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Conference on OO Technologies and Systems (COOTS '99),

San Diego, CA, May 1999. 1.1 Overview of CORBA

CORBA Object Request Brokers (ORBs) allow clients to in-
Abstract voke operations on distributed objects without concern for ob-

ject location, programming language, OS platform, commu-
First-generation CORBA middleware was reasonably sugication protocols and interconnects, and hardware [1]. Fig-
cessful at meeting the demands of applications with beaste 1 illustrates the key components in the CORBA reference
effort quality of service (QoS) requirements. Supporting apodel [2] that collaborate to provide this degree of portabil-
plications with more stringent QoS requirements poses nidyy interoperability, and transparentyach component in the
challenges for next-generation real-time CORBA middleware,
however. This paper provides three contributions to the d
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sign and optimization of real-time CORBA middleware. First ~ CLIENT operation() gﬁ%

we outline the challenges faced by real-time Object Reque out args + return value T

Broker (ORB) implementers, focusing on requirements for et-

ficient, predictable, and scalable concurrency, demultiple oL <1 CONIE.LLFR — IDL \

. . . , - SKELETON| | ogjECT
ing, and protocol processing in CORBA's ORB Core and Ol sruss ADAPTER]

ject Adapter components. Second, we describe how TAO, olr
real-time CORBA implementation, addresses these challen{ %} ]
by applying key ORB optimization principle patterns, whicls
are rules for avoiding common design and implementatio
problems that can degrade the efficiency, scalability, and pr@ ORB-seciFic INTERFACE () STANDARD PROTOCOL
dictability of complex systems. Third, we present the results
of benchmarks that evaluate the impact of TAO’s patterns drigure 1: Key Components in the CORBA 2.x Reference
design strategies empirically. Model

Our results indicate that it is possible to develop highly con-
figurable, adaptable, and standard-compliant ORBs that c&$RBA reference model is outlined below:
meet the QoS requirements of many real-time applications. A
key contribution of our work is to demonstrate that the abflient: A client is arole that obtains references to objects
ity of CORBA ORBs to support real-time systems is largely 8Ad invokes operations on them to perform application tasks.
implementation detail. In particular, relatively few Change@bjects can be remote or collocated relative to the client. Ide-
are required to the standard CORBA reference model and pfdly: @ client can access a remote object just like a local object,

STANDARD INTERFACE OSTANDARD LANGUAGE MAPPING

gramming API to support real-time applications. i.e, object —operation(args) - Figure 1 shows how
the underlying ORB components described below transmit re-
“Work done by the author while at Washington University. mote operation requests transparently from client to object.
This work was supported in part by Boeing, NSF grant NCR-9628218, 1This overview only focuses on the CORBA components relevant to this
DARPA contract 9701516, Motorola, Siemens ZT, and Sprint. paper. For a complete synopsis of CORBA'S components see [2].



Object: In CORBA, an object is an instance of an OMd..2 Challenges for Real-time CORBA

Interface Definition Language (IDL) interface. Each object , : .
is identified by anobject referencewhich associates one o s described above, CORBA helps to improve the flexibility,

more paths through which a client can access an object ogfgensmmty, maintainability, and reusability of distributed ap-

server. Anobject ID associates an object with its implemer1[3|!(:a‘:!C)r]S [1]. A gg)éVéng %%‘T‘S of d'?rt]”ttmed 'rgal—tch'a ap- t
tation, called a servant, and is unique within the scope of Rifations require midaieware hat provides stringen

Object Adapter. Over its lifetime, an object has one or mcjiality of service (QoS) support, such as end-to-end prior-

servants associated with it that implement its interface. ity preservation, hard upper bounds on latency and jitter, and
bandwidth guarantees [5]. Figure 2 depicts the layers and

Servant: This component implements the operations dgomponents of an ORB endsystem that must be carefully de-
fined by an OMG IDL interface. In object-oriented (OO) larsigned and systematically optimized to support end-to-end ap-
guages, such as C++ and Java, servants are implementeg|igation QoS requirements.

ing one or more class instances. In non-OO languages, such

as C, servants are typically implemented using functions ap

struct  s. A client never interacts with servants directly, by  crie~ operation()
always through objects identified by object references. g DATA COPYING

& MEMORY

ORB Core: When a client invokes an operation on an ob- DL % ALLOCATION

ject, the ORB Core is responsible for delivering the request DL - SKELETON L samung,
. . . . OBJECT — 1T DEMUXING,

to the object and returning a response, if any, to the client. | stss R (—‘ ADAPTER | [T pispitcrinG

An ORB Core is implemented as a run-time library linkeg N CONCURRENCY
into client and server applications. For objects executing { }} GIoP = MopELs
J I_TMVSK)RT

motely, a CORBA-compliant ORB Core communicates via
version of the General Inter-ORB Protocol (GIOP), such 0s KERNEL K[ORSI  OS KERNEL

:’J
Cos o s Y 10

in args

PRESENTATION
— LAYER

PROTOCOLS

the Internet Inter-ORB Protocol (IIOP) that runs atop the T( prsGEE sumworEn
transport protocol. In addition, custom Environment-Speci DE—

ADAPTER

Inter-ORB protocols (ESIOPSs) can also be defined. NETWORK

OMG IDL Stubs and Skeletons: IDL stubs and skeletons . o

serve as a “glue” between the client and servants, respectiveigure 2: Real-time Features and Optimizations Necessary to
and the ORB. Stubs implement tReoxy pattern [3] and pro- Meet End-to-end QoS Requirements in ORB Endsystems
vide a strongly-typedstatic invocation interfacgSll) that

marshals application parameters into a common message-levéhe first-generation of ORBs lacked many of the features
representation. Conversely, skeletons implementitepter and optimizations [6, 7, 8, 9] shown in Figure 2. This situation
pattern [3] and demarshal the message-level representatigh not surprising, of course, since ORB developers focused

back into typed parameters that are meaningful to an apflitially on refining the OMG specifications [10] and devel-
cation. oping core infrastructure components, such as the basic ORB

iler- | ¢ communication mechanisms. In contrast, second-generation
IDL Compiler:  An IDL compiler transforms OMG DL ORBs, such as The ACE ORB (TAO) [11], have leveraged the

definitions into stubs and skeletons that are generated automals rations of standards [12, 5, 13], patterns [14], and QoS-

ically in an application programming language, such as Cgfapieq framework components [15, 16], to provide end-to-
or Java. In addition to providing programming language tra

DL i imi ; 1d QoS guarantees to applications beghtically (i.e., net-
parency, compilers eliminate common sources of NeWQgt 1 jnterfacers application layer) antorizontally(i.e., end-

progrgmming errors and provide opportunities for automat%_end) by integrating highly optimized CORBA middleware
compiler optimizations [4]. with OS /O subsystems, communication protocols, and net-
Object Adapter: An Object Adapter is a composite compowork interfaces.

nent that associates servants with objects, creates object refddur previous research has examined many dimensions of
ences, demultiplexes incoming requests to servants, and hah-performance and real-time ORB endsystem design, in-
laborates with the IDL skeleton to dispatch the appropriatieiding static [17] and dynamic [18] scheduling, event pro-
operation upcall on a servant. Object Adapters enable OR®ssing [19], I/O subsystem integration [20], ORB Core archi-
to support various types of servants that possess similarteetures [21], systematic benchmarking of multiple ORBs [6],
qguirements. This design results in a smaller and simpler ORBd design patterns for ORB extensibility [14]. This paper fo-
that can support a wide range of object granularities, lifetimesises on other previously unexplored dimensions in the high-
policies, implementation styles, and other properties. performance and real-time ORB endsystem design sji2ize:



ject Adapter and ORB Core optimizations for (1) server-sidROA for more static configuration. Section 2.2 describes how
concurrency, (2) collocation, (3) memory management, (BAO’s collocation optimizations are completely transparent to
ORB protocol processing, and (5) CORBA request demuttiients,i.e., collocated objects can be used as regular CORBA
plexing. objects, with TAO handling all aspects of collocation.
The optimizations used in TAO are guided by a sepriri- o

ciple patterns[22] that we have applied in prior work to©Ptimizing memory management: ORBs allocate buffers
optimize middleware [11] and lower-level networking Soﬂt_o.send and receive (de)marshaled data. |t.IS important to opti-
ware [23], such as TCP/IP. Optimization principle patterfdize these allocations since they are a §|gn|f|cant source of
document rules for avoiding common design and impleméfnamic memory management and locking overhead. Sec-
tation mistakes that degrade the performance, scalability, 488 2-3 describes the mechanisms TAO uses to allocate and
predictability of complex systems. The optimization principf@anipulate internal parameter (de)marshaling buffers. We il-

patterns we applied to TAO are shown in Table 1. We & strate how TAO minimizes fragmentation, data copying, and
ocking for many common application use-cases. The princi-

