can be found in the Orbix C++ knowledge base as articles number 138.96, 309.556, and 600.714.

7.1.4 Robustness

No unexpected crashes and no bugs were encountered in Orbix under normal usage conditions. The ORB exhibited a
stable performance in our tests.

51

7.1.4.1 Reliable Servers
Reliable servers can be constructed using the auto-rebinding feature and the Orbix daemon (daemon used for registering
the object implementations and for dynamic activation of the object implementations). Persistent objects (based on

Loaders) can be used as well—after a server crash, the Orbix daemon will restart the server, the object state can then be
restored using Loaders.

7.1.4.2 Limits

7.14.2.1 SIZE

In Orbix, the maximum request size is not limited (tested up to 32MB requests). When a too large message arrives at the
server, the machine resources (memory) are exhausted, no exception is raised.

7.14.2.2 Number of Objects

Orbix 2.2MT AIX server terminates after 35500 objects are created ("Server killed"). On the NT platform, the number
of objects was only limited by the amount of available memory (as far as we could test, the AIX limits do not apply on
NT).

7.1.43 Bugs

7.1.4.3.1 Server name case sensitivity bug

Whenever a server is started, it checks whether it has been registered by putit. Manually launched servers use a
case-insensitive check, automatically launched servers use a case-sensitive check. Hence, a server may fail to start (or
re-start) automatically even when it can be launched manually. This behavior is exhibited by Orbix 2.2c01 NT and on
Orbix 2.3¢ NT.

7.14.3.2 Module level typedefs bug

The Orbix IDL compiler generates incorrect code e.g. for "module A { typedef sequence <int> B; };"
(the generated C++ code cannot be compiled because of undefined static functions). This is a bug of the Orbix 2.2c¢01
IDL compiler, and is fixed in Orbix 2.3c.

7.1.4.3.3 Scoped name collision bug

The Orbix IDL compiler generates an error message when two names in different scopes differ in case only (e.g. for
"interface A { void a (); };"). Thisis abug of the Orbix 2.2c01 IDL compiler, and is fixed in Orbix 2.3c.

7.14.3.4 User name with spaces bug

Orbix 2.2¢01 daemon has problems handling user account names that contain spaces (among other things, rights to
launch and invoke servers are not tested correctly).

7.14.3.5 Telnet to IIOP port bug

Orbix 2.2¢01 daemon crashes when someone telnets to its [IOP listening port and starts sending garbage. This bug is
fixed in Orbix 2.3c.

52

7.14.3.6 Interoperability Bug

Orbix server on NT cannot be accessed by other than Orbix client. Orbix 2.2 server on AIX has problems with sequences.
For more information see the sections 7.1.1.4 and 9.1.1.2.

7.2 Services

Of the standardized services, the Naming Service (OrbixNames), the Events Service (OrbixEvents), the Trading Service
(OrbixTrader), the Security Service (OrbixSecurity), and the Transaction Service (OrbixOTS) are provided. A number
of proprietary services is also provided, including OrbixTalk for messaging (complies with but significantly extends the
Events Service), OrbixSSL for secure connections, and a number of adapters to products such as ObjectStore, Versant,
and MQSeries.

7.2.1.1 Lifecycle Service

Neither the standardized Lifecycle Service nor any functionally similar replacement is provided by Orbix. Reference
counting is used to keep track of object and proxy usage and to delete unused objects and proxies.

7.2.1.2 Naming Service

The implementation of the Naming Service in Orbix is called OrbixNames. OrbixNames claims full compliancy with
the OMG Naming Service specification and provides all interfaces defined by the standard including the names library.
OrbixNames extends the standard by making it possible to bind several objects to a single name.

The OrbixNames server is persistent—the database of name-to-object bindings is preserved across server invocations.
This increases the overall robustness of the system that uses OrbixNames.

The OrbixNames server extends the OMG Naming Service standard by providing a special handling of object groups
(object group is an object collection implemented by the OrbixNames server). When resolving a name bound to an object
group, the OrbixNames server returns a reference of a single group member, picked using either a round-robin or a
random choice algorithm. Using this mechanism, multiple servers can offer a service under the same name (e.g. for load
balancing purposes), with clients being unaware of the service replication.

As a part of the service, a collection of command line utilities is provided. The utilities allow service clients to
manipulate the contents of the name-to-object bindings database using operations similar to those exported by the
standardized IDL interfaces.

7.2.1.3 Trading Service

The implementation of the Trading Service for Orbix is called OrbixTrader. OrbixTrader complies with the OMG
Trading Service standard and implements the Linked Trader service (the Linked Trader service functionality includes
registering and querying of offers, administering and linking of Traders, but does not include proxy offers).

The OrbixTrader server is persistent—the database of offered services is preserved across server invocations. This
increases the overall robustness of the system that uses OrbixTrader.

As a part of the OrbixTrader service, a GUI utility to manage the Trader servers is provided. The utility allows to manage

service offers (query, list, add, modify, remove), manage service types (list, add, remove), and to set federation import
attributes.

53

7.2.1.4 Events Service

There are two implementations of the Events Service for Orbix—OrbixEvents and OrbixTalk. OrbixEvents complies
with the OMG Events Service specification and provides untyped and typed events using the push communication model
on a transient event channel. OrbixTalk complies with the OMG Events Service specification and provides untyped
events using the push and pull communication models on a reliable persistent event channel.

The OrbixEvents service comes as two servers, one implementing the untyped events, the other implementing the typed
events. The untyped events server can provide an arbitrary number of event channels and can buffer pending events in
a transient storage. The typed events server provides a single event channel.

In the OrbixTalk service, events are grouped hierarchically using Uniform Resource Locator (URL) like topic names
(managed by the OrbixTalk Directory Enquiries daemon). Compared to the Naming Service, this mechanism is more
flexible, as the event consumers can select their topics of interest using wildcards.

The OrbixTalk service implements the event delivery mechanism atop the UDP/IP multicast support, thus yielding
considerable scalability with respect to the number of attached consumers. Multicast IP addresses are assigned on a per-
topic basis by the OrbixTalk Directory Enquiries daemon.

By itself, the OrbixTalk reliable multicast protocol guarantees reliable (ordered) delivery (all consumers receive the same
events in the same order). In addition to this, OrbixTalk MessageStore event channel can be used to provide persistent
logging of events (using the persistent event log, a consumer can request past events to be replayed e.g. during a failure
recovery process).

As a part of the OrbixTalk service, a collection of utilities is provided. The utilities allow service clients to analyze the
state logs of the event suppliers and consumers, to dump the contents of the persistent event channels, and to monitor
the OrbixTalk multicast network traffic.

7.2.1.5 Persistency Service

All by itself, Orbix supports persistent object references and launching servers on demand. This allows persistent servers
to be implemented with significant amount of coding. To automate the additional coding related to providing persistency,
and to provide for integration of persistent servers with existing database products, the Orbix Database Adapter,
Orbix+ObjectStore Adapter, and the Orbix+Versant Adapter are provided.

The Orbix Database Adapter is a generic framework whose purpose is to help server implementors integrate an arbitrary
database with the Orbix ORB. The adapter helps to implement all basic tasks related to providing persistent objects
(object reference generation, activation, registration, operation dispatching and transaction management). A detailed
documentation with a step-by-step adapter implementation guide and a diagnostic support are provided as a part of the
Orbix Database Adapter.

The Orbix+ObjectStore Adapter and Orbix+Versant Adapter are tailor-made to integrate Orbix with specific object-
oriented databases (ObjectStore and Versant). Both adapters are similar in structure to the generic Orbix Database
Adapter and allow the server implementor to use the specific ODBMS without having to care about the issues of
ODBMS-ORB interaction.

Apart from the three adapters listed above, the OrbixOTS transaction service can be used to synchronize access to
database resources through the standardized X/Open XA interface.

7.2.1.6 Transaction Service

The implementation of the Transaction Service for Orbix is called OrbixOTS. OrbixOTS is based on the X/Open
distributed transaction processing reference model and can be accessed through both the X/Open TX/XA and the

54

standardized OMG OTS interfaces. The four main components of OrbixOTS are the transaction and resource managers,
the concurrency control service, and the logging and recovery mechanism.

