Design and Perfor mance of an Object-Oriented Framewor k
for High-Speed Electronic Medical I maging

Irfan Pyarali
Eastman Kodak Company
Dallas, Texas, 75240

Timothy H. Harrison and Douglas C. Schmidt
Department of Computer Science
Washington University, St. Louis, Missouri, 63130 *

This will appear in the November/December Computing
Systems Journa, USENIX, Vol. 9, No. 3., Anearlier version
of this paper appeared in the USENIX COOTS conference,
Toronto, Canada, June 1996.

Abstract

This paper describes the design and performance of an
obj ect-oriented communication framework being developed
by the Health Imaging division of Eastman Kodak and the
Electronic Radiology Laboratory at Washington University
School of Medicine. The framework is designed to meet
the demands of next-generation electronic medical imaging
systems, which must transfer extremely large quantities of
data efficiently and flexibly in a distributed environment. A
novel aspect of thisframework is its seamless integration of
flexible high-level CORBA distributed object computing mid-
dlewarewith efficient |ow-level socket network programming
mechanisms. In the paper, we outline the design goals and
software architecture of our framework, describe how we re-
solved design challenges, and illustrate the performance of
the framework over high-speed ATM networks.

1 Introduction

The demand for distributed el ectronic medical imaging sys-
tems (EM I Ss) i s pushed by technological advancesand pulled
by economic necessity [1]. Recent advances in high-speed
networks and hierarchical storage management provide the
technological infrastructure needed to build large-scale dis-
tributed, performance-sensitive EMISs. Consolidating inde-
pendent hospitalsintointegrated health careddivery systems
to control costs providestheeconomicincentivefor such sys-
tems.

Two key requirements for the communication infrastruc-
ture in a distributed EMIS are flexibility and performance.
An EMIS must be flexible in order to transfer many types
of message-oriented and stream-oriented data (such asHL7,
DICOM, and domain-specific objects) across loca and wide

1This research is supported in part by the Eastman Kodak Company
Health Imaging division and the Electronic Radiology Laboratory at Wash-
ington University, St. Louis.

MODALITIES

DIAGNOSTIC

STATIONS

NAME
SERVICE

ROUTING
SERVICE

TIME
SERVICE

CLUSTER
STORE

LOCATION|
SERVICE

CENTRAL
MODALITIES STORE

(CT, MR, CR)

.

Figure 1: Topology of Distributed Objects in Project Spec-
trum

area networks. EMIS requirements for flexibility motivate
the use of distributed object computing middleware such as
CORBA [2] in the communication infrastructure. CORBA
automates common network programming tasks (such as ob-
ject selection, location, and activation, as well as parame-
ter marshalling and framing), thereby enhancing application
flexibility.

However, empirica studies [3, 4, 5, 6] revea that for
bulk data transfer, the performance overhead of widdly used
CORBA implementations on high-speed ATM networks is
25% to 70% below that achievable using lower-level trans-
port layer interfaces such as sockets or TLI. As high-speed
networkslike ATM, FDDI, and 100 Mbps Fast-Ethernet be-
come ubiquitous, this performance overhead will force pro-
grammersto use | ower-level mechanisms to achieve the nec-
essary transfer rates, rather than adopting distributed object

computing technologies. This is particularly problematic
for performance-intensive application domains like medica
imaging, where the use of low-level toolsincreases develop-
ment effort and reduces system reiability and flexibility.

To address this problem, we have developed an object-
oriented communication software framework called “Blob
Streaming.”? The Blob Streaming framework is designed to
meet the requirements of next-generation el ectronic medical
imaging systems (EMISs). Figure 1 illustrates the topology
of our distributed EMIS environment [1]. In this environ-
ment, varioustypes of modalities (such as CT, MR, and CR)
capture patient images and transfer them as Blobs to an ap-
propriate storage management system (called a Blob Store).
Radiologists use diagnostic workstations to retrieve these
images for viewing and interpretation. In addition to medi-
cal images, next-generation EMISs must support multimedia
Blobs such as video streams and audio diagnostic reports.

The Blob Streaming framework provides a uniforminter-
face that enables EMIS devel opersto flexibly and efficiently
operateon multipletypesof Blobslocated throughout alarge-
scale hedlth delivery system. This framework combines the
flexibility of high-level distributed object computing mid-
dleware (e.g., CORBA) with the efficiency of lower-level
transport mechanisms (e.g., sockets).

Developers of communication software for EMIS envi-
ronments have traditionally had to choose between (1) high-
performance, lower-level interfaces provided by sockets or
(2) less efficient, higher-level interfaces provided by com-
munication frameworks like CORBA. Blob Streaming rep-
resents a midpoint in the solution space. It improvesthe cor-
rectness, programming simplicity, portability, and reusabil-
ity of performance-sensitive EM IS communication software.
Blob Streaming leverages the flexibility of CORBA, while
its performance remains competitive with applications pro-
grammed at the socket level.

This paper is organized as follows. Section 2 motivates
the design of the Blob Streaming framework, outlines the
key design challenges, and describes how we resolved these
challenges; Section 3 illustrates how the Blob Streaming
framework has been used to build high-performance image
transfer applications; Section 4 compares the performance
of Blob Streaming with dternative C, C++, and CORBA
approaches over a high-speed ATM network; Section 5 dis-
cusses recommendations based on our results; and Section 6
presents concluding remarks.

2 Design of the Blob Streaming Frame-
work

2.1 Blob Streaming Architecture

The Blob Streaming framework is designed to minimize
excessive layeringtoimproveperformance, whilestill allow-
ing applicationsto be decoupl ed from communi cation details

2Blob standsfor “Binary Large OBject.”

BLOB
STREAMING BLOB PROXIES, TRANSPORTERS, FACTORIES

COMMON
SERVICES

EACTOR

C++
WRAPPERS
3 TET opp M
C MEMORY { SOCKETS/ SELECT, THREAD
APIs MAPPING TLI POLL LIBRARY

VIRTUAL MEMORY COMMUNICATION PROCESS/THREAD
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL UNIX AND WIN32 SERVICES

Figure 2: Layering Architecture of the Blob Streaming
Framework

that are prone to change. This decoupling helps increase
portability and enabl es transparent optimizationswithout al -
tering public Blob Streaming interfaces. The shaded portion
of Figure 2 illustrates the architecture of the Blob Streaming
framework, which consists of the following layers:

o C++ wrapper layer: Thislayer uses an existing toolkit
of C++ wrappers[7] that shield applicationsfrom the details
of thelower layer C library and OS system call mechanisms.
These mechanismsinclude sockets and CORBA for interpro-
cess communi cation, memory-mapped file wrappers for op-
timized secondary storage access, and event demultiplexing.
The use of C++ wrappers provides strongly typed interfaces
that simplify the devel opment of Blob Streaming. For exam-
ple, porting to aternative platforms requires no changes to
Blob Streaming software because the Blob Streaming library
does not directly access any OS specific interfaces. Cur-
rently, Blob Streaming is implemented on many versions of
UNIX, aswell as Win32 platforms.

e Common services layer: This layer uses an existing
framework [7] of strategic design patterns [8] that enhance
framework quality by providing reusable communication
system components. For instance, Blob Streaming uses com-
ponent implementations of the Acceptor and Connector pat-
terns [9] that decouple the passive and active initidization
of services from the tasks performed once the services are
initialized. Likewise, the component implementation of the
Reactor pattern [10] simplifies event-driven applications by
associating event handler objects to the demultiplexing of
events. The use of these patterns and components in the
Blob Streaming framework leverages prior design effortsand
reduces software development risks.

¢ Blob Streaming layer: This layer provides application
devel opers with the Blob Streaming components that pro-
vide generic interfaces for high-speed Blob transfer. The

main components include Blob Proxies, Transporters, and
Factories:

e Proxies — which use the Bridge and Proxy patterns
[11] to represent location- and type-independent han-
diesto Blobs. These patterns provide a surrogate that
shields clients from knowledge of where the Blob re-
sides, thereby makingit easy tovary thelocation without
affecting client code.

e Transporters — which use the Strategy pattern [11]
to represent location- and type-independent algorithms
that perform optimal transfer of Blobs between sources
and destinations. The Strategy pattern lets the ago-
rithms vary independently from clients that use them.

¢ Factories—which usetheFactory pattern[11] to decou-
ple Proxy creation from Proxy use. A Factory performs
the work necessary to build a Proxy, such as using a
location service to find the Blob within the EMIS.

A key design goal of the Blob Streaming layer is to pro-
vide operations that behave uniformly irrespective of where
the Blob actually resides or what type of Blob isbeing trans-
ferred. For instance, Blob Store software that receives and
storesMRI images to a database remai ns unchanged whether
the source or destination of the MRI datais in memory, on
alocd file, in memory of a remote client, or on disk of a
remote client.

2.2 Resolving Design Challenges

Developing an enterprise-wide distributed EMIS is difficult.
It requires a deep understanding of networking, databases,
distributed systems, human/computer interfaces, radiologi-
cal workflow, and hospital information systems. There are
many technical challenges related to performance, function-
ality, high availability, information integrity, and security.
Moreover, system requirements and the hardware/software
environment change frequently.