Optimization Principle Pattern ple patterns of exploiting locality and optimizing for the com-

1 [ Optimizing for the common case mon case influence these optimizations.
2 | Eliminating gratuitous waste S -
3 | Shifting C(?n"?putation in fime via precomputing Minimizing ORB protocol overhead: Real-time systems
4 | Passing hints between layers and components have traditionally been developed using proprietary protocols
5 [ Not being tied to reference models and implementatifns that are hard-coded for each application or application fami!y.
6 | Replacing inefficient general-purpose operations In theory, the standard CORBA GIOP/IIOP protocols obvi-

with special-purpose ones ate the need for proprietary protocols. In practice, however,
7 | Leveraging system components by exploiting locality| many developers of real-time applications are justifiably con-
8 | Adding redundant state to minimize computations cerned that standard CORBA protocols incur excessive over-
9 | Using efficient/predictable data structures head. Section 2.4 shows how TAO can be configured to re-

duce the overhead of GIOP/IIOP without affecting the stan-
Table 1: Optimization Principle Patterns Applied in TAO dard CORBA programming APIs exposed to application de-
velopers. This optimization is based on the principle pattern of
plied these optimization principle patterns in TAO to addre@¥0iding unnecessary generality and relaxing system require-
the following ORB design and implementation challenges: Ments.

Optimizing the server-side ORB concurrency model: The Optimizing CORBA request demultiplexing: The time an
concurrency model used to multi-thread an ORB has a s@RB’s Object Adapter spends demultiplexing requests to tar-
stantial impact on its performance, predictability, and sca@get object implementations,e., servants, can constitute a
bility [24]. However, concurrency models supported in cosignificant source of ORB overhead for real-time applica-
ventional ORBs, such as thread-per-request or queue-bdiat [8]. Section 3 describes how Object Adapter demulti-
worker thread pools, incur excessive context switching, sypiexing strategies impact the scalability and predictability of
chronization, and data movement overhead [21]. Thereforgl-time ORBs. This section also illustrates how TAO’s Ob-
TAO employs a leader/followers thread pool model describjgt Adapter optimizations enable constant time request de-
in Section 2.1. This concurrency model requires no heap manultiplexing in the average- and worst-cassgardlesf the

ory allocations or locks in the critical path, which is optimaiumber of objects or operations configured into an ORB. The
for many types of real-time applications. This optimizatioprinciple patterns that guide our request demultiplexing op-
is based on the principle patterns of optimizing for the corfimizations include precomputing, using specialized routines,
mon case, eliminating gratuitous waste, and not being tiedpssing hints in protocol headers, adding extra state, and not
reference implementations. being tied to reference models.

Optimizing collocation: The principle pattern of avoiding The remainder of this paper is organized as follows: Sec-
gratuitous waste enables TAO to minimize the run-time oveien 2 outlines the ORB Core architecture of CORBA ORBs
head forcollocatedobjects, i.e., objects that reside in theand evaluates the design and performance of ORB Core op-
same address space as their client(s). After looking up thmeization principle patterns used in TAO; Section 3 outlines
servant in the POA, operations are directly invoked on séne Portable Object Adapter (POA) architecture of CORBA
vants in the context of the calling thread, thereby transfor@RBs and evaluates the design and performance of POA op-
ing operation invocations into local virtual method calls. TA@mization principle patterns used in TAO; Section 4 describes
also supports direct collocated method invocations that bypesated work; and Section 5 provides concluding remarks.



2 Optimizing the ORB Core for Real- ( SERVANTS ]
time Applications 5: dispatch upcall(

The ORB Core is a standard componentin CORBA that is re-
sponsible for connection and memory management, data trans-

fer, endpoint demultiplexing, and concurrency control [2]. I WORKER THREADS
An ORB Core is typically implemented as a run-time library

linked into both client and server applications. When a client 3: enqueue()
invokes an operation on an object, the ORB Core is responsi- REQUEST P2 ¢ 1i (0]

ble for delivering the request to the object and returning a re-
sponse, if any, to the client. For objects that reside remotely, a
CORBA-compliant ORB Core transfers requests via the Gen-
eral Inter-ORB Protocol (GIOP), which is commonly imple-
mented with the Internet Inter-ORB Protocol (IIOP) that runs I/O SUBSYSTEM
atop TCP.
Optimizing an ORB Core to support real-time applicatioffdgure 3: Server Queue-based Worker Thread Pool Concur-
requires the resolution of many design challenges. This se&cy Model
tion outlines several of the most important challenges and de-

scribes the optimization principle patterns we applied to ma>i]— .
o S : " o .shares dynamically allocated data buffers between threads
imize the efficiency, predictability, and scalability of TAO'S hich works against CPU cache affinity [25] and limits the

ORB Core. These optimizations include minimizing conte L A o
switching, synchronization, and data movement in TAO's Coﬁpphcablhty of other optimizations, such as thread-specific

currency model, transparently collocating clients and serval rage (TSS) memory management described n Se_:ctlon 23,
increases locking overheatlie to the synchronization re-

that are in the same address space, minimizing dynamic mem- .
P gay ired to pass data between threads, and (3) can result-in

ory allocations and data copies, and minimizing GIOP!/II AT L .
protocol overhead. Additional optimizations for ORB Cortl}.Ounded priority inversionsince a FIFO request queue wil
queue up all requests at the tail of the queue, irrespective of

connection management are described in [21]. their priority

TAO’s leader/followers thread pool server concurrency

2.1 ORB Core Concurrency Model Optlmlza- model: To alleviate the drawbacks outlined above, TAO uses

tions the leader/followerghread pool model shown in Figure 4. In
Motivation: A common concurrency model used in conven-
tional ORBs is to use gueue-based worker thread pda#). SERVANTS
As shown in Figure 3, the components in this model include a 4: dispatch upcall()

designated I/O thread, a request queue, and a pool of worker

threads. The I/O threagklect s (1) on the socket endpoints, ORB CORE

(2) reads new client requests, an@)(inserts them into the LEADER FOLLOWERS
tail of the request queue. A worker thread in the pool dequeues 2: read()

(4) the next request from the head of the queue d&)diis-

patches it to a user-defined servant operation via an upcall. (__)SEMAPHORE
The queue-based worker thread pool model is popular for 3: release()
several reasons: (1) it bounds the resources dedicated to
threads, (2) it isolates the I/O thread from the concurrency
strategy ultimately used to process the request, (3) it is rela-
tively easy to implement, (4) CORBA server applications can
control thread creation and control via factory patterns [3], and /0 SUBSYSTEM
(5) other concurrency mechanisms, such as thread-per-redeiRfire 4: Leader/Followers Thread Pool Server Concurrency
or thread pools with lanes [5], can be implemented using tiiigdel
basic model.
However, the queue-based worker thread pool model is this model, there is no designated 1/O thread. Instead, a pool
adequate for many types of real-time systems because itqfl)hreads is allocated and all threads in the pool take turns



playing the role of the 1/O thread. The current leader threaddpplication-level processing performed for each request. The
the server proceselect s (1) onall open client connectionsresults in Figure 5 illustrate the percentage improvement in
When a request arrives, the leader thread re2dsifito an in- performance for the leader/followers thread pool model com-
ternal buffer. Once the request is validated, a follower threpared with the queue-based worker thread pool model.
in the pool is released to become the new lea8¢afd the  As shown in the figure, the leader/followers concurrency
original leader thread dispatches the upcé)l After the up- model outperformed the queue-based approach for all com-
call returns, the original leader thread becomes a follower dridations of threads and application workload. The largestim-
returns to the thread pool. New requests are queued in sogketements~2,800%, occurred for a small number of threads
endpoints until a thread in the pool is available to execute #ved a small amount of work-per-request. As the number of
requests. threads and the amount of work-per-request increased the per-
Compared with the queue-based worker thread pool, ttentage improvement decreased8%. These results illus-
leader/followers thread pool model (hproves CPU cache trate that the queue-based worker thread pool model incurs a
affinity and eliminates dynamic allocation and data bufféigher amount of overhead for memory allocation, locking,
sharing between threadsy reading the request into buffeland data movement than the leader/followers model.
space allocated on the stack of the leader or by using TS8lote that on a lightly loaded real-time system, using a small
memory allocations, (2jninimizes locking overheddly not number of threads will generally yield better throughput than
exchanging data between threads, thereby reducing threddgher number of threads. This difference stems from the
synchronization, and (3inimizes priority inversiosince no higher context switching and locking overhead incurred by
extra queueing is introduced by the ORB Core. When cothreading. As workloads increase, however, addition threads
bined with real-time 1/0 subsystems [26], the leader/followeray help improve server throughput, particularly when the
thread pool model can significantly reduce sources of naerver runs on a multi-processor.
determinism in server ORB request processing.