The OrbixOTS transaction manager is responsible for coordinating distributed transactions. The transaction manager
comes in a form of a library linked to all nodes (both clients and servers) participating in a transaction. The manager
supports multi-threading and nested transactions.

The OrbixOTS resource manager provides access to transaction resources. The resource manager supports the X/Open
XA interface, making it possible to connect products such as Oracle, Sybase or Informix RDBMS to the transaction
service in addition to the OTS resource objects.

The OrbixOTS concurrency control service is a straightforward implementation of the OMG Concurrency Control
Service. Applications that require locking can be linked with this service and lock objects through its interfaces.

The OrbixOTS logging provides a persistent log of transactional operations. The log can be stored in a file or on a raw
device and optionally mirrored. OrbixOTS uses the log to replay operations during crash recovery.

As a part of the OrbixOTS service, a utility to view the status of past and running transactions, to commit and abort
running transactions, and to manage transaction logs is provided.

7.2.1.77 Security Service

An implementation of the OMG Security Service is provided (OrbixSecurity), as well as an interface to the SSL layer
(OrbixSSL).

7.3 Miscellanea

7.3.1 Requirements
Orbix support a very wide range of platforms, from PCs to mainframes and real-time systems:

- Windows NT/95 (including MT and OCX support) / version 2.x

- Sun Solaris 2.x (ST/MT) / version 2.3

- Hewlett Packard HP/UX 10.20 (ST/MT) / version 2.3

- Hewlett Packard HP/UX 11.0 (MT), (ANSI C++ Compiler) / version 2.3
- Silicon Graphics IRIX 6.x / version 2.x

- IBM AIX 4.2.1 (MT) / version 2.3

- Digital Unix 4.0 (MT) / version 2.3

- Digital Alpha/Open VMSv7.1 / version 2.2

- Sequent SVR4 / version 2.01

- MVS / version 2.x

- VxWorks 5.3 / M. 68K, PowerPC (NT-Hosted, Solaris-Hosted) / version 1.3.5
- QNX 4/ version 2.2

55

7.3.2 Development Support

7.3.2.1 Documentation

The Programmer's Guide, the Programmer's Reference Guide, the Installation and Administration Guide, and the
ActiveX Integration Guide (for Windows versions of Orbix) are shipped with Orbix (both printed and in the Adobe
Acrobat PDF format). The guides are well organized and readable.

In addition to the documentation, [ONA maintains a Knowledge Base of technical articles related to its products. The
Knowledge Base is well organized and many frequent questions and undocumented features are mentioned there. The
Knowledge Base is freely accessible from the [ONA homepage (http://www.iona.com/support/kb). The IONA home page
also offers a collection of design patterns for Orbix and OrbixWeb (called Cookbook and Internet Cookbook).

7.3.2.2 Development Support

Feature

Access to the reference count value Yes CORBA: :Object:: refCount ()
Warn when negative reference count No

Range checking on sequences No the [] operator does not check bounds
Generation of skeleton implementation Yes IDL compiler switch "-S"

Symbolic exception dumping to stream Yes overloaded operator << for exception type
Broker activity logging Yes

Reference parsing utilities No undocumented call makeIOR ()

7.3.2.3 Technical Support
IONA offers technical support for all its products. A customer needs to buy a special support contract to obtain full

technical support (however, the technical support staff also answered our questions even when we had no such contract,
albeit the response times were sometimes long). Patches for Orbix can be downloaded from the IONA web page'.

7.3.3 Vendor

7.3.3.1 Pricing Policy

The following table lists IONA products for Windows 95 and NT as advertised by IONA on 13 May 1998. The prices
are in US dollars.

http://www.iona.com/support/rolled-up/index.html

56

Product Type Price (US$)
Orbix Development 2995
Orbix Runtime 2500
OrbixWeb (Professional) Development 1499
OrbixWeb Development 799
OrbixNames Development 495
OrbixTrader Runtime (Primary CPU) 5000
OrbixTrader Runtime (Secondary CPU) 2500
OrbixEvents Runtime (Primary CPU) 1500
OrbixEvents Runtime (Secondary CPU) 750
OrbixTalk Development 2500
OrbixManager Development 1500
Orbix DB Adapter Framework Development 1000
OrbixOTM Development 6500
OrbixOTM Runtime (Primary CPU) 4000
OrbixOTM Runtime (Secondary CPU) 2000
OrbixSecurity Development 2500
OrbixSecurity Runtime 5000
OrbixOTM Support 975
all other products Support 650

IONA provides discounts for commercial, inhouse and academic projects. These start at 25% and are project based.
Arrangements can be made if a number of products is purchased.

7.3.3.2 Company
IONA Technologies PLC, originally based in Ireland (now with offices in Australia, Germany, Great Britain, Hong

Kong, USA), was founded in 1991. The company specializes in CORBA technology and CORBAservices. The products
include a wide range of implementations of various OMG specifications.

57

8 Inprise VisiBroker

Broker: VisiBroker
Vendor: Inprise Corp.
Version tested: VisiBroker for C++ 3.0 on Windows NT, AIX
Platforms used: Windows NT 4.0 Workstation
= 200MHz AMD K5 64MB RAM
= 166MHz Intel Pentium 64MB RAM
= 179MHz Intel PentiumPro 64MB RAM
AIX 4.1 on IBM RS6000-595
network: 10BASE-T Ethernet
compilers:
= Microsoft Visual C++ 4.2
= IBMC Set++3

VisiBroker is a CORBA 2.0 ORB now distributed by the Inprise Corporation. Recently, the ORB was distributed by
Visigenic, and is based on the code of Orbeline (PostModern Computing.) The ORB is provided for several C++ and
Java platforms, accompanying products (e.g. object services) are also available.

8.1 Object Request Broker

8.1.1 Standardized Functionality

8.1.1.1 Interface Definition Language

VisiBroker IDL conforms to the CORBA 2.0 specification. The mapping to C++ conforms to the specification.
VisiBroker 3.2 (not tested in this report) provides some of the newer IDL extensions (e.g. the DoubleDouble, WString,
WChar types).

8.1.1.2 Basic Remote Invocation

VisiBroker is a full implementation of the CORBA 2.0 standard. It provides complete ORB, BOA, DII, DSI, Interface
Repository (IR) and Implementation Repository. VisiBroker supports the invocation semantics defined by the CORBA
standard (at-most-once and best-effort), allows implementing server activation policies, and supports exceptions and
context handling.

The semantics of the BOA::obj is ready() call differs from the standard. With VisiBroker, the
obj 1is ready () callis used to register individual object implementations on the server (but the ORB also has an

undocumented automatic registering feature). For more information about object creation and deletion, see section
8.1.2.1.3.

VisiBroker supports both the "at-most-once" and "best-effort”" invocation semantics. In the default configuration,
however, the “at-most-once” semantics does not conform to the specification, which says that an operation should be
invoked exactly once or an exception should be raised. VisiBroker provides automatic reconnection regardless the
completition status of the invocation (see section 8.1.2.1.6).

58

Dynamic activation policies are supported using Implementation Repository and Object Activation Daemon. All basic
activation policies described by the standard are supported.

81.1.2.1 Measurements Verification

CALL

The results of the CALL benchmark indicate there is no significant dependence between the invocation times and the
object invocation pattern. This means that the results of the other benchmarks can be applied to applications with
different invocation patterns as well.

16000
14000
12000
g‘ 10000
S 8000 |
E 6000 |
4000 -
2000 -
0
As Thru | As Proxy | Rev Thru | Rev Proxy | Random
O Optimized 8433 8412 8207 8442 8428
m Non-opt. 14443 14316 14365 14280 14372
Fig. 34: CALL NT Int179 local (10.000 calls)
81122 Dispatcher Performance

IDL.NAMES

The most important result from the IDL.NAMES benchmark is the demonstration of the fact that calling operations with
longer (500 characters) names takes longer time to complete. This is due to the fact that the marshalling, unmarshalling,
transport and dispatching algorithms all use a plain string form of the operation names. The test shows that:

- For normal-length names (10-30 characters), the difference in invocation time is insignificant (about 1%).

- The difference in invocation time is more significant when running over a network (this is due to the fact that
the operation name is transported in a plain string form).