To cope with complexity and inevitable changes, the soft-
ware infrastructure of an EMIS must be flexible. In par-
ticular, devel oping large-scal e distributed EM 1S applications
with low-level network programming tools like sockets is
tedious, error-prone, and inflexible. Therefore, we designed
Blob Streaming to e evate thelevel of programming for these
applications. To accomplish this, we abstracted away from
the following tasks and mechanisms in the Blob Streaming
design:

e Common network programming tasks
¢ Blob location and storage mechanisms
o Blob type

¢ Blob transport mechanism

e Concurrency policies

o Multipleevent loops

o Platform-specific OS mechanisms

interface Bl obTransporter {
/1 Timeout val ue representation.
struct TineValue { long sec; |ong usec; };

/1 Transaction notification options. These
/1 options allowthe framework to control blob
/'l transfers acknow edgnents.
enum Not i ficati onSemantics {
SEND_NOTI FI CATI ONS,
QUEUE_NOTI FI CATI ONS,
| GNORE_NOTI FI CATI ONS
H

A request to the server to send <l ength> bytes

of Blob data starting from <absol uteC fset>.
Since this can potentially be a | ong-duration
operation, a <timeout> can al so be specified.

/1l The <semantics> vary depending on the reliability
/1 required.

oneway void send (in long | ength,

in long absol uted fset,

i n bool ean useTi neout ,

in TimeVal ue tineout,

in NotificationSemantics semantics);

/1
/1
/1
/1

/1 Inforns the server to receive <length> bytes of
/1 Blob data. This data is copied to the Blob
/] starting at <absoluteOfset> Qther options
/] are simlar to send().
oneway void recv (in long | ength,

in long absol uted fset,

in bool ean useTi neout ,

in TimeVal ue tineout,

in NotificationSemantics semantics);
/[l ... others omtted...

Figure 3: IDL Interface for Blob Transport

This section describes the software design challenges we
faced when developing the Blob Streaming framework for
EMIS applications. The following explains how we re-
solved these challenges using object-oriented design tech-
niques, design patterns, and C++ language features. Al-
though the discussion centers around issues that arise when
building medical imaging frameworks, the principlesand pat-
terns described below are representative of a wide range of
bandwidth-intensive distributed object computing environ-
ments.

221 Abstracting Away from Common Network Pro-
gramming Tasks

Many low-level programming tasks (such as object lo-
cation and activation, parameter marshalling and framing)
performed when building distributed applications are tedious
and error-prone. The current version of Blob Streaming
uses CORBA to automate these common low-level network
programming tasks. The use of CORBA enabled us to con-
centrate on higher-level Blob Streaming issues (such as per-
formance, reliability, and interface uniformity), rather than
wrestling with low-level communication details. We used
the following CORBA mechanisms to implement the Blob
Streaming framework:

o Strongly-typed interfaces: InCORBA, dl interfacesare
defined usingthe CORBA interfacedefinitionlanguage(IDL)

[2]. A CORBA IDL compiler generates stubs and skeletons
that trandate IDL interface definitionsinto C++ classes. For
instance, IDL interface definition in Figure 3 describes a
Bl obTransport er that is used internaly by the frame-
work to control Blob transfer from aserver toaclient. Client
applicationsusethe Bl obTr ansport er to selectively re-
quest certain sections of a Blob. The ability to randomly
access Blobs has severa uses, including (1) the ability to
efficiently access header information from a Blob or (2) re-
suming an interrupted transaction without restarting fromthe
beginning.

Theuseof CORBA IDL interfacesalowsthetransmission
of strongly-typed data across the network. Strong typingim-
proves abstraction and eliminates errors common to socket-
level programming. For instance, if the send and r ecv
operations shown above were implemented over a socket
connection, we would need to manually convert the typed
information into a stream of untyped bytes. Moreover, the
sender and receiver software for parsing messages must be
tightly coupled to ensure correctness. Since this provides
many opportunities for errors, automating this process via
CORBA significantly improves system robustness.

e Parameter marshalling and framing: CORBA IDL
compilersautomatically generateclient-sidestubsand server-
side skeletons. These stubs and skeletons ensure cor-
rect byte ordering and linearization of all parameters sent
via operation cals on CORBA interfaces over a network.
For instance, the send and r ecv operations in the IDL
Bl obTr ansport er interface shown above pass various
types of binary parameters. The IDL compiler maps these
parameters into C++ data types such as char for the IDL
bool ean type and a C++ st ruct containing two | ong
fidldsfor the Ti meVal ue parameter.

Marshaling the Bl obTr ansf er parameters manually
and then using sockets would require copying the parameter
values into a transfer buffer and performing a send. We
would also have to convert the representation of thel ongs
from host-byte order to network-byte order. In addition,
if the bytestream-oriented TCP/IP was used, we would be
responsible for framing the data correctly at the receiver.
Marshaling and framing are two tedious and error-prone
aspects of network programming. By using CORBA, wedid
not need to implement these low-level operations.

¢ Object location and object activation: CORBA sup-
portslocation transparency, i.e., services can be located any-
where in a distributed system. Therefore, objects accessed
by clients can be remote, loca (on the same host) or co-
located (in the same address space). We used this feature of
CORBA inthe Blob Streaming framework to shield applica-
tionsfromthelocation of Blob StoreswhereaBlob of interest
resides. Since CORBA interfaces are location independent,
the framework invokes operations on Blob Stores without
knowledge of where the server resides. Asaresult, applica
tionsthat use Blob Streaming a so have no dependencies on
Blob Store locations.

///Bl/ol_)\\\ //\/*—\ -
< _ Proxy _ ,’ D\ Slot J
visible
to
clients invisible
to clients
oot o’ . Database (File \,
. Socket L~y) S~ Slot__
\\\Slot/__/ Vs Memory) e
/ - “ ~_Slot__ \
/ Acceptor " Sybase \ / Oracle ™
4 Acceptor e)
“_ Slot)/ ~.. _Slot -/ “__Slot__,
= —~—— —_~— < ~ -
/ Connector\) i 0bj§ft§t0r |
~ SlOt,__/ \\ 2 0/ _/

Figure 4: Blob Proxy and the Slot Hierarchy

Blob Streaming a so takes advantage of CORBA's activa-
tionservices. Orbix can be configured such that if arequestis
received for anon-active server, thea server can belaunched
to process the request. This alows Blob Storesto be started
by Orbix only when they’ re needed, thus conserving system
resources.

2.2.2 Abstracting Away from Blob L ocation and Storage

Thelocation of Blobscan vary significantly. Blobsmay exist
inthememory of amodality (such asan Ultrasound scanner),
onthelocal disk of aradiologist’sworkstation, or in aremote
Blob Store. To provide adequate reliability, availability, and
performancealarge-scale EMIS must support arange of Blob
Stores. As shown in Figure 1, these include the following:

e Central Sores — which provide hierarchical storage
management and support long-term archiving of Blobs;

¢ Cluster Sores — which cache Blobs within a cluster of
diagnostic workstationsin alocal area network in order
to increase system fault tolerance and decrease load on
Centra Blob Stores;

e Local Sore— which cache Blobs on the local disk of a
diagnostic (DX) workstation;

o Memory Stores — which cache Blobs in workstation
memory.

In addition to the Blob Stores listed above, new imple-
mentations of Blob Stores can be created for more advanced
data storage. For example, a Database Store might be de-
signed to manage Blobsin a database (e.g., Oracle, Sybase,
or ObjectStore) and an Archival Store can beimplemented to
maintain legacy datato comply with lega statutes on image
persistence.

To enhance the system usability, images must be presented
to the radiologist quickly. For instance, consider the case
of presenting MR images to a radiologist on a diagnostic
workstation. The Blob Streaming framework is responsible
for selecting the optimal transfer technique for this task. If
imagesarestoredinfileson thelocal WorkstationBlob Store,
Blob Streaming memory maps the files, thereby avoiding
excessive mode switches and read/write buffering. If Blobs
do not reside locdly, they must be found using name servers
and locators [12]. Once found, they must be transported to
the radiol ogist’ sworkstation for display and interpretation.

Before being displayed, however, Blobs may need to be
processed (e.g., magnified, rotated, and edge-enhanced) for
optimal presentation. Due to the wide range of stores that
Blobscanreside, Blob Streaming allowsapplication software
that operates on Blobs to be developed independently of the
Blob'slocation.

The component in Blob Streaming that facilitateslocation
abstraction is the Blob Proxy. The Blob Proxy defines the
interfacevisibleto clients. All requeststo the Blob Proxy are
forwarded to the Slot object, which is the abstract class that
defines the interface for implementation classes. Figure 4
shows the multiple specializations of the Slot class such as
socket, memory, file, and database. This designisan exam-
ple of the Proxy and Bridge patterns [11], where the Blob
interface is decoupled from its implementation so that the
two can vary independently. Section 3.1 describes the Blob
Proxy programming interface in greater detail.

The Blob Streaming framework can be extended by adding
new Slot implementations. The separation of interface from
implementation allows these extensions to be transparent to
code that uses the Blob Streaming framework. This sep-
aration aso enables the Blob Streaming framework to use
the same Slot implementation instance for different Blob
Proxies

The advantage of defining auniform Blob Proxy interface
isto reduce software dependencies. Using thisgeneric inter-
face, application software can bewrittento store and retrieve
images from Blob Stores, rather than to files or databases di-
rectly. Thisshieldsexisting softwarefrom changesin storage
type. A disadvantage to thisapproach istheincreased learn-
ing curve. For example, developers of Blob Servers who
are familiar with a particular database must learn the Blob
Storeinterfacein order to use Blob Streaming. Therefore, as
discussed in Section 3.1, the Blob Streaming interface was
modeled after the UNIX file system interface, which pro-
videsauniform set of operations(likeopen, cl ose,r ead,
write, seek, etc) on varioustypes of devices, files, and
1/O streams.