Empirical results: Figure 5 compares the performance ®-2 Collocation Optimizations
the leader/follower and queue-based worker thread pool cRpstivation:  In addition to separating interface from imple-

currency models. These benchmarks were conducted Usjfithation, CORBA decouples servant implementations from
TAO version 1.0 on a quad-CPU 400 MHz Pentium Il Xeomy,, servants are configured into server processes. In practice,
with 1 GByte RAM, 512 Kb cache on each CPU, runningopga js used primarily to communicate between distributed
Debian Linux release 2.2.5, and g++ version egcs-2.91.8fiects. However, there are configurations where a client and
Our benchmarks measure the total time required by each cQtiy,ant must beollocatedin the same address space [27]. In
this case, there is no need to incur the overhead of data mar-
shaling or transmitting requests/replies through a “loopback”
transport device. Such collocation optimizations are an appli-
cation of the principle pattern of avoiding gratuitous waste.

TAO’s collocation optimization technique: TAO opti-
mizes for collocated client/servant configurations by generat-
ing a special stub for the client, which is an application of the
principle pattern of replacing inefficient general-purpose op-
erations with optimized special-purpose ones. This stub for-
wards all requests to the servant and eliminates data marshal-
ing, thereby applying the principle pattern of avoiding gra-
tuitous waste. TAO supports the following two collocation
strategies in its stubs:

e Thru_POA: TheThru _POAstrategy is the default col-
5 location strategy in TAO. In this strategysafecollocated stub
Threads 6 . . . . .
is used to handle operation invocations on a collocated object.
Figure 5: Performance of Leader/Follower vs. Queue-badedoking an operation on this collocated stub ensures: (1) the
Worker Thread Pool server ORB (which may or may not be the same ORB as the
clients’) has not been shut down, (2) the thread-safety of all
currency model to process 100,000 CORBA request m&RB and POA operations, (3) the POA managing the servant
sages. We varied the number of threads and the amounstif exists, (4) the POA Manager of this POA is queried to

Performance Improvement




CLIENT-SIDE SERVER-SIDE

make sure upcalls are allowed to be performed on the POA's VAPPING VAPPING

servants, (5) the servant for the collocated object is still active,
(6) thePOA::Current s contextis initialized for this upcall,
and (7) the POA's threading policy is respected. If it is safe to | CORBA::Object Servant Base
invoke the operation, the stub uses the servant exported from
server's POA, downcasts it to the servant, and forwards the op-

eration directly to the servant. The so-called safe stubs ensure‘

that thePOA::Current s restored to its previous context )

before the current invocation, various locks in the POA are re-

leased, and the servant upcall counter is restored, after eitheri
. . . Stub ‘ ‘ Collocated Proxy ‘ ‘ Skeleton ‘
successful or an unsuccessful operation invocation.
e Direct: In this TAO-specific extension, the collocation <<forwards>>
class forwards all requests directly to the servant classthe : N
POA is not involved at all. This design applies the principle N

pattern of optimizing for the common case, which ensures the ‘Se“’am 'mp'emema“o”‘

performance is the same as for a direct virtual method call.
However, this implementation does not support the following Figure 6: TAO’s POA Mapping and Collocation Class
standard POA features: (1) tRROA::Current is not ini-

tialized, (2) interceptors are bypassed, (3) POA Manager state

is ignored, (4) Servant Managers are not consulted, (5) ethe-

realized servants can cause problems, (6) location forward#@gocation table which applies the principle of maintaining

is not supported, and (7) the POA®rread _Policy is cir- €xtra state. Figure 7 shows the internal structure for colloca-
cumvented. As shown in Figure 9, these features decrease é@M table management in TAO. Each collocation table maps
location performance somewhat. Therefore, TAO provides the

Direct strategy that is optimized for real-time applications PooiPOA [o.r
with very stringent Iatency requirements. CORBA::ORB PortableServer::POA |~

Supporting transparent collocation in TAO: Clients can
obtain an object reference in several waysg, from

// \\

a CORBA Naming Service or from a Lifecycle Ser- 1,5 ors cor

vice generic factory operation. Likewise, clients can use R 1.x

string _to _object to convert a stringified interoperable f’ Addr

object reference (IOR) into an object reference. To ensure 10- [Tapie Collection
cality transparency, an ORB’s collocation optimization must
determine if an object is collocated. If it is, the ORB returns a ) 11

Table Entry

Bendpoint : Addr
1..*|E8poa : PortableServer::POA

collocated stub; if it is not, the ORB returns a remote stub to a
distributed object.

Figure 6 shows the classes generated by TAO'’s IDL com-
piler. The stub and skeleton classes are required by the PORigure 7: Class Relationship of TAO'’s Collocation Tables
specification, though the collocation class is specific to TAO.

Collocation is transparent to the client since it only accesses

the abstract interface and never uses the collocation class@i-ORB’s transport endpoints to its RootPOA. In the case of
rectly. As with remote method invocations, TAO’s ORB CorgOP, endpoints are specified usifgostname, port numbgr
assumes the responsibility of locating servants and makes suptes.

the collocated stub class, rather than the remote stub class, iﬁultiple ORBs can reside in a single server process. Each
used by a client when the servant resides in the same add¢ggSg can support multiple transport protocols and accept re-
Space. quests from multiple transport endpoints. Therefore, TAO
. , , ... maintains multiple collocation tables for all transport proto-
The specific steps used by TAO's collocation optimizationgs ysed by ORBs within a single process. Since different
are described below: protocols have different addressing formats, maintaining pro-
Step 1 — Determining collocation: To determine if an tocol specific collocation tables allows TAO to strategize and
object reference is collocated, TAO’'s ORB Core maintainatimize the lookup mechanism for each protocol.

Collocation Table
-




Step 2 — Obtaining a reference to a collocated object: A
client acquires an object reference either by resolving an imia a direct virtual method call.
or by demarshaling Either operation(2) or (3) will fail if the imported object
an incoming object reference. In either case, TAO examimeference is not collocated. In this case, the ORB invokes the
the corresponding collocation tables according to the profiles _a operation to verify that the remote object matches the
carried by the object to determine if the object is collocatedrget type. If the test succeeds, a remote stub is created and
not. If the object is collocated, TAO performs the steps showaturned to the client and all subsequent operations are dis-
in Figure 8 to obtain a reference to the collocated object.

ported IOR usingstring

1: resolve object reference

_to _object

3: find_servant()

located stub, which forwards the operation to the local servant

tributed. Thus, the process of selecting collocated stubs or
non-collocated stubs is completely transparent to clients and
are performed only at the time of object reference creation.

‘) —> |.corBA:0RB] = | RootPOA : Portable Step 3 — Performing collocated object invocations: Col-
y Server::POA located operation invocations in TAO borrow the client's
/ AN , .
O thread-of-control to execute the servant’s operation. There-
:Cllents ™\ 2: get_collocated_poa() fore, they are executed within the client thread at its thread

i

AN
N\

<
.
AN

8: invokes operations AN

§

AN
\\\ \& \L . \
5:_narrow () 4: instantiates .

.

\

. 6:_narrow ()

2\

~

7: instantiates \\\\\

Collocated Servant :

e

Servant Implementation :

CORBA::Object

CORBA::ServantBase

priority. Although executing an operation in the client’s thread
is very efficient, it is undesirable for certain types of real-time

e e R applications [28]. For instance, priority inversion can occur
CORBA::Object OF;;A(C:) when a client in a lower priority thread invokes operations on
ore

a collocated object in a higher priority thread.

To provide greater access control over the scope of TAO's
collocation optimizations, therefore, applications can asso-
ciate different access policies to endpoints so they appear col-
located only to certain priority groups. Since endpoints and
priority groups in many real-time applications are statically
configured, this access control lookup imposes no additional

overhead.