59

800 2000
700 1800
1600
600
1400
- 500 = 1200
3 =)
‘.E',' 400 ‘.E',' 1000
= 300 = 800
600
200
400
100 200
0 0
X xxxx |XAAA |yAAA |AAAx |AAAy X xxxx |XAAA |[yAAA|AAAx |AAAy
@ Time[us] | 681 753 | 748 | 749 | 745 | 749 m Time[us] | 1351 | 1852 | 1850 | 1854 | 1848 | 1851
Fig. 35: IDL.NAMES NT AMD?200 (1 call) Fig. 36: IDL.NAMESNT Int166 -> AMD200 (idle net, 1 call)
IDL.LONG

The relationship between the position of an operation within an interface and the time it takes to complete the operation

is not exhibited by VisiBroker.

800
700
600
500
400
300
200
100

0

Time [us]

50. op

95. op

O Time [us]

686

687

689

Fig. 37: IDL.LONG NT AMD200 (1 call)

IDL.DEEP

This benchmark indicates there is no relationship between the interface nesting depth and the time it takes to complete

an operation of that interface.

1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

Time [us]

1.0p

50. op

95. op

O Time [us]

1297

1297

1296

Fig. 38: IDL.LONG NT Int166 -> AMD200 (idle net, 1 call)

60

800
700
600
500
400
300
200
100

Time [us]

1. mod

5. mod | 10. mod

15. mod

mTime [us] | 665

666 661

662

Fig. 39: IDL.DEEP NT AMD200 (1 call)

81123 Overall Performance

IDL.ENCAP

The IDL.ENCAP benchmark compares the invocation time when passing 100 longs individually, in an array, in a

1400
1200
1000
800
600

Time [us]

400

200

1. mod

5. mod

10. mod

15. mod

@ Time [us] | 1311

1306

1305

1304

Fig. 40: IDL.DEEP NT Int166 -> AMD200 (idle net, 1 call)

bounded sequence, and in a structure. Overall, the tests show that:

- The deviation in invocation times is about 10%, with arrays having the fastest and individual longs the slowest

invocation time.

THROUGH.IN

The tests show that:

- Time to pass a basic IDL data type stays roughly the same regardless of the type being passed (deviation is
about 10%).

- Time to pass an array or a sequence of a basic IDL data type depends mostly on the length of data in octets.

900
800
700
600
500
400
300
200
100

0

Time [us]

Not Encap

Array

Sequence

Structure

@ Time [us]

755

664

683

757

Fig. 41: IDL.ENCAP NT AMD200

61

- Encapsulating an argument within any adds a substantial overhead. Hence, when passing an array or a sequence
of anys, the invocation time primarily depends on the number of anys.

Running the same test suite over an idle I0BASE-T Ethernet shows that:

- Unless a very large number of complex arguments is passed, the constant overhead of an invocation
overshadows the impact of argument sizes and types. Hence, it pays off to call less often with more arguments
than vice versa.

- Local roundtrip times are roughly 165% of local delivery times (except for any data types). Remote RTT is
roughly 188% of local RTT for basic data types, 310% of local RTT for arrays, 300% of local RTT for
sequences (note that the local measurements use an optimized IPC mechanism).

1600
T s WO oy O VO SO S S B
1200 ||
= 1000 i
=
o 800 L
E 600 | L
400 - i
200 + ||
0 L
Float |Double| Long | ULong | Short |UShort| Char | Octet ?Tgat_ I;)A::bl-e ?_23:19 S:Zn;; g:ir; L’JASn:o;t A(;nga; gget
O Local deliv. 392 422 396 406 398 404 392 408 522 508 514 500 470 500 510 494
W Local RTT 686 682 686 706 678 680 672 676 824 810 838 792 784 788 812 788
ORemote RTT | 1347 1360 1340 1337 1337 1343 1343 1340 1443 1443 1433 1433 1433 1437 1437 1440

Fig. 42: THROUGH.IN NT AMD200, Int166->AMD200 idle net (time to pass basic data types—1 call)

2500

2000 -

1500 -

Time [us]

1000 -

500 -

Float |Double| Long | Ulong | Short |Ushort| Char | Octet Fsleq: Dsec::I Lseq< Usfq< Ss:q: US;:Z cs::q< ;etq: f;g;i
[256] | [128] | [256] | [256] | [512] | [512] |[1024] |[1024] | 2" |Pouble| Long, jLong) Shorl, 1L/5ho ar, | Octel,
256> |, 128>| 256> |, 256> | 512> |, 512>| 1024> | 1024>| >

MLocal deliv. 444 452 444 442 448 454 460 442 432 472 496 456 464 464 456 452 452
WLlocal RTT 732 736 732 730 732 732 738 742 764 766 780 766 764 802 760 762 772
ORemote RTT | 2297 | 2303 | 2293 | 2290 | 2300 | 2293 | 2290 | 2293 | 2337 | 2330 | 2323 | 2327 | 2330 | 2337 | 2323 | 2333 | 2343

Fig. 43: THROUGH.IN NT AMD200, Int166->AMD?200 idle net (time to pass compound data types—1 call)

62

140000

120000 -
100000 —
% 80000
[
£ 60000
£
40000 -
20000 | 4‘—'7 4‘—I7
o] n ANE R u ENE BN
Any [1024] -|Any [1024] -| Any [512] - | Any [256] - | Any [256] - s‘j‘é‘);ﬁ"y' s‘j%;’g"y’ seq <Any, | seq <Any, | seq <Any,
Char Octet Short Long Float) " 512> - Short | 256> - Long | 256> - Float
Char Octet
@ Local deliv. 52184 56120 25374 12868 12964 59082 49512 24854 12886 14212
mLocal RTT 57388 61308 28074 14330 14404 64366 54850 27530 14330 15632
ORemote RTT | 103027 71220 32960 17430 17847 65700 121267 32013 17180 16977

Fig. 44: THROUGH.IN NT AMD200, Int166->AMD200 idle net (time to pass any data types—1 call)

8.1.1.3 Dynamic Type Manipulation

VisiBroker fully supports DII and DSI, the DII mechanism does not work when server and client are collocated though.
VisiBroker 3.2 (not tested in this report) supports the DynAny type as well.

8.1.1.4 Repositories

The Interface Repository is provided as a standalone server. The Implementation Repository cooperates with a special
daemon used for activating servers (OAD).

8.1.1.5 Interoperability

VisiBroker's native protocol is IIOP, the interoperability tests did not show any problem with the [IOP implementation.
For more information see section 9.1.1.2.

The VisiBridge bridge should allow OLE applications to connect to a CORBA server. Right now, however, the bridge
is not on the Inprise product list.

IIOP can be used to communicate with Java applications. Inprise provides a Java based CORBA implementation called
VisiBroker for Java (VisiBroker for Java uses the Caffeine technology).

8.1.2 Nonstandard Extensions

8.1.2.1 Communication Extensions

81211 Locating Objects
To locate object implementations, VisiBroker provides a proprietary mechanism called the Location Service. The

Location Service can be queried for all available instances of an object (or their description) based on the interface
repository ID or (more precisely) on the ID coupled with the instance name.

63

Central to the Location Service is a specialized daemon (Smart Agent). A single Smart Agent is capable of locating all
object implementations within a single network segment (but more Smart Agents can be running within a single segment
as well). Smart Agents from different networks can exchange information about available object implementations.

The object implementations are registered automatically with the Smart Agent. Locating an implementation can either

be fully transparent or controlled by the application programmer. Apart from submitting queries to the Location Service,
the programmer can also register triggers (triggers notify the client of changes in the availability of object instances).

81212 Binding To Objects

The bind() call in VisiBroker allows the client side code to bind to an object of a given interface even when the
server or the object key is not specified. The actual binding can be deferred until the first request is sent to the object.

81213 Instantiating Implementations

To create an object implementation accessible from outside of the server address space, the following steps need to be
performed:

(1) create new object, passing an instance name to it (obj = new XXX i ("name"))
2) register the object using the BOA: :obj is ready () function (BOA->obj is ready (obj))
(3) atthis point, the object reference can be exported'
To delete the object implementation, the following step should be done:
- unregister the object using the BOA: :deactivate obj () call
- decrease the object's reference count to zero using release ()

The BOA: :0bj is ready () call (normally used to tell BOA the server is ready to handle requests in the unshared
activation mode) has a non-standard semantics in VisiBroker. It should be called on all CORBA objects to notify the
ORB of their existence.

