Towards Composable Distributed Real-time and Embedded Software
Extended Abstract

Krishnakumar Balasubramanian, Nanbor Wang & Christopher Gill Douglas C. Schmidt
{Kitty,nanbor,cdgil} @cs.wustl.edu schmidt@uci.edu
Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine

Abstract lying upon commercial off-the-shelf (COTS) components and

. . . L frameworks as the basis for their distributed software infras-
The growing complexity of building and validating SOﬁwarﬁucture

is a challenge for developers of distributed real-time and em-
bedded (DRE) applications. While DRE applications are in-
creasingly based on commercial off-the-shelf (COTS) had2 Key Challenges

ware and software components, substantial time and effort ﬁﬁﬁwugh component-based software development techniques

spent integrating components into applications. Integrati%]e maturing for business and desktop systems, they are less
challenges stem largely from the lack of higher level abstrara;] '

. . N ature for mission-critical domains, such as distributed real-
tions for composing complex applications. As a result, consifls o and embedded (DRE) applications. This paper focuses

eraé)le appllcatl?n—speuﬁc ;gluﬁ coge’.’lgust b%wntten, Ogl}Sn the following challenges involved in QoS-enabled software
to be rewritten from scratch when bullding subsequent %'C:Jmposition in the context of emerging component models:

applications. The need to reduce tight coupling of component meta-

This paper provides four contributions to the study of COMta with component functionality. Component meta-data

posing reusable middleware from standard components.in . . . X .
e o |pcludes information such as the list of files used to imple-

DRE applications: it (1) analyzes the limitations of curren oning inf : heck
approaches in middleware composition, (2) discusses the mrpne_nt a componeqt, versioning in ormgt|on, a checksum to_ en-
' sure component integrity, or information about the required

imum set of requirements required of reusable middlewar&ravileges for a component to function. In DRE applications

. . i
components, (3) pr_e.sents recurring pattems in the dgm%nreusable component can be reapplied in a variety of con-
of software composmo.n and provides empirical evaluatlon.tchts each with differing QoS requirements, such as the dead-
these patterns as applied to TAO, our open-source Real—ﬂmgs for various time-critical functionality, concurrency lev-
CORBA Object Request Broker (ORB), and (4) compares Quir o : -~
) els, type of synchronization mechanisms, number of simul

osition. Our results show that decoupling systemic QoS régfjeous transport connections allowed, and whether transport
P ' ping sy PInections can be shared by multiple threads.

erties from functional properties enhances composition flexbil-

o) . . 0 reuse a componentin more contexts than it was designed
ity, increases reuse, and shields higher-level middleware and . , ; .

L o -originally, the component’s functionality needs to be separated
application developers from the complexities of the underlyi

middleware and OS platforms. R9m meta-data (such as its QoS properties) and described in
a manner that can be understood by component users and as-
sociated tools. Composition problems can occur, however, if
1 Introduction component meta-data is described at the same level of abstrac-
tion as the component functionality. In particular, tightly cou-
pling meta-data and functionality can require applications to
be written in the same language as its building block compo-
With the proliferation of enterprise component technologig¥gnts, which may not be feasible if these entities have been
such as the CORBA Component Model (CCM) [1], Microsofteveloped independently at different points in time.
.NET [2], and Enterprise Java Beans (EJB) [3], large-scale diste need to specify component QoS requirements in a
tributed applications are increasingly being developed and dentext-insensitive manner. A component in a DRE ap-
ployed in a modular fashion. Modularity elevates the level pfication may be functionally correct, yet can malfunction
abstraction used to program complex applications, encouragies to failure of assumptions stemming from the lack of
systematic reuse, and enhances software maintainability aa@rtext-dependent information, such as thread creation strate-
an application’s lifecycle. Projects are also increasingly rgies, component lifetimee(g, persistent vs. transient), type of

1.1 Emerging Trends

invocation €.g, synchronous or asynchronous), and preseraaions that can parse XML. This approach helps to decouple
or absence of middleware services, such as event channelsié]functional aspects of a component-based application from
The context in which a component executes is generally ptioe underlying QoS aspects and configuration details, thereby
vided by the external environment. Composition problergreasing composition flexibility and systematic reuse. In
can arise when QoS requirements of components are spt-CIAO project, we specify meta-data for components via
fied with implicit assumptions on properties of external ent%&ML, using its content-agnostic metalanguage properties to
ties .g the threading model required to run the componertjpress QoS configuration templates and conforming configu-
that are external to a particular component of a software syation files. Section 4.1 describes how we decouple meta-data
tem. Unstated assumptions related to QoS properties of cdrmm functionality in CIAO.

ponents make it hard to enforce QoS requirements effectivElgntext-insensitive specification of QoS requirements. In

in open systems. CIAO, a component’s dependencies are specified explicitly
The need to validate component properties. A compo- using meta-data present with each component, thereby re-
nent implementation’s propertieg.¢, the implementation ducing the amount of implicit contextual information. This
language, version of the component, level of privileges mesign helps make the implementation assumptions explicit,
quired, and dependencies on other components) must be tvereby ensuring that the environment in which the compo-
idated. Validation should be performed against the comp@nt executes can either satisfy the assumptions or fail grace-
nent’s specification to avoid problems such as (1) errors caukdly. CIAO uses XML Document Type Definitions (DTDs)

by misconfiguration, (2) unauthorized use of resources tayidentify critical QoS parameters of component-based DRE
components, and (3) lack of confidence that the QoS asspplications and to specify properties of components defined
ances provided by the middleware are sufficient from an apjii CCM. There is considerable flexibility in specification of
cation’s perspective. Validation is required for each individu@oS requirements so that the requirements make sense from
component, as well as the application and system levels. the perspective of a component, as well as from the end-to-
The need to ensure that a complex software system can beend perspective needed for configuring a complete applica-
deployed seamlessly. To reduce the complexity of installingtion. Section 4.2 describes how we support context-insensitive
and maintaining complex DRE applications, it is necessapecification of QoS requirements in CIAO.

that all the individual components be deployed using the sawaidation of component configurations. After component
framework and follow the same guidelines. If each individuptoperties are specified, their configurations must be validated
component needs a different mechanism for deployment, @tedeployment time. In the CIAO project, default attributes
costs of maintenance outweigh the advantages gained byaie-generated by a component-enabled OMG Component Im-
veloping applications in a component oriented fashion. Itfdementation Definition Language (CIDL) compiler (see Sec-
also hard to track the dependencies of components upon otioer 3.1) as part of the meta-data for every component. These
components and ensure that inter-dependent componentsatiriutes can be modified or extended by users. XML DTDs
initialized in a particular order. To ease this task, componen&n be used to (re)validate meta-data attribbeferecompo-
need to be packaged as a hierarchy that provides various inf@nts are deployed, thereby avoiding exceptions during run-
mation about the related components and captures depentime. CIAO provide methods to validate (1) configurations
cies present in component initialization and deployment. Thi components, (2) privileges of components, and (3) QoS
packaging is necessary so that the deployment process caproperties of the system both during and after an application
automated, or at least controlled by an administrator. is composed from a set of component building blocks. Sec-
tion 4.3 describes how we validate component configurations
in CIAO.

