Applying Adaptive Middleware to Manage End-to-End
QoS for Next-generation Distributed Applications*

Christopher D. Gill, David L. Levine, and Fred Kuhns Douglas C. Schmidt
{cdgill,levine,fred¥ @cs.wustl.edu schmidt@uci.edu
Department of Computer Science Department of Electrical and Computer Engineering
Washington University University of California, Irvine
St. Louis, MO 63130, USA Irvine, CA 92697, USA

Joseph P. Loyall and Richard E. Schantz
{jloyall,schantz @bbn.com
BBN Technologies/GTE Internetworking
Cambridge, MA 02138, USA

This paper has been submitted to the Special Issue of Cdn- Introduction

puter Communications on QoS-Sensitive Network Applica-

tions and Systems, edited by Klara Nahrstedt and Tarek Albetivation: Many domains, such as aerospace, manufac-

delzaher. turing, and health care, rely heavily on predictable comput-
ing and networking services to perform their respective mis-
sions. Increasingly, applications in these domains are needing

Abstract to perform more demanding functions over highly networked

environments, which in turn places more stringent require-

Delivering end-to-end quality of service (QoS) for divers@ents on the underlying computing and networking systems.

classes of distributed applications remains a significant R&R particular, next-generation distributed applications are re-

challenge. While individual technologies based on prior reuiring a broad range of features, such as service guaran-

search have touched upon these QoS delivery problemstéess and adaptive resource management, to support a widening

specific domains or usage patterns, these isolated achigegige of quality-of-service (QoS) aspects, such as predictable

ments have yielded only a fraction of the potential benefit fgsrformance, secure operation, dependability, and fault toler-

the broad domain of QoS-enabled distributed applications. Afece [1, 2].

present our coordinated middleware-based strategy for broad-

ening delivery of, and simplifying from the user’s perspec- = .))

tive, end-to-end QoS to a wider range of next-generation Qddnitations with current techniques: Due to deregula-

enabled distributed applications. thn, glopal competition, and budget gonstra!nts, even §ystems

mth stringent QoS demands are increasingly required to

This paper makes the following contributions to resear .
on end-to-end QoS. First, we describe an architecture for inf&S commercial-off-the-shelf (COTS) hardware and software

grating and coordinating QoS technologies (1) at all levels ngpqnents. Although a variety of research and commercial
the system, (2) on all time scales of system development opgrating systems, networks, and protocols how support some

ployment, and operation, and (3) across all system resourc Q S management featur@segratedend-to-end solutions are

Second, we describe results from several projects implem([.;lr?tf-yet available. For instance, research an QoS for ATM net-

ing particular segments of this overall architecture. We aMV-O”‘S has focused largely on policies and mechanisms for al-

alyze these results and summarize how our work can be I‘,ilg):atlng network bandwidth on a virtual-circuit basis. Sim-

plied more broadly to future research on middleware for ne% - rlry, recic?t riesnee}ir:]:h 02 dlntﬁfrnretzn:oaltc; has f:iClrJ:ed onhel-
generation QoS-enabled applications. er Specific signaling and entorceme echanisms, sueh as

RSVP [3], or on broadly based global resource sharing tech-

“This work was supported in part by Boeing, BBN, DARPA contradyiques, such as Differentiated Services [4]. In addition, re-

9701516, and DARPA Quorum program contract F#0602-98-C-0187 moﬁﬁafCh_Of\ real_'tir_ne 'operaFing systems [5] has ff)(?use_(j largely
tored by Rome Air Force Laboratory. on aVOIdlng prlorlty inversions and non-determinism in syn-

chronization and scheduling mechanisms for multi-thread@tes standard APIs and policies that improve an application’s
applications. ability to configure and control (1processor resourcesgia

In general, QoS research on networks and operating systémaad pools, priority mechanisms, intra-process mutexes, and
has not addressed some key requirements and end-to-ena g$sbal scheduling service, (Bpmmunication resourcaga
age characteristics of mission-critical real-time systems, espestocol properties and explicit bindings, and (8¢mory re-
cially on COTS platforms. In particular, existing approachssurcesvia request queues and bounded thread pools.
have not focused on providing bottvartically (i.e., network TAQ is an open-sour@&CORBA-compliant COTS ORB de-
interface<« application layer) andhorizontally (i.e., end-to- signed to support applications with stringent quality of service
end) integrated solution that provides a higher-level servig@oS) requirements. The TAO real-time ORB provides a rich
model, or global policy framework, to developers and endet of middleware mechanisms for representing and enforcing
users. Determining how to map the results from earlier Qo&al-time requirements in applications. Directly programming
research on global policies and local enforcement techniqi@®©’s lower-level real-time mechanisms to achieve specific
onto a more suitable system architecture is an important opeid-to-end quality of service (QoS) goals can be excessively
research issue that is crucial to solve the challenges of na&tlious and error-prone, however, particularly for large-scale
generation QoS-enabled distributed applications. next-generation QoS-enabled distributed applications. There-

. . ., fore, higher-level middleware capabilities for end-to-end QoS
Solution approach — Adaptive QoS-enabled COTS mid- .sPecification and control are needed.

dleware: To meet these research challenges, we believe it S
i . 0 meet these needs, we have developed a complementary
necessary to devise an architectural framework that (1) pre

. - architectural framework calle@uality Objects (QuOL1, 12,
serves and extends the benefits of existing research ar > QuO offers the following two capabilities for higher level

while (2) simultaneously defining nemiddlewareservices, o) . .
protocols, and finterface that. This framework must provi&g?g'x::gﬁgn?:rigontro' of TAO's real-time CORBA midde

adaptivity encompassing the end-to-end resources neededdo
address QoS requirements of next-generation applications that
involve cooperation of multiple systems.