81214 Persistent References

In VisiBroker, persistent object references are provided by a mechanism based on Activators. Activators are used for
deferring object activation until a client request, a single Activator can serve a single object or a group of objects.

81215 Automatic Activation

The Object Activation Daemon is able to launch a server automatically whenever a request for the server comes in and
the server is not running. The VisiBroker 3.0 C++ NT automatic activation has been tested and works OK.

81.2.1.6 Automatic Reconnection

Lost connections are re-established automatically regardless of the completion status of the call, which is dangerous in
most cases (in case of failure, operation invocation can be lost, or duplicated). This (default) behavior can be altered

! As an undocumented feature, VisiBroker automatically registers objects whose references are to be passed

outside the server address space.

64

using either client side interceptors, an additional argument to bind (), or a process-wide bind defaults setting (this
affects the string to object () behavior as well).

81.2.17 Invocation Extensions

The client side proxy object can be customized in VisiBroker. This allows the client to change the default invocation
semantics and introduce optimizations such as caching when needed. The default proxy object is usually reused to
provide the communication support.

When the client and the server reside in different processes on the same host, VisiBroker uses shared memory (on NTs)
or UNIX Domain Protocol (on UNIXes) for data transport. According to our measurements, this speeds up the
communication about twice on a 200MHz Pentium running Windows NT.

Callbacks can easily be implemented using the VisiBroker multi-threading support.

81218 Customizability

In VisiBroker, various events can be hooked using Interceptors. Interceptors can monitor or alter communication between
the client and the server. On the client side, Interceptors are installed on a per-object basis, on the server side on a per-
connection basis (a single client interceptor can be created to handle all server requests, a single server interceptor can
be created to handle all client connections).

Interceptors can control access to individual methods, view, add or modify the transmitted data, dynamically select a
server that receives the invocation, or provide an alternative location service should the default binding fail. The
Interceptors are separated into three groups:

- binding interceptor - notify when bind is called, bind succeeded, bind fails, the same for rebind, when exception
during bind occurred

- client interceptor - notify when preparing request, sending request, sending failed, sending succeeded, when
receiving reply, receiving failed, when exception occurred

- server interceptor - notify when locating, locate forwarded, locate failed, locate succeeded, receiving request,
preparing reply, sending reply, sending failed, request completed, when exception occurred

More than one Interceptor can be installed. The Interceptors are chained in order of their registration with the ORB.
Interceptors can also be installed when the client and server are collocated in the same address space (but a special
construct is needed in this case).

VisiBroker allows to integrate its event processing loop with the application event handler (this is useful especially in
single-threaded applications). Ready-made dispatcher classes for Windows and X Windows environments are provided.
An application programmer can write his own dispatcher class for other event-driven environments.

8.1.2.2 Multi-threading Extensions

Two sets of libraries (multi-threaded as well as single-threaded) are shipped with VisiBroker. Both sets provide a
compatible interface, thus an application code written for use with the single-threaded libraries should execute correctly

if linked with the multi-threaded libraries.

The multi-threaded libraries are thread safe and re-entrant. VisiBroker allows for both the client and the server to be
multi-threaded. Multi-threaded and single-threaded clients and servers can be combined in any fashion.

65

81221 Multi-threaded Servers

At the server side, VisiBroker directly provides three of the threading strategies listed in chapter 3.2.2.1:
- single threaded - when linked with the single-threaded version of the VisiBroker ORB library
- pool of threads - default when linked with the multi-threaded version of the VisiBroker ORB library
- thread per session

Each of these strategies is implemented as a specific Basic Object Adapter. The selection of a specific threading strategy
is straightforward—the programmer specifies the strategy as an argument to the BOA init () call (the third argument
of the call is a string (char *)and canbe "TSingle", "TPool" or "TSession"). The strategy can also be set
on a command-line when launching the server application using the ~OAid prefix (e.g. server -0OAid TPool will
set the server to use the thread pooling strategy).

When using the TPool or TSession strategies, the server has to be linked with the multi-threaded version of libraries'.

The maximum number of threads in a pool can be set using the BOA: : thread max () call®. This call also has a
command-line equivalent (e.g. server -threadMax 20 will create a pool of 20 threads).

It is difficult to implement a proprietary multi-threading strategy (different from the three strategies automatically
supported by the ORB), as the ORB provides virtually no support to do this.

81222 Multi-threaded Clients

A VisiBroker client can be multi-threaded, the client-side ORB libraries are thread-safe. By default, all client threads
share the same TCP/IP connection to the server. This default behavior can be changed by calling the clone ()
operation on the remote object's proxy (this creates a new proxy, this proxy then opens a new TCP/IP connection to the
server).

Both the MT.CLIENT and the MT.CONN benchmarks take 50 seconds to complete, indicating that VisiBroker clients
can issue parallel requests both over single and multiple connections

81223 Multi-threaded ORB

At the ORB level, a single TCP/IP connection is used (by default) to transmit requests between two address spaces. This
default behavior can be changed by the client side code as described above. The connection management in VisiBroker
is flexible, the maximum number of connections can be limited at both the client and the server sides.

To manage threads, VisiBroker provides the thread max () and thread stack size () calls (both for setting
and retrieving the current value). For connection management, VisiBroker provides connection max () for setting
and getting the maximum number of concurrent connections and connection count () for getting the current
number of connections.

! Surprisingly, the multi-threaded libraries do not work when using the TSingle strategy, executable file cannot

run (an error occurs during initialization).
2 However, the benchmarks indicate that limiting the maximum number of threads with the
BOA: :thread max () call does not work when using the locally optimized communication mechanism.

66

81224 Concurrency

Both at the client and at the server side, it is the application programmer who is responsible for protecting shared data
structures at the application level (using the underlying operating system's synchronization primitives).

8.1.2.3 Management Extensions

The basic VisiBroker installation provides a set of utilities for managing the Implementation Repository (used to
implement dynamic activation of servers) and querying the Location Service (used to locate available object
implementations). In a separate package, a suite of Java-based management tools (VisiBroker Productivity Tools) is
provided. The suite consists of VisiBroker Manager, VisiBroker Performance Monitor and VisiBroker Application
Partitioner for Java.

The VisiBroker Manager is a graphical interface for accessing the VisiBroker Naming Service, the Location Service,
the Interface Repository, and the Implementation Repository. The manager offers an alternative to the command line
utilities provided with VisiBroker.

The VisiBroker Performance Monitor displays performance data related to various aspects of a distributed application
execution. The monitor provides a hierarchical view of all monitorable servers, each with a list of the implemented
objects and operations (a monitorable server must be linked with a special library). The monitor can provide information
on specific operations, measure latency of calls and the input and output buffer sizes for argument lists (minimum,
maximum and average values). The performance data collected by the monitor are also accessible through both IDL and
ActiveX interfaces.

8.1.3 Scalability

8.1.3.1 Speed vs. Number of Objects

8.1.3.1.1 PROXY

The PROXY.CREATE benchmark indicates there is no dependence between the number of objects and the object
creation time both on the server and the client sides. The PROXY.FIRST and PROXY.NEXT benchmarks show that:

- There is a significant difference between the time it takes to invoke an operation for the first time and for all
subsequent times.

PROXY NT local NT idle net
objects 1000 | 2000 | 3000 | 1000 | 2000 = 3000
CREATE 533 1039 1563 791 1467 2191
FIRST 4054 8035 11822 6208 12340 18931
NEXT 660 1424 1964 1321 2683 3960
Fig. 45: Table for PROXY test (time in ms)
81312 PROXY.LOT

The PROXY.LOT benchmark shows that:

67

There is no measurable dependence between the number of objects handled by the server and the time it takes
to create and register a new object.

There is no measurable dependence between the number of objects handled by the client and the time it takes
to receive a new object reference.

There is a linear dependence between the number of objects handled by the server and the time it takes to invoke
a request on the server. The dependence becomes significant with thousands of objects handled.

