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Abstract

Commercial off-the-shelf (COTS) middleware is now
widely used to develop distributed real-time and em-
bedded (DRE) systems. DRE systems are themselves in-
creasingly combined to form “systems of systems” that
have diverse quality of service (QoS) requirements. Ear-
lier generations of COTS middleware, such as Object Re-
quest Brokers (ORBs) based on the CORBA 2.x standard,
did not facilitate the separation of QoS policies from ap-
plication functionality, which made it hard to configure
and validate complex DRE applications. The new gen-
eration of component middleware, such as the CORBA
Component Model (CCM) based on the CORBA 3.0 stan-
dard, addresses the limitations of earlier generation mid-
dleware by establishing standards for implementing,
packaging, assembling, and deploying component imple-
mentations.

There has been little systematic empirical study of the
performance characteristics of component middleware im-
plementations in the context of DRE systems. This paper
therefore provides four contributions to the study of CCM
for DRE systems. First, we describe the challenges involved
in benchmarking different CCM implementations. Second,
we describe key criteria for comparing different CCM im-
plementations using key black-box and white-box metrics.
Third, we describe the design of our CCMPerf benchmark-
ing suite to illustrate test categories that evaluate aspects of
CCM implementation to determine their suitability for the
DRE domain. Fourth, we use CCMPerf to benchmark CIAO
implementation of CCM and analyze the results. These re-
sults show that the CIAO implementation based on the more
sophisticated CORBA 3.0 standard has comparable DRE
performance to that of the TAO implementation based on
the earlier CORBA 2.x standard.

Keywords: CCM, Benchmarking, CCMPerf, white-box
metrics, black-box metrics.

1. Introduction

Emerging trends. Distributed real-time and embed-
ded (DRE) systems are becoming more widespread and
important. Common DRE systems include telecommunica-
tion networks (e.g., wireless phone services), tele-medicine
(e.g., robotic surgery), and defense applications (e.g., to-
tal ship computing environments). These DRE systems are
increasingly used for a range of applications where multi-
ple systems are interconnected to form system of systems
that possess stringent quality of service (QoS) con-
straints, such as bandwidth, latency, jitter and dependability
requirements. A challenging requirement for these sys-
tems involves supporting a diverse set of QoS properties,
such as predictable latency/jitter, throughput guarantees,
scalability, and 24x7 availability, dependability, and se-
curity, that must be satisfied simultaneously in real-time.
Conventional distributed object computing (DOC) middle-
ware frameworks (such as DCOM, Java RMI, and earlier
versions of the CORBA 2.x standard) do not provide ca-
pabilities for developers and end-users to specify and
enforce these QoS requirements simultaneously in com-
plex DRE systems.

Component middleware [25] is a class of middleware
that enables reusable services to be composed, configured,
and installed to create applications rapidly and robustly. The
CORBA Component Model (CCM) [15] is a standard com-
ponent middleware technology that addresses limitations
with earlier versions of CORBA 2.x middleware based on
the DOC model. In particular, the CCM standard defined



by the CORBA 3.x specification extends the CORBA 2.x
object model to support the concept of components and es-
tablishes standards for specifying, implementing, packag-
ing, assembling, and deploying components.

Empirically evaluating CCM implementations. Compo-
nent middleware in general – and CCM in particular –
are a maturing technology base that represents a paradigm
shift in the way complex DRE systems have been devel-
oped traditionally. For example, component middleware
provides higher-level capabilities for developers and end-
users to specify and enforce QoS requirements in com-
plex DRE systems. Several implementations of CCM are
now available, including the Component Integrated ACE
ORB (CIAO) [28], Mico-CCM [12], Qedo [18], and Star-
CCM [23]. As CCM platforms mature and become suitable
for DRE systems it is desirable to devise a standard set of
metrics to compare and contrast different CCM implemen-
tations in terms of their:

� Suitability, e.g., how suitable is the CCM implementa-
tion for DRE applications in a particular domain, such
as avionics, total ship computing, or telecom systems?

� Quality of service, e.g., does a CCM implementation
for the DRE domain provide predictable performance
and consume minimal time/space resources?

� Conformance, e.g., does a CCM implementation con-
form to OMG standards by meeting the portability
and interoperability requirements defined by the CCM
specification?

Earlier efforts, such as the Open CORBA Benchmark-
ing [26] and Middleware Comparator [10] projects, have fo-
cused on metrics to compare middleware based on the DOC
middleware standard defined by the CORBA 2.x specifi-
cations. Our work enhances these efforts by focusing on
a previously unexplored topic: designing a benchmark-
ing framework to compare CCM implementation qual-
ity by developing metrics that evaluate the suitability of
those implementations for representative DRE applica-
tions. To quantify these comparisons systematically we
developed CCMPerf, which is an an open-source1 bench-
marking suite that focuses on black-box and white-box
metrics, using criteria such as latency, throughput, and foot-
print measures. These metrics can be partitioned into the
follow categories:

� Distribution middleware tests that quantify the over-
head of CCM-based applications relative to applica-
tions based on earlier versions of the CORBA 2.x stan-
dard that do not support component run-time, configu-
ration, and deployment capabilities.

1 CCMPerf is available for download from deuce.doc.wustl.
edu/Download.html.

� Common middleware services tests that quan-
tify the suitability of using different implementations
of CORBA services, such as Real-time Event [14] and
Notification Services [13].

� Domain-specific middleware tests that quantify the
suitability of CCM implementations to meet the QoS
requirements of a particular DRE application do-
main, such as static linking and deployment of
components in an avionics mission computing archi-
tecture [21].