3This approach is used by some CORBA implementations like Orbix
where multiple proxies use the same socket channel to communicatewith a
server. Someslotsthat takerelatively long to setup (such as socket slots) can
be cached internally to the library and can be reused by new Blob Proxies.

2.2.3 Abstracting Away from Blob Type

In addition to shielding application software from Blob |o-
cation, the Blob Streaming framework abstracts away from
Blob type. Therefore, a Blob Store that receives and stores
MR images uses the same software to receive and store CT
and CR images. The type of data being transferred is not
directly exposed by the Blob Streaming interface.

The primary advantage of decoupling Blob typefrom Blob
transfer isto maximize software reuse and enhance interface
uniformity. In addition, our design allows meta-data (such as
image i dentification information including patient name and
examination data) to be separated and stored in a database.
This decoupling allowsimage data (pixels) to be transported
as fast as possible to the destination (e.g., using memory-
mapped I/0 and DMA). If an application requires access to
theimage' s meta-data, complex queries can be performed on
the database.*

TheBlob Streaming framework issimilar to the abstraction
provided by an OS file system. The file system supports a
variety of file formats. It is up to the application using the
file to correctly interpret the file format. However, the type
of abstraction offered by Blob Streaming is not available in
other medical imaging toolkits (such as DICOM and HL7).
Many such toolkitsonly transfer data formatted according to
the protocol’s specification. This becomes a problem when
tryingto extend a project to deal with new datatypesor when
trying to optimize performance.

Another advantage of the Blob Streaming design is that it
alowsthe integration of image processing and Blob transfer
operations. Applications need not wait for an entire Blob
to transfer before processing the data (e.g., compressing it
as it is sent on the network and decompressing while be-
ing received). Thistechniqueis aform of Integrated Layer
Processing (ILP) [13], which has been used in high-speed
communication protocol stacks. ILP optimizations can im-
prove performance significantly by overlapping communi-
cation and computation, as well as reducing memory bus
traffic.

224 Abstracting Away from Blob Transport Mecha-
nism

Blob Streaming presently uses a combination of CORBA
and TCP/IP as data transport mechanisms. CORBA is used
for location and control operations, whereas TCP/IP is used
for bulk data transfer. This design choice reflects a tradeoff
between flexibility and efficiency. Blob Streaming leverages
CORBA's abstraction and flexibility, while still utilizing the
efficiency of socket programming.

To shield applications from these low-level communica
tion details, however, the public interface of Blob Stream-
ing does not expose itsinterna transport mechanisms. This

4Consistency management between pixel store and database entries are
considered outside the scope of the Blob Streaming framework. Certain
image formats (e.g., DICOM) place meta-data as header information of the
Blob. Since Blob Streaming treats all Blobs as untyped streams of data,
images with integrated meta-data also can betransferred easily.

BLOB BLOB STREAMING
LAYER
Pl <
-~ —
P ~
TLI SOCKETS NETWORK CORBA OODCE
LAYER OLE
~
~ ~ - -~
Ss, -~
NETWORK LIGHTWEIGHT
(& IPX/SPX TCP/TP
LAYER ATM

CONTROL DATA

Figure 5: Communication layers used by Blob Streaming

alows changes in the Blob Streaming architecture without
affecting public interfaces. In particular, since CORBA is
not visible to application programmers, different implemen-
tations of CORBA can be used (such as ORBeline, HP ORB
Plus, or Sun NEO). Moreover, CORBA can be removed en-
tirely and replaced with another mechanism (such as DCOM,
DCE RPC, or Sun RPC). We chose CORBA since other parts
of our EMIS use CORBA services like the COS Naming and
Events [12]. Selecting a common distributed object com-
puting framework reduced our training, maintenance, and
software licensing costs.

Similarly, multiple transport mechanisms can be used
transfer bulk data efficiently. For instance, certain types of
traffic (such as video and voice) can tolerate some degree of
loss. In these cases, performance can be optimized by using
alightweight ATM protocol in place of TCP/IP. Since Blob
Streaming provides a layer of abstraction over these details,
optimizations can be performed without atering applications.

The primary advantages of decoupling the Blob Stream-
ing public interface from its internal transport mechanisms
are to improve flexibility, increase portability, and enable
transparent performance tuning. Therefore, the framework
can be tuned to use the best performing technology with-
out affecting applications. For instance, subseguent versions
of Blob Streaming could omit TCP/IP in favor of a strictly
CORBA implementation if CORBA becomes performance-
competitive with lower-level sockets programming. Like-
wise, CORBA could be replaced by DCOM and TCP/IP
replaced by a lightweight ATM protocol. Figure 5 shows
the communi cation layers currently used by Blob Streaming.
In addition, it illustrates the different IPC and network layer
choices that can be used as alternatives.

One disadvantage with Blob Streaming is performance
overhead of the extralevels of abstraction. Althoughthe cost
of these abstractions can be reduced through optimizations
such as C++ inlining, some overhead remains, as shown
in Section 4. Another disadvantage is the increased com-
plexity of the Blob Streaming internal design. In particular,

connection management and synchroni zation are more com-
plex. However, thecomplexity isnot exposed to applications,
which use the simple Blob Proxy interface provided by the
Blob Streaming framework.

225 Abstracting from Concurrency Policies

Different applicationsrequiredifferent typesof operationin-
vocation semantics from aframework. For instance, amulti-
threaded server can simplify application software by using
synchronousinterfaces. Conversely, asingle-threaded server
that cannot afford to block on a single transaction needs an
asynchronousinterface to al long-duration operations. Sim-
ilarly, client applications are frequently single-threaded and
event-driven (e.g., GUIs), which cannot block indefinitely on
synchronous calls.

On multi-threaded operating systems like Solaris 5.x [14]
or Windows NT [15], applications can use threads to sSim-
plify programming and take advantage of paralelism. A
multi-threaded application can use synchronousinterfacesfor
long-durationoperations(such aslargeimagetransfers) since
it will not block other threads. In contrast, single-threaded
applicationsmust be programmed carefully to avoid starving
time-critical operations by blocking on long-duration opera-
tions.

Tightly coupling an applicationto aparticular concurrency
policy increases devel opment effort if theconcurrency policy
changes(e.g., if asingle-threaded application becomes multi-
threaded or vice versa). Itishard to avoid thistight coupling
because reusabl e frameworks and applications often must be
devel oped without knowledge of the end system concurrency
policiesor hardware/software capabilities.

The Blob Streaming framework is designed to decou-
ple application software from dependencies on concur-
rency policies. Blob Streaming accomplishes this by
providing uniform callback-driven interfaces to both syn-
chronous and asynchronous operations. Switching between
synchronous/return-value and asynchronous/callback inter-
faces can require modifications to application software. For
instance, consider the case where aserver implemented using
multiplethreadsis ported to a platform that does not support
threads. If the software run by the threads uses synchronous
interfaces, many changes will be necessary to support asyn-
chronous transactionsin a single thread.

To improve portability and uniformity, the Blob Stream-
ing framework supportsauniform callback interfacefor both
synchronous and asynchronous operations. These callbacks
indicatewhen an operation completes. Forinstance, asingle-
threaded application that needs to load a large image from a
remote Blob Server performs an asynchronous Blob Stream-
ing r ead, which does not block the application from han-
dling GUI events. When the library completes the opera-
tion, the application is notified via a callback. Similarly,
synchronous Blob Streaming operations aso complete with
calback notifications. The difference from asynchronous
calsisthat the callback has aready been executed when the
synchronous call returns.

The advantages of abstracting away from concurrency
policies are increased uniformity and increased flexibility of
concurrency strategies. For instance, the same software that
is used asynchronously in a single-threaded application can
be used synchronously in a multi-threaded application. Be-
cause both synchronous and asynchronous operations use
callbacks, switching to new concurrency policiessimply re-
quires toggling a flag. Therefore, no application software
will change. Thisflexibility is particularly useful for devel-
opers of reusable componentswho write software that can be
used with avariety of concurrency strategies.

The disadvantage of this approach is that some develop-
ers may never want to program asynchronous operations.
To some extent, the use of uniform interfaces increases
the complexity of synchronous calls in order to eiminate
dependency on a particular concurrency model. To ad-
dress this issue, the Blob Streaming library offers wrap-
pers around the synchronous callback operationsto provide
a synchronous/return-value API. This is illustrated in Sec-
tion 3.4.

2.2.6 Abstracting Away from Event L oops

Complex EMIS applications must react to events from mul-
tiple sources. Common sources of EMIS events include DI-
COM toolkits, HL7 interface engines, GUI window events,
and Blob Streaming transfers. Furthermore, the Blob Stream-
ing library must integrate the processing of socket-level
events, CORBA events, timer events, and signals.

Each of these sources of events (X Windows, CORBA,
etc.) hasitsown event loop. If an application must react to
all of these events, it can not block indefinitely on any one
event loop. One solution isto use a polling technique where
the application uses around-robin policy to check each event
loop. A disadvantage to this approach is that it can lead to
excessive overhead when there are no pending events.

