Douglas C. Schmidt The Service Configurator Pattern Douglas C. Schmidt The Service Configurator Pattern

Motivation Original SunSoft IIOP Reference Implementation

e Common server activities include: operation0 OBJECT e Limitations with SunSoft
CLIENT IMPLEMENTATION 1HOP

out args + return value

Service (re)configuration and run-time control
@ Not a complete ORB

Daemonization and comm. endpoint initialization > <
1/0 port demultiplexing and dispatching PRREAcE (Anmﬂj !nefﬁaent TypeCode
interpreter

Process and thread creation ter _
“One-size fits all” design

in args

1: operation) . Functionality was entirely
i static

— Must modify, recompile, and relink existing code | | ey \ % I.e., all enhancements

— Must terminate and restart running processes = | e & require changing the

\

2: connect() 7777’ _»i ORB source code

The Service Configurator pattern increases server extensibility by
dynamic configuring network services CEIENT _
www.cs.wustl.edu/~schmidt/I1OP.ps.gz

Conventional server designs are overly static, i.e..

Washington University, St. Louis Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern

Example: The ACE ORB (TAO)

Service Configurator o e o TAO Overview
. serati

A Pattern for Dynamically CLIENT e (3. IMPLEMENTATIO — High-performance,
real-time ORB

Configuring Network Services
* Telecom and

RIDL
SKELETON . .
REAL-TIME avionics fOCUS
Prashant Jain and Douglas C. Schmidt ORBIOOS oBJECT
g INTERFACE Py — Leverages the ACE

pjain@cs.wustl.edu and schmidt@cs.wustl.edu
framework

m * Runs on VxWorks,

Washington University, St. Louis POSIX. and Win32
OS KERNEL OS KERNEL
— Small memory

June 19, 1997 -
footprint
- -
— Highly configurable

http://www.cs.wustl.edu/~schmidt/TAO.html

This work is sponsored by Siemens MED Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern

Key Strategies and Patterns in TAO

Key ORB Strategies

— Concurrency strategy — e.g., Thread-per-Request,
Thread-per-Connection

— Demultiplexing strategy — e.g., Dynamic Hashing, Perfect hashing,
Active Demultiplexing

— Dispatching strategy — e.g., Rate Monotonic, Earliest Deadline First

Key ORB Patterns

Service Configurator
Strategy
Abstract Factory

— Reactor

— Active Object

Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern
Structure of the Service Configurator Pattern

Service L] Participants
init . .
services ﬁm»g — Service — specifies
suspend() abstract hook

resume() method API

iﬂfo(l Concrete Service

Service
Repository

— implements
[T 1 hook methods

Concrete Concrete Concrete Service Repository
Service A Service B Service C —» controls groups

of services

Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern
Increasing ORB Flexibility with Patterns and Frameworks

in args

operation() OBJECT U
CLIENT
’ U out args+ return value MLEMENTATION

‘é‘ (A) LAYERED DEMUXING,
PERFECT OR
oo
E DYNAMIC HASHING

hash(method)

(omc’r lj [omm 2] PP G)NECI‘ "j
AN

hash(method)

:ROAY /2 ORB CORE
Hnndler Handler
(B) DE-LAYERED ACTIVE DEMUXING

mdex(object key)
ORB CORE

omcrl::METHonz

Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern
Overview of the Service Configurator Pattern

e Intent

— Decouples the behavior of services from the point in time at which
service implementations are configured into an application or system.

e Forces resolved

— How to defer the selection of a particular type, or a particular
implementation, of a service until very late in the design cycle

— How to build complete applications by composing multiple
independently developed services

— How to optimize, reconfigure, and control the behavior of the service
at run-time

Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern

Using the Service Configurator Pattern in TAO

Service
Service services W\N.Q : Active
Repository ini() a0 4 Demusxing

P

:RMS

resume() Concurren o..._z. Dispatching

info() : Service

¥/ Object
7 7 7 >_umnnvan
—.ng-@

70.52:...2_@ 7 7 Demuxing 7 7 Dispatching 7

Service Service Service

int main (int argc, char *argv[])
1 : PerfectHash
// Configure the ORB. :TPC \ Demuxing :EDF

. . Concurrency Dispatching
Service_Config tao (argc, argv);

// Perform ORB services updates.

tao.impl_is_ready (); Run-time Configuration

Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern
Participants in the Service Configurator Pattern

Service Service Service Service e Interaction m.ﬁm_”um
Configurator A B Repository

L init) | “ — Service configuration

| inserti | H ;

FOR EACH ‘ insert) | Service processing
Service termination

servicepo |Ami0 1

“ insert()

SERVICE
CONFIGURATION

sve()

RUN EVENT

SERVICE
PROCESSING

FOR EACH
SERVICE DO

SERVICE
TERMINATION

Washington University, St. Louis

Douglas C. Schmidt The Service Configurator Pattern
Concluding Remarks

Benefits of patterns, in general

Facilitate design reuse

Preserve crucial design information
Guide design choices

Document common traps and pitfalls

Benefits of Service Configurator pattern

— Increases flexibility and extensibility of networking apps.
— Centralizes administration and control

URLs

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://www.cs.wustl.edu/~schmidt/TAO.html

Washington University, St. Louis