This paper provides the following contributions to the
study of component middleware implemented in accor-
dance with the OMG CCM standard by describing:

1. The challenges involved in benchmarking different
CCM implementations,

2. The criteria for comparing different CCM implementa-
tions using key black-box and white-box metrics, and

3. The design of our CCMPerf benchmarking suite that
evaluates aspects of CCM implementations to deter-
mine their suitability for the DRE domain.

The vehicle used to test, obtain and analyze our results
from CCMPerf is the Component Integrated ACE ORB
(CIAO) [28], which is an open-source2 implementation of
CCM built upon the Real-time CORBA infrastructure of
The ACE ORB (TAO) [20]. This paper shows how CCM-
Perf can be used to collect metrics and evaluate CCM im-
plementations in the DRE domain. Our results show that
CIAO and its more sophisticated CORBA 3.x CCM capa-
bilities do not add appreciable overhead relative to its TAO
CORBA 2.x foundation.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 provides an overview of the ele-
ments in CCM; Section 3 discusses the design of CCMPerf,
focusing on the performance experiments it supports; Sec-
tion 4 analyzes quantitative results obtained by benchmark-
ing CIAO using CCMPerf; Section 5 compares our work
with other middleware benchmarking efforts; and Section 6
presents concluding remarks.

2. Overview of CCM

The CORBA Component Model (CCM) forms a key part
of the CORBA 3.0 standard. CCM is designed to address
the limitations with earlier versions of CORBA 2.x middle-
ware that supported a distributed object computing (DOC)
model [5]. Figure 1 depicts the key elements in the architec-
ture of CCM. The remainder of this section describes each
of these CCM elements.

2 CIAO is also available for download from deuce.doc.wustl.
edu/Download.html.
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Figure 1. Elements in the CCM Architecture

Components. Components in CCM are implementation
entities that collaborate with each other via ports. CCM sup-
ports several types of ports, including (1) facets, which de-
fine an interface that accepts point-to-point method invoca-
tions from other components, (2) receptacles, which indi-
cate a dependency on point-to-point method interface pro-
vided by another component, and (3) event sources/sinks,
which indicate a willingness to exchange typed messages
with one or more components.

Container. A container in CCM provides the run-time en-
vironment for one or more components that manages var-
ious pre-defined hooks and strategies, such as persistence,
event notification, transaction, and security, used by the
component(s). Each container is responsible for (1) initial-
izing instances of the component types it manages and (2)
connecting them to other components and common middle-
ware services. Developer specified metadata expressed in
XML can be used to instruct CCM deployment mechanisms
how to control the lifetime of these containers and the com-
ponents they manage. The meta-data is present in XML files
called descriptors, which are described in Sidebar 1.

Component Assembly. In a distributed system, a compo-
nent may need to be configured differently depending on
the context in which it is used. As the number of compo-
nent configuration parameters and options increase, it can
become tedious and error-prone to configure applications
consisting of many individual components. To address this
problem, the CCM defines an assembly entity to group com-
ponents and characterize the meta-data that describes these
components in an assembly. Each component’s meta-data
in turn describes the features available in it (e.g., its proper-
ties) or the features that it requires (e.g., its dependencies).

CCM assemblies are defined using XML Schema tem-
plates, which provide an implementation-independent
mechanism for describing component properties and gen-
erating default configurations for CCM components.
These assembly configurations can preserve the re-
quired QoS properties [28] and establish the necessary

Sidebar 1: Separating Configuration Con-
cerns in CCM

Configuration of components in CCM can be performed at
different levels of abstraction and involves different tradeoffs.
CCM uses XML-based descriptors to configure components.
Each descriptor exposes different aspects of a component-based
system. This sidebar describes the different types of descriptors
defined by the CCM Deployment and Configuration specifica-
tion [17] and explains how they help separate component con-
figuration concerns:

� Component Interface Descriptor (.ccd), which de-
scribes the interface, ports, and properties of a single com-
ponent.

� Implementation Artifact Descriptor (.iad), which de-
scribes the implementation artifacts (e.g., DLLs and OS
platform) associated with a single component.

� Component Package Descriptor (.cpd), which describes
multiple alternative implementations of a single compo-
nent.

� Component Implementation Descriptor (.cid), which
describes a specific implementation of a component inter-
face, i.e., if the implementation is monolithic or assembly-
based.

� Component Domain Descriptor (.cdd), which describes
the composition of domains, e.g., a related set of nodes,
inter-connects. and bridges.

� Component Deployment Plan (.cdp), which describes
the artifacts (e.g., component implementation and target
domain information) for deployment and provides infor-
mation on how to create component instances from these
artifacts.

configuration and interconnections among groups of com-
ponents.

Component server. A component server is an abstraction
that is responsible for aggregating physical entities (i.e., im-
plementations of component instances) into logical enti-
ties (i.e., distributed application services and subsystems).
A CCM component server is a singleton [3] that plays the
role of a factory to create containers and standardizes the
role of a server process in the CORBA 2.x object model.
Each component server is typically assigned a particular set
of capabilities within a distributed system.

Component packaging and deployment. In addi-
tion to the run-time building blocks outlined above, the
CCM also standardizes component implementation, pack-
aging, and deployment mechanisms. Packaging involves
grouping the implementation of component functional-
ity – typically stored in a dynamic link library (DLL) – to-
gether with other meta-data that describes properties of this
particular implementation. The CCM Component Imple-
mentation Framework (CIF) helps generate the component



implementation skeletons and persistent state manage-
ment automatically using the Component Implementation
Definition Language (CIDL).

Summary. Figure 2 depicts the interaction between the
various CCM elements discussed in this section. As shown

Figure 2. Interaction between CCM entities

in this figure, a deployment application creates an assem-
bly manager that is responsible for creating component as-
semblies from configuration files. Each of these assemblies
are hosted in a component server that plays the role of a fac-
tory to create containers, which provide the execution envi-
ronment for the components. A component home is a fac-
tory that manages the lifecycle of one type of component.