700

600 - — - = = +=

s00 4 |t— - — — — — — — —
400 - - - - I —] — -]

00 4 +— - — — — — — — —

Time [ms]

200 44 +— 4 - — - — — — —

100 H - - — - - — — — — =

0

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

mGet| 628 | 588 | 582 | 628 | 600 | 612 | 615 | 614 | 609 | 613

Objects on server & proxies on client

Fig. 46: PROXY.LOT NT Int166

2500

2000 4

1500 -

Time [us]

1000 -

500 -

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 |10000

mF1nop| 920 | 953 | 957 | 952 | 946 | 962 | 961 960 | 954 | 957
EF1op | 1952 | 2092 | 2127 | 2097 | 2122 | 2166 | 2174 | 2149 | 2152 | 2165

Objects on server & proxies on client

Fig. 47: PROXY.LOT NT Int166

68

40000

30000 -

20000 -

Time [us]

10000 -

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

mEF2 nop | 908 909 | 904 907 901 909 | 909 912 910 | 906
WmF2op |34929 | 35431 | 35166 | 35169 | 35199 | 35232 | 35219 | 35243 | 35235 | 35232

Proxies on client

Fig. 48: PROXY.LOT NT Int166

8.1.3.2 Resources vs. Number of Objects

For 10000 objects, the client consumes 1076 bytes per object proxy, the server consumes 1227 bytes per object (a trivial
implementation object with 4 bytes of attributes included).

8.1.3.3 Resources vs. Queued Requests

8.1.3.3.1 ONEWAY

When testing the number of oneway void calls that can be issued to a VisiBroker server before the client blocks, the
results were as follows:

- local client with optimized communication - the number of oneway calls roughly corresponds to the number
of threads available in the server thread pool. When the number of threads in the thread pool is not limited, it
will grow until the system resources are exhausted.

- remote client - about 350 to 500 plus the size of server thread pool oneway void calls can be issued before the
client blocks. Most likely, this is related to network layer buffers. When the number of threads in the thread
pool is not limited, it will grow until the system resources are exhausted.

8.1.4 Robustness

No unexpected crashes were encountered in VisiBroker under normal usage conditions, bugs are listed later in this
section. The ORB exhibited a stable performance in our tests.

8.14.1 Reliable Servers

Reliable servers can be constructed using the auto-rebinding feature and the VisiBroker Object Activation Daemon (a
daemon responsible for dynamic activation of the object implementations). Persistent objects are supported as well (using
Activators).

VisiBroker object implementations can migrate. To use this feature, the automatic re-binding must be enabled. To
achieve migrating of a server with stateless client connections, the implementation must terminate (unregister) itself,
migrate (prepare to run at the new host) and start again (register with the daemon used for locating of objects). The
clients loose their connections and attempt to re-bind automatically.

69

On a server that maintains state of client connections, migrating is not transparent to the client (the client must use an
interceptor). When the connection to the object implementation fails and the ORB re-connects the client to the new
server, the interceptor's rebind succeeded () method will be invoked by the ORB. The client is then supposed to
restore the state of the server connection as necessary.

A very simple load balancing is performed by the object location daemon. The daemon sequentially (round robin
algorithm) routes connection requests to different object implementations (when asked for the same interface or instance

name). To provide a proprietary load balancing mechanism, a programmer can use ORB extensions such as the modified
proxies (Smart Stubs), the Location Service (with triggers), and the Interceptors.

8.1.4.2 Limits

8.1.4.2.1 SIZE

By default, VisiBroker does not limit the maximum message size (tested up to 32MB), a message size limit cannot be
set by the programmer. When the resources are close to exhaustion, the CORBA::UNKNOWN exception is raised.

81422 Number of Objects

VisiBroker 3.0 C++ AIX server terminates after 32000 objects are created ("Assertion failed"). On the NT platform, the
number of objects was only limited by the amount of available memory (as far as we could test, the AIX limits do not
apply on NT).

8.1.43 Bugs

814.3.1 Thread pool size limit bug

The CORBA: :BOA: :thread max () call (supposed to limit the number of threads in a thread pool) does not work
when using the optimized local communication. Tested on VisiBroker 3.0, 3.1, 3.2 C++ NT.

81432 AIX utilities bug

It was not possible to launch the VisiBroker 3.0 C++ Smart Agent, Object Activation Daemon, and some other utilities
on AIX 4.1. This might be due to the fact that VB 3.0 requires AIX 4.2.

8.2 Standardized Services Functionality

Of the standardized services, the Naming Service (VisiBroker Naming Service for C++ 3.0), the Event Service
(VisiBroker Event Service for C++ 3.0), and the Transaction Service (TPBroker) are provided. A support for security
(VisiBroker Developer SSL Pack for C++ 3.0) is also available.

8.2.1.1 Naming Service
The implementation of the Naming Service in VisiBroker is called VisiBroker Naming Service (VBNS). VBNS claims
full compliance with the OMG Naming Service specification and provides all interfaces defined by the standard
including the names library.
The VBNS server is persistent—the database of name-to-object bindings is preserved across server invocations. This

increases the overall robustness of the system that uses VBNS.

70

As a part of the service, a utility to manipulate the contents of the name-to-object bindings database using operations
similar to those exported by the standardized IDL interfaces is provided. The utility is only available in Java version.

8.2.1.2 Events Service

The implementation of the Events Service for VisiBroker is called VisiBroker Events Service (VBES). VBES claims
full compliance with the OMG Events Service specification and provides untyped events using the push and pull
communication models on a transient event channel.

VBES is shipped as a separate server and as a library. The service client can either start VBES as a standalone process,
or include it with either the supplier or the consumer application.

8.2.1.3 Transaction Service

The implementation of the Transaction Service for VisiBroker is called TPBroker. Currently available is TPBroker 1.1
(integrated with VisiBroker 2.0), soon to be released is TPBroker 3.0 (integrated with VisiBroker 3.2) and a new product
called VisiBrokerITS. TPBroker is based upon the OpenTP1 transaction manager from Hitachi and can be accessed
through both the X/Open TX/XA and the standardized OMG OTS interfaces. The two main components of TPBroker
are the OTS adapter and the transaction manager.

The TPBroker OTS adapter acts as a wrapper for the transaction manager, converting calls issued on the OMG
Transaction Service API to the calls on the X/Open TX/XA interfaces and vice versa. The OTS adapter consists of a
linkable library and two daemons responsible for driving the commit and recovery protocols.

The TPBroker transaction manager implements the core of the transaction service. The manager consists of a linkable
library and a daemon responsible for process monitoring. The manager only supports flat transactions (TPBroker 3.0
supports flat and nested transactions, implicit and explicit context propagation, direct and indirect context management,
multi-threading, administrative functions).

As a part of the TPBroker service, a set of utilities to view the status of running transactions and to manipulate resource
managers is provided.
8.2.1.4 Persistency Service

There is no implementation of a separate Persistence Service for VisiBroker. All by itself, VisiBroker supports persistent
object references and launching servers on demand. This allows persistent servers to be implemented with significant
amount of coding. The TPBroker transaction service can be used to synchronize the access to database resources through
the standardized X/Open XA interface.

8.2.1.5 Unsupported Services

Neither the standardized Lifecycle nor any functionally similar replacement is provided. Reference counting is used to
keep track of object and proxy usage and to delete unused objects and proxies.

Neither the standardized Trading Service nor any functionally similar replacement is provided.

71

8.3 Miscellanea

8.3.1 Requirements

8.3.1.1 Supported Platforms And Compilers
List of supported platforms for VisiBroker for C++ follows:

- Windows NT/95 / version 3.2

- Sun Solaris 2.5, 2.5.1, 2.6 / version 3.2

- Sun Solaris 2.4 / version 2.1

- SunOS 4.1.4 / version 2.1

- HP-UX 11.00, 10.20 / version 3.0

- HP-UX 10.20, 10.10, 10.01 / version 2.1

- Silicon Graphics IRIX 6.2, 6.3 / version 3.0
- IBM AIX 4.2, 4.1/ version 3.0

- Digital Unix 4.0a,b,c, 3.2f/ version 2.1

8.3.2 Development Support

8.3.2.1 Documentation
The Programmer's Guide, the Reference Guide, and the Installation and Administration Guide are delivered with

VisiBroker for C++. The guides are readable and mostly understandable, but the structure is rather poor, making routine
searches for information difficult.