An aternative approach is to combine the multiple event
loops into a single waitable object. Blob Streaming uses
ACE's Reactor [10] to implement this technique. The
Reactor provides a mechanism that integrates the event
demultiplexing and event handler dispatching components
of multiple frameworks. It presents applications with an
object-oriented interface to lower-level OS event demulti-
plexing mechanisms that react to I/O handle events, timer
events, and signa events. The sel ect, poll, and
Wi t For Mul ti pl eCbj ect s system cals are common
examples of these demultiplexing mechanisms. This alows
the application to block on the Reactor for dl events, elimi-
nating the overhead imposed by the polling technique.

Frameworks such as X windows or CORBA are generaly
driven by events from “waitable’ 1/0 handles (adso cdled
descriptors). We will use a UNIX-centric naming policy and
call these sel ect-based objects. Someapplicationsand frame-
works also use waitable resources such as message queues,
semaphores, and condition variables. We will cal these
synchronization-based objects.

An example of a synchronization-based object exists in

OBJECT

. IMPLEMENTATION
MT Orbix

Handler

5: CONTINUE
DISPATCH

6: METHOD

4: HANDLE INPUT

Object
Adapter
Reactor _,2
Thread
Filter | 5. \NvokE

1: HANDLE
REQUEST

LR

3: WRITE (REQUEST)

pc cHANNEL()

Figure 6. Participants and Collaborations integrating MT-
Orbix into the Reactor

MT-Orbix. The MT-Orbix library dedicates athread to each
network connection. Thisallows easy integrationwith third-
party toolkits (such as the Tuxedo transaction monitor) that
utilize SystemV message queues (which aresynchronization-
based). Requeststhat come over the connections are queued
upinathread-safemessagequeue. Themainthread of control
now waits on a conditional variable, rather than waiting in
a demultiplexing operation (like sel ect or pol ') as it
wouldinthe single-threaded. After anew request isadded to
the message queue, the main thread is signaled, which then
dequeues and processes the request.

The M T-Orbix model adds asynchronization-based source
of event demultiplexing to applications. For Win32 plat-
forms, WAi t For Mul ti pl eQhj ect s can be used to wait
on both select-based and synchronization-based objects.
However, thisis problematic for platforms (such as SVR4
UNIX) that do not provideauniform model for demultiplex-
ing synchronization-based events. The problem isrelatively
easy to solve if applications can use multiple threads. In
this case, one or more threads could be dedicated to process
select-based events, while other threads could be dedicated
to process the synchronization-based events queued in the
message queue.

However, many systems (including our EMIS applica-
tions) must deal with large amounts of legacy code that is
not thread-safe. Therefore, it becomes essentid that the
select- and synchronization-based events be combined into
onelogica source. Figure 6 shows how we usethefollowing
components to adapt the MT-Orbix I/0O handlesinto asingle
demultiplexing object:

e React or — The main thread is dedicated to handling
select-based events. Thisis done throughthe sel ect
demultiplexingoperation. The purposeof theremaining

componentsis to alow the React or to wait for MT-
Orbix events, as well as sel ect-based events.

e (bj ect Adapt er —A separate thread isdedicated to
handling synchronization-based MT-Orbix events. This
is donewith MT-Orbix’si npl _i s_r eady and thread
filters. MT-Orbix uses a thread per network connec-
tion to receive incoming requests. When requests are
given to the Cbj ect Adapt er, it uses the Thr ead
Fi | t er to decide whether to process the event or not.

e Thread Filter — Orbix filters alow applications
to access incoming CORBA requests before invok-
ing upcalls on the appropriate objects. The Thr ead
Fi | t er notifies the React or via a selectable | PC
Channel when MT-Orbix events occur.

e | PC Channel — An intra-process communication
channd (e.g., a UNIX pi pe or a socket) is cre-
ated for communication between the two event han-
diers. Thereading end of thel PC Channel isowned
by the React or thread and is registered with the de-
multiplexing operation for input events. The Obj ect
Adapt er thread owns the writing end of the | PC
Channel . When MT-Orbix events occur, theChj ect
Adapt er thread uses the | PC Channel to commu-
nicate the event to the React or thread.

e M- Or bi x Handl er — When the React or is no-
tified of MT-Orbix events, it cals the MI- Or bi x
Handl er to handle the request. The MI- Or bi x
Handl er then usesthe Orbix Obj ect Adapt er to
continue the method dispatching.

e (bj ect | nplenmentation — Once MT-Orbix re-
guests are received and processed by the various com-
ponents discussed above, application level objects are
finaly caled by the React or thread.

A drawback to this approach is that server concurrency is
reduced since al demultiplexing is seridized through the
Reactor. However, restoring the ssimple model of “single
threaded, single source of events’ made it possible to inte-
grate our existing non-thread-safe legacy applications with-
out undue redevel opment effort and extra cost.

The advantage of integrating multipleevent loopsisthat it
allows devel opersto use Blob Streaming while continuing to
integratewith other frameworks. For instance, an application
devel oper building X-window applicationscan perform Blob
Streaming operations without changing how the application
interfaceswith theevent-loop. SinceBlob Streaming usesthe
Resactor, the framework can be integrated with the necessary
event-loop without affecting interna framework software or
external framework interfaces.

The disadvantage to thisapproach isthat the Reactor must
be integrated with each new framework. This integration
can be difficult if the framework does not provide adequate
hooks into its internal event demultiplexing logic. More-
over, there is a performance penalty for thisintegration. For
instance, the approach we used to integrate MT-Orbix with

our single-threaded applications effectively eliminated con-
currency within the event demultiplexing layer of imaging
applications.

22.7 Absracting Away from Platform-specific OS
M echanisms

Asshownin Figure 2, the Blob Streaming framework shields
applications from non-portable OS-specific features such as
memory mapping, event demultiplexing, multi-threading,
and interprocess communication. This, in turn, makes ap-
plicationsusing the Blob Streaming interface portable across
platformswithout changing application communi cation soft-
ware. The Blob Streaming framework has been ported to a
variety of UNIX platforms, aswell as Win32 platforms[15].

The primary advantage of decoupling application software
from OS-specific mechanisms is cross-platform portability.
The primary disadvantage is that performance and function-
ality may be compromised to provideageneric OSinterface.
For example, the version of Blob Streaming described in
this paper did not take advantage of native Windows NT
asynchronous I/O mechanisms such as overlapped 1/0 or |/O
completion ports[16].

3 Blob Streaming Interfaces and Ex-
amples

This section describes the key components in the Blob
Streaming framework and illustrates how to use these compo-
nents to program synchronous and asynchronous Blob trans-
fer applications. Our goa is to demonstrate the expressive
power and simplicity of the framework.

3.1 Blob Proxy

Figure 7 shows the interface of the Bl ob Proxy class,
which includes methodslikeopen, cl ose,read,wite,
si ze, and posi ti on. These methods are similar to those
provided by System V Release 4 (SVR4) UNIX for file 1/O.
SVR4 UNIX adapts a wide variety of disk and communi-
cation devices into a common set of 1/0 operations. Blob
Streaming has the following notable differences from the
SVR4 UNIX file system interfaces, however:

e Seamless Integration of Memory, Networking, and File
I/O — The SVR4 UNIX I/O interfaces are not entirely
uniform. For instance, adifferent set of callsisrequired
to open a socket vs. opening a file. Likewise, SVR4
UNIX uses a different interface for memory-mapped
file 1/0 and buffer-based network/file 1/0O. In contrast,
Blob Streaming providesauniforminterfacefor al these
forms of 1/0. This makes it possible to abstract away
from Blob location by removing inconsistencies and
special cases in the /O programming model.

e Object-oriented interfaces — Low-level network pro-
gramming tools such as sockets do not provide suffi-
cient type-checking since they utilize untyped I/O han-
dles. Itisdisturbingly easy to misuse these interfaces
in ways that can only be detected at run-time (such
as trying to read or write data on a passive-mode lis-
tener socket used to accept connections). Unlike SVR4
UNIX, which provides these C-level system cdll inter-
faces, Blob Streaming provides C++ interfaces. The
use of C++ enforces encapsulation and yields a more
modular, extensible, and |ess error-prone programming
interface, without compromising performance.

The Bl obPr oxy interface is designed so that operations
can be invoked synchronously or asynchronously. Asyn-
chronous invocation is useful for long-duration operations
(suchasopen, send, andr ecv) that can runindependently
without blocking the main thread of control. Synchronous
invocationisuseful for (1) short-durationoperations (such as
si ze andt ype) that do not block the caller for long and (2)
applications that spawn multiplethreads to execute the calls
without blocking the entire process.

The SynchQOpt i ons class givesusers asingleinterface
to specify thetype of synchrony/asynchrony policy used for a
call. This encapsulation simplifiesthe Blob Streaming inter-
faces and gives applications greater flexibility over the syn-
chronization policies used by the application. For instance,
applicationscan defineaglobd instanceof SynchOpt i ons
that is passed in to every Blob Streaming operation. In this
way, applicationscan change the synchronization policy used
by the entire application through a single SynchOpt i ons
instance. The SynchOpt i ons interface is defined as fol-
lows:

class SynchOpti ons

/1 Options flags for controlling synchronization.
enum Options {

NONBLOCK, // Use asynchronous invocati on.
BLOCK, // Use synchronous invocation.