Figure 1 illustrates how CCM is a layer residing atop
an ORB that leverages ORB functionality (such as connec-
tion management, data transfer, (de) marshaling of mes-
sages, and management and data transfer) event/message
demultiplexing) and higher-level CORBA services (such as
and higher-level CORBA services (such as Load Balanc-
ing, Transaction, Security, and Persistence). CCM applica-
tions may therefore incur additional overhead compared to
their CORBA 2.x counterparts in the form of additional pro-
cessing in the code-path (i.e., additional function calls) and
data-path (i.e., parameter passing between the underlying
ORB and the CCM layers). Since this processing can occur
in the critical path of every request/response the overhead
may be non-trivial. The remainder of this paper presents key
criteria and empirical results that compare CCM implemen-
tations and presents empirical results that quantify the over-
heads added by the CIAO CCM implementation.

3. Overview & Design of CCMPerf

The goals of CCMPerf are to create comprehensive
benchmarks that allow users and CCM developers to:

1. Evaluate the overhead CORBA 3.x CCM implemen-
tations impose above and beyond CORBA 2.x im-
plementations that are based on the earlier-generation
DOC model.

2. Devise and apply benchmarks that systematically iden-
tify performance bottlenecks in popular CCM imple-
mentations.

3. Compare different CCM implementations in terms of
key metrics, such as latency, throughput, and other per-
formance criteria.

4. Develop a framework that automates benchmark tests
and facilitates seamless integration of new bench-
marks.

This section describes the key challenges involved in devel-
oping a benchmarking suite for CCM to address the goals
outlined above and shows how these challenges were ad-
dressed by CCMPerf. We also illustrate the three experi-
mentation categories in CCMPerf and present a sample of
empirical results obtained from applying CCMPerfto CIAO
CCM middleware.

3.1. CCM Benchmarking Challenges and Their
Resolutions

During the design of CCMPerf we encountered a num-
ber of challenges, including (1) heterogeneity in CCM im-
plementations, (2) differences in quality of CCM imple-
mentations, (3) differences in application domains, and (4)
heterogeneity in hardware and software platforms. We de-
scribe each of these challenges below and discuss how we
resolve them in CCMPerf.

3.1.1. Heterogeneity in CCM Implementations

Context. CCM implementations use different tools and
mechanisms to develop and configure applications, e.g.:

� CCM header files are not standardized by the OMG.
Moreover, the process of obtaining the generated files
(e.g., the compilation chain for the different descriptor
files explained in Section 2) used by CCM is specific
to each ORB and its CCM implementation.

� Conformance to CCM features, such as automation of
component assembly, is inconsistent across CCM im-
plementations.

Problem. A benchmarking framework should encapsulate
implementation heterogeneity to ensure its tests are (1) rep-
resentative, i.e., test equivalent configurations and (2) re-
peatable, i.e., be amenable to continuous benchmarking. Of
course, these challenges are a microcosm of the issues that
CCM application developers must address to ensure porta-
bility across heterogeneous CCM implementations.



Solution. To shield CCMPerf from CCM implementation
heterogeneity we developed a set of scripts to configure and
run its benchmarking tests. These scripts automatically gen-
erate CCM platform-specific code and project build files for
each implementation. The scripts are similar to the COR-
BAConf project [19] that provides autoconf support for
CORBA 2.x ORBs.

3.1.2. Difference in Quality of CCM Implementations

Context. CCM implementations differ in the data struc-
tures and algorithms they use internally, which affects the
QoS they can deliver to DRE applications.

Problem. Evaluating these differences requires instru-
menting the code within the ORB/CCM implementation,
which presents the following challenges:

� A thorough understanding of CCM implementations
is needed to instrument CCM middleware with probes
that measure performance accurately. No systematic
body of knowledge yet exists, however, that identifies
the critical features within CCM where instrumenta-
tion points should be added.

� CCM implementations are layered architectures,
which makes it necessary to isolate each layer to mea-
sure its influence on overall end-to-end application
performance. Since ORB-specific configuration op-
tions influence the presence/absence of these lay-
ers it is hard to identify the set of steps within each
layer for every combination of configuration op-
tions.

Solution. As discussed in Section 3.2, CCMPerf provides
benchmarks that use a combination of white-box and black-
box metrics to evaluate CCM quality of implementation is-
sues.

3.1.3. Differences in CCM Configuration Options

Context. CCM implementations differ in the configurable
parameters they provide to tune performance, e.g., run-time
configuration options (such as the number of threads, log-
ging levels, and locks) that can be enabled to fine tune dif-
ferent CCM implementations.

Problem. The presence of implementation-specific CCM
configuration options yields the following challenges:

� The same set of configuration options many not be sup-
ported by all CCM implementations, e.g, CIAO allows
applications to configure the type of locks used within
the ORB, whereas Mico-CCM does not support this
feature.

� An implementation can be optimized for a given set
of configurations, yet perform poorly for other con-
figurations, e.g., Mico-CCM is optimized for single-
threaded applications and performs poorly in multi-
threaded configurations.

Solution. To ensure equivalent configurations, CCMPerf
provides automated scripts to configure and run each test.
The scripts capture the options that are used in different im-
plementations to obtain equivalent CCM configurations. To
ensure consistent hardware and OS configurations CCM-
Perf tests are run using EMULab [30] and Lockheed Martin
Advanced Technology Lab’s (ATL) Middleware Compara-
tor framework [10]. These testbeds support systematic test-
ing conditions that enable equivalent comparisons of perfor-
mance differences between CCM implementations. ATL’s
Middleware Comparator framework also allows experiment
data to be accessed via a convenient web interface (www.
atl.external.lmco.com/projects/QoS/).