8.3.2.2 Development Support

Feature

Access to the reference count value Yes CORBA: :Object:: ref count()

Warn when negative reference count No

Range checking on sequences Yes exception raised

Generation of skeleton implementation No

Symbolic exception dumping to stream Yes overloaded operator << for exception type

Broker activity logging No

Reference parsing utilities Yes the reference parsing utilities were not a part
of our installation, but were sent to us upon
request by Visigenic

8.3.2.3 Technical Support

The VisiBroker Technical Support team provides the following support levels:

72

- Premium Support. In addition to unlimited person-to-person and electronic access to product information,
customer receives responses to high-priority assistance requests. A non-stop beeper option is also available.

- Standard Support. Unlimited person-to-person and electronic access to information about our products.

- Online Support. All VisiBroker customers, including evaluation customers, are entitled to use our database
of frequently asked questions.

8.3.3 Vendor

8.3.3.1 Pricing Policy

Following are the prices sent to us by Visigenic on April 15, 1998 (effective July 22, 1997)":

Product Type Price (USS$)
VisiBroker for C++ 3.0 Development 1995
VisiBroker ORB for C++ 3.0 Deployment (server-only) 1665
VisiBroker ORB for C++ 3.0 Deployment (node-by-node) 95
VisiBroker Developer for Java 3.0 Development 1995
VisiBroker ORB for Java 3.0 Deployment (server-only) 1665
VisiBroker ORB for Java Deployment (node-by-node) 95
VisiBroker Naming service for C++ 3.0 Development 295
VisiBroker Naming service for C++ 3.0 Deployment (machine) 165
VisiBroker Event Service for C++ 3.0 Development 545
VisiBroker Event Service for C++ 3.0 Deployment (machine) 335
VisiBroker Developer SSL Pack for C++ 3.0 | Development 195
VisiBroker Developer SSL Pack for C++ 3.0 | Deployment (server-only) 695
VisiBroker Developer SSL Pack for C++ 3.0 | Deployment (node-by-node) 45

8.3.3.2 Company

Right now, the Inprise Corporation is undergoing a major shift towards the distributed enterprise applications. The
company has recently changed its name (from Borland International, founded 1983) and acquired the former distributor
of VisiBroker (Visigenic). Of the product range, perhaps most know are the Borland development tools (Delphi,
JBuilder, C++Builder) and the VisiBroker ORB.

! Please note that with recent acquisition of Visigenic by the Inprise Corporation (then Borland International), the prices will most likely

be subject to change.

73

9 Comparison Summary

9.1 Object Request Broker

9.1.1 Standardized Functionality

9.1.1.1 Basic Remote Invocation
9.1.1.1.1 Measurements Verification

CALL

The results of the CALL test indicate there is no significant relationship between the pattern of the calls issued to the
server and the times measured by the benchmark. This means that it is possible to apply the results of other benchmarks
to applications with different invocation patterns.

9.1.1.12 Dispatcher Performance

IDL.NAMES

The most important result from the IDL.NAMES benchmark is the demonstration of the fact that calling operations with
longer names takes longer time to complete. This is due to the fact that the marshalling, unmarshalling and dispatching
algorithms all use a plain string form of the operation names. The test shows that:

- For normal-length names (10-30 characters), the difference in invocation time is insignificant (below 1%).

- The difference in invocation time is more significant when running over a network (more data is passed).

IDL.LONG

The IDL.LONG benchmark shows that for Orbix and omniORB, the operation that is defined later in the IDL interface
takes longer time to complete. The reason for this is that the dispatcher code (generated from the IDL definition) looks
up the operation name using a sequential (linear) search. The relationship between the position of an operation within
an interface and the time it takes to complete the operation is not exhibited by VisiBroker. The test shows that:

- For medium-sized interfaces (100 operations), the difference in invocation time between the first and the last
operation may be significant with omniORB and Orbix (no difference with VisiBroker).

- The difference in invocation time does not change when running over a network (clearly, only server side code
matters).

IDL.DEEP

The IDL.DEEP benchmark indicates a relationship between the interface nesting depth and the time it takes to complete
an operation of that interface. The test shows that:

- For interfaces deeply nested in modules (10 levels), the difference in invocation time between operations in non-
nested and nested interfaces may be significant with Orbix (no difference with omniORB and VisiBroker).

74

9.1.1.13

The difference in invocation time is more significant when running over a network (more data is passed).

Overall Performance

IDL.ENCAP

The IDL.ENCAP benchmark compares the invocation time when passing 100 longs individually, in an array, in a
bounded sequence, and in a structure. Overall, the tests show that:

The deviation in invocation times is usually within 10%, with arrays having the fastest (except for omniORB
where sequences are slightly faster) and individual longs the slowest invocation time.

THROUGH.IN

The results of the local throughput tests indicate the relative speed of the ORBs is (with a negligible number of
exceptions) omniORB (fastest), VisiBroker, Orbix (slowest). The tests show that:

Time to pass a basic IDL data type stays roughly the same regardless of the type being passed. When passing
a single basic IDL data type, the relative invocation times are omniORB 100% (520us), VisiBroker 130%,
Orbix 820%.

Time to pass an array or a sequence of a basic IDL data type depends mostly on the length of data in octets for
Orbix and VisiBroker, and on the number of items for omniORB. For a 1kB array of floats, relative invocation
times are omniORB 100% (670ps), VisiBroker 110%, Orbix 660%. For a 1kB array of octets, relative
invocation times are VisiBroker 100% (740ps), omniORB 120%, Orbix 590%.

Encapsulating an argument within any adds a substantial overhead. Hence, when passing an array or a sequence
of anys, the invocation time primarily depends on the number of anys. For 1024 anys of octets, relative
invocation times are omniORB 100% (14600us), VisiBroker 420%, Orbix 2800%.

Running the same test suite over an idle I0BASE-T Ethernet shows that:

Unless a very large number of complex arguments is passed, the constant overhead of an invocation
overshadows the impact of argument sizes and types. Hence, it pays off to call less often with more arguments
than vice versa.

For basic types, the relative invocation times are omniORB 100% (750ys), VisiBroker 180%, Orbix 590%. For
a 1kB array of octets, relative invocation times are omniORB 100% (2100ps), VisiBroker 110%, Orbix 260%.
For 1024 anys of octets, relative invocation times are omniORB 100% (12400ps), VisiBroker 570%, Orbix
2700%.

Paradoxically, local invocation times may sometimes be longer than network invocation times (e.g. when
passing arrays of anys in omniORB and Orbix).

With respect to performance, testing of heterogeneous ORB combinations (client and server use different ORBs)
indicates that:

Of the client-server pair, it is the server who influences the performance most (even when empty operations are
called).

Proprietary optimizations for local invocations are used by VisiBroker (not so with omniORB and Orbix).

75

4000
3500
3000 w -
2500

2000 H
1500 H
1000 H

500 H

Time [us]
o

seq seq seq seq seq seq seq seq
<Float, | <Doubl | <Long, |<ULong |<Short, | <UShor | <Char, | <Octet,
256> |e, 128>| 256> |, 256> | 512> |t, 512>| 1024> | 1024>

Float | Double | Long | Ulong | Short | Ushort | Char | Octet
[256] | [128] | [256] | [256] | [512] | [512] | [1024] | [1024]

O Orbix | 2973 2953 2957 2967 2997 3010 3077 3073 3070 3037 3097 3067 3233 3170 3483 3420

O VisiB | 1920 1913 1927 1923 1983 1990 2030 2030 1907 1907 1903 1917 1907 1913 1907 1907

B omni | 1806 1749 1810 1816 1928 1939 | 2115 | 2109 1726 1723 1722 1726 1728 1728 1725 1731

Fig. 49: THROUGH.IN: omniORB 2.5.0 server (NT AMD200), ... clients (NT Int166), idle net (1 call)

4500
4000
p— p— = -
3500 +— __ = = = = = __ u =
3000 H
2500 H —
2000 H
1500 H
1000 H
£ 500
¢E> 0
- Float | Double| Long | Ulong | Short | Ushort | Char | Octet <Fsleqt <;eqb| <Lseq <Us|_eq <Ssheqrt <Usgg <Cs:q <Osetqt
[256] | [128] | [256] | [256] | [512] | [512] | [1024] | [1024] | = 103t | =P°U ong, ong | <shor, o sthar, | <Uctet,
256> |e, 128>| 256> |, 256> | 512> |t, 512>| 1024> | 1024>
O Orbix | 3390 | 3410 | 3407 | 3400 | 3410 | 3403 | 3407 | 3420 | 3670 | 3623 | 3697 | 3660 | 3830 | 3773 | 4087 | 4013
O VisiB | 2297 | 2303 | 2293 | 2290 | 2300 | 2293 | 2290 | 2293 | 2337 | 2330 | 2323 | 2327 | 2330 | 2337 | 2323 | 2333
B omni | 2203 | 2170 | 2200 | 2207 | 2273 | 2277 | 2410 | 2397 | 2177 | 2170 | 2167 | 2170 | 2170 | 2167 | 2170 | 2170

Fig. 50: THROUGH.IN: VisiBroker/C++ 3.0 server (NT AMD200), ... clients (NT Int166), idle net (1 call)

Because of the interoperability problems (see section 9.1.1.2), some of the measurements with Orbix acting as a server
and other ORBs as clients were not done.