Figure 8: Finding a Collocated Object in TAO Empirical results:  To measure the performance gain from

TAO's collocation optimizations, we ran server and client
threads in the same process. Two platforms were used

When theThru _POAcollocation strategy is enabled, theo benchmark the test program: a quad-CPU 300 Mhz
ORB checks if the imported object reference is collocated OitraSparc-Il running SunOS 5.7 and a dual-CPU 333 Mhz
not only when it resolves the object reference. To determiPentium-1I running Microsoft Windows NT 4.0 with SP4. To
this, TAO examines the endpoint information in the collocgompare performance systematically, the test program was run
tion table maintained by TAO's ORB Core. If the importedith the Thru _POAcollocation strategy, th®irect collo-
object reference is collocated, an object reference with ¢wtion strategy, direct invocation on servants, and as well as
safe collocated stub is generated. This safe collocated siith neither collocation optimizatiori.e., using remote stubs
contains information about the matching Object Adapter agig the loopback network interface.
server ORB. Figure 9 shows the performance improvement, measured

If the ORB uses th®irect collocation strategy, the ORBin calls-per-second, using TAO’s collocation optimizations.
resolves an imported object reference using the steps showBach operation cubed a variable-length sequenderaf s
Figure 8. To resolve an object referer{@® the ORB checks that contained 4 and 1,024 elements, respectively. The
(2) the collocation table maintained by TAO’s ORB Core tperformance of operation invocations improves dramatically
determine if any object endpoints are collocated. If a collethen servants are collocated with clients. Depending on
cated endpoint is found, the RootPOA corresponding to tte size of arguments passed to the operations, our results
endpoint is returned. Next, the matching Object Adapterdbow thatThru _POAimproves performance from 3,000% to
gueried for the servant, starting at its RootP(@)\ The ORB 6,000% compared to the loopback device. The application fo
then instantiates a genef@ORBA::Object (4) and invokes Thru _POAcollocation optimization saves the time to transmit
the_narrow operation on it. If a servant is found, the ORB’she invocation arguments and return values back and forth thru
_narrow operation(5) invokes the servant'snarrow oper- the local loopback device which also involve copying data be-
ation (6) and a collocated stub is instantiated and returnedtteeen user and kernel memories. Also shown in the figure,
the client(7). Finally, clients invoke operatior(8) on the col- we gain 130%-~ 180% performance improvement by skip-



300000

used by CORBA clients to send requests containing marshaled
parameters. Likewise, CORBA servers use memory buffers to
receive requests containing marshaled parameters.

One source of memory management overhead is incurred
by dynamic memory allocation, which is problematic for real-
time ORBs. For instance, dynamic memory can fragment the
global heap, which decreases ORB predictability. Likewise,
locks used to protect a global heap from simultaneous access
by multiple threads can increase synchronization overhead and
incur priority inversion [21].

Another significant source of memory management over-
head involves excessive data copying. For instance, conven-

_ tional ORBs often resize their internal marshaling buffers mul-
S e tiple times when encoding large operation parameters. Naive
BNT i virtual calls - W Sotaris wi loopback  BSolaris w/ thru_poa memory management implementations use a single buffer that
is resized automatically as necessary, which can cause exces-
Figure 9: Results of TAO’s Collocation Optimizations ~ Sive data copying.
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TAO’'s memory management optimization techniques:
TAO’s memory management strategies leverage its concur-
ping related POA and ORB operations when switching frorancy strategies, which minimize thread context switching
Thru _POAstrategy toDirect  strategy. The size of the ar-overhead and priority inversions by eliminating queueing
guments does not have a significant effect on the performawitéin the ORB’s critical path. For example, on the client,
improvement in this case. Invoking the operation directly tbe thread that invokes a remote operation is the same thread
servant through virtual function calls represents the optimhat completes the 1/O required to send the request,no
performance we can get in this scenario. As shown in the figseueing exists within the ORB. Likewise, on the server, the
ure, there’s only 5% performance gain compare®iect thread that reads a request completes the upcall to user code,
collocateion strategy which is resulted from the extra virtualso eliminating queueing within the ORBThese optimiza-
function call within the collocated stub. tions are based on the principle pattern of exploiting locality
TAO's Thru _POA collocation strategy is completelyand opt|m|.2|'ng for the common case.
. . By avoiding thread context switches and unnecessary
CORBA compliant. Although there are some overhads in- ) . :
. . gueueing, TAO can benefit from memory management opti-
volved in theThru _POAcollocation strategy compared to” .~ o .
X . o L mizations based othread-specific storag€TSS). TSS is a
Direct collocation, there is still a significant performance . e
. L ommon design pattern [14] for optimizing buffer manage-
improvement over the non-optimized scheme. Moreover, e

Thru POAstrate reserves the semantics of CORBAS 0F_ent in multi-threaded middleware. This pattern allows mul-
. gy p [Ig?le threads to use one logically global access point to retrieve

ject architecture model and maintain the uniform behavi cr)ead-specific data without incurring locking overhead for

no matter an object is collocated or remote. For users "a5ch access, which is an application of the optimization prin-
have systems that are more statically configured, they can Bk ’ pp P P

advantage of the TAO-specifbirect  collocation strategy mp?e pattern of avoiding waste. TAO uses this pattern to place

. : i . its memory allocators into TSS. Using a thread-specific mem-

which provides near optimal performance but requires more L .
. . . o ) ory pool eliminates the need for intra-thread allocator locks,
consideration on objects lifetimes. THhairect colloca- I o :
. . L : . . reduces fragmentation in the allocator, and helps minimize pri-
tion policy optimizations are not entirely compliant with the”.” ~ = . o
grity inversion in real-time applications.

CORBA standard, though they provide more efficient collo- In addition, TAO minimizes unnecessary data copying by

ioni ions. H h coll i - : . . 2
cated operation invocations. However, both collocation stra%e%?pmg a linked list of marshaling buffers. As shown in Fig-

gq'?ts d:;: z?ar)t/hzﬁllglae;g;cirzgt?/ﬁ?kvy:tg rr]; r:é)-te stubs that traure 10, operation arguments are marshaleq intq TSS allocated
buffers. The buffers are linked together to minimize data copy-
L ing. Gather-write I/O system calls, suchwastev , can then
2.3 Memory Management Optimizations write these buffers atomically without requiring multiple OS

Motivation: A key source of overhead and non—determinisﬁ‘?‘”s' unnecessary data allocation, or copying. TAO's mem-

in conventional ORB Core implementations stems from im- 2any queueing required by the ORB endsystem is performed in the OS
proper management of memory buffers. Memory buffers ai@ subsystem.




operation ([parami] , | param2),large_param |) In this experiment, we perform16 ORB buffer allocations
: B e : and~1,000 regular data allocations. The exact series of allo-

marshal e . . h .
A e T : cations is not important, as long as both experiments perform
ORB buffers [[T 1 [+ [+ [ 1] the same number. If there is one series of allocations where
Iy i i L L
ot N - the global heap allocator behaves non-deterministically, it is
writev ()| oo 0 Seeee- o - not suitable for hard real-time systems.
relireilirs ocate . . .
L b 'e b 'e b Our results in Figure 11 illustrate that TAO’s TSS allocators
GV?/th(ter il i Bl TSS Pool isolate the ORB from variations in global memory allocation
nte " oVvEC strategies$. In addition, this experiment shows how TSS allo-

cators are more efficient than global memory allocators since
Figure 10: TAO’s Internal Memory Management they eliminate locking overhead. In general, reducing locking

overhead throughout an ORB is important to support real-time

applications with deterministic QoS requirements [21].

ory management design also supports special allocators, such

as zero-copy schemes [29] that share memory pools betweft  Minimizing ORB Protocol Message Foot-
user processes, the OS kernel, and network interfaces. print

Empirical results:  Figure 11 compares buffer allocationyqtiyation: Real-time systems have traditionally been de-
time for a CORBA request using thread-specific storaggioneq using proprietary protocols that are hard-coded for
(TSS) allocators with that of using a global heap allocgzch application. In theory, CORBA's GIOP/IIOP protocols
tor. These experiments were executed on a Pentium 1/43Q;iate the need for proprietary protocols. In practice, how-
ever, many developers of real-time applications are justifiably
concerned that standard CORBA protocols will cause exces-
- ?';:ﬂ@'é‘:t’;m’ sive overhead. For example, some applications have very strict

constraints on latency, which is affected by the total time re-
a0 | ] quired to transmit the message. Other applications, such as
mobile PDAs running over wireless access networks, have
limited bandwidth, which makes them more sensitive to pro-
tocol message footprint overhead.