3.1.4. Differences in Application Domain

Context. Each CCM implementation can be tailored for a
particular application domain, e.g., the CIAO CCM imple-
mentation is tailored for the DRE domain, whereas Mico-
CCM is targeted for the general-purpose distributed com-
puting domain.

Problem. Different domains of applicability pose the fol-
lowing challenges:

� Use cases may change across domains, e.g., some
DRE applications require that total startup time be per-
formed in under two seconds [22]. Component mid-
dleware catering to the DRE domain often needs to be
optimized to meet this requirement, whereas middle-
ware for general-purpose distributed computing might
not require such optimizations.

� QoS requirements may change across domains. Cer-
tain metrics (such as predictable end-to-end latency
and static/dynamic memory footprint) are important in
the DRE domain, but are often less important in other
domains, such as enterprise and desktop computing.

Solution. To evaluate domain-specific suitability, we pro-
vide scenario-based tests and/or enactments of specific use
cases deemed important in a given domain, such as the DRE
domain. In this context, we are evaluating CCM imple-
mentations using the scenarios present in the Boeing Bold
Stroke Prism component model described in Section 3.2.

3.2. CCMPerf Benchmark Design

We now describe the design of CCMPerf, focusing on
its three experimentation categories and the metrics col-
lected in each of the categories. The benchmarking tests
in CCMPerf focus on black-box and white-box metrics, as
discussed below.

Black-box metrics. Black-box metrics are performance
evaluation techniques that do not require instrumenta-
tion of software internals to select and analyze benchmark



data. CCMPerf can be used to benchmark CCM imple-
mentations without knowledge of their internal structure
by using standard operations published in the CCM in-
terfaces and without modifying CCM ORB internals. The
black-box performance metrics supported by CCMPerf in-
clude:

� Round-trip latency, which measures the response time
for a twoway operation with a single type of parame-
ter, such as an array of CORBA::Long.

� Throughput, which compares the (1) number of events
per second processed at the component server and (2)
number of requests per second at the client.

� Jitter, which measures the variance in round-trip la-
tency for a series of requests.

� Collocation performance, which measures response
time and throughput when a client and server are in the
same process vs. across processes on the same and dif-
ferent machines.

� Data copying overhead, which compares the variation
in response time with an increase in request size to
determine whether a CCM implementation incurs ex-
cessive buffer copying relative to a CORBA 2.x-based
ORB.

� Footprint, which measures the static and dynamic foot-
print of a CCM implementation to determine whether
it is suitable for memory-constrained DRE systems.

CCMPerf can measure each of these metrics in (1) single-
threaded and (2) multi-threaded configurations on servers
and clients.

White-box metrics. White-box metrics are performance
evaluation techniques that employ explicit knowledge
of software internals to select and analyze benchmark
data. Unlike black-box metrics, white-box metrics evalu-
ate performance by instrumenting the software internals
with probes. The white-box performance metrics sup-
ported by CCMPerf include:

� Functional path analysis, which identifies CCM layers
above the ORB and adds instrumentation points to de-
termine the time spent in these layers. CCMPerf can
analyze jitter by measuring the variation in the time
spent in each layer.

� Lookup-time analysis, which measures the variation
in lookup-time for certain operations, such as finding
component homes, obtaining facets, and obtaining a
component instance reference given its key.

� Context switch overhead, which measure the time re-
quired to interrupt the currently running thread and
switch to another thread in multi-threaded configura-
tions.

The benchmarking tests in CCMPerf can be categorized
into the general areas discussed below. Each area then uses a
range of black-box and white-box metrics to compare CCM
implementations.

Distribution middleware benchmarks. These CCMPerf
benchmarks employ black-box and white box metrics that
measure various aspects of distribution middleware perfor-
mance overhead, e.g., for a given ORB and its CCM im-
plementation the round-trip metric measures the increase
in response time incurred by the CCM implementation be-
yond the CORBA 2.x DOC model support. Each CCM im-
plementation resides atop a CORBA ORB. The ORB man-
ages various network programming tasks, such as connec-
tion management, data transfer, (de)marshaling, demulti-
plexing, and concurrency. CCM implementations may add
additional overhead to the underlying CORBA ORB, as ex-
plained in Section 2. Application developers and end-users
can apply CCMPerf’s distribution middleware benchmarks
to evaluate how well CCM implementations meet their end-
to-end QoS requirements. These benchmarks can also ben-
efit users who are considering moving from DOC middle-
ware to component middleware so they can quantify the
pros and cons of such a transition.

Common middleware services benchmarks. These
CCMPerf benchmarks quantify the performance of var-
ious implementation choices associated with integrat-
ing common middleware services within CCM containers.
CCM leverages many standard services and features, as de-
scribed in Section 2. CCM implementations can either use
the standard CORBA service specifications or they can use
customized implementations of these services. If CCM im-
plementations use a publish/subscribe model, they can
use the standard CORBA Notification and/or Event Ser-
vices [14] or use a customized implementation (such as the
TAO Real-time Event Service [6] or the OMG Data Distri-
bution Service [16].

To benchmark the scenario where a container uses an
event channel to publish events, CCMPerf measures the
overhead introduced by extra (de)marshaling and indirec-
tion costs incurred within the container for publishing the
events to the all the receivers. Black-box and white-box
metrics defined in the Section 3.2 are also used to empir-
ically compare and contrast the implementation choices for
a particular application domain.

Domain-specific middleware benchmarks. The charac-
teristics of an application domain often influence the se-
lection and suitability of a particular service and/or its im-
plementation. We therefore designed the CCMPerf bench-
marking test suites to use the black-box and white-box met-
rics defined in the Section 3.2 to empirically compare and
contrast the implementation choices for a particular appli-
cation domain. These CCMPerf benchmarks include black-



box and white-box tests tailored for key domain-specific
middleware use cases that occur in certain domains, such
as Boeing’s Bold Stroke Prism platform [22] that supports
avionics mission computing in the DRE domain.