76

4500

4000 £
3500
3000
3 2500
[
£ 2000
=
1500
1000 -
500 +
0
omniORB VisiBroker Orbix
O Float [256] 890 1633 3567
H Double [128] 737 1593 3440
O Long [256] 880 1583 3533
O Ulong [256] 910 1605 3750
B Short [512] 1313 1690 3713
O Ushort [512] 1253 1593 3560
B Char [1024] 1807 1637 3677
O Octet [1024] 1813 1620 3837
B String <1024> 687 1633 3840

77

Fig. 51: THROUGH.IN: homogenous combinations on AIX (passing arrays—1 call)

7000

6000

5000 T
N 4000
=X
£
= 3000

2000

1000

T
omniORB VisiBroker Orbix

O seq <Float, 256> 640 1697 4587
B seq <Double, 128> 627 1723 4203
O seq <Long, 256> 607 1677 4463
O seq <ULong, 256> 640 1720 4703
M seq <Short, 512> 570 1673 5010
O seq <UShort, 512> 577 1627 5160
B seq <Char, 1024> 610 1643 5653
O seq <Octet, 1024> 600 1643 5880
B String <1024> 687 1633 3840

Fig. 52: THROUGH.IN: homogenous combinations on AIX (passing sequences—1call)

78

9.1.1.2

The following table describes results of the basic interoperability tests (running the THROUGH.IN benchmark with

Interoperability

different combinations of clients and servers):

Server > NT Omn25 NT Vis30 NT Orb22 NT Orb23 AIX Omn25 AIX Vis30 | AIX Orb22
Client |
NT Omn25 OK OK client hangs | client aborts OK OK sequences
NT Vis30 OK OK client hangs | client aborts OK OK sequences’
NT Orb22 OK OK OK client fakes” OK OK sequences”
NT Orb23 narrow® narrow® OK OK narrow® narrow® sequences”
AIX Omn25 OK OK client hangs | client aborts OK OK sequences’
AIX Vis30 OK OK client hangs | client aborts OK OK sequences”
AIX Orb22 seq of any” OK OK client fakes" seq of any” OK OK

The interoperability problems can be summarized as follows:

- A server running Orbix on Windows NT cannot be accessed from other than Orbix clients (both NT and AIX
clients work, only an Orbix 2.2 client cannot access the Orbix 2.3 server). Most likely, this is an interoperability
problem with Orbix (see section 7.1.1.5).

- Orbix 2.2MT on AIX 4.1 has problems passing sequences outside modules. No client except AIX Orbix was
able to pass a sequence to the AIX Orbix server. The AIX Orbix client was not able to pass a sequence to the

omniORB 2.5 server (both NT and AIX servers).

No other problems were encountered regarding interoperability of the individual brokers.

" With modules OK, without modules client aborts when trying to pass a sequence.
* Client acts as if it is connected to the server but in fact no communication takes place.
$ Without modules OK, with modules client fails to narrow the object reference.

* With modules OK, without modules client aborts when trying to pass a sequence of anys.

79

9.1.2 Nonstandard Extensions

Extension

omniORB

Orbix

VisiBroker

Locating Objects

no (except Naming
Service)

Locators (based on
service name)

Location Service (based
on interface name)

Binding To Objects

no (except standard
calls)

_bind (location service,
deferred, rebind,
timeouts)

_bind (location service,
deferred, rebind,
timeouts)

Instantiating Implementations

obj 1is ready,
dispose

implicit, release,
dispose

obj 1is ready,
release,
deactivate obj

Persistent References

no (except object key)

yes (Loaders)

yes (Activators)

Automatic Activation

no

yes

yes

Automatic Reconnection

no

yes

yes (but masks even
important errors)

Invocation Extensions

custom proxies

custom proxies

custom proxies,
optimized local calls

Customizability

no (but source is
available)

yes (Filters)

yes (Interceptors)

9.1.2.1

Multi-threading Extensions

All three ORBs support multithreading on both the server and the client sides. The Orbix ORB is most flexible with
respect to employing different threading strategies, with omniORB and VisiBroker offering practically no flexibility
(VisiBroker with its three built-in threading strategies is slightly better than omniORB with one). For details, see the
corresponding sections in the individual ORB chapters.

The cross-platform execution of the MT.CONN benchmark demonstrates a limitation of the omniORB server threading
strategy. The omniORB server is unable to process requests sent in parallel over a single connection, thus it serializes
requests from multi-threaded clients that send requests over a single connection:

Server —»

omniORB Orbix VisiBroker
Client
omniORB 50s N/A 50s
Orbix 250s 50s 50s
VisiBroker 250s N/A 50s

9.1.2.2 Management Extensions

Both Orbix and VisiBroker provide ORB management support, see the corresponding sections within the individual ORB
chapters for details. No management support is provided with omniORB.

80

9.1.3 Scalability

9.1.3.1 Speed vs. Number of Objects

9.1.3.1.1 PROXY

The PROXY.CREATE benchmark indicates dependence between the number of objects and the object creation time both
on the server and the client sides (except for VisiBroker). The PROXY.FIRST and PROXY.NEXT benchmarks show

that:

- There is a significant difference between the time it takes to invoke an operation for the first time and for all
subsequent times.

91312 PROXY.LOT
The PROXY.LOT benchmark shows that:

- The time to create and register an object on the server side grows linearly with the number of objects with
omniORB and Orbix (no difference with VisiBroker).

- The time to create an object proxy on the client side grows linearly with the number of objects with Orbix (no
difference with omniORB and VisiBroker).

- When present, the difference in object creation time is significant for a medium number of objects (thousands).

- The time it takes to invoke an operation grows linearly with the number of objects on the server , but compared
to the total invocation time, the growth is relatively insignificant.

12000

10000

8000

6000

Time [ms]

4000

2000 -

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

O omni | 146 139 149 167 173 182 191 205 | 210 221
W Orbix | 3237 | 4239 | 5015 | 5815 | 6761 | 7598 | 8220 | 8989 | 10107 | 10959
O Visi 350 318 327 345 351 359 369 394 | 405 404

Objects on server & proxies on client

Fig. 53: PROXY.LOT: omniORB 2.5.0 server NT AMD166 local, Get() operation

81

9.1.3.2 Resources vs. Number of Objects

Memory consumption omniORB Orbix VisiBroker

Client | Server | Client | Server | Client | Server

Per object (in bytes) 313 238 | 1232 1141 1075| 1214

Fig. 54: Table shows the memory consumption per one object

The table shows the memory consumption per single object (average for 10000 objects that implement an interface with
asingle void x () operation and no attributes).

Time [ms]

1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000

momni | 430 | 428 408 | 447 414 | 420 | 422 431 435 450
mOrbix | 3912 | 4768 | 5619 | 6415 | 7231 | 8055 | 8913 | 9607 | 10413 | 10960
OVisi 628 588 582 628 600 | 612 615 614 609 613

Objects on server & proxies on client

Fig. 55: PROXY.LOT: VisiBroker 3.0 server NT AMD200 local, Get() operation

9.1.3.3 Resources vs. Queued requests

9.1.3.3.1 NET.ONEWAY

The results of the NET.ONEWAY benchmark show that with all ORBs, oneway calls can either block the client (this
usually happens when around 300-500 requests are waiting to be serviced and is probably related to the size of
communication buffers along the request delivery path), or exhaust the server resources (most often, virtual memory is
consumed and the server crashes).