50

30 ‘w

Time (usecs)

TAO’s ORB protocol optimization techniques: A GIOP
request includes a number of fields, such as the version num-
20 1 | ber, that are required for interoperability among ORBs. How-
ever, certain fields are not required in all application domains.
For instance, the magic number and version fields can be omit-
ted if a single supplier and single version is used for ORBs in
0 200 200 500 800 000 @ real-time embgdded system. L|I§eW|se, if the commqnlcatlng
lteration ORBs are running on systems with the same endianess,
big-endian or little-endian, the byte order flag can be omitted
Figure 11: Buffer Allocation Time using TSS and Global Hedjpom the request.
Allocators Since embedded and real-time systems typically run the
same ORB implementation on similar hardware, we have
with 256Mb of RAM, running LynxOS 3.0, which is a realmodified TAO to optionally remove some fields from the
time OS. The test program contained a group of ORB bufiegfOP header and the GIOP Request header when the
(de)allocations intermingled with a pseudo-random sequeRCRBgioplite option is given to the client and server
of regular (de)allocations. This use-case is typical of midORBA::ORRBinit  operation. The fields removed by this
dleware frameworks like CORBA, where application code égptimization are shown in Table 2. These optimizations are
called from the framework and vice-versa. Both experimenjgided by the principle patterns of relaxing system require-
perform the same sequence of memory allocation requesients and avoiding unnecessary generality.
with one experimentusing a TSS allocator for the ORB bufferssthere is a very small variation in the TSS allocator performance; but the
and the other using a global allocator. variation is bounded and thus the strategy is completely predictable.
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Header Field Size These standard POA features allow application developers

GIOP magic number 4 bytes to write more flexible and portable CORBA servers [31]. They
GIOP version 2 bytes also make it possible to (1) conserve resources by activating
GIOP flags (byte order) 1byte objects on-demand [32] and to (2) generate so-called persistent

Request Service Context > 4 bytes
Request Principal > 4 bytes
Total > 15 bytes

object references [33], which remain valid after the originating
server process terminates. Server applications can configure
these new features portably usipgjiciesassociated with each

. . . , ) POA.
Table 2: Messaging Footprint Savings for TAO’s GIOPlite Op- CORBA 2.2 allows server developers to creataitiple Ob-
timization

ject Adapters, each with its own set of policies. Although this
is a powerful and flexible programming model, it can incur
Empirical results:  We conducted an experiment to measuggnificant run-time overhead because it complicates the re-
the performance impact of omitting the GIOP fields in Table @uest demultiplexing path within a server ORB. This is partic-
These experiments were executed on a Pentium 11/450 witfrly problematic for real-time applications since naive Ob-
256Mb of RAM, running LynxOS 3.0 in loopback mode. Talect Adapter implementations can substantially increase prior-
ble 3 summarizes the results, expressed in calls-per-secéidaversion and non-determinism [8].
Optimizing a POA to support real-time applications requires
the resolution of several design challenges. This section out-
Marshaling Enabled Marshaling Disabled lines these challenges and describes the optimization princi-
min | max| avg min | max| avg | ple patternswe applied to maximize the predictability, perfor-
GIOP 2,878 2,937 | 2,906 || 2,912 2,976 | 2,949 || mance, and scalability of TAO’s POA. These POA optimiza-
GIOPlite | 2,883 | 2,978 | 2,943 | 2,911 | 3,003 | 2,967 || tions include constant-time demultiplexing strategies, reduc-
ing run-time object key processing overhead during upcalls,
Table 3: Performance of TAO’s GIOP and GIOPIlite Protocahd generally optimizing POA predictability and reducing
Implementations memory footprint by selectively omitting non-deterministic
POA features.

Our empirical results reveal a slight, but measurabfe,
improvement when removing the GIOP message footprigity Optimizing POA Demultiplexing
“overhead.” More importantly though, these changes do not
affect the standard CORBA Axis used to develop applicatiogalable and predictable POA demultiplexing is important for
Therefore, programmers can focus on the development of egany applications that have stringent hard real-time timing
plications, and if necessary, TAO can be optimized to use tbanstraints. Below, we outline the steps involved in demul-
lightweight version of GIOP. tiplexing a client request through a CORBA server and then
To obtain more significant protocol optimizations, we agualitatively and quantitatively evaluate alternative demulti-
adding apluggable protocoldramework to TAO [30]. This plexing strategies.
framework generalizes TAO'’s currerDRBgioplite op-
tion to support both pluggable ORB protocols (ESIO&si

pluggable transport protocols 3.2.1 Overview of CORBA Request Demultiplexing

A standard GIOP-compliant client request contains the iden-
o . tity of its object and operation. An object is identified by an
3 Optimizing the POA for Real-time object key, which is amctet sequence . An operation is
; ; represented asstring . As shown in Figure 12, the ORB
Appllcatlons endsystem must perform the following demultiplexing tasks:

3.1 POA Overview Steps 1 and 2: The OS protocol stack demultiplexes the in-

o ) coming client request multiple times, starting from the net-
The OMG CORBA specification [2] standardizes severgl,y interface, through the data link, network, and transport

server-side components in CORBA-compliant ORBS. Theggers up to the user/kernel boundaeyd, the socket layer),

components include the Portable Object Adapter (POA), Stgfliere the data is passed to the ORB Core in a server process.
dard interfaces for object implementations { servants), and

refined definitions of skeleton classes for various prograBteps 3, and 4: The ORB Core uses the addressing informa-
ming languages, such as Java and C++. tion in the client’s object key to locate the appropriate POA
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the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
SERVANT order of arrival. FIFO demultiplexing can cause higher prior-
LAYER ity packets to wait for a non-deterministic period of time while
lower priority packets are demultiplexed and dispatched [20].

OPERATION
S (SKEL 1) (SKEL 2) e (SKELN) Conventional implementations of CORBA incur significant
: ' ' I — demultiplexing overhead. For instance, [6, 8] show that con-

OPERATION1
OPERATION2

[ )

[ ]

[ ]
OPERATIONK

6: DISPATCH

SKELETON . .
( ) ( ) - ventional ORBs spend 17% of the total server time process-
SERVANT { | (SERVANT) | eee |SERVANTy ; . . . .
ing demultiplexing requests. Unless this overhead is reduced
4:DEMUX TO L | and demultiplexing is performed predictably, ORBs cannot
SERVANT : H : H
provide uniform, scalable QoS guarantees to real-time appli-
(POAO (POAZJ *ee (POAN] cations.
| - | . . . . .

3: DEMUX TO g ' The remainder of this section focuses on demultiplexing op-
OBJECT ( ROOT POA ) ORB timizations performed at the ORB layée., steps 3 through 6.
ADAPTER ( ) LAYER Information on OS kernel layer demultiplexing optimizations

2: DEMUX TO for real-time ORB endsystems is available in [35, 20].

KERNEL  3.2.2 Overview of Alternative Demultiplexing Strategies

—— AveR

PROTOCOL STACK As illustrated in Figure 12, demultiplexing a request to a ser-

vant and dispatching the designated servant operation involves

Figure 12: CORBA 2.2 Logical Server Architecture ~ several steps. Below, we qualitatively outline the most com-
mon demultiplexing strategies used in CORBA ORBs. Sec-
tion 3.2.3 then quantitatively evaluates the strategies that are

appropriate for each layer in the ORB.
and servant. POAs can be organized hierarchically. Therg-p P y

fore, locating the POA that contains the designated servant birear search: This strategy searches through a table se-
involve a number of demultiplexing steps through the nestgdentially. If the number of elements in the table is small,
POA hierarchy. or the application has no stringent QoS requirements, linear

search may be an acceptable demultiplexing strategy. For real-

Step 5 a_nd 6: The POA Uses the operation name to find t e applications, however, linear search is undesirable since it
appropriate IDL skeleton, which demarshals the request bufier

. . es not scale up efficiently or predictably to a large number of

mf[o operation parameters and performsthe upcal! to code SSvants or operations. In this paper, we evaluate linear search

P“ed by servant developers to implement the object's opegﬁy to provide an upper-bound on worst-case performance,

tion. though some ORBs [6] still use linear search for operation de-
The conventional deeply-layered ORB endsystem demultultiplexing.

plexing implementation shown in Figure 12 is generally inafg

) . . - inary search: Binary search is a more scalable demulti-
propriate for high-performance and real-time applications Blrexing strategy than linear search since(tégn) lookup
the following reasons [34]:

time is effectively constant for most applications. However,
Decreased efficiency: Layered demultiplexing reduces perinsertions and deletions can be complicated since data must
formance by increasing the number of internal tables the sorted for the binary search algorithm to work correctly.
must be searched as incoming client requests ascend throthygrefore, binary search is primarily applicable for ORB op-
the processing layers in an ORB endsystem. Demultiplexigtion demultiplexing since all insertions and sorting can be
client requests through all these layers can be expensive, parformed off-line by an IDL compiler. In contrast, using bi-
ticularly when a large number of operations appear in an IDiary search to demultiplex requests to servants is more prob-
interface and/or a large number of servants are managed bieamatic since servants can be inserted or removed dynamically
Object Adapter. at run-time.