The purpose of these tests is to identify whether a given
CCM implementation can meet the QoS requirements for a
particular domain, e.g., an organization might have a large
number of components that need to be deployed within a
certain amount of time. In the DRE domain, for instance,
Boeing’s Bold Stroke Prism architecture has several use
cases with stringent timing constraints.

This category of benchmarks also include tests that an-
alyze domain-specific CORBA implementations (such as
Real-time CORBA) and protocols with real-time proper-
ties (such as the Stream Control Transmission Protocol [4])
standardized by the OMG. Although the CCM specification
itself does yet not explicitly standardize real-time exten-
sions, CCM implementations such as CIAO that target the
DRE domain support the integration of Real-time CORBA
and SCTP with CCM.

3.3. Summary

Benchmarking feature-rich component middleware im-
plementations, such as CCM, poses several challenges. This
section described how the design of CCMPerf (1) addresses
the heterogeneity of CCM implementations, such as differ-
ences in configuration options, implementation quality, and
domain of application, (2) provides black-box and white-
box metrics to compare and contrast CCM implementa-
tions, and (3) consolidates tests into categories that clarify
the structure of the benchmarks and facilitate the integra-
tion of new benchmark tests.

4. Empirically evaluating CIAO using CCM-
Perf

This section presents distribution middleware and
domain-specific benchmarks for CIAO. These experi-
ments evaluate many of the black-box (round-trip latency,
throughput, jitter, and collocation latency, throughput
and jitter) and white-box (functional-path analysis) met-
rics described in Section 3. We also analyze the empirical
results to evaluate the suitability of CIAO for DRE applica-
tions.

The following IDL interface was used for all the experi-
ments:
module Test {
interface RoundTrip {

// Use a timestamp to measure the
// roundtrip delay
typedef unsigned long long Timestamp;

Timestamp test_method (in Timestamp send_time);
};

}

As shown in the RoundTrip interface, the communica-
tion entities exchange timestamps set at the client and prop-
agated to the server. This design enables experimenters to
set/unset time-probes at various points in the call-path and
propagate them via this interface. For example, to compute
the round-trip latency, experimenters compute the differ-
ence between the current time and the one encoded in the
time-stamp.

Although both CIAO and TAO support a variety of con-
figuration options [11], we make the following assumptions
for this options, we make the following assumptions for this
analysis:

1. Native exception handling was enabled

2. Servants are normal CORBA servants that in-
herit from PortableServer::ServantBase,
i.e., we do not consider the CORBA dynamic invo-
cation interface (DII) and dynamic skeleton interface
(DSI), which are inappropriate for most DRE sys-
tems

3. Logging was disabled

4. The ORB was configured to run in single-threaded
mode and

5. No proprietary policies were associated with the ORB.

These assumptions are representative of a common class of
DRE applications that apply ORB middleware.

4.1. Distribution Middleware Benchmarks

This section presents analysis of the back-box and white-
box tests that quantify the overhead of CIAO over the base
TAO ORB. All experiments presented were performed on
an Intel Pentium IV 2.0 Ghz processor with 512 MB of
main memory. For these experiments, TAO version 1.3.5
and CIAO 0.3.5 were compiled using the Timesys GNU
g++ compiler version 3.2.2 and executed using on Linux
2.4.21-timesys-4.1.147 kernel. Each experiment was run in
the Timesys Linux real-time scheduling class and a sample
size of 250,000 data points was used for the resulting anal-
ysis.

4.1.1. Black-box Analysis In the black-box experiments,
a client issued two-way operations at the fastest possible
rate, while the server performed a minimal but non-trivial
operation of cubing the data it received. Several black-
box metrics were collected including, round-trip latency,
throughput, jitter, collocation performance and data copy-
ing overhead analysis. These experiments quantify the over-
head of CCM for normal CORBA operations.

Experiment description. The experiments consider the
following usage scenarios in which an end-user may use
CCM:



1. A CORBA 2.0 Server interacting with a CORBA 2.0
client,

2. A CORBA 2.0 Server interacting with a CCM Compo-
nent (playing the role of the client) and

3. A CCM component (playing role of server) interacting
with a CORBA client

4. A CCM component interacting with another CCM
component (playing both client and server roles)

These four use cases represent all the possibilities of mix-
ing and matching a CCM component with CORBA
servers/clients. For each of the above interaction sce-
narios, we examined the following four combinations:

1. TAO-TAO – a TAO server interacting with a TAO
client,

2. CIAO-TAO – a CIAO component interacting with a
TAO client,

3. TAO-CIAO – a TAO server interacting with a CIAO
component and

4. CIAO-CIAO – a CIAO component(server) interacting
with another CIAO component (client).

The TAO-TAO interaction servers as the baseline to com-
pute the overhead added by other combinations.

Round-trip analysis. This section analyzes the results of
benchmarks that measure the average latency, 99% bound,
the dispersion and worst-case behavior.

ORB
0

150

300

450

600

L
at

en
cy

 (
u.

s)

TAO-CIAO
TAO-TAO
CIAO-TAO
CIAO-CIAO

Average

ORB
0

150

300

450

600

L
at

en
cy

 (
u.

s)

99%

ORB
0

2

4

6

8

10

L
at

en
cy

 (
u.

s)

Standard Deviation

ORB
0

150

300

450

600

L
at

en
cy

 (
u.

s)

Maximum

Figure 3. Round Trip Latency Analysis

� Average measures – Figure 3 shows that average la-
tency for all the four case is nearly the same with

TAO-TAO scenario having the minimum average la-
tency of � 93.07 � secs and CIAO-CIAO scenario hav-
ing maximum latency of � 100.54 � secs. Using the
average-case, therefore, the overhead added by CCM
over CORBA is � 8 � secs.