TIMEQUT // Use tinmed invocation.

3

SynchOpti ons
(Options options, // Synch policy.
const TinmeVal ue & ineout, // Timeout duration.

Local Recei ver *notifiee = 0); // Wwo to notify.

/!l ...others onitted...

The Opt i ons enumeration records whether the call is to
be made synchronoudly or asynchronously and whether is
should betimed or not. If the TI MEQUT enumeral isenabled,
the Ti meVal ue is interpreted as specifying a timeout du-
ration. Finaly, if the cal is performed asynchronoudly, the
Local Recei ver pointer isused to specify an object who
recei veNoti fi cati on methodiscaled back when the
asynchronous invocation compl etes.

cl ass Bl obProxy
{
publi c:
/1 Open the Bl ob Proxy.
voi d open (const SynchOptions &options);

/1 Cose the proxy down and rel ease resources.
voi d close (void);

/'l Read <nunBytes> fromthe Blob Proxy into the
/1 <buffer>.
voi d read (Buffer &buffer,

size_t nunBytes,

const SynchOptions& options);

/1 Wite <nunBytes> fromthe <buffer> to the
/1 Bl ob Proxy.
void wite (const Buffer &buffer,

size_t nunBytes,

const SynchOptions& options);

/1 Size of data represented by the Bl ob Proxy.
size_t size
(const SynchOpti ons& options) const;

/1 Type of data represented by the Bl ob Proxy.
/1 Various types include pixel data or D COM
/1 inage.
Bl obProxy: : Type type

(const SynchOpti ons& options) const;

/] Set/Cet the position of the Blob Proxy

/1 This allows the user to nove to a

/1 particular location in the Blob.

voi d position (size_t offset,
Bl obProxy: : Of f set Setti ng whence,
const SynchOptions& options);

size_t position

(const SynchOpti ons& options) const;

I/l ...others omtted...
private:
/1 A Blob Proxy can only be created

/1 by a Blob Proxy Factory.
Bl obProxy (const Bl obKey &key);

H

Figure 7: Blob Proxy Interface

cl ass Bl obProxyFactory
{
publi c:

/1 The factory creates a new Bl ob Proxy that
/1 is bound to an existing Blob represented
/1 by the <key>.
static
Bl obProxy *bi ndBl ob (const Bl obKey &key,
const SynchOptions &options);

/1 The factory creates a new Bl ob (represented

Il by <key>) of <size> bytes. It also creates

/1 a Blob Proxy that is bound to the new Bl ob.

static

Bl obProxy* routeBl ob (const KBl obKey &key,
size_t size,

const SynchOptions &options);

/!l ... others omtted...

Figure8: Blob Proxy Factory Interface

3.2 Blob Proxy Factory

The Blob Proxy Factory is responsible for creating prox-
ies to Blobs that may be remote or local. The Factory is
also responsible for dynamically selecting and configuring
the objects (such as Slots) needed to implement the Blob
Proxy interface. Thisencapsulation of the responsibility and
process of creating and composing implementation objects
for the Blob Proxy isolates the user of the proxies from the
implementation classes.

Figure 8 shows the interface of the Bl ob Proxy
Fact or y class, which has methodslikebi nd andr out e.
The bi nd method creates a Blob Proxy that is bound to a
Blob. Thisissimilartothefunctionality provided by CORBA
for creating a proxy to aremote object. Ther out e method
isused to create anew Blob of agivensize. Inthiscase, the
factory is responsible for communicating with the appropri-
ate Blob Storeto reserve space for the new Blob. If the space
is successfully reserved, a proxy is created to the new Blob
and returned to the user.

3.3 Blob Transporters

The Blob Transporter is responsible for efficiently copying
data from one Blob to another. The Blob Transporter imple-
ments algorithmsthat iterate over the source Blob and copy
the data to the destination Blob. The copy methods of the
Blob Transporter are similar to the agorithms provided by
the C++ Standard Template Library (STL) [17]. STL a-
gorithms are completely generic and behave the same way
irrespective of the types they work on. In contrast, the algo-
rithms defined by the Transporter are optimized for different
Blob locations. Sincethere arerelatively few Blob locations
types (memory, file, network, and database), it is feasible to
explicitly optimize each type of Blob Transporter. For in-
stance, atransporter can simply performanmenctpy whenthe
source and destination of acopy are both in memory.

cl ass CopyTransporter
publi c:

/1 Copy entire <source> Blob to

/] <destination> Bl ob.

static

voi d copy (Bl obProxy *destinati onProxy,
Bl obPr oxy *sourceProxy,
const SynchOptions &options);

/1 Copy <size> bytes from <source> Bl ob

/1 to <destination> Bl ob.

static

voi d copy (Bl obProxy *destinati onProxy,
Bl obPr oxy *sourceProxy,
size_t size,
const SynchOptions &options);

/!l ... others omtted...

Figure 9: Blob Transporter Interface

Figure9 showstheinterfaceof theBl ob Transport er
class. Note that the Copy Tr anspor t er only implements
static interfaces. State for copiesin-progressis dynamically
allocated by the copy routine and del eted when the operation
completes. If the state for a copy operation was kept as in-
stancedatain aCopy Tr ansport er instance, the instance
would only be able to keep track of one in-progress copy.
This would aso force the user to create and manage mul-
tiple instances of Copy Tr ansport er in order to execute
multiplecopy operations simultaneously.

3.4 UsingtheBlob Streaming Framework

The following discussion presents severa use-cases that
illustratehow to program synchronous and asynchronous ap-
plications using Bl ob Proxi es. The two examples in
Figures 10 and 11 use Blob Streaming to copy images from a
remote Blob Storeto alocal Blob Store. Blobsin the system
areidentified uniquely by Bl obKeys. Both examples copy
an image identified by sour ceKey to an image identified
by desti nati onKey.

A destinationKey is created by replicating the
sour ceKey and changing the host information in the
desti nati onKey to the local host. Space is then re-
served for the new image at the local Bl obSt or e by
caling Bl obSt r eam ngFact ory: : rout eBl ob. The
copy options sets a timeout of 30 seconds for the copy oper-
ation. The copy operation will timeout if the operation does
not complete in the specified time.

In the synchronous example, an exception israised in the
event of failureor timeout. In the asynchronousexample, the
Repl i cat or classisnotified of the result of the operation.
Exceptions cannot be raised in the asynchronous example
sincethe call to the copy method returnsimmediately with-
out blocking the caller.

The primary difference between the two examples is the
nature of the copy cal. The first example shown in Fig-

/!l Retrieve to local store.
voi d copy (Bl obKey sourceKey) {

/!l Create a key for the destination
Bl obKey desti nati onKey (sourcekKey,
| ocal Host Nan®e) ;

/1 Allocate space on Blob Store for

/1 destination Blob.

Bl obStreanfact ory: : rout eBl ob (desti nati onKey,
source->size ());

/1 timeout after 30 seconds
Ti neVal ue tineout (30);
SynchOpti ons copyOpti ons
/1 Synchronous, tined invocation.
(SynchOptions:: TI MEQUT |
SynchOpti ons: : BLOCK,
timeout); // Amount of time to bl ock.

/1 Synchronous copy of the Bl ob.
try {

CopyTransporter::copy (sourcekKey,
desti nati onKey,
copyOptions);

} catch (Recoverabl eException exc) {
switch (exc.tag ()) {

case ERROR BLOB_COPY_FAI LED:

/1 report failure
br eak;
case ERROR BLOB_COPY_TI MEQUT:
/1 report tinmeout
br eak;

}

/] report success

Figure 10: Synchronous, Return-val ue-based Copy Example

class Replicator
public Local Recei ver
/1 Defines the pure virtual
/1 receiveNotification() nethod.
{
publi c:
/1 Handles /O conpl etion.
virtual bool receiveNotification
(Local Notification *notification);

/!l Retrieve to local store.
voi d copy (Bl obKey sourceKey) {
/!l Create a key for the destination
Bl obKey desti nati onKey (sourcekKey,
| ocal Host Nan®e) ;

/1 Allocate space on Blob Store for

/1 destination Blob.

Bl obStreanfact ory: : rout eBl ob (desti nati onKey,
source->size ());

/1 Tinmeout after 30 seconds.
Ti neVal ue tineout (30);
SynchOpti ons copyOpti ons
/'l Asynchronous, tined invocation.
(SynchOptions:: TI MEQUT |
SynchOpt i ons: : NONBLOCK,
timeout, // Amount of time to wait.
this); /1 Notify this object (Replicator)
/1 upon conpl etion of the copy.

/1 Start an asynchronous copy. On conpletion,
/1 our receiveNotification() nethod is called.
CopyTransporter::copy
(sour ceKey, /1 copy fromthis Blob
destinationKey, // to this Blob
copyOptions); /1 copy options

Figure 11: Asynchronous callback-based copy example

ure 10 uses a synchronous, return-value based version of the
CopyTr ansport er: : copy method cal. The second ex-
ample shown in Figure 11 uses the asynchronous, callback
based version of the Copy Tr ansport er : : copy method
call.

Figure 12 illustrates the method that receives copy notifi-
cations for callback-based copies. The following changes to
Repl i cat or:: copy aredl that are required to make an
asynchronous, callback-based operation likethis:

SynchOpti ons copyOpti ons
/'l Asynchronous, tinmed invocation.
(SynchOptions:: TI MEQUT |
SynchOpt i ons: : NONBLOCK,
timeout, // Amount of time to wait.
this); // Notify this object upon
/1 conpletion of the copy.

into a synchronous, callback-based operation like this:

SynchOpti ons copyOpti ons
(SynchOptions:: TI MEQUT, tineout);

If the thread executing the copy operation can afford to
block without compromising the quality of service of other
componentsof theapplication, thesynchronousapproach can

bool Replicator::receiveNotification
(Local Notification *notification)

CopyTransporter:: CopyNotification *
copyNotification =
(CopyTransporter:: CopyNotification *)
notification;

switch (copyNotification->result ()) {

case CopyTransporter:: CopyNotification:: SUCCEEDED:
/1 report failure
br eak;

case CopyTransporter:: CopyNotification::FAlILED:
/1 report failure
br eak;

case CopyTransporter:: CopyNotification:: TI MEOUT:
/1 report tinmeout
br eak;

defaul t:
return O;

}
}s

Figure 12: Receiver of Copy Notifications

be used. However, if thelong-duration copy operation will
affect other components of the application, the asynchronous
approach can be used. Thisalowsthe application developer
to devel op theimaging replication modul e without becoming
dependent on the concurrency model used for image replice-
tion. Asaresult, systems that use Blob Streaming are more
portablethan thosewritten to uselower-level OS mechanisms
directly.

4 Performance of the Blob Streaming
Framewor k

Sections 2.2 and 3 motivate and outline the design and use
of the Blob Streaming framework. Our design abstracts
away from many low-level communication tasks to achieve
the flexibility requirements of distributed EMISs. In prac-
tice, however, we recognized that the framework will not
be widely used unless applications built using it meet their
performance requirements.

This section describes performance tests of the Blob
Streaming framework. The test scenario involved the point-
to-point transfer of Blobs between a client and a server. In
alarge-scale EMIS, several types of bulk data transfers can
place high loads on a communications framework. For in-
stance, transferring a typical MR image study can include
fifty 250 Kbyte images. Likewise, a CR image study can
include several 500 Kbyte images. The tests performed on
the Blob Streaming framework have been designed to mimic
the behavior of transmitting studies such as these.

4.1 Test platform and benchmarks

The performance results in this section were collected us-
ing aBay NetworksLattisCell 10114 ATM switch connected

2: pull(image name)
—_—

3: image

ATM
SWITCH

X

DATA CHANNEL (E.G., TCP OR LIGHTWEIGHT ATM)

Figure 13: Push and Pull Models

to two dua-processor SPARCstation 20 Model 712s run-
ning SunOS 5.4. The LattisCell 10114 is a 16 Port, OC3
155Mbs/port switch. Each SPARCstation 20 contains two
70 Mhz Super SPARC CPUs with a1 Megabyte cache per-
CPU. The SunOS 5.4 TCP/IP protocol stack isimplemented
using an optimized version of the STREAMS communica-
tion framework [18]. Each SPARCstation has 128 M bytes of
RAM and an ENI-155s-MF ATM adaptor card, which sup-
ports 155 Megabits per-sec (Mbps) SONET multimodefiber.
The Maximum Transmission Unit (MTU) on the ENI ATM
adaptor is 9,180 bytes. Each ENI card has 512 Kbytes of
on-board memory. A maximum of 32 Kbytesis allotted per
ATM virtud circuit connection for receiving and transmitting
frames (for atotal of 64 K). Thisalows up to eight switched
virtual connections per card.

Data for the experiment was produced and consumed by
aclient and server test application. The client represents a
diagnostic workstation. The server application represents a
Blob Store server. Various client and server parameters may
be selected at run-time. These parametersinclude the size of
the Blob being transferred and the size of the socket transmit
and receive queues.

Our test environment is similar to the widely available
t t cp benchmarking tool. However, our test application dif-
fers from tt cp since we implement a “request/response”
model rather than the conventional t t cp “flooding” modd.
In our model, the client can request the server to send it data
(the “pull” model) or move data to the server (the “push”
model). Thisisdifferent fromt t cp because the datatrans-

mitter does not simply flood the receiver with a continuous
unidirectiona stream of bytes. The push and pull modelsim-
plemented by our test application areillustrated in Figure 13
and described below.

e The push modedl: This mode is representative of the
use case where a modality stores data on a Blob Store. In
addition, it can be used by a Blob Store to pre-cache datato
aworkstation. The push model behaves as follows:

1. Negotiation—the client sends control datato the server
characterizing the image being transferred from the
client tothe server (e.g., size and name of theimage);

2. Transmission —the client then sends the image data;

3. Confirmation — the server sends a confirmation to the
client when al the datais received. This acknowledg-
ment is necessary to insure end-to-end reliability of the
request/response transaction.

e Thepull model: Thismode is representative of the use
case where a workstation retrieves data from a Blob Store.
The pull model behaves as follows:

1. Negotiation—the client sends control datato the server
characterizing theimage theclient wantsfromthe server
(size and name of the image)

2. Transmission — the server then sends the image data.
Once the client receives the data that was requested
fromthe server, therequest/responsetransactioniscom-
plete. Unlike the push modd, the pull model does not
require an extra acknowledgment, which improves per-
formance, as shownin Figure 19.

Weimplemented and benchmarked thefollowing versions
of thetest application for Blob transfers:

e Cversion: Thisversionimplemented completely in C. It
uses C socket callsto transfer and receivethe dataand control
messages via TCP/IP. Figure 14 illustrates the design of this
ttcp test.

e ACE C++ version: This version replaces al C socket
cals in the applications with the C++ wrappers for sockets
provided by the ACE network programming components[7].
ACE encapsulates sockets with typesafe, portable, and effi-
cient C++ interfaces. Figure 14 illustrates the design of this
test, aswell.

e CORBA version: The Orbix 1.3 implementation of
CORBA was used. This version replaces al socket cals
in the test applications with stubs and skeletons generated
from a pair of CORBA interface definition language (IDL)
specifications. One IDL specification usesasequence pa
rameter for the data buffer and the other uses a st ri ng
parameter. Figure 15 illustratesthe design of thistest.

1: write(buf) 3: read(buf)

Receiver

2: forward
—

-+

4: ack

X

ATM
SWITCH

Figure14: C and C++t t cp Benchmarking Architecture

3: send(bu

nd(buf)

2: forward

-

4: ack

X

ATM
SWITCH

Figure15: CORBA t t cp Benchmarking Architecture

6: send(buf)

Blob
/ Store

Blob_Xport

w \1: send(buf)

2: connect
—t

Figure 16: Blob Streaming t t cp Benchmarking Architec-
ture (Push Model)

e Blob Streaming version: the Orbix implementation of
CORBA was used to exchange control messages and C++
wrappers for sockets provided by ACE were used for bulk
data transfer. Thisisthe only test that implements both the
push and pull models. Figure 16 illustratesthe design of this
test for the push model and Figure 17 illustrates the design
of thetest for the pull model.

4.2 Performance Results
4.2.1 Throughput Results

We ran a series of teststhat transferred 1 MB, 8 MB, 16 MB,
and 32 MB of user datausing TCP/IP over our ATM network
testbed. Two different sizes for socket queues were used:
8 K (the default on SunOS 5.4) and 64 K (the maximum
size supported by SunOS 5.4). Each test was run 20 times
to account for performance variation due to transient load
on the networks and hosts. The variance between runs was
very low since the testswere conducted on an otherwiseidle
network.

e Push Modd Throughput: Figure 18 shows that differ-
ent versions of tests for Ethernet show much less variation,
with the performance for all tests ranging from around 8 to
8.7 Mbps with 64 K socket queues. In addition, Figure 18
summarizes the performance results for al the push model
benchmarks using 64 K and 8 K socket queues over a 155
Mbps ATM link.

The following describes the performance of each test pro-
gram, using 64 K and 8 K socket queues:

e The C and ACE C++ wrapper versions of the tests
obtained the highest throughput: 60 Mbps using 64
K socket queue. This indicates that the performance

3: send(buf)

Blob
/ Store

Blob_Xport

1: receive(buf)

Receiver

2: connect
E—

Figure 17: Blob Streaming t t cp Benchmarking Architec-
ture (Pull Mode!)

penalty for using the higher-level ACE C++ wrappersis
insignificant and is comparable with using low-level C
socket library calls directly.

¢ TheBlob Streaming performancewasslightly morethan
80% of the C and C++ versions, reaching 50 Mbpswith
64 K socket queues. The primary source of overhead
in the Blob Streaming framework is explained in Sec-
tion4.2.2.

e The Orbix sequence version peaked at around 66%
of the C and C++ versions, reaching 40 Mbps, whereas
the Orbix st r i ng implementation peaked at 33 Mbps
(both using 64 K socket queues). The primary sources
of overhead for the Orbix implementation of CORBA
isexplained in Section 4.2.2.

In addition to comparing the performance of the various
transport mechanisms, Figure 18 alsoillustratesthe generally
low level of utilizationof the ATM network. In particular, 60
Mbps represents only 40% of the 155 Mbps ATM link. This
disparity between network channel speed and end-to-end ap-
plication throughputis known asthe throughput preservation
problem [19]. This problem occurs when only a portion of
the available bandwidth is actually delivered to applications.

The throughput preservation problem stems from operat-
ing system and protocol processing overhead (such as data
movement, context switching, and synchronization [13]).
This throughput preservation problem is exacerbated by
contemporary implementations of distributed object com-
puting middieware like CORBA, which copy data multi-
pletimes during fragmentation/reassembly, marshalling, and
demarshalling. Furthermore, the latency associated with
the request-response protocol implemented by t t cp signif-
icantly reduced performance. An earlier implementation of
tt cp [3] attained 90 Mbps over the same ATM testbed by
using a “flooding” traffic generation modd that did not use
an end-to-end acknowledgment scheme.

C, ACE, Orbix, and Blob Streaming over ATM and Ethernet

70 T T T

C/64k window <—
ACE/64k window —+-
Blob Streaming/64k window -&-- -
Orbix Sequence/64k window ---

Mbits/sec

10 |~

Orbix String/64k window -&—-
C/8k window -

ACE/8k window -©--

Blob Streaming/8k window -+ -
Orbix Sequence/8k window -£3-
Orbix String/8k window >—]

All Ethernet results -

25 30 35 40 45

20
Blob chunk size in megabytes

Figure 18: Push Model Performance Over Ethernet and ATM

Finally, Figure 18 illustrates the impact of socket queue
size on throughput. Increasing the socket queue from 8 K to
64 K doubled performance from 28 Mbpsto 60 Mbps. The
reason for thisisthat larger socket queues increase the TCP
window size[20], which alowsthe transmission of multiple
TCP segments back-to-back.

These socket queue results demonstrate the importance
of having hooks to manipulate underlying OS mechanisms
(such as transport layer and socket layer options). Itisim-
portant to note that the choice of socket queue size hasmore
impact than the choi ce of communication mode (i.e., C/C++
vs. CORBA vs. Blob Streaming). In fact, the slowest
communication model (CORBA) is faster with 64 K socket
gueues than the faster communication model (C/C++) with 8
K queues. Clearly, communication frameworks that do not
offer these hooks to application developers are destined to
perform poorly over high-speed networks.

¢ Pull Model Throughput: Figure 19 compares the per-
formance of the pull modd and the push model of the Blob
Streaming versions of the tests.®> For 64 K socket queue
size, the pull model out-performed the push model by 15%to
20% for al sizes of data being transferred. Thisresult illus-
trates the drawback of the push model, which must wait for
an acknowledgment from the receiver in order to guarantee
end-to-end delivery.

Figure 19 also compares the two models with 8 K socket
gueue sizes. There is no appreciable difference in perfor-

5Due to space constraints, the ACE, C, and CORBA pull model results
are not shown — they exhibit similar performance curves, however.

Push and Pull Models of Blob Streaming over ATM
60 T T T T T T

55 - q

50»/\

45 g

40 - Push Model/64k window ——
Pull Model/64k window -+-
Push Model/8k window -8--
Pull Model/8k window -
35 B

Mbits/sec

30 Bl

20 L L L L L L
15 20 25 30
Blob chunk size in megabytes

Figure 19: Pull Mode vs. Push Mode Performance Over
ATM for Blob Streaming

mance of the two models with this socket queue size. This
illustrates once again how important it is for ORBs to alow
applicationsto tunethe size of the underlying socket queues.

4.2.2 High Cost Functions

In order to explain the throughput results shown above, we
used the Quant i f y execution profiler [21] to pinpoint the
sources of overhead. The test applications were relinked
using Quant i f y, which modified the object code toinclude
monitoring instructions. Two related tools (qxpr of and
gv) were then used to display and measure the amount of
time spent in functions during program execution. Figure 20
liststhefunctionswhere themost timewas spent sending and
receiving 1 Mbytesof user dataand using 64 K socket queues.
The results show the push model experiment repeated 100
times.

e High cost operations for C and ACE C++: The high
cost operations for C and ACE C++ wrapper versions are
nearly identical. The sender spent 94% of the timein the
wr it e system call sending datato the receiver. About 3%
of the time was spent in receiving acks from the receiver.
The receiver spent 93% of thetimein ther ead system call
receiving data from the sender. About 1.5% of thetime was
spent in sending acks from the sender.

The sender approximately made 100w i t e system calls
(once per iteration) to send the data and approximately 100
r ead system calls(onceper iteration) to receivetheack. The
receiver made approximately 13,000 r ead system calls (130
times per iteration) to receive the dataand approximately 100
wr i t e system calls (once per iteration) to send theack. The
excessive amounts of r eads results from fragmentation of
the data into packets of 9,180 bytes, which is the maximum
transmission unit (MTU) size of the ATM network.

e High cost operations for Orbix: Two different imple-
mentations of Orbix were profiled. The first version uses a
sequence parameter for the data buffer and the other uses
ast ri ng parameter. Boththe sender and the receiver spent
aconsiderable amount of timein copying data (6-12% of the
time was spent in mentpy), slowing down the performance
of the system. The decrease in performance compared to
the C and ACE wrappers versions causes the sender to wait
longer to receive the ack from thereceiver. Thisisindicated
by thetimespentinther ead systemcall. These experiments
aresimilar to theonesin [3] and detail s about the behavior is
explained in that paper.

The Orbix implementation differs from the C and ACE
implementations in the number of r ead system calls made
to receive an ack. Orbix implementations make two r ead
system calls per-ack compared to onecall by the C and ACE
versions. This is because Orbix uses the “header followed
by the data’ protocol. The first r ead system call reads the
fixed size header and the subsequent r ead system call reads
the variable size payload. This protocol is not necessary in
the C and ACE versions since the only type of information
sent to the sender isan ack.

[Test | %Time | #Calls [Name ||
C sockets 93.9 112 | wite
(sender) 3.6 110 | read
C sockets 932 | 13,085 | read
(receiver) 45 102 | wite
ACE C++ wrapper 94.4 112 | wite
(sender) 32 110 | read
ACE C++ wrapper 939 | 12,984 | read
(receiver) 5.6 102 | wite
Orbix Sequence 535 127 | wite
(sender) 35.1 223 | read

7.3 1,108 | mentpy
Orbix Sequence 84.6 | 12,846 | read
(receiver) 12.4 1,064 | mencpy
3.2 101 | wite
Orbix String 45.0 127 | write
(sender) 351 223 | read
10.8 1,315 | strlen
6.0 1,108 | mentpy
Orbix String 70.7 | 12,443 | read
(receiver) 16.1 2,142 | strlen
10.0 1,064 | mentpy
3.0 101 | wite
Blob Streaming 48.8 327 | wite
(sender) 448 232 | read
13 2,055 | mencpy
Blob Streaming 772 | 12546 | read
(receiver) 164 | 12,734 | nencpy
14 102 | wite

Figure 20: High cost Functions for Push Mode Blob
Streaming Tests

Figure 18 illustrated that the performance of the Orbix
sequence results consistently performed around 6 to 7
Mbps higher than the st ri ng. This difference in perfor-
mance is due to the C++ mapping for stringsin the CORBA
IDL specification. The client-side stubs that perform pa-
rameter marshalling for remote calls must obtain the length
of the string being sent. This is accomplished via cals to
st r 1 en,whichadd significant overhead tothest r i ng ver-
sion. However, the IDL-to-C++ mapping of thesequence
provideslength fieldsin addition to the data

To illustrate the difference, consider the following IDL
definition of asequence and its corresponding C++ map-

ping:

/1 1DL definition

typedef sequence<char> char_sequence;

oneway void push (in char_sequence data_seq,
in string data_string);

/] C++ mappi ng

struct char_sequence {
u_l ong _maxi mum
u_long _length;

char *_buffer;

h

voi d push (const char_sequence &data_seq,
const char *data_string);

The | engt h fieldisexplicitly set by the application alow-
ing client-side stub to know the size of the _buf f er . Thus,
dat a_stri ng requiresast r| en; dat a_seq does not.

e High cost operations for Blob Streaming: Compared
with the C, ACE, and Orbix implementations, the Blob
Streaming sender implementation performs a higher num-
ber of wr i t e calls. Asshown in Figure 20, Blob Streaming
makes three wr i t e system calls per iteration, whereas the
C, ACE, and Orbix versionsonly makeonecall. Thefirst call
by Blob Streaming sends the control information, the second
cal isfor the data, and the third isfor a request for the ack.
The control information cannot be bundled with the data as
Blob Streaming uses different channels for control and data
messages. All the other versions use the same channel for
control and data messages.

The Quanti fy analysis of the Blob Streaming imple-
mentation revea ed that the receiver spent 16.4% of thetime
in mencpy. Upon closer inspection, we found our imple-
mentation was making an extra copy of the data received
fromclients. A singleextracopy reduced the performance of
Blob Streaming and the sender has to wait longer to receive
an ack from thereceiver.

Oneway to reduce thisoverhead isto have the application
predlocate the buffer space before passing into the Blob
Stream receiver. Once we remove the extra data copy from
the receiver, we expect the results to perform roughly the
same asthe C and ACE C++ wrapper versions. In particular,
athough the sender makes threetimesmore callstowr i t e,
we expect the overhead is due to the extra data copying on
thereceiver, rather than the additional mode switching on the
sender.

5 Evaluations and Recommendations

When developing large frameworks such as Blob Stream-
ing, the greatest challenge is designing for future changes
in requirements and environments. The framework must be
able to adapt to the ever-changing needs of the customer it
isbuilt for. Blob Streaming chose CORBA as atool to help
the framework meet these demands. The following two sec-
tions discuss our recommendations to others facing similar
challenges.

5.1 Designing Object-Oriented Communica-
tion Frameworks

Based on our performance experiments and our experience
using the Blob Streaming framework, our evaluations and
recommendations for devel oping object-oriented communi-
cation frameworks for high-performance bulk data delivery
systems include the following:

o Develop flexible tools— The framework must be able to
deal with new types of data and new transport protocols
and networks. If the tools used to build the framework
cannot adapt to changing needs, the framework will not
be flexible either. This was one of our motivations for
using CORBA.

e Know the performance requirements — Meeting the
performance reguirements of bandwidth-intensive and
delay-sensitive applications is essential before the
framework will be adopted widely. Furthermore it is
important to evaluate tools based on empirica mea
surements rather than adopting a particular communi-
cation model or implementation unconditionaly. Our
performance requirements motivated the combination
of CORBA with lower-level transport mechanisms to
achieve the performance benefits of sockets.

o Makethe system easy to use — The learning curve of us-
ing anew framework must be as small aspossible. This
inspired us to simplify the Blob Streaming interfaces
by modeling after the UNIX file 1/O interfaces and in-
cluding abstractions such as SynchQOpt i ons and the
stateless CopyTr ansporter. Whenever possible,
leverage well known designs and idioms that will help
decrease the learning curve for the framework users.

o Decoupleconcurrency policies— Theframework should
try to avoid making concurrency policy decisions. Ap-
plications using the framework should not have to
be single- or multi-threaded. The framework must,
however, provide mechanisms that alow the frame-
work to work correctly in a multi-threading and multi-
processing environment. Blob Streaming addresses this
need by supporting uniform calback interfaces for both
synchronous and asynchronous operations.

e Design with portability in mind — Portability require-
ments of the framework must be addressed in the early
phase of design. This helps the designers and devel-
opers make reasonabl e assumptions about the OS level
servicesavailable. Blob Streaming usesthe ACE tool kit
[7] to remove dependencies from OS-specific system
call mechanisms.

e Design for new technologies — Networks have experi-
enced atremendous growth in the last few years. There
is no reason to doubt that this trend will continue for
many more years. Prototypes of gigabit network are
already being developed [22]. Next generation frame-
works must be able to adapt to new technologies such
as higher speed networks and new transport protocols.

¢ Do not assume event-loop ownership — The framework
should not assume ownership of the event-loop. Ap-
plications using the framework will typically be deal-
ing with multiple sources of input like GUI events and
CORBA events. Blob Streaming uses the ACE Reac-
tor [10] asasingledemultiplexing object to encapsulate
these multiple sources of events.

5.2 Using CORBA Effectively

CORBA offers many advantages for developing complex
distributed systems since it automates many common net-
work programming tasks such as object selection, location,
and activation, aswell as parameter marshalling and framing.

However, amgjor disadvantage of CORBA isthat currentim-
plementations incur significant performance overhead when
used to transfer large amounts of data[3].

We addressed the performance problems of CORBA by
integrating it with sockets. Our approach uses CORBA for
control messagesand socketsfor bulk datatransfer. Thistwo-
tiered design leverages CORBA's extensihility and socket’s
efficiency. CORBA is particularly useful for short-duration,
request/response operationsthat exchange richly typed data.

Modifyingor extending thetypeof information exchanged
between applications is also straightforward using CORBA
since it automatically generates code to marshall the param-
eters. Thus, for many types of inter-process communication,
CORBA offers a powerful solution. TCP/IP endpoint ne-
gotiationsin Blob Streaming are performed using CORBA
messages. These negotiationsusually contain small amounts
of richly typed data, and thereforearewel | suitedfor CORBA.

The poor performance of CORBA bulk data transfer is a
result of existing implementations that fail to optimize com-
mon sources of overhead. This overhead stems primarily
from inefficient presentation layer conversions, data copy-
ing, memory management, and inefficient receiver-side de-
multiplexing and dispatching operations. This overhead is
often masked onlow-speed networkslike Ethernet and Token
Ring. On high-speed networkslike ATM or FDDI, however,
this overhead becomes a significant factor limiting commu-
nication performance [23]. To overcometheseinefficiencies,
we use sockets to setup point-to-point TCP connections and
transmit bulk data efficiently across the connections. Since
Blob Streaming does not interpret the data it transfers, the
untyped nature of socket-level data exchange is acceptable.

Low-level network programming interfaces like sockets
are hard to program because they have complex interfaces
and are prone to subtle programming errors. Our solution to
this problem was to use C++ wrappers from the ACE toolkit
[7] toencapsulatethe Cinterfaces. ACE providesarich set of
efficient, reusable C++wrappers, classcategories, and frame-
works that perform common communication software tasks
(such as event demultiplexing, event handler dispatching,
connection establishment, message routing, dynamic config-
uration of application services, and concurrency control).

It is important to note that ACE does not offer al the
services of CORBA (such as object selection, location, ac-
tivation, and parameter marshaling). Therefore, CORBA
provides important value as a higher-level distributed object
computing framework.

6 Concluding Remarks

Weare currently deploying the Blob Streaming framework in
a production distributed electronic medical imaging system
being devel oped as part of Project Spectrum at the Electronic
Radiology Lab (ERL) at the Washington University School
of Medicineand BJC Health System, in collaborationwithin-
dustrial partnersKodak Health Imaging Systems, IBM/ISSC,
and Southwestern Bell Corporation. BJC is one of the na-

tion’slargest integrated health delivery systems, representing
an alliance of health care partnersin Missouri and southern
[llinois.

Digtributed electronic medical imaging systems like
Project Spectrum require high-performance bulk data com-
munication. The Blob Streaming framework described in
thispaper uses sockets to achieve high performance and uses
CORBA to providetheflexibility needed for distributed el ec-
tronic medical imaging systems. Blob Streaming allows ap-
plication codeto be devel oped independent of Blob location,
Blob type, and Blob storage. These abstractions allow im-
age processing agorithms to be reused for many types and
locations of Blaobs. In addition, Blob Streaming is designed
to alow flexibility across platforms by abstracting from OS-
specific mechanisms, concurrency policies, and event loops.

References

[1] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71-81, 1994.

[2] Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

[3] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1°* Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[4] A. Gokhaleand D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedingsof SGCOMM ' 96, (Stanford, CA), ACM, August
1996.

[5] A.GokhaleandD. C. Schmidt, “Performance of the CORBA
Dynamic Invocation Interface and Internet Inter-ORB Pro-
tocol over High-Speed ATM Networks,” in Proceedings of
GLOBECOM ' 96, (London, England), |EEE, November 1996.

[6] A.GokhaleandD. C. Schmidt, “ Evaluating Latency and Scal-
ability of CORBA Over High-Speed ATM Networks,” in Sub-
mitted to IEEE INFOCOM 1997, (Kobe, Japan), |EEE, April
1997.

[7] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[8] D.C.Schmidt, “A Family of Design Patternsfor Application-
level Gateways,” in The Theory and Practice of Object Sys-
tems (Special Issueon Patternsand Pattern Languages) (S. P.
Berczuk, ed.), Wiley and Sons, 1996.

[9] D. C. Schmidt, “A Family of Design Patterns For Flexibly
Configuring Network Servicesin Distributed Systems,” in In-
ternational Conference on Configurable Distributed Systems,
May 6-8 1996.

[10] D. C. schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

(23]

Object Management Group, CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 95-3-31 ed., Mar.
1994.

D. D. Clark and D. L. Tennenhouse, “Architectural Consid-
erations for a New Generation of Protocols,” in Proceedings
of the Symposium on Communications Architecturesand Pro-
tocols (SGCOMM), (Philadelphia, PA), pp. 200-208, ACM,
Sept. 1990.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

D. C. Schmidt and P. Stephenson, “Experiences Using De-
sign Patterns to Evolve System Software Across Diverse OS
Platforms,” in Proceedings of the 9" European Conference
on Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

D. Ritchie, “ A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

D. C. Schmidt and T. Suda, “ Transport System Architecture
Services for High-Performance Communications Systems,”
IEEE Journal on Selected Areas in Communication, vol. 11,
pp. 489-506, May 1993.

K. Modeklev, E. Klovning, and O. Kure, “TCP/IP Behavior
in a High-Speed Local ATM Network Environment,” in Pro-
ceedingsof the 19" Conferenceon Local Computer Networks,
(Minneapolis, MN), pp. 176-185, |IEEE, Oct. 1994.

P. Software, Quantify User’s Guide, 1995.

G. Parulkar, D. C. Schmidt, and J. S. Turner, “dt'm: aStrategy
for Integrating IP with ATM,” in Proceedings of the Sympo-
sium on Communications Architectures and Protocols (S G-
COMM), ACM, September 1995.

M. DoVan, L. Humphrey, G. Cox, and C. Ravin, “Initial Expe-
riencewith AsynchronousTransfer Modefor Usein aMedical
Imaging Network,” Journal of Digital Imaging, vol. 8, pp.43—
48, February 1995.