Component packaging and deployment. After specifica-
This paper describes how we are implementing thien and validation, component implementations need to be
Component-Integrated ACE ORB (CIAO), which extends tipgackaged so that they can be deployed. As shown in Figure 1,
CORBA Component Model (CCM) [1], to address the chgbackaging involves grouping the implementation of compo-
lenges outlined in Section 1.2 as follows: nent functionality (which is typically stored in a dynamic link
Reduced coupling by separating meta-data from func- library (DLL)) together with other meta-data that describes
tionality. CIAO provides a framework based @Xtensible properties of this particular implementation. Packaged com-
Markup LanguagéXML) [5] mechanisms to define the gramponents are in “passive mode.g., all their functionality is

mar for describing component features. Our XML-based gpresent, but they are inert object code. To carry out their
proach to describing component properties and systemic métiactionality at run-time, components must transition to “ac-
data makes components amenable to composition from (1)tive mode,” where the inter-connection between components
dependent portions of a larger application and (2) future appdi-established. Deployment mechanisms are responsible for

1.3 Solution Approach

Implementation

]

[]

Implementation

Properties
o) Bapndercid

Properties
erdon) Bapedercid

Execution environment. Each component model defines an
environment, known as@ontainer within which components

can be instantiated and run. Containers shield components
from low-level details of the underlying middleware. They
are also responsible for locating and/or creating component
instances, interconnecting components together, and enforc-

Meta-data Meta-data ing component policies, such as life-cycle, security, and per-
Component Component .
sistency.
(208 Spcs) (Lot s (SOt)

Meta-data Componentidentity. Component models have mechanisms
to identify their components uniquely. For example, .NET
uses public key cryptography tokens to tag each component’s
interface and identify it uniquely across different software do-
mains. EJB uses the Java Naming and Directory Interface
(JNDI), which encapsulates low-level naming services such as

Assembly Assembly Assembly LDAP, NIS, and DNS. EJB components are identified by hi-

erarchical namespaces which use a directory naming scheme
typically associated with an organization’s Internet domain.
The CCM uses DCE “universally unique ids” (UUIDs) to
identify component implementations. Section 3 explains other
capabilities that CCM provides to identify components.

)

[Deployment Application }

ﬂent Server} [Component Server]

A A A
Figure 1: Component Packaging and Deployment

Association with an object model. Today's component
models are developed atop underlying object models that de-
fine the basic units of encapsulation and interoperability. The
object models associated with component models include:

e EJB uses the Java programming language object model,
exemplified byjava.lang.Object with the Java Virtual
Machine (JVM) [6] providing run-time support.

e .NET is based on the Microsoft Intermediate Language

transitioning components from passive to active mode. Sec- (IL) [7], exemplified by System.Objectwith the Com-
tion 4.4 describes how component packaging and deployment MoN Language Runtime (CLR) [8] providing run-time
is performed in CIAO. support.
e CCM is based on the CORBA object model, exemplified
by CORBA::Objectwith a CORBA [9] ORB providing

2 Overview of Components and Com- run-time support.

ponent Models N .
The JVM and CLR are similar in that they provide a run-

Some of the capabilities that are shared among Compor{%environment that manages ruqning code and simplifies
models are as follows: software developmen.t via automatlg memory managemgnt

mechanisms, translating bytecodes into actions or operating
Multiple views per component. Each component modelsystem calls, a common deployment model, and a security
specifies a collection of interfaces that a component can mechanism. Automatic memory management via garbage col-
port to its clients. These interfaces vary in the capabilities thattion coupled with a virtual machine architecture is a source
they offer to clients. It is therefore possible for a single cornf non-determinism and impacts performance in DRE appli-
ponent to play multiple roles to the component’s clients at thations. In contrast, since CCM uses CORBA as its underly-
same time. Moreover, a client can navigate from one viewitm object model, it need not use a virtual machine or garbage
another by using the introspection interfaces provided by ttalection and hence is a more suitable platform for DRE ap-
component. plications with stringent QoS requirements.

3 Overview of the CCM and CIAO
3.1 Key Capabilities of the CCM

The CORBA Component Model (CCM) is an OMG specifi-

1. Identifying and reusing commonality in software appli-
cations

2. Reducing coupling between components and underlying
middleware

cation that standardizes the development of component-baséd SPecifying component interconnections
applications in CORBA. Since CCM uses CORBAs object4. Using adaptive strategies for creating components
model as its underlying object model, developers are not tied. Configuring components

to any particular language or platform for their componentim-g. Resolving dependencies automatically

plementations.

External Interfaces

Component i

ComponentHome

Facets
o

[e]e)

Component

Receptacle

Component
O

ComponentHome

Container

Container

ComponentServer
o] o)

O

o]
[Transaction} [Persistence} [Events j [Securityj ‘

ORB Middleware

(Operating System

7. Evolving component software

3.1.1 Identifying and Reusing Commonality in Software
Applications

Context. A family of applications exhibiting commonality
that can be refactored into reusable units, each of which offers
specific functionality.

Problem. If application software is implemented in a mono-
lithic fashion, it is hard to identify and refactor common func-
tionality among related applications. Choosing the right mod-
ule boundaries is hard without appropriate abstractions for de-
scribing functionality. Lack of functional abstractions leads to
unnecessary duplication across different modules and prevents
systematic reuse.