Increased priority inversion and non-determinism: Lay- Dynamic hashing: Many ORBs use dynamic hashing as
ered demultiplexing can cause priority inversions becaubeir Object Adapter demultiplexing strategy. Dynamic hash-
servant-level quality of service (QoS) information is inaccesyg providesO(1) performance for the average case and sup-
sible to the lowest-level device drivers and protocol stacksports dynamic insertions more readily than binary search.
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However, due to the potential for collisions, its worst-case eX2.3 The Performance of Alternative POA Demultiplex-
ecution time isO(n), which makes it inappropriate for hard ing Strategies

real-time applications that require efficient and predictable . . . .
worst-case ORB behavior. Moreover, depending on the h S(?1ctlon 3.2.1 describes the demultiplexing steps a CORBA re-

lqorith ic hashi . fairlv hiah fuest goes through before it is FJispgtched to a user-sqpp'lied
gvgec;;::a;j,[g]ynamlc ashing may incur a fairly hig Cor]Stasgrvant method. These demultiplexing steps include finding

the Object Adapter, the servant, and the skeleton code. This
section empirically evaluates the strategies that TAO uses for
Perfect hashing: If the set of operations or servants igach demultiplexing step. The hardware and software config-
known a priori, dynamic hashing can be improved by presration for this experiment is described in Section 2.1.

computing a collision-freperfect hash functiof86]. Perfect poa demultiplexing: An ORB Core must locate the POA
Hashing is based on the optimization principle pattems of ptgresponding to an incoming client request. Figure 12 shows
computing and using specializeq routines. A Qemultiplexinagat POAs can be nested arbitrarily. Although nesting pro-
strategy based on perfect hashing executes in constant {fg@s a useful way to organize policies and namespaces hierar-
and space. This property makes perfect hashing well-suifggt|y, the POA's nesting semantics complicate demultiplex-
for deterministic real-time systems that can be configured si;ﬁb compared with the original CORBA Basic Object Adapter
ically [8], i.e., if the number of objects and operations can l{BOA) demultiplexing [8] specification.
determined off-line. To support ORB server applications that have deeply nested
POA hierarchies, we use active demultiplexing for the POA

Active demultiplexing:  Although the number and names offemultiplexing phase, as follows:
operations can be knowa priori by an IDL compiler, the 1. All lookups start at thR0otPOA.
number and names of servants are generally more dynamic. S _
In such cases, it is possible to use the object ID and POA I8. TheRootPOA maintains aPOA table that points to
stored in an object key to index directly into a table managed all the POAs in the hierarchy.

by an Object Adapter. This so-calledtive demultiplexings] 3. Object keys include an index into tRROA table to
strategy provides a low-overhead(1) lookup technique that  jdentify the POA where the object was activated. TAO's

can be used throughout an Object Adapter. Active demulti- ORB Core uses this index as the active demultiplexing
plexing uses the optimization principle pattern of not being key.

tied to reference models and passing hints in headers. Pas4's-
ing hints is also an example of the Asynchronous Completion”
Token (ACT) design pattern [37].

In some cases, the POA name also may be needgd,
if the POA is activated on-demand. Therefore, the object
reference contains both the name and the index.

Table 4 summaries the demultiplexing strategies consideregve conducted an experiment to measure the effect of in-
in the implementation of TAO’s POA. creasing the POA nesting level on the time required to lookup
the appropriate POA in which the servant is registered. We
used a range of POA depths, 1 through 25. The results are

| Strategy | Search Time | Comments | et ]
Dot o) Simple to Implement shown in F|gure 13. The experl'ment'was condulcted on POAs
Search Does not scale vyhose object referenqes remain valid across different execu-
Binary Oz n) Additions/deletions tions of a server (persstent) and.those that.do npt (transient).
Search are expensive The results show that using active demultiplexing for POA
Dynamic | O(1) average casé Hashing overhead demultiplexing provides optimal predictability and scalability
Hashing O(n) worst case for both the cases, just as it does when used for servant demul-
Perfect O(1) worst case | For static configurations tiplexing, as described next.
Hashing Eenre]_ratef collt|§|on-free Servant demultiplexing: Once the ORB Core demulti-
Active O(1) worst case szsyge;n;;r;ate d plexes a client request to the right POA, this POA demulti-
Demuxing keys, add direct indexing p]exes the request to th'e correct servant. The fo!lowmg d|§cus-
information to keys 7l sion compares the various servant demultiplexing techniques

described in Section 3.2.2. TAO uses the Service Configura-
tor [14], Bridge, and Strategy patterns [3] to defer the con-
figuration of the desired servant demultiplexing strategy until
ORB initialization, which can be performed eithgtatically

Table 4: Summary of POA Demultiplexing Strategies
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5 (\A ODynamic Demux
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Figure 13: Effect of POA Depth on POA Demultiplexing La- 100 200 300,00
tency No. of Objects 500

Figure 15: Servant Demultiplexing Latency with Alternative
Search Techniques

at compile-time odynamicallyat run-time. Figure 14 illus-

trates the class hierarchy of strategies that can be configured

into TAQ's POAs. creating perfect hash functions repeatedly during application

development is tedious. We omitted binary search for similar
reasonsi.e., it requires maintaining a sorted active object map
every time an object is activated or deactivated. Moreover,
Z} since the object key is created by a POA, active demultiplex-
\ \ ing provides equivalent, or better, performance than perfect
Linear Search Active Demux hashing or binary search.

DemuxTable |  <<forwards>> _~, Table_Impl

Operation demultiplexing: The final step at the Object
‘ ‘ Adapter layer involves demultiplexing a request to the appro-
priate skeleton, which demarshals the request and dispatches
the designated operation upcall in the servant. To measure
operation demultiplexing overhead, our experiments defined
; . , ; . . range of operations, 1 through 50, in the IDL interface.
glt?:tfg%: s TAO's Class Hierarchy for POA Active Object MaS For ORBs like TAO that target real-time embedded systems,
operation demultiplexing must be efficient, scalable, and pre-
dictable. Therefore, we generate efficient operation lookup us-
%&g GPERF [36], which is a freely available perfect hash func-
e

Binary Search Dynamic Hash Perfect Hash

To evaluate the scalability of TAO, our experiments us

a range of servants, 1 to 1,000 by increments of 100, in 'sh functions from user-supplied keyword lists.

server. Figure 15 shows the latency for servant demultiplex-

; . g . Figure 16 illustrates the interaction between the TAO IDL
ing as the number of servants increases. This figure illustrates

compiler and GPERF. When perfect hashing, linear search and

that active demultiplexing is a highly predlctgble, IOW'Iat.en%/inary search operation demultiplexing strategies are selected,
servant lookup strategy. In contrast, dynamic hashing incyy,

higher constant overhead to compute the hash function. Mor'g—OS IDL compiler invokes GPERF as a co-process to gen-

over, its performance degrades gradually as the number of grate an optimized lookup strategy for operation names in IDL

r_
vants increases and the number of collisions in the hash taI ?erfaces. . . . .
he lookup key for this phase is the operation name, which

increase. Likewise, linear search does not scale for any .re-

alistic system, since its performance degrades rapidly as !ﬁfé‘smng defined by developers in an IDL file. However,

; it IS not permissible to modify the operati@ring name
number of servants increase.