� Dispersion measures – The term predictability has dif-
ferent connotations in different disciplines. For exam-
ple, in real-time scheduling theory, a predictable sys-
tem means that each task always meets its deadline.
For these experiments, we define predictability as the
measure of standard deviation of the data points. As
seen from the above figure the dispersion measures for
all the four cases are comparable to that of the base-
line TAO-TAO case of � 4.5. These measures show that
the use of CIAO does not degrade predictability by in-
creasing jitter.

� Maximum measures – The 99% and worst-case mea-
sures for all the four scenarios display behavior similar
to the average measures. The 99% values are very close
to the average indicating predictable latency. However,
all the four scenarios do incur high worst-case mea-
sures. The worst-case measures for CIAO-CIAO sce-
nario was marginally higher than all the cases. These
results show that CIAO has worst-case measures simi-
lar to that of TAO.

Scenarios

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

T
hr

ou
gh

pu
t (

ev
en

t/s
ec

)

TAO-TAO
CIAO-TAO
TAO-CIAO
CIAO-CIAO

Figure 4. Throughput Analysis

Figure 4, shows the throughput, i.e., number of requests
issued at the client side/second. As shown in the figure,
the use of CIAO in all scenarios does not unduly degrade
throughput. The throughput for TAO-TAO case was the
most, � 10,267 events/sec, while CIAO-CIAO case was the
least, � 9676 events/sec. Using the CIAO-CIAO interaction
as the worst-case scenario and TAO-TAO interaction as the
best case, the overhead added by CCM is � 5.6%.

Collocation analysis. This section analyzes the results of
benchmarks that measure the average latency, 99% bound,



the dispersion and worst-case behavior for round trip op-
erations in collocated mode, i.e., within the same address
space. In the case of CIAO, the interacting collocated com-
ponents reside within a single component server process.
For this experiment, the only possible interaction scenar-
ios are the TAO-TAO and CIAO-CIAO cases. For our ex-
periments, we consider only the thru poa collocation strat-
egy [29] since the direct collocation strategy optimization
is not permissible for CIAO. Direct collocation bypasses the
POA to make invocations directly on the servant. CCM uses
a “glue servant” registered with a POA to decouple the ac-
tual implementation from the POA, which requires all calls
to go through the POA and making it impossible to use di-
rect collocation. In addition, CIAO uses the POA to load the
servant implementation on-demand, necessitating the use of
a POA.
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Figure 5. Collocation Analysis

� Average measures – Figure 5 depicts the average
round-trip latency in collocated mode. As shown in
the figure, the average latencies for CIAO-CIAO sce-
nario are � 2 � secs. The overhead imparted by CIAO
over TAO is thus � 0.4 � secs.

� Dispersion measures – The dispersion measures reveal
that CIAO-CIAO case is comparable to that of TAO-
TAO case. This result shows that the use of CIAO does
not degrade predictability in the collocated mode rela-
tive to TAO.

� Maximum measures – The 99% bound for both the
cases are � 2 � secs. Thus, for both the cases 99% of the
observed samples are below � 2 � secs. The worst-case
measures for CIAO are again comparable to that of
TAO-TAO case, which illustrates that CIAO has worst-
cases measures similar to that of TAO in collocated
mode.

ORB Throughput (events/sec)
TAO-TAO 385,370

CIAO-CIAO 323,832

Table 1. Collocation Performance: Throughput

Table 1 tabulates the collocation throughput, i.e., num-
ber of client-requests/sec. As shown in the table, CIAO adds

� 15% overhead on top of TAO’s collocation mechanism.
This overhead stems from the additional call path that has
to be traversed in CIAO. The additional steps required in-
clude (1) operation on the servant glue code and (2) actual
method invocation on the executor. The white-box exper-
iments discussed in Section 4.1.2 analyzes the functional
path within CIAO to pinpoint where the overhead arises.

Data copying overhead analysis. These experiments mea-
sure roundtrip latency for exchanging n bytes of octets
for TAO-TAO and CIAO-CIAO scenarios. The number of
octets are varied from 4 to 64 K.B by powers of 2. The vari-
ation in round-trip latency with increase in message size is
tabulated. The motivation of this analysis is to quantify ad-
ditional data copying overhead incurred when request tra-
verses various middleware layers the along the data-path.
For larger message sizes, any additional overhead incurred
is easily revealed. We now analyze the results of bench-
marks that measure the average latency, 99% bound, the dis-
persion, and worst-case behavior for data copying overhead.
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Figure 6. Data Copying Overhead Analysis

� Average measures. – Figure 6 illustrates the average
round-trip latency values for TAO-TAO and CIAO-
CIAO. As shown in the figure, for both TAO and
CIAO, latency increases with an increase in request



size, the increase gradual up to message size of 4 K.B,
after which there is a sharp increase. The results show
that latency measure for CIAO are comparable and in
many cases the same as that of TAO, e.g., for mes-
sage size of 4K.B, latency for CIAO ( � 205 � secs) is
nearly the same as TAO ( � 202 � secs). This indicates
that CIAO does not incur any additional data copying
overhead along the critical request processing path.

� Dispersion measures. – The dispersion measures for
both TAO and CIAO display a trend similar to the aver-
age. For smaller messages sizes, both CIAO and TAO
values are flat, indicating high predictability. For very
large message sizes, the predictability degrades con-
siderably. The increase in dispersion is not specific to
TAO, i.e., observed in other ORBs3 and is influenced
by external factors, such as cache misses for very large
payload sizes. The similarity in the dispersion mea-
sures for both CIAO and TAO show that CIAO is as
predictable as TAO.

� Maximum measures. – The 99% bound for both CIAO
and TAO is close to the average and display trend simi-
lar to average-case. The worst-case measures for CIAO
are comparable to that of TAO, e.g., for request size
of 16 K.B, the worst-case measure for CIAO ( � 927

� secs) is nearly same as that of TAO ( � 923 � secs).
These results indicate that the worst-case behavior of
CIAO is comparable to TAO.

4.1.2. White-box Analysis In the white-box experiments,
a client issued two-way operations at the fastest possible
rate, while the server performed a minimal but non-trivial
operation of cubing the sent data. Functional-path analysis
metrics are collected that quantify the overhead of the addi-
tional code path traversed by a CCM implementation such
as CIAO, for processing a remote client request.

Functional path analysis. Figure 7, depicts the critical
code path traversed by a remote request for TAO-TAO and
CIAO-CIAO scenarios. As shown in the figure, CIAO in-
curs two additional method calls (1) to the generated ser-
vant from the POA and (2) to the executor that implements
the functionality. The motivation for this experiment is to
quantify this overhead imposed by CCM.

Result analysis. We now analyze the results of benchmarks
that measure the average latency, 99% bound, the disper-
sion, and worst-case behavior for functional path analysis.

� Average measures – Figure 8 illustrates the results for
both TAO and CIAO. As shown in the figure, the TAO
results represent latency for a normal servant upcall,

3 Detailed results for other Java and C++ ORBs are available
from /www.atl.external.lmco.com/projects/QoS/
compare/dist_oo_compare_ipc.html.
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Figure 7. Critical Code Path for TAO-TAO &
CIAO-CIAO Scenarios
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Figure 8. Functional-path Analysis

while the CIAO results denote the latency correspond-
ing to TAO, plus the additional code path needed for
CCM. The results indicate that this extra code path
leads to an overhead of � 1.5 � secs, which shows that
CIAO adds processing overhead in the critical code
path. This overhead stems from conformance to the
CCM specification (in particular the need to use a gen-
erated ”glue servant”) that necessitates the additional
indirection.

� Dispersion measures – The dispersion measures reveal
that results of CIAO and comparable to that of TAO

� 0.75 � secs. These results show that use of CIAO
does not sacrifice predictability in the critical code path
of component based systems.

� Maximum measures – The 99% bound for both TAO
and CIAO are comparable to the average measures
indicating predictable behavior. The worst-case mea-
sures for both TAO and CIAO show trend similar to
the average- and worst-case measures, though worst-
case measures for CIAO are marginally higher.



4.2. Domain-specific Benchmarks

The goal of domain-specific analysis is to evalu-
ate the impact of supporting domain-specific requirements
in CCM. These experiments are similar to the black-box ex-
periments in distribution benchmarks. The hardware plat-
form contains 2 Intel Pentium IV 2.8 Ghz processor
with 512 MB of main memory running KURT real-time
Linux [2] 2.4.18, developed by the Kansas State Univer-
sity, connected with a 100MB Ethernet switch.

Due to the difference between the hardware configura-
tion and OS, the TAO-TAO and CIAO-CIAO tests described
in Section 4.1 are performed to relate the domain-specific
experiments to the conventional tests. These tests are then
repeated again using implementations with domain-specific
support. Figure 9 shows the following four scenarios mea-
sured in this experiment:

Figure 9. Domain-specific Benchmark Scenarios

� NRT-TAO – an interacting TAO object-based client
and server that are configured without Real-time
CORBA policies.

� NRT-CIAO – an interacting CIAO component-based
client and server that are configured without Real-time
CORBA policies.

� RT-TAO – an interacting TAO object-based client and
server that are configured with Real-time CORBA
policies.

� RT-CIAO – an interacting CIAO component-based
client and server that are configured with Real-time
CORBA policies.

The RT-TAO configured used a real-time ORB and Portable
Object Adapter (POA). Likewies, the RT-CIAO configura-
tion used a real-time component server was used. For each
experiment, however, no Real-time CORBA policies (such

as priority and protocol properties) were explicitly set on
the objects/components.

Figure 10 shows the latency results of comparing the fol-
lowing scenarios, which are similar to the TAO-TAO, TAO-
CIAO, CIAO-TAO and CIAO-CIAO scenarios compared in
the Distribution middleware benchmarks compared in Sec-
tion 4.1.
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Figure 10. Round Trip Latency Analysis for RT-
CIAO

� Average measures – As shown in the figure, the av-
erage latency for all the four case is relatively close,
with NRT-TAO scenario having the average latency of

� 108.43 � secs and NRT-CIAO scenario having aver-
age latency of � 109.05 � secs. In comparison, the aver-
age latency of RT-TAO scenario is � 118.91 � secs and
the average latency of RT-CIAO scenario is � 122.87

� secs. In either case, using NRT-CIAO does add min-
imal overheads of 0.62 � secs and 3.96 � secs to the
overall latencies.

� Dispersion measures – As seen from Figure 10, the
dispersion measures for all the four cases are compa-
rable to that of the NRT-TAO case of � 4 � secs. These
measures show that the use of NRT-CIAO or RT-CIAO
does not degrade predictability by increasing jitter.

� Maximum measures – The 99% and worst-case mea-
sures for all the four scenarios display behavior similar
to the average measures. The 99% values are very close
to the average indicating predictable latency. All four
scenarios do incur high worst-case measures, however,
because no real-time priorities were explicitly associ-
ated with the components for the experiment.

Figure 11 shows the throughput of all for scenarios. This
figure shows that the use of NRT-CIAO does not degrade
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Figure 11. Throughput Analysis of RT-CIAO

throughput significantly, which is consistent with the con-
ventional black-box results. RT-CIAO, however, does in-
cur more overhead ( � 3.7%) compared to the non-RT CIAO
( � 0.9%).