CCM Solution — Component. Define acomponentab-

Figure 2: Key Elements in the CORBA Component Modelstraction that serves as the building block for the structure of

Key elements of the CCM include:

e Component which is the basic building block used t

encapsulate application functionality

software applications, as well as the candidate for demarcat-
ing modularity and functionality. A CCM component has the

Jollowing properties:

¢ Itis an encapsulated part of a software system that imple-

e ComponentHome which is a factory that creates and ments a specific service or set of services.

manages components

¢ It has one or more interfaces that provide access to its

e Container, which provides components with an abstrac- services.
tion of the underlying middleware and regulate their , tjs 3 meta-type that includes collection of entities, which

shared access to the middleware infrastructure,
e Component Implementation Framework, which de-

includes implementation(s) of application functionality
in a particular programming language and a set of prop-

fines the programming model for constructing component 4 tias associated with each such implementation.

implementations, using the Component Implementation
Definition Language (CIDL) descriptions for automating

generation of programming skeletons,

e Component server which groups components and con-

tainers together to form an executable program.

e It is both an extension and a specialization of the
CORBA::Objecineta-type that is defined by the original
OMG CORBA specification.

The capabilities of a CCM component are defined using ex-

e ORB Services which provide common middleware sertensions to the OMG Interface Definition Language (IDL).
vices, such as transaction, events, security and persis-

tence.

3.1.2 Reducing Coupling Between Components and Un-

Figure 2 illustrates some of the above described elements. derlying Middleware

The remainder of this section explains why these elements are)
needed in CCM by illustrating the key software developme@f’”teXt- Development of component software that relies on

challenges they address, which include:

services provided by the middleware.

Problem. In earlier generation middleware based on objegtpes of ports, which are a set of interfaces that are both exter-
models, programmers were responsible for connecting to aradi(to the clients) and internal (to the underlying middleware):
configuring the policies of the underlying middleware. For , - .)
example, before the advent of CCM, CORBA developers had® Facets which are distinct named interfaces provided by
to explicitly bind to, and configure the policies of, middle- e component. Facets enable a component to export a
ware entities, such as event channels, transaction services, andSet Of different functional roles to its clients.
security services. These manual programming activities re® Receptacleswhich are interfaces used to specify rela-
quired developers to (re)write substantial amounts of “glue- tionships between components. Receptacles allow a com-
code,” which was often larger than that required to use the Ponentto accept references to other components and in-
functionality. These activities were error-prone since they re- Voke operations upon these references. They therefore
quired application developers to have expertise in low-level €nable a component to use the functionality provided by
details of the underlying middleware. other components.
CCM Solution — Containers. Define acontainerabstrac- e Event sources and sinkswhich define a standard in-
tion that provides the context in which components run. A terface for the Publisher/Subscriber architectural pat-
container acts as a bridge between the low-level middleware tern [10]. Event sources/sinks are named connection
and a component by configuring the underlying middiware points that send/receive specified types of events to/from
based on the policies defined in the component. A container one or more interested consumers/suppliers. These types
also provides an execution environment for componengs, of ports also hide the details of establishing and con-
it defines interception points where various run-time policies, figuring event channels [4] needed to support The Pub-
such as security and transaction, can be imposed and validated. lisher/Subscriber architecture.
Components can also use the capabilities provided via the cor Attributes, which are named values exposed via acces-
tainers to shield component developers from undue dependen- sor and mutator operations. Attributes can be used to
cies on the underlying middleware. expose the properties of a component that are exposed
An important consequence of decoupling components from to tools, such as application deployment wizards that in-
containers is that the containers and the underlying middle- teract with the component to extract these properties and
ware can transparently perform optimizations, such as compo- guide decisions made during installation of these com-
nent pooling, caching, and on-demand linking and load bal- ponents, based on the values of these properties. At-
ancing of components. Likewise, the lifecycle of a component tributes typically maintain state about the component and
can be managed by its container. This design has the advan- can be modified by these external agents to trigger an ac-
tage of having information from the perspective of not only a tion based on the value of the attributes.
single component, but of all components residing within that

container.))])
3.1.4 Using Adaptive Strategies for Creating Compo-

3.1.3 Specifying Component Interconnections nents

Context. A complex system consisting of individual Compogontext. Distributed software applications that consist of

nents that must interoperate with each other at run-time. components with different lifetimes.

Problem. A component can provide functionality at differProblem. Locating and/or creating components is a poten-
ent granularities. In software developed using object modeldigdly expensive operation. Moreover, requiring client ap-
one-to-one association typically exists between an object gatidations to know how to locate and/or create components
the roles played by the objete. a user of an object eitheris tedious and introduces unnecessary dependencies between
gets all the functionality and the artifacts of that functionatlients and the components they use. It also limits the flexibil-
ity or nothing. In complex software applications, however,ity of component creation strategies by tightly coupling com-
one-to-one association of component and component rolesjganent creation with component use.
result in an unwieldy proliferation of interfaces that must be For example, different component types might need creation
managed explicitly by client application developers. strategies that differ from the other component types depend-
CCM Solution — Ports. Define aport abstraction that caning on the lifetime of instances of each type. In particular, a
expose multiple views of a componentto clients, based on conmponent instance created as part of a database transaction
text and functionality. CCM ports define a set of connectianight have a different lifetime than one that is controlling the
points between components to expose various roles suppoiajgctory of a missile. Strategies used in the creation of both
by a component interface. The CCM specifies the followingll involve a different set of tradeoffs, which ought to be han-
dled by the middleware rather than each application.

5

CCM Solution — Component homes. Define acomponent 3.1.6 Resolving Dependencies Automatically
homeabstraction that is responsible for creating and subse- . . L
guently locating certain types of componentsin a software s Q.ntex.t. Run-time deployment of dlstrlbuted_appllcatlons
tem. Components reside in component homes, which emb Wt using components as the core software building blocks.
the Factory [11] design pattern. Component homes shield

clients from the details of creation strategies of componeft&blem. Any non-trivial software system consists of a col-
and subsequent queries, to locate a component instance. [B§#on of components that have various dependencies, such as
capability increases the flexibility of a system since changé&jance on a particular group of components, order of compo-

in how a component are created need not affect compori@fit initialization, or domain-specific requiremengsy, re-
clients. quired sensor rate in the avionics domain [14]). Resolving

these dependencies manually does not scale as the number of

components in a system grows. Likewise, ignoring or under-
3.1.5 Configuring Components specifying these dependencies can result in an unstable system

if the system run-time assumes that components are indepen-
Context. A distributed system where a component needsdent and then instantiates them in invalid order. For example,
be configured differently depending on the context in whichtlie wheels of a carrier-based fighter aircraft must open before
is used. the aircraft tries to land.