82

9.1.4 Robustness

9.14.1 Reliability

The three tested ORBs all performed reliably, except for an occasional crash of the omniORB server running on AIX
(which might have been caused by an incorrect AIX port). The support for building reliable servers is compared in the

following table:

Reliability

omniORB

Orbix

VisiBroker

Reliable Servers

persistent references,

dynamic activation,

dynamic activation,

migration (limited) rebinding rebinding, migration
Network Failures nothing rebinding rebinding, migration
Network Congestion . load balancing on bind load balancing on bind
migration . .
(limited) (limited)
9.2 Services
Services omniORB Orbix VisiBroker
. Yes (persistent Yes .(p ersistent Yes (persistent
Naming bindings) bindings, group bindings)
& bindings) &
Lifecycle Yes (move, delete) No No
Yes (untyped and typed
) Y h
Event No push, untyped reliable e (unty]ilel;i)pus and
persistent push and pull) P
Taias No Yes (.lmked trader, No
persistent offers)
. Yes (SSL, COS
Security No Security) Yes (SSL)
. . Yes (TPBroker,
Transaction No Yes (OrbixOTS) VisiBroker ITS)
Yes (ObjectStore, Yes (VisiChannel for
D .
atabase No Versant, generic) JDBC)

Note that all services but the omniORB Naming are purchased separately.

83

9.3 Miscellanea

9.3.1 Development Support

The following table lists the support for various useful development features within the individual ORBs:

Feature omniORB Orbix VisiBroker
Access to the reference count value No Yes Yes
Warn when negative reference count Yes No No
Range checking on sequences Yes No Yes
Generation of skeleton implementation No Yes No
Symbolic exception dumping to stream No Yes Yes
Broker activity logging Yes Yes No
Reference parsing utilities Yes No Yes'

! The reference parsing utility was not a part of the VisiBroker installation, but was sent to us upon request by the VisiBroker Technical

Support.

84

10 Acknowledgements

During the project, Bernhard Beyl and Stefan Tilkov of MLC Systeme GmbH provided valuable comments.

IONA Technologies PL.C has kindly provided a free installation of Orbix for the purpose of evaluation.

85

11 References

Bak97A

Bal96A

Bir84A

Car96A

Gok96A

Gok97A

Har97A

Hri9%6A

Ton95A

Ion95B

Kle96A

Kle96B

Kle96C

Lam91A

OMG92A

OMG92B

OMG93A

Baker, S.: CORBA Distributed Objects: Using Orbix, Addison Wesley, 1997.
Balek, D.: Relationship Service in CORBA, Master Thesis, Charles University, 1996.

Birrell, A. D. & Nelson, B. J.: Implementing Remote Procedure Calls, Xerox Palo Alto Research
Center, ACM Transactions on Computer Systems Vol. 2 No. 1 pp 39-59, ACM, 1984.

Carando, P.: Toward the Development of an Object Request Broker Evaluation Instrument,
presented at OOPSLA '96 Workshop on Large Persistent and Distributed Systems, 1996.

Gokhale, A. S. & Schmidt, D. C.: Measuring the Performance of Communication Middleware
on High-speed Networks, in proceedings of SIGCOMM 96, ACM, 1996.

Gokhale, A. S. & Schmidt, D. C.: Measuring and Optimizing CORBA Latency and Scalability
Over High-speed Networks, IEEE Transactions on Computers, 1997.

Harrison, T. H. & Levine, D. L. & Schmidt, D. C.: The Design and Performance of a Real-time
CORBA Event Service, in proceedings of OOPSLA’97, ACM, 1997.

Hrinko, S.: LifeCycle Service in CORBA, Master Thesis, Charles University, 1996.

Orbix 2 Distributed Object Technology Programming Guide Release 2.0, IONA Technologies,
1995.

Orbix 2 Distributed Object Technology Reference Guide Release 2.0, IONA Technologies, 1995.

Kleindienst, J. & Plasil, F. & Tuma, P.. CORBA and Object Services, in proceedings of
SOFSEM '96 pp 74-93, Springer-Verlag LNCS 1175, 1996.

Kleindienst, J. & Plasil, F. & Tuma, P.: Lessons Learned from Implementing the CORBA
Persistent Object Service, in proceedings of OOPSLA '96, ACM, 1996.

Kleindienst, J. & Plasil, F. & Tuma, P.: What We Are Missing in the CORBA Persistent Object
Service Specification, presented at OOPSLA '96 Workshop on Large Persistent and Distributed
Systems, 1996.

Lamb, C. & Landis, G. & Orenstein, J. & Weinreb, D.: The ObjectStore database system, CACM
Vol. 34 No. 10 pp 50-63, ACM, 1991.

Object Services Request For Proposal 1, OMG document 92-8-6, ftp:/ftp.omg.org, 1992.

Object Services Architecture Revision 8.1, OMG document 95-1-47, ftp://ftp.omg.org, 1992-
1995.

CORBAservices Specification, Event Management Service, OMG document FORMAL/97-2-9,
ftp://ftp.omg.org, 1993-1997.

86

OMG93B

OMGI3C

OMGY%4A

OMGY4B

OMGY4C

OMG94D

OMGY4E

OMGI5A

OMG96A

OMG96D

OMGYI6E

OMGI6G

OMG97C

OMG9I7D

OMGI7E

OMG97J

OMGI™

CORBAservices Specification, Lifecycle Service, OMG document FORMAL/97-2-11,
ftp://ftp.omg.org, 1993-1997.

CORBAservices Specification, Naming Service, OMG document FORMAL/97-2-8,
ftp://ftp.omg.org, 1993-1997.

CORBAservices Specification, Object Transaction Service, OMG document ORBOS/97-3-4,
ftp://ftp.omg.org, 1994-1997.

CORBAservices Specification, Relationship Service, OMG document FORMAL/97-2-14,
ftp://ftp.omg.org, 1994-1997.

CORBAservices Specification, Object Externalization Service, OMG document FORMAL/97-2-
13, ftp://ftp.omg.org, 1994-1997.

CORBAservices Specification, Persistent Object Service Version 1.0, OMG document
FORMAL/97-2-10, ftp://ftp.omg.org, 1994-1997.

CORBAservices Specification, Concurrency Service, OMG document FORMAL/97-2-12,
ftp://ftp.omg.org, 1994-1997.

ORB Portability Enhancement RFP, OMG document 95-6-26, ftp://ftp.omg.org, 1995.

Common Object Request Broker Architecture And Specification Revision 2.0, OMG document
PTC/96-3-4, ftp://ftp.omg.org, 1996.

CORBAservices Specification, Security Service Part I, OMG document FORMAL/97-2-20,
ftp://ftp.omg.org, 1996-1997.

CORBAservices Specification, Security Service Part I, OMG document FORMAL/97-2-21,
ftp://ftp.omg.org, 1996-1997.

CORBAservices Specification, Trader Service, OMG document FORMAL/97-5-1,
ftp://ftp.omg.org, 1996-1997.

Persistent State Service Version 2.0 Request For Proposal, OMG document ORBOS/97-6-7,
ftp://ftp.omg.org, 1997.

ORB Portability Joint Submission Part 1 of 2, OMG document ORBOS/97-5-15,
ftp://ftp.omg.org, 1997.

ORB Portability Joint Submission Part 2 of 2, OMG document ORBOS/97-5-16,
ftp://ftp.omg.org, 1997.

CORBAservices Specification, Full Book, OMG document FORMAL/97-6-1, fip://ftp.omg.org,
1997.

CORBAservices Specification, Trader Update Package, OMG document FORMAL/97-6-18,
ftp://ftp.omg.org, 1997.

87

OMGY97N

OMGY97N

ORL97A

Sha86A

Tum97A

The Common Object Request Broker: Architecture and Specification Revision 2.2, OMG
document FORMAL/98-2-1, ftp://ftp.omg.org, 1998.

A Discussion of the Object Management Architecture, The Object Management Group,
http://www.omg.org, January 1997.

Interoperability Between omniORB2 and Java ORBs, ORL,
http://www.orl.co.uk/omniORB/javaORBs.html, 1997.

Shapiro, M.: Structure and encapsulation in distributed systems: the proxy principle, in
proceedings of The 6th International Conference on Distributed Computer Systems pp 198-204,
Boston, 1986.

Tuma, P.: Persistence in CORBA, Ph.D. Thesis, Charles University, 1997.

88