One promising architectural framework that meets these re-
quirements is our TAO [6, 7] implementation of the Real-
time CORBA specification [8]. Real-time CORBA is a COTS
middleware standard that supports end-to-end predictability
for operations infixed-priorityt CORBA applications. As 2. QuO allows developers to specify higher-level aspects of

shown in Figure 1, the Real-time CORBA specification de- real-time requirements, such as the type of real-time re-
quired €.g, periodic or end-to-end), the relative priority

END-TO-END PRIORITY of events, and the tradeoffs between real-time and other
PROPAGATION i QoS requirements. It then maps these higher-level speci-

in_args fications into QuO and TAO mechanisms that implement,
measure, and control them.

QuO provides additional mechanisms for middleware
adaptation that complement and improve the application
control of lower-level real-time capabilities of ORB mid-
dleware, as well as the underlying operating systems and
networks.

operation()

out args + return value

EXPLICIT SYNCHRONIZERS

THREAD As shown in Figure 2, QuO defines interfaces that enable

POOLS

BINDING < > OBJECT ADAPTER LIENT 555 ..'5 :::*':n "':!:Z:.III::I
. | - e + I
[GIOP §§] Dielegate e e, . Deiegue
PROTOCOL l Yol W | l
PROPERTIE : F X
0S KERNEL o o OS KERNEL R - I | 9
1ml. AN LT SRLLET _!'_ OLECT
s | - el
| omm [iefa Nemwok +—efie| omn
NETWORK Ty e
Figure 1: TAO Support for the Real-Time CORBA Specifica- o .]
tion Figure 2: The QuO Distributed Object Computing Model

1Subsequent OMG specifications are standardizing dynamic schedulinggThe source code and documentation for TAO can be downloaded from
techniques, such as deadline-based [9] or value-based [10] scheduling. www.cs.wustl.edu/ ~schmidt/TAO.html

CORBA applications t@pecifyQoS aspects of conceropn- time behavior aspect of delivered QoS. Work is simultaneously
trol resources and mechanisms that provide @a&gsurehe ongoing to control and integrate other QoS aspects, such as
QoS provided by the system, andaptto changing levels of dependability and security, as well as advanced software engi-
QoS in the system. To do this, we introduce the middlewareering concepts and tools for controlling the intended behav-
abstractions ofontractgo organize the intended behavior intdor of next-generation QoS-enabled applications.

operating regionsystem conditionbjects to effect measure-

ment, anddelegatedo coordinate changing behavior under{?"’lpgr orgfar;;zaugn:s T?e re;nzlnderbof this pap;ar IS sftruc—t
neath the client/server interactions. ured as foflows. section escribes properties ot next-

The adaptive specification, control, and measurement Itgrﬁperation distributed applications tha'F illustrate and motivate
pabilities of QuO are further enhanced when integrated w ¢ key research .challe.nges and Qe3|gn fgrces addressed by
TAO's capabilities for resource configuration and manag ur QoS research; Section 3de§cr|pes our integrated TAO and
ment. QuO’s higher level Qo$olicies are enforcedusing uO middleware strategy.for' delivering e.nd-.to-end QoS adap-
TAO's lower level mechanisms. By combining these compl vely and presents quantitative and quahtgtye resgl'ts gleaned
mentary middleware layer frameworks, as shown in Figure' 2" applying TAO and QuO to several mission-critical real-

we are taking a major step forward to aligning (1) adaptive he distributed applications; Section 4 compares our efforts to

controlled behavior with (2) a more predictable operating € lated work on end-to-end QoS; and Section 5 presents con-

vironment that is oriented toward the needs of next—generat?r'ﬁ?:]?g dlrevr\1/1arrk? ?zdxiumrr?ar”?iei ourSdlrﬁcgtl)n dS for "rest(iaarr]ch
QoS-enabled systems. 0 eware for next-generation QoS-enabled applications.

END-TO-END PRIORITY

| PROPAGATION 2 Synopsis of Key Research Challenges

in args \ 4 H
- and Design Forces
CLIENT operation() SERVANT 9
out args+return value
! ~——=° A I Development methodologies for many types of distributed ap-
OELEGATE \c \ < e — plications, par;iculgrly those with stringent real-time require-
CONTRACT, ONTRACT ments, have historically lagged behind the state of the art due

to the constraints on footprint, performance, and weight/power
consumption. As a result, such systems are expensive and
time-consuming to develop, validate, optimize, deploy, main-
tain, and upgrade. Moreover, they are often so specialized and

PROPERTY y tightly coupled to their current configuration and operating en-
y MANAGER SKELETON] THRSAD vironment that they cannot adapt readily to new market oppor-

OBJECT ADAPTER tunities, technology innovations, or changes in run-time situa-
tional environments.
TAO ORB .
CORE In addition to the development methodology and system

lifecycle constraints mentioned above, designers of real-time
applications have historically used relatively static methods
OS KERNEL to allