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Motivation Original SunSoft IIOP Reference Implementation

e Common server activities include: operation0 OBJECT e Limitations with SunSoft
CLIENT IMPLEMENTATION 1HOP

out args + return value

Service (re)configuration and run-time control
@ Not a complete ORB

Daemonization and comm. endpoint initialization > <
1/0 port demultiplexing and dispatching PRREAcE ( Anmﬂj !nefﬁaent TypeCode
interpreter

Process and thread creation ter _
“One-size fits all” design

in args

1: operation) . Functionality was entirely
i static

— Must modify, recompile, and relink existing code | | ey \ % I.e., all enhancements

— Must terminate and restart running processes = | e & require changing the

\

2: connect() 7777’ _»i ORB source code

The Service Configurator pattern increases server extensibility by
dynamic configuring network services CEIENT _
www.cs.wustl.edu/~schmidt/I1OP.ps.gz

Conventional server designs are overly static, i.e..
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Example: The ACE ORB (TAO)

Service Configurator o e o TAO Overview
. serati

A Pattern for Dynamically CLIENT e (3. IMPLEMENTATIO — High-performance,
real-time ORB

Configuring Network Services
* Telecom and
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— Highly configurable

http://www.cs.wustl.edu/~schmidt/TAO.html
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Key Strategies and Patterns in TAO

Key ORB Strategies

— Concurrency strategy — e.g., Thread-per-Request,
Thread-per-Connection

— Demultiplexing strategy — e.g., Dynamic Hashing, Perfect hashing,
Active Demultiplexing

— Dispatching strategy — e.g., Rate Monotonic, Earliest Deadline First

Key ORB Patterns

Service Configurator
Strategy
Abstract Factory

— Reactor

— Active Object
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Structure of the Service Configurator Pattern

Service L] Participants
init . .
services ﬁm»g — Service — specifies
suspend() abstract hook

resume() method API

iﬂfo(l Concrete Service

Service
Repository

— implements
[ T 1 hook methods

Concrete Concrete Concrete Service Repository
Service A Service B Service C —» controls groups

of services
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Increasing ORB Flexibility with Patterns and Frameworks

in args

operation() OBJECT U
CLIENT
’ U out args+ return value MLEMENTATION

‘é‘ (A) LAYERED DEMUXING,
PERFECT OR
oo
E DYNAMIC HASHING

hash(method)

(omc’r lj [omm 2] PP G)NECI‘ "j
AN

hash(method)

:ROAY /2 ORB CORE
Hnndler Handler
(B) DE-LAYERED ACTIVE DEMUXING

mdex(object key)
ORB CORE

omcrl::METHonz
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Overview of the Service Configurator Pattern

e Intent

— Decouples the behavior of services from the point in time at which
service implementations are configured into an application or system.

e Forces resolved

— How to defer the selection of a particular type, or a particular
implementation, of a service until very late in the design cycle

— How to build complete applications by composing multiple
independently developed services

— How to optimize, reconfigure, and control the behavior of the service
at run-time
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Using the Service Configurator Pattern in TAO

Service
Service services W\N.Q : Active
Repository ini() a0 4 Demusxing

P

:RMS

resume() Concurren o..._z. Dispatching

info() : Service

¥/ Object
7 7 7 >_umnnvan
—.ng-@

70.52:...2_@ 7 7 Demuxing 7 7 Dispatching 7

Service Service Service

int main (int argc, char *argv[])
1 : PerfectHash
// Configure the ORB. :TPC \ Demuxing :EDF

. . Concurrency Dispatching
Service_Config tao (argc, argv);

// Perform ORB services updates.

tao.impl_is_ready (); Run-time Configuration
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Participants in the Service Configurator Pattern

Service Service Service Service e Interaction m.ﬁm_”um
Configurator A B Repository

L init) | “ — Service configuration

| inserti | H ;

FOR EACH ‘ insert) | Service processing
Service termination

servicepo |Ami0 1

“ insert()

SERVICE
CONFIGURATION

sve()

RUN EVENT

SERVICE
PROCESSING

FOR EACH
SERVICE DO

SERVICE
TERMINATION
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Concluding Remarks

Benefits of patterns, in general

Facilitate design reuse

Preserve crucial design information
Guide design choices

Document common traps and pitfalls

Benefits of Service Configurator pattern

— Increases flexibility and extensibility of networking apps.
— Centralizes administration and control

URLs

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://www.cs.wustl.edu/~schmidt/TAO.html
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