Note that we did not implement the perfect hashing strateto include active demultiplexing information. Active demulti-

for servant demultiplexing. Although it is possible to knaw gl%xmg cannot be used without modifying the GIOP protdcol.
priori the set of servants in each POA for highly static systems *we are investigating modifications to the GIOP protocol for hard real-

on generator we developed to automatically construct perfect
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nisms to dispatch requests to servants based on object IDs. In

TAO IDL PARENT SKELETON particular, TAO's active demultiplexing strategy enables con-
EROGESS CODE stantO(1) lookup in the average- and worst-case, regardless
of the number of servants in a POA's active object map.
INTERFACE SERVER However, cer'tain PQA operations and policies require
OPERATIONS SKELETON Iookups_on active object map.to be baseq on Hee-
vant pointer rather than the object ID. For instance, the
PERFECT _this  method on the servant can be used with the
(i HASH PLICIT_ACTIVATION POA policy outside the context of re-
PROCESS FUNCTIONS quest invocation. This operation allows a servant to be ac-

tivated implicitly if the servant is not already active. If the
Figure 16: Integrating TAO'’s IDL Compiler and GPERF servantis already active, it will return the object reference cor-
responding to the servant.
Unfortunately, naive POA's active object map implementa-
Therefore, TAO uses perfect hashing for operation demutfons incur worst-case performance for servant-based lookups.
plexing. Perfect hashing is well-suited for this purpose singthce the primary key is the object ID, servant-based lookups
all operations names are known at compile time. degenerate into a linear search, even when active demultiplex-

Figure 17 plots operation demultiplexing latency as a funigyg is used for the object ID-based lookups. As shown in Fig-
tion of the number of operations. This figure illustrates thate 15, linear search becomes prohibitively expensive as the
number of servants in the active object map increase. This
overhead is particularly problematic for real-time applications,
such as avionics mission computing systems [19], that (1) cre-
ate a large number of objects usiribis  during their initial-
ization phase and (2) must reinitialize rapidly to recover from
transient power failures.

To alleviate servant-based lookup bottlenecks, we apply the
principle pattern of adding extra state to the POA in the form of
areverse-lookupnap that associates each servant with its ob-
jectIDinO(1) average-case time. In TAO, this reverse-lookup
map is used in conjunction with the Active Demultiplexing
map that associates each object ID to its servant. Figure 18
shows the time required to find a servant, with and without
the reverse-lookup map, as the number of servants in a POA
30 increases.

No.of Methods 50 Servants are allocated from arbitrary memory locations.
Figure 17: Operation Demultiplexing Latency with AlternaSince we have no control over the pointer value format, TAO
tive Search Techniques uses a hash map for the reverse-lookup map. The value of the
servant pointer is used as the hash key. Although hash maps
do not guarante®(1) worst-case behavior, they do provide a

perfect hashing is extremely predictable and efficient, outpgignificant average-case performance improvement over linear
forming dynamic hashing and binary search. As expected, If@arch.

ear search depends on the number and ordering of operation8,reverse-lookup map can be used only withtheQUE_ID
which is not only inefficient, but also complicates worst-ca&¥OA policy since with thetuLTIPLE .ID POA policy, a servant

schedulability analysis for real-time applications. may support many object IDs. This constraint is not a short-
coming since servant-based lookups are only required with the

Optimizing servant-based lookups: When a CORBA re- ,\,oue_ip policy. One downside of adding a reverse-lookup
quest is dispatched by the POA to the servant, the POA USES, to the POA, however, is the increased overhead of main-
the object ID in the request header to find the servant in iz ing an additional table in the POA. For every object acti-
active object mapSection 3.2.3 describes how TAO's 100kUR4tion and deactivation, two updates are required in the active
strategies provide efficient, predictable, and scalable mec@ﬁfect map: (1) to the reverse-lookup map and the (2) to the

time systems that possess stringent latency and message-footprint req@flve d.emUItlipleXing map U'SEd for object ID |00kUp§_- How-
ments. ever, this additional processing does not affect the critical path

@ Perfect Hashing
OBinary Search

25

B Dynamic Hashing

OLinear Search

Latency (us)

10

20
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[ Demultiplexing Stage | Absolute Time (us) ||

1. Parsing object key 2

O With Reverse L ookup 2. POA demux 2

B Without Rever se L ookup 3. Servant demux 3

4. Operation demux 3
Time 5. Parameter demarshal operation dependent
(usec) 6. User upcall servant dependeni
7. Return value marsha| operation dependent

Table 5: Time Spent in Each Demultiplexing Step

Thus, no changes are required to the standard POA interfaces
specified in CORBA specification [2].

3.3 Optimizing Object Key Processing in POA

. . . Upcalls
Figure 18: Benefits of Adding a Reverse-Lookup Map to the

POA Motivation:  Since the POA is in the critical path of request
processing in a server ORB, it is important to optimize its pro-
cessing. Figure 20 shows a naive way to parse an object key.

of object ID lookups during run-time. In this approach, the object key is parsed and the individual

Summary of TAO's POA demultiplexing strategies: Object Key

Bgsed on the resglts of our benphmgrks descr!bed above, P353bccdb00094ae8/f rstPOA/myser\*ant
Figure 19 summarizes the demultiplexing strategies that we
have determined to be most appropriate for real-time appli-

cations [19]. Figure 19 shows the use of active demultiplex- [ ]
firstPOA
(SKEL 1) (SKEL 2) eoe (SKELN) POA Name
PERFECT L L —
° [

HASHI myservan
SHING () (evane) one () (P353bccdb00094a 8
Object Id

ACTIVE o ' ' Time Stamp

DEMUXING (PO A 1) (PO Az) cee (POAN)
I I —

Figure 20: Naive Parsing of Object Keys

( ROOT POA )

ACTIVE o— — ' .
fields of the key are stored in separate components. Unfor-
DEMUXING . .
tunately, this approach (1) allocates memory dynamically for
_ _ _ _ each individual object key field and (2) copies data to move
Figure 19: TAO's Default Demultiplexing Strategies  the object key fields into individual objects.

TAO's object key upcall optimizations: TAO provides the

ing for the POA names, active demultiplexing for the servant8!lowing object key optimizations based on the principle pat-
and perfect hashing for the operation names. Table 5 depi€f§s of avoiding gratuitous waste and avoiding unnecessary
the time in microsecondsé) spent in each activity as a TaQQEnerality. TAO leverages the fact that the object key is avail-

server processes a request on the quad-CPU 400 MHz Penfifiif through the entire upcall and is not modified.  Thus,
Il Xeon used for the benchmarks described in Section 2.1. the individual components in the object key can be optimized
to point directly to their correct locations, as shown in Fig-

All of TAO’s optimized demultiplexing strategies describedre 21. This eliminates wasteful memory allocations and data
above are entirely compliant with the CORBA specificationopies. This optimization is entirely compliant with the stan-
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Table 6 shows the footprint reduction achieved when the
features listed above are excluded from TAO'The measure-
ments were taken for code compiled by the egcs compiler (ver-
sion 2.91.60) on Solaris operating system (version 5.7). The
options used for the compiler were (1) no debugging, (2) op-
timization was set to -O2, and (3) TAO was compiled into a

Figure 21: TAO’s Optimized Parsing of Object Keys

dard CORBA specification. static library. The 25.8% reduction in memory footprint for
3.4 Optimizing POA Predictability and Mini- Component CORBA | Minimum | Percentage
P Footprint CORBA | Reduction
mizing POA 281.9 207.2 26.5
Motivation: To adequately support real-time applicationg| ORB Core 347.1 330.304 4.8
an ORB’s Object Adapter must h@edictableand minimal Dynamic Any 131.3 0.0 100
For instance, it must omit non-deterministic operations to imp CDR Interpreter 68.7 68.7 0
prove end-to-end predictability. Likewise, it must provide & DL Compiler 105 10.5 0
minimal memory footprint to support embedded systems [11]). Pluggable Protocols 14.6 14.6 0
. - o o Default Resources 7.9 7.9 0

TAO'’s predictability optimizations: Based on the princi- [ Total [ 8620] 6395 | 2538

ple patterns of avoiding unnecessary generality and relaxifg
system requirements, we enhanced TAO'’s POA to selectivq;%b 6: Comparison of CORBA with Minimum CORBA
disable the following features in order to improve end—to-ermiemOry Footprint (in Kbytes)

predictability of request processing:

¢ Servant Managers are not required: There is no need Minimum CORBA is fairly significant. However, we plan
to locate servants in a real-time environment since all servaiatgeduce the footprint of TAO even further by streamlining
must be registered with POAsspriori. its CDR Interpreter [11]. In Minimum CORBA, TAO’s CDR
. o . Interpreter only needs to support the static skeleton interface
* Adapter Activators are not required: Real-time ap- (SSI) and static invocation interface (SIl). Thus, support for
plications create all their POAs at the beginning of executi Re dynamic skeleton interface (DSI) and dynamic invocation
Therefore, they need not use or provide an adapter activa‘ [ :
) ) . erface (DIl) can be omitted.
The alternative is to create POAs during request processing, in

which case end-to-end predictability is hard to achieve.