CCM Solution — Deployment application. Define ade-

ployment applicatiothat is responsible for managing the de-
Problem. As the number of component configuration paendencies among a collection of interdependent components.
rameters and options increase, it can become overwhelmirfylgeployment application can ensure that component inter-
complex to configure applications consisting of many indivigonnections are established correctly and in the right order by
ual components. The problem stems not only from the nubsing meta-data that capture these dependencies, along with
ber of alternative combinations, but also from the dispardtéormation about the interconnections expressed via CCM
interfaces for modifying these configuration parameters. QI®fts.
ject models have historically required application developers

to manually write large amounts of application-specific “glug1.7 Evolving Component Software
code” to interconnect and configure components. In addition

to being tedious and error-prone, this coding process expds@gtext. Software applications that have been partitioned
the component developers to low-level details of the underito many individual components.
ing middleware.
Problem. Although partitioning a system into a collection of

CCM Solution — Assembly. Define anassemblyabstrac- individual components avoids the many problems discussed in
tion to group components and characterize their meta-data thed¢tion 3.1.1, it can be a maintenance problem. For example,
describes the components present in the assembly. Each ab@person-hours needed to evolve complex applications in-
ponent's meta-data in turn describes the features availabler@ases considerably as the number of individual components
it (i.e,, properties) or the features that it requirés.(a de- in a system increases. This problem is exacerbated by the fact
pendency). After an assembly is defined, the actual taskiidt it is hard to determine the relationship between a compo-
modifying the parameters need not involve manual writing pént and its running context solely based on the presence of a
glue code. Instead, meta-programming techniques [12] @@mponentin a live system.
be applied to generate code to configure the component ig@M Solution — Component servers. Define acompo-
context-dependent fashion, due to the decoupling of the preent servembstraction that is responsible for aggregating the
erties of components and the code needed to configure thesgssical” (i.e., implementation of component instances) en-
properties into the components. tities into “logical” (i.e., functional) entities of a system. A

CCM assemblies are defined using XML DTDs, which praomponent server is a singleton [11] that plays the role of a
vide an implementation-independent mechanism for descriiéetory to create containers. A component server is the equiv-
ing component properties. With the help of these XML DTRIlent of a server process in the object models. Figure 3 shows
templates, it is possible to generate default configurations tiee steps involved in deploying component software through
CCM components. These assembly configurations can gemponent servers in a top-down fashion.
serve the required QoS properties [13] and establish the necA component server is typically assigned one high-level
essary configuration and interconnection among the compmictionality within a complex system. For example, a wing
nents. sensor of an aircraft might be configured as a component

ServerProcess

Component Assembly Component Server

Component & Home Impls il c "
1| [Component oniainey
Z:CJ Z:CJ Z:C] il e o
Adaptation
CORBA
QoS Policies
%

Component
QoS Property
Adaptor

Real-time POA
ll —)
1=

QoS
Mechanism
Plug ins

o

Component Connection
Specifications

{) |=
(qosrolces) =
[)

QoS

Mechanism QOS,

Plug i Adaptation
ug ins

Reflect

ComponentServer

ComponentServer ComponentServer

ComponentHome
ComponentHome

Container Container

[CIAO Deployment & | RT-ORB
L> Configuration E—— ‘

Mechanism

Figure 4:Key Elements in CIAO

Figure 3: Component Deploymentin CCM Component assembly. CIAO extends the notion of compo-

nent assembly to include server-level QoS provisioning and
implementations for required QoS supporting mechanisms.
server consisting of a number of components that work BFHAO’s extended assembly descriptor definition also enables
gether to control the wings of the aircraft. During deploymerspecification of QoS provisioning to connect components.
a single component server per assembly is created on e@ols-aware containers. CIAO’s QoS-aware containers pro-
host. The component server reads the description of the meide a centralized interface for managing provisioned compo-
data from the assembly and is responsible for initiating thent QoS policies and interacting with QoS assurance mecha-
construction and teardown of the component/container hiergsisms required by the QoS policies.
chy. Multiple containers can exist within a component serveQoS adaptations. CIAO also supports installation of meta-
the component server is responsible for managing the lifecgl®@gramming hooks, such as Portable Interceptor and smart
of containers created within it. proxies [12], which can be used to perform dynamic QoS pro-
visioning behaviors that provision QoS resources and adapt
applications to changes in system QoS.

3.2 Key Capabilities of CIAO o

Application developers can use CIAO to decouple QoS pro-
The Component-Integrated ACE OREIAO) developed at Vvisioning functionality from component implementation and
Washington University, St. Louis is an extension to CCMssemble a DRE application by composing and connecting
CIAO is designed to bring the component-oriented develaggeplication functional components, QoS specifications, and
ment paradigm to DRE application developers by abstractiegisable QoS adaptation behaviors together. Section 4 de-
DRE-critical systemic aspects, such as QoS requirements a¢iibes how CIAO addresses the challenges in assembling and
real-time policies, as installable/configurable units. Prometeploying components.
ing these DRE-critical aspects as first-class meta-data disen-

tangles the code that controls these systemic aspects from ap- . .
plication logic. It also makes is easier to compose components AddreSSlng Key DeS'Qn Cha”enges

into DRE applications flexibly. Since mechanisms to support for Composab|e DRE Applications
various DRE-critical systemic aspects can be validated using

tools that analyze and synthesize these aspect from a higher described in Section 3, the CORBA Component
level of abstraction, CIAO also makes configuring and managedel (CCM) specifies the core infrastructure needed for
ing these aspects easier [15]. component-based software development. That section also ex-
The CIAO implementation is based on TAO, which iplains how CCM provides capabilities that help them develop
our open-source, high-performance, highly configurable Readmposable middleware and applications. The capabilities of-
time CORBA ORB that implements key patterns [16] to meftred by CCM, however, are targeted towards enterprise and
the demanding QoS requirements of distributed applicatiodesktop applications, which do not possess key challenges in-
CIAO enhances TAO to simplify the development of DRE ajrerent to developing DRE applications.
plications by enabling developers to declaratively provisionTo address the challenges in developing components for
QoS policies end-to-end when assembling a system. FigulBRE applications effectively, we have extended the CCM
shows the key extensions to the CCM in CIAO, which includspecification in CIAO to allow specification of component

properties that are critical to support DRE applications wittssociated with designing programming languages. For exam-
stringent QoS requirements. Specifically, CIAO enhanggale, the language used to define meta-data should be extensi-
CCM to support static QoS provisioning, which allocates rele to allow the specification of meta-data that is open-ended
sources at various levels in a distributed sysgepriori. This and subject to change. Designing a language for extensibil-
capability is useful when DRE application components neiygl[17] involves tradeoffs (such as level of expressibility, ease
to provide hard real-time guarantees or to simplify the specifif adding new features, maintaining backward compatibility,
cation of QoS as part of a large system. In CIAO, specificatiand preventing alienation of existing users) that must be han-
of static QoS provisioning is acheived via extensions to metied carefully.
data using XML. Through these extensions, key QoS relatedKML provides a basis for defining a meta-languaige, a
properties of the TAO Real-time CORBA ORB are exposed anguage that can be used to describe another language. In this
developers of DRE components and applications. case, the XML-based meta-language is used to describe DRE
The remainder of this section describes how CIAO adpplication meta-data, while minimizing the effort required to
dresses the following challenges that were first introduceddigsign a full-fledged language. Using XML to specify com-

Section 1. ponent meta-data enables designers and integrators of DRE
e Reducing coupling by separating meta-data from fungpplications to separate the “meta-data” from the component
tionality implementations, while also enabling the integration and com-
e Context-insensitive specification of QoS properties ~ Position of third-party code.
e Validation of component configurations Applying the solution in CIAO. CIAO uses ACEXML,
o Component packaging and deployment which is an open-source C++ library for parsing XML files.

ACEXML provides an API based on the Simple API for XML

4.1 Reducing Coupling by Separating Meta- (SAX) [18] to assist in handling XML used for the specifica-
data from Functionality tion of meta-data. There are two types of XML APIs:

e Tree-based APIs which map an XML document into
an internal tree structure, then allow an application
to navigate that tree. The Document Object Model
(DOM) working group at the World-Wide Web Consor-
tium (W3C) maintains a recommended tree-based API
for XML and HTML documents, and there are many such
APIs from other sources, such as DOM model APIs for
Mathematical Markup Language [19], Scalable Vector
Graphics [20], and Synchronized Multimedia Integration
Language [21].

Event-based APIs which reports parsing events (such
as the start and end of elements) directly to an applica-
tion via callbacks and does not usually build an internal

: :) o tree. An application implements handlers to deal with the
teraction with portions of the application developed by different events, much like handling events in a graphical

o_the.r suppliers v_vho use non-compatible meta-data speci- user interface. SAX is the best known example of such

fication mechanisms. an API.
Together, these two factors present DRE integrators with a
challenge whereby individual components may function satisfigure 5 shows the how ACEXML can be used to parse
factorily, but the composition of these componentsinto high®ML documents. During deployment (see Section 4.4)
level applications may not meet various systemic QoS prop&EEXML reads the meta-data from an assembly and uses it to
ties, such as time and space constraints. This problem arigdilate (see Section 4.3) the contents of the assembly. Since
from freezing the interoperability options prematurély, at DRE applications often have stringent footprint requirements,
the end of the component design cycle rather than during they cannot afford the overhead involved with building the en-
application integration cycle. tire tree structure in memory, as is the case with DOM based
Solution — Use a meta-language to describe meta-dataAPIs for parsing XML. This problem assumes greater signifi-
Describe component meta-data separately from the implemzamce if the amount of meta-data specified becomes large and
tation of the component functionality. Designing a languagawieldy, such as when meta-data is auto-generated by model-
to define the meta-data is hard since it incurs the challengestools [22] and component-aware IDL compilers. To avoid

Context. Developing DRE middleware that have consider-
able amount of systemic meta-data.

Problem. DRE middleware have traditionally contained a
considerable amount of meta-data,, information that de-
scribes systemic characteristics. As identified in Section 1,
these meta-data do notimplement application functionality per
se. They are nevertheless important for the proper function-
ing of the application. There are two common problems with
meta-data:

e Tangling the meta-data with the implementation of the.
functionality leads to an overly strong coupling between
the two, which can impede application evolution.

e Specifying meta-data in aad hocmanner prevents in-

where such QoS enabling mechanisms are either unavailable
or insufficient to satisfy the design assumptions. Depending
on the criticality of the missed QoS property, there might be a
localized malfunction or a failure of the entire application.

Solution — Specify QoS properties in a context-insensitive
fashion. Identify properties of a componeritd,, the set of
configurable values) that when set in a particular fashion affect
the state and hence the behavior of the component. Specify the
properties such that the task of manipulating them is separate
from the functionality of the component. Care should be taken
to ensure that the amount of context-dependent assumptions is
limited, and if present, the dependency on such assumptions
are made explicit. It is also important that the specification of
these QoS properties, makes it possible to fully exploit addi-
: tional QoS capabilities, present in some but not all implemen-

S7xmlversion="1.0"2> tations of the underlying middleware.

<para>Hello, world!</para> In general, QoS properties should be elevated to the role of a
</doc> first-class citizen in the middleware typesystem and associated
7 with components explicitly. Doing so can also prevent errors

during composition by recognizing mismatches in provided

and required properties, as explained in Section 4.3. In the
long run, standardizing common QoS properties of underlying
middleware, from different vendors, is important to ensure in-
teroperability, as well as to enhance the reuse of QoS-aware

DefaultHandler

2:create

l:extend

ContentHandler

3:instantiate

4:register

6:callback
ACEXML Parser

XML File

Figure 5:Event Handling in ACEXML

components.
the need to build the whole tree structure in memory. component property filecpf), which is described in Sidebar 1

on page 10. This file specifies the QoS properties that are es-
4.2 Context-insensitive Specification of QoSsential to static QoS provisioning, such as size of the input
Properties buffers to allocate, portion of the network bandwidth to re-
serve, and priority of the packets sent out by this component.
Context. Designing component-based DRE applicatioms example component property file (.cpf) is shown below:
that rely on underlying middleware to provide multiple lev- _
els of QoS assurance to the application, including mirfRroperties> .
. <simple name=bufSize type="long">
mum/average/maximum latency and throughput guarantees,” <gescription>Size of CDR input buffer
supported sensor rates, default number of network packets </description>
queued, maximum size of an allowed packet, and allowed min- ~ <value>4096</value>

. . . <defaultvalue>256</defaultvalue>
imum/average/maximum deadlines. <Isimple>

Problem. Building complex DRE applications exposes de- <simple name=bandwidth type="long">

velopers to variations in the following: <des°<r/'ggg’c‘r>i:)\{ﬁ)t‘r’]"frk bandwidth to reserve

e The implementation of QoS enabling mechanisms, such <!-- In Mbps -->

as scheduling algorithms, thread pools, connection poolElsi;";fg‘ieﬂsq"a'“”

ing and caching and event demultiplexing provided by the<sequence name="Latency" type="sequence<long>">
underlying middleware <l-- Component’s min/avg/max latency in us -->

. . <simple type="long"><value>5</value></simple>
e The number of such alternative QoS enabling mecha- _gniie type="long"><value>10</value></simple>

nisms that are exposed to the user as configurable values. <simple type="long"><value>15</value></simple>
. L <[sequence>
This variation can encourage developers to design applicationgct name="PathMonitor" type="sensorStruct">

that depend on some or all of the QoS enabling mechanisms <description>Flightpath recalculation

outlined above to be provided by the underlying middleware _ </description>
. L. . <simple name="hour" type="short">
and made available to the component. Critical QoS require- <value> 0 </value>

ments may not be met when components are used in a scenario </simple>

in CCM

uration:

e CORBA assembly descriptor (.cad) which is a meta-
information file with details of an assembly archive. It in
cludes a list of the set of components that form the

sembly, component descriptors and implementations,
inter-connections between these components, and compq

Sidebar 1: Separating Configuration Concerns context-insensitive specification of these properties. By re-

moving the specification and manipulation of these properties
from the functional properties of the component, CIAO also

Configuration of components in CCM is performed at differenteduces the amount of tedious and error-prone glue-code that
levels of abstraction and involves different tradeoffs. CCM usea®sust be written to configure components.

XML-based descriptors to configure components. Each desgrip-

tor exposes different aspects of a component-based system. |
sidebar, we describe the different types of descriptors in CCM

explain how they help separate the concerns of component configgntext. Integrating a complex DRE application from a set

22@;@ Validation of Component Configurations

of generic and reusable COTS components.

Problem. Developers of reusable COTS components must
-validate that their implementations satisfy the intended func-
ti@nality and QoS. A common validation procedure is black-
neak or whitebox testing [23]. While this validation process

homes. It is used by the deployment tool to configure thgields readily available and tested components, the task of

component inter-connections, component homes, etc.
CORBA component descriptor (.ccd) which is a meta-

information file that describes the features of a single com

nent. It includes information, such as the provided, require

integrating these components and configuring them to cus-
tomize an application is hard. In particular, manually inte-
IO%’ra’ting COTS components is error-prone since it involves

and supported interfaces; ports information; and QoS polities ® Checking a large number of individual components’ QoS

(e.g, threading, transaction and security and access modg). ~ Properties to ensure that the component satisfies the re-
CORBA software descriptor (.csd) which is a compressed quirements and

file that contains one or more implementations of a compo- Ensuring that the overall system composed of these indi-

nent or an interface. It can be used to deploy an individ
component or an interface that is not part of an assembly

ual vidual components satisfies the QoS guarantees.

Component property file (.cpf), which is used to describe 5o|ytion — Validate component configurations. Validate

QoS properties of an assembly as a whole or an indi

ual component or a specific implementation of a componen

Properties can optionally be overridden if specified at mu

I‘il:'omponent configurations by checking the meta-data associ-

|téted with a component to ensure that the end-to-end require-
ments of the application match the capabilities offered by its

ple levels.

By using descriptors at multiple levels of granularity, CCM sgpconstituent components. This validation process dqes not in-
arates out the concerns of component software and enables &Héde mechanisms to check whether the functionality adver-
weaving of complete applications from these individual aspects.tised by a component is indeed provided by the component.

The topic of verifying semantics of a component [24] is vast

<simple name="minute" type="short">
<value> 0 </value>

</simple>

<simple name="second" type="short">
<value> 0 </value>

</simple>

<simple name="millisecond" type="short">
<value> 5 </value>

</simple>

</struct>
</properties>

and merits a detailed discussion [25] of its own.

Validation can be done by using XML-based descriptors,
which contain meta-information that describe the systemic
properties of individual components, component packages, or
component assemblies (see Section 4.4). The format of these
descriptor files are specified via a set of XML DTDs. Vali-
dation of meta-data specified in XML involves checking for
conformance with the rules specifiagriori for meta-data in
the DTD. However, this validation process is effective, only
when it is automated and not exposed to human errors. If this
validation is conducted during deployment (see Section 4.4),

Developers of components based on CIAO can use and dbigan avoid exception conditions after the application is de-
figure these properties of the underlying middleware. Thplpyed and running.
can also expose it to other components by defining a mappimplying the solution in CIAO. Component configurations
between the underlying middleware properties and properiie€IAO are specified through a set of descriptors, as outlined

of by the component.

in the preceding paragraph. CIAO’s implementation of CCM

The component property file is a XML-based vocabulaIDL compiler generates a default configuration for every
that is read at deployment time and used to configure the cawomponent and hence a default descriptor. In many real-life
ponent. By explicitly specifying the properties and separaise-cases of components, however, a descriptor may need to
ing them from the component functionality, CIAO allows thbe modified and extended by component developers to better

10

suit their requirements or to impose certain policies on compoThe use of XML for the descriptors at each level not only
nents. After a default descriptor generated by the CIDL coserves as a “glue-language” for composition, but also enables
piler is modified or extended by a developer (or if a descrifite development of value-added services, such as graphical
tor is specified from scratch by a developer), it is essentialuser interface (GUI)- based packaging tools, that are indepen-
check if the descriptor still conforms to the descriptor’'s DTRlent of the components or the application.

Descriptors are validated for conformance with their DTDs uspplying the solution in CIAO. In CIAO, a component

ing the ACEXML library presented in Section 4.1, which prasoftware package is described b£®RBA software descrip-
vides a general-purpose that can be used to validate any XMk (.csd) file, which is described in Sidebar 1 on page 10. This
DTD. file captures the high-level details of components present in a
software package, such as ownership information along with a
list of implementations of components. Each implementation
in turn describes features, such as type and version of of the
Context. Deploying a DRE application that is built fromgs and CPU, along with the type(s) of component present in

reusable COTS components. the implementation. An example CORBA Software Descrip-
Problem. DRE applications are composed of many compgyr (.csd) file is shown below:

nents. In complex DRE applications, there may be hundreds

or thousands of these components. As the number of coispitpkg name="Sensor" version="1,0,1,0">

ponents increase, it is hard to manage the application at the-Pkd¥Pe>CORBA Component</pkgtype>

. S o . <title>Sensor</title>
granularity of individual components. Specifying the provi-

4.4 Component Packaging and Deployment

<author>
sioning at the level of individual components might also be
insufficient. Some of the QoS properties cross-cut component

<company>Qosketeers Inc.</company>
<webpage href="http://www.qosket.com"/>

</author>

boundaries, so they should be handled at multiple levels of <description>

granularity. Supporting static provisioning of QoS therefore
becomes harder in the presence of a large number of compo
nents.

Solution — Use component assemblies. Specify QoS
properties at multiple levels of abstraction to support static

Yet another QoS package example

</description>
<license

href="http://www.qosket.com/license.html" />

<propertyfile>

<fileinarchive name="Sensor.cpf"/>

</propertyfile>

provisioning of QoS in an end-to-end fashion. To support <implementation

specification of QoS properties at multiple levels, component
software needs to be packaged in a suitable hierarchical for-
mat. This format should also allow specification of QoS poli-
cies, which assist in overriding a particular property to main-
tain end-to-end guarantees. Policies are specified in conjunc-
tion to the specification of QoS properties.

The levels of abstraction at which the QoS properties can be

specified include:

e Component software packagewhich contains one or
more implementations of a component. Each package
needs to have an associated descriptor, as explained in
Section 4.3, which assists in composition and in provi-
sioning of QoS properties during deployment. A compo-
nent software package may be installed on a component
server and servers as the vehicle for deploying a single
component implementation.

e Component assembly packageavhich contains a set of
inter-dependent components and information which de-

scribes the dependencies between these components. A

component assembly package serves as the vehicle for
deploying a set of interrelated components. The defini-
tion of a component assembly is recursive and a com-
ponent assembly itself can be composed further to yield
another assembly.

11

id="DCE:700dc518-0110-11ce-ac8f-0800090b5d3e">
<0s name="WInNT" version="4,0,0,0" />
<0s name="Win95" />
<processor name="x86" />
<compiler name="Microsoft Visual C++" />
<programminglanguage name="C++" />
<dependency type="CORBA 3.0 ORB">
<name>CIAO</name>
</dependency>
<descriptor type="CORBA Component">
<fileinarchive>
QoScontainer.ccd
<ffileinarchive>
<fileinarchive name="QoScontainer.ccd" />
</descriptor>
<code type="DLL">
<fileinarchive name="sensor.dll"/>
<entrypoint>createSensor</entrypoint>
</code>
<dependency type="DLL">
<localfile name="Monitor.dIl"/>
</dependency>

</implementation>
<implementation

id="DCE:297f3e18-0110-11ce-ac8f-08074982ad3e"
variation="RemoteHome">

<0s name="Solaris" version="5,5,0,0" />
<processor name="sparc" />

<l L >

</implementation>
<implementation>

<l-- another implementation -->

</implementation> consults the component assembly descriptor file to bootstrap
</softpkg> the deployment. An example component assembly descrip-

Each type of component within an implementation is dt(go_r(.cad) is shown below:

;crlped by aCQRBA component descrlpt(nc.cd). file, which <IDOCTYPE componentassembly

is discussed in Sidebar 1 on page 10. Thls file captures the SYSTEM “componentassembly.dtd">
structure of a component, with respect to its supported integomponentassembly id="2z7123"> o
faces, inherited components, and ports. CIAO uses componentzggfnc’;'cf’;f:;iﬁmp'e assembly</description>
descriptor files to facilitate inter-connections betyveen COmMpO- <componentfile id="A">

nents. An example CORBA component descriptor (.ccd) is <fileinarchive name="ca.ccd"/>
shown below: </componentfile>

<?xml version="1.0"?>
<IDOCTYPE corbacomponent
SYSTEM "corbacomponent.dtd">
<corbacomponent>
<corbaversion> 3.0 </corbaversion>
<componentrepid
repid="IDL:FlightPath:1.0" />
<homerepid
repid="IDL:FlightPathHome:1.0" />
<componentkind>
<entity>
<servant lifetime="process" />
</entity>
</componentkind>
<security rightsfamily="corba" />
<threading policy="multithread" />
<configurationcomplete set="true" />
<homefeatures
name="FlightPathHome"
repid="IDL:FlightPathHome:1.0">
<operationpolicies>
<operation name="*">
<transaction use="never" />
</operation>
</operationpolicies>
</homefeatures>
<componentfeatures
name="FlightPath"
repid="IDL:FlightPath:1.0">
<inheritscomponent
repid="IDL:QoSket/Path:1.0" />
<ports>
<provides
providesname="calculate_freq"
repid="IDL:Frequency:1.0"
facettag="1"/>
<provides
providesname="admin"
repid="IDL:QoSket/Admin:1.0"
facettag="3" />
</ports>
</componentfeatures>
<interface name="FlightPath"
repid="IDL:FlightPath:1.0">

<fileinarchive name="cb.ccd"/>
</componentfile>
<fileinarchive name="cc.ccd">
<link
href="ftp://www.Qo0S.com/cc.aar"/>
<[fileinarchive>
</componentfile>
<componentfile id="D">
<fileinarchive name="cd.ccd"/>
</componentfile>
<componentfile id="E">
<fileinarchive name="ce.ccd"/>
</componentfile>
<componentfile id="F">
<fileinarchive name="cf.ccd"/>
</componentfile>
</componentfiles>
<connections>
<connectinterface>
<usesport>
<usesidentifier>abc</usesidentifier>
<componentinstantiationref
idref="Aa"/>
</usesport>
<providesport>
<providesidentifier>abc
</providesidentifier>
<componentinstantiationref
idref="Bb"/>
</providesport>
</connectinterface>
<connectevent>
<consumesport>
<consumesidentifier>pqgr
</consumesidentifier>
<componentinstantiationref
idref="Aaa"/>
</consumesport>
<emitsport>
<emitsidentifier>mno
</emitsidentifier>
<componentinstantiationref
idref="Ee"/>

<inheritsinterface - /co?m/r?g‘ilttesegrﬁz
repid="IDL:WingMonitor:1.0" /> </connections>
</interface> </componentassembly>
</corbacomponent>