4.3. Summary

This section presented distribution middleware and
domain-specific benchmarks for various combinations
CIAO and TAO. The round-trip latency measures for
CIAO were comparable to that of TAO, indicating neg-
ligible overhead. Similarly, throughput and jitter results
revealed that CIAO does not degrade performance sig-
nificantly, while ensuring predictability. The data copy-
ing overhead measures showed that CIAO does not suffer
from additional data copying along the critical request pro-
cessing. The domain-specific benchmarks show that
CIAO’s real-time extensions help ensure predictability re-
quired for DRE applications.

5. Related Work

This section summarizes other benchmarking efforts that
relate to our work on component middleware in general
and CCM in particular. We decompose middleware into lay-
ers and describe the representative benchmarking efforts in
each of the middleware layers.

Host infrastructural middleware. This layer encap-
sulates and enhances native OS mechanisms to create
reusable event demultiplexing and interprocess communi-
cation mechanisms. A benchmarking effort at this layer is
RTJPerf [1], which is an open-source benchmarking suite
that measures the quality of various Real-Time Specifica-
tion for Java (RTSJ) implementations. RTJPerf provides
benchmarks for most of the RTSJ features that are criti-
cal to real-time and embedded systems.

Distribution middleware. Distribution middleware en-
ables clients to program applications by invoking opera-
tions on target objects without hard-coding dependencies
on their location, programming language and OS platform.

A benchmarking effort at this layer is the Open CORBA
Benchmarking project [26], which is a generic benchmark-
ing suite for various ORB implementations. The goal for
this effort is to measure commonly used ORB function-
ality using metrics tailored for both ORB developers and
ORB users.

Another CORBA 3.x and CORBA 2.x benchmarking ef-
fort [27] compares the performance and ease of use of Real-
time CORBA implementation of TAO versus the real-time
extensions added in CIAO. The results in this paper revealed
that using component middleware enhanced the configura-
tion of real-time policies via XML-based configuration files
without sacrificing predictability. These results also showed
that using component middleware enables the configura-
tion of real-time policies that conforms to standard XML
schemas.

Common middleware services. This layer provides
higher-level domain-independent reusable services. A
benchmarking effort at this layer is the Lockheed Mar-
tin Advanced Technology Lab’s (ATL) [10] Middleware
Comparator, which evaluates a range of middleware lay-
ers, including common middleware services via an easily
accessible Web interface. In particular, the ATL tests eval-
uate the real-time publish subscribe architectures based
on CORBA Data Distribution Service (DDS) [16]. ATL’s
methodology has been to use identical test conditions
(i.e., application, hardware, etc.), which permits compar-
isons that can reveal performance differences between
various systems.

6. Concluding Remarks

Component middleware and QoS-enabled CORBA
Component Model (CCM) implementations are impor-
tant emerging technologies for distributed real-time and
embedded (DRE) systems. Several initiatives are under-
way to develop commercial and research implementations
of QoS-enabled CCM. There is not yet, however, a sys-
tematic body of knowledge that describes how to develop
metrics that can systematically evaluate the correct-
ness, suitability, and quality of CCM implementations for
DRE systems.

Empirically evaluating feature-rich component mid-
dleware implementations, such as CCM, poses several
challenges. This paper described how our CCMPerf bench-
marking framework (1) addresses the heterogeneity of
CCM implementations, such as differences in configura-
tion options, implementation quality, and domain of ap-
plication, (2) provides black-box and white-box metrics
to compare and contrast CCM implementations at mul-
tiple middleware layers (i.e., distribution middleware,
common middleware services, and domain-specific mid-
dleware), and (3) consolidates tests into categories that



clarify the structure of the benchmarks and facilitate the in-
tegration of new benchmark tests. Our empirical results
in Section 4 show how CCMPerf can be used to quan-
tify metrics, such as overhead (i.e., increases in the mean),
that the CIAO CORBA 3.x CCM implementation in-
curs above and beyond its underlying TAO CORBA 2.x
implementation. Our future work on CCMPerf will fo-
cus on benchmarking other open-source CCM implemen-
tations (such as Mico-CCM, Qedo, and StarCCM), as well
as completing the white-box and scenario-based bench-
marks and enhancing CCMPerf’s testsuite.

Our work on CCMPerf has also underscored the impor-
tance of automating benchmarking experiments from higher
level models. For example, to conduct a simple experiment
requires developers to write (1) the header files and source
benchmarking code that measures QoS, such as roundtrip
latency and throughput, (2) IDL files that describes the con-
tract between the client and the server, (3) the configuration
and script files that tune the underlying middleware and au-
tomate the task of running tests and output generation, and
(3) project build files (e.g., makefiles) required to generate
the executable code. Writing these files repeatedly for each
experiment is tedious and error-prone. Further, in a hand-
crafted approach, changing the configuration would entail
re-writing the benchmarking code. In a model-based ap-
proach, however, the only change will be in the model and
the necessary experimentation code will be automatically
generated. A model-based approach also provides an effec-
tive abstraction to visualize and analyze the overall plan-
ning phase, rather than inspecting the source code manu-
ally.

To alleviate the shortcomings described above, we are
developing the Benchmark Generation Modeling Lan-
guage (BGML) [8, 9], which automates the generation
of benchmarking experiments from high-level mod-
els. BGML has been integrated with CoSMIC [7], which
is an integrated toolsuite for modeling design and run-
time aspects of QoS-enabled component middleware.
CoSMIC’s model-based [24] approach to benchmark syn-
thesis enables quality assurance engineers and testers to
configure components, model test configurations, and gen-
erate benchmarking code automatically.
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