« POA Managers are not required: The POA mustnot 4~ Related Work

introduce extra levels of queueing in the ORB. Queueing can

cause priority inversion and excessive locking. Therefore, fRgal-time middleware is an emerging field of study. An in-
POA Manager in TAO can be disabled. creasing number of research efforts are focusing on designing

, _ o . _ . and optimizing CORBA middleware to meet the requirements
TAO's footprint optimizations:  In addition to increasing of real-time applications. This section outlines related work
the predictability of POA request processing, omitting theg@ concurrency and demultiplexing and compares it with the
features also decreases TAO's memory footprint. These OrTﬂé%hniques applied in TAO.
sions were done in accordance with the Minimum CORBA There s a striking similarity between the TAO concurrency
specification [12], which removes the following features fromodel and that recommended by Ousterhout [38]. To avoid

the CORBA specification [2]: the difficulties of threading at the application level, Ousterhout
D ic Skel Interf recommends an event-driven model for most applications. But
e Dynamic Skeleton Interface for performance-critical kernel code, Ousterhout recommends

e Dynamic Invocation Interface , _
5The IDL Compiler row refers to the code required to collaborate between

e Dynamic Any the IDL compiler and the ORB, and not to the code for the IDL compiler itself.
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that threads be used in the kernel. If the TAO ORB Core aad Principle Pattern 1, whichptimizes for the common case
Object Adapter are viewed as the “kernel” then, because sard Principle Pattern 3, which secompute, if possible
vants are application code, the TAO model corresponds with

Ousterhout’s recommendation. S .
. . . . 4.1.2 Eliminating gratuitous waste
Demultiplexing is an operation that routes messages

through the layers of an ORB endsystem. Most protocol stagk, 48, 49] describe the application of an optimization mech-

models, such as the Internet model or the ISO/OSI refereaggsm calledntegrated Layer ProcessindLP). ILP is based

model, require some form of multiplexing to support intebn the observation that data manipulation loops that operate

operability with existing operating systems and peer protoesi the same protocol data are wasteful and expensive. The

stacks. Likewise, conventional CORBA ORBs utilize severglP mechanism integrates these loops into a smaller number

extra levels of demultiplexing at the application layer to assgfloops that perform all the protocol processing. The ILP op-

ciate incoming client requests with the appropriate servant amfiization scheme is based on Principle Pattern 2, whits

operation (as shown in Figure 12). rid of gratuitous waste[49] cautions against improper use of
Related work on demultiplexing focuses largely on theP since this may increase processor cache misses.

lower layers of the protocol stack.e., the transport layer

and below, as opposed to the CORBA middleware. For in- . )

stance, [34, 39, 35, 40] study demultiplexing issues in cofht-3 Passing information between layers

munication systems and show how layered demultiplexingsgciet filters [42, 44, 40] are a classic example of Principle
not §U|table for applications that require real-time quality @fatern 6, which recommengmssing information between
service guarantees. layers A packet filter demultiplexes incoming packets to the
Packet filters are a mechanism for efficiently demultipleyppropriate target application(s). Rather than having demul-
ing incoming packets to application endpoints [41]. A numbgp|exing occur at every layer, each protocol layer passes cer-
of schemes to implement fast and efficient packet filters @ information to the packet filter, which allows it to identify

available. These include the BSD Packet Filter (BPF) [4Z}nich packets are destined for which protocol layer.
the Mach Packet Filter (MPF) [43], PathFinder [44], demul-

tiplexing based on automatic parsing [45], and the Dynamic ] . o ) )
Packet Filter (DPF) [40]. 4.1.4 Moving from generic to specialized functionality

.AS mentioned before,'m'ost existing demultiplexing strat 0] describes a facility called fast buffers (FBUFS). FBUFS
gles”are implemented within the OS klernlel. .Howevehr, 10 OPsmbines virtual page remapping with shared virtual memory
timally reduce ORB endsystem demultiplexing overhead §&-yo ;e unnecessary data copying and achieve high through-
quires a vertically integrated architecture that extends from E}ﬁ This optimization is based on Principle Pattern 2, which
OS kernel to the application servants. Since our ORB is ¢ cuses oreliminating gratuitous wastand Principle Pattern

rently implemented in user-space, however, our work foCUSESichreplaces generic schemes with efficient, special pur-
on minimizing the demultiplexing overhead in steps 3, 4, aose ohes

and 6 (which are shaded in Figure 12).

o o 4.1.5 Improving cache-affinity
4.1 Related Work on Optimization Principle
Patterns [51] describes a scheme called “outlining” that when used im-
proves processor cache effectiveness, thereby improving per-
This section describes results from existing work on protodormance.
optimization based on one or more of the principle patterns in

Table 1. 4.1.6 Efficient demultiplexing

4.1.1 Optimizing for the expected case Demultiplexing routes messages between different levels of
functionality in layered communication protocol stacks. Most
[46] describes a technique callbéader predictiorthat pre- conventional communication models, such as the Internet
dicts the message header of incoming TCP packets. This tenbdel or the ISO/OSI reference model, require some form
nigue is based on the observation that many members in dhenultiplexing to support interoperability with existing op-
header remain constant between consecutive packets. Thisodking systems and protocol stacks. In addition, conventional
servation led to the creation of a template for the expec@®RBA ORBs utilize several extra levels of demultiplexing
packet header. The optimizations reported in [46] are basgdhe application layer to associate incoming client requests
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with the appropriate servant and operation. Layered muli{]- Optimization | Principle Patterns | Compliant ]|

plexing and demultiplexing is generally disparaged for highp Concurrency | Optimize for common case yes
performance communication systems [34] due to the addi- Avoid gratuitous waste
tional overhead incurred at each layer. [40] describes a fast anél Not tied to reference models
) ’ X yer. ;J‘_“Collocation Replace general-purpose operations yes
flexible message demultiplexing strategy based on dynamjlic with optimized special-purpose ones
code generation_ Optimize for common case
Avoid gratuitous waste
Add extra state
. Memory Exploit Locality yes
5 CO”C'UC“ng Remarks management | Optimize for common case
Protocol msg | Replace general-purpose operations no
Developers of real-time systems are increasingly using off- footprint VAV'th_ é’p“m'zec‘ Spec'a"P“"?Ft’se ones
) . . | void unnecessary generality
the-shelf middleware co'mponents to lower software lifecy ' Relax system requirements
cle costs and decrease time-to-market. In contemporary busirequest Precompute, Avoid gratuitous waste ves
ness environments, the flexibility offered by CORBA makes demuxing Passing hints in header
it an attractive middleware architecture. Since CORBA is ngt Riﬁ'acﬁ 9?”3@"!’“?9'058 operations
. . . | with optimized special-purpose ongs
Flghtly coupled to a pa_ruculgr_OS Pr programming Ianguag(:, Not tied to reference models
it can be adapted readily to “niche” markets, such as real-tinje Adding extra state
embedded systems, which are not well covered by other mig-Object keys | Avoid gratuitous waste yes
dleware. In this sense, CORBA has an advantage over othel U(Fj)_ca”z_l_ EXIIJ'O” locality
middleware, such as DCOM [52] or Java RMI [53], since it caff er]‘; f'gg’t‘ pl'ri'l?t’ Relax system requirements yes

be integrated into a wider range of platforms and languages:

The POA and ORB Core optimizations and performance fgghle 7: Degree of CORBA-compliance for Real-time Opti-
sults present.ed in this paper support our contention thgt fation Principle Patterns
next-generation of standard CORBA ORBs will be well-suited
for distributed real-time systems that require efficient, scal-
able, and predictable performance. Table 7 summarizes wHicRE Concurrency anonymous reviewers for their constructive
TAO optimizations are associated with which principle pasuggestions for improving the paper. In addition, Jeff Parsons
terns, as well as which optimizations conform to the CORBgtovided valuable proof-reading improvements.
standard and which are non-standard.

Our primary foc.us.on the.TAO project has bgen to researﬁeferenceS
develop, and optimize policies and mechanisms that allow
CORBA to support applications with hard real-time requirell] M. Henning and S. Vinoski,Advanced CORBA Programming With
ments. In hard real-time systems, the ORB must meet de- C**- Addison-Wesley Longman, 1999.

inicti i ] Object Management Groughe Common Object Request Broker: Ar-
terministic QoS requirements to ensure proper overall sy& chitecture and Speciicatio.3 ed.. June 1999,
tem functioning. These requirements motivate many of the o
S d desi . d in thi p[a E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Patterns: El-
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