A component assembly descriptécad) file describes In CIAO, an instance of a daemon process (called
which components make up the assembly, how those cammpassd) runs on every host that will participate in the de-
ponents are partitioned, and how they are connected to epldyment. This daemon acts as the manager for the compo-
other. During deployment, the CIAO deployment mechanismnts that are installed on a particular host. A new component

12

can be installed by specifying the file containing the implefg] E. Meijer and J. GoughTechnical Overview of the Common Language
mentation along with the hostname and port number where the Runtime Microsoft, 2000.

component has to installed. If another implementation of tHel Object Management Groufhe Common Object Request Broker: Ar-
same componentis already running on a particular host (which chtecture and Specificatios.0 ed., June 2002.

the daemon can determine by Comparing against the UUIIj](gi F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

. . . L. Pattern-Oriented Software Architecture—A System of PatteriNsw
a componentimplementation), the daemon will ensure itis not york: wiley & Sons, 1996.

installed again. [11] E. Gamma, R. Helm, R. Johnson, and J. Vlissi@&sign Patterns: El-
ements of Reusable Object-Oriented Softwé&eading, MA: Addison-
Wesley, 1995.

5 CO”C'Udlng Remarks [12] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran, “Eval-

uating M(_ata-_Programm_ing Mech_ani_sms for ORB _l\/IiddIewarIEE_E _
The concept of composable middleware for distributed real- gngW”;‘rjg,'cféfh”ni'g'fg?g;‘gé‘éﬁﬁgg’;;‘f 20 g‘é‘t’"’z'gglc°mm“”'°a“°”5
time and embedded (DRE) appllcatlons can prov'lde.ben fi Nanbor Wang and Douglas C. Schmidt and Aniruddha Gokhale and
to developers of .bOt.h D_RE m|dd|ewar_e and appllcayons, aS cChristopher D. Gill and Balachandran Natarajan and Craig Rodrigues
well as DRE application integrators. This paper describes how and Joseph P. Loyall and Richard E. Schantz, “Total Quality of Service
our work on the Component—lntegrated ACE ORB (ClAO) ad- Provisioning in Middleware and ApplicationsSubmitted to the Journal

. . of Microprocessors and Microsystemal. 26, jan 2003.

dresses key challenges that arise when applying state-of-rﬁ

he-
. del hnol DRE licati 14? B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from
practice component model technology to applications. Execution Dependencies,” ifroceedings of the 11th Annual Software

We also describe the CORBA Component Model (CCM) spec- Technology Conferencépr. 1999.

ification and then describe enhancements to CCM we h@g A. Gokhale, D. C. Schmidt, B. Natarajan, and N. Wang, “Applying

implemented in CIAO. By applying the solutions described in Modlel-lntegfatid gomputing to Coml]gor?entc Midsdlewarle and Enterprise
: : - Applications,” The Communications of the ACM Special Issue on Enter-

this Pap?r' weare deCOUp“ng Va“ou,s a;pects of DRE software prise Components, Service and Business Rut#s45, Oct. 2002.

applications, thereby enabling application developers, sysﬁg@

. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmamattern-
engineers, and end-users to select components that can Deoriented Software Architecture: Patterns for Concurrent and Networked

composed to build complete DRE applications with a shorter Objects, Volume.2New York: Wiley & Sons, 2000.

time-to-market. Our long-term goal is to provide the sani&] J. Guy L. Steele, “Growing a languageipurnal of Higher-Order and

benefits available to developers of desktop and enterprise ap- Symbolic Computatiarvol. 12, pp. 221-236, Oct. 1999.

plications to the much more challenging domain of DRE a38] SAX Project, “Simple API for XML.” www.saxproject.org, 2001.

plications_ [19] R. Ausbrooks, S. Buswell, S. Dalmas, S. Devitt, A. Diaz, R. Hunter,
The long-term goal of the work described in this pa- B Smith, N. Soiffer, R. Sutor, and S. Watt, “Mathematical Markup Lan-

per is to enable reflective ORB behavior and expose these 9uage (MathML) Version 2.0." W3C Recommendation, 2001.

ORB features so that they can be monitored and controlje@ J. Bowler and SVG-Working-group, “Scalable Vector Graphics (SVG)

effectively by higher-level tools and management applica- 1.0 Specification.” W3C Recommendation, 2001.

tions. ACEXML used in the deployment framework ofz1) p.L. Hgaretand P. Schmitz, “Synchronized Multimedia Integration Lan-

CIAOQ is available from the ACE CVS repository available at ~ guage Document Object Model.” W3C Recommendation, 2000.

http://cvs.doc.wustl.edu/viewcvs.cgi/ ACEXML/. [22] D.C. Schmidt, A. Gokhale, and C. D. Gill, “Applying Model-Integrated

Computing and DRE Middleware to High Performance Embedded

Computing Applications,” inThe 6th Annual Workshop on High Per-
References formance Embedded Computjr{oston, MA), MIT, Sept. 2002.

[1] Object Management GroufCORBA 3.0 New Components Chapxergzs] G. J. Myers,The Art of Software Testinglohn Wiley and Sons, 1979.

OMG TC Document ptc/2001-11-03 ed., Nov. 2001. [24] S. Horwitz, “Identifying the semantic and textual differences between
two versions of a program,” iRroceedings of the ACM SIGPLAN '90
Conference on Programming Language Design and Implementation
vol. 25, (White Plains, NY), pp. 234-245, June 1990.

[3] Sun Microsystems, ~ *Enterprise JavaBeans Specificalioos) s Easterbrook and J. Callahan, “Formal methods for verification and
java.sun.com/products/ejb/docs.html, Aug. 2001. validation of partial specifications: A case studyfie Journal of Sys-

[4] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and tems and Softwarevol. 40, pp. 199-??, March 1998.
Performance of a Real-time CORBA Event Service,Pioceedings of
OOPSLA '97 (Atlanta, GA), pp. 184-199, ACM, Oct. 1997.

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds), “Extensible
Markup Language (XML) 1.0 (2nd Edition).” W3C Recommendation,
2000.

[6] T. Lindholm and F. Yellin, The Java Virtual Machine Specification
Reading, Massachusetts: Addison-Wesley, 1997.

[2] Microsoft Corporation, “Microsoft .NET Development.”
msdn.microsoft.com/net/, 2002.

[7] A. D. Gordon and D. Syme, “Typing a multi-language intermediate
code,”ACM SIGPLAN Noticessol. 36, no. 3, pp. 248-260, 2001.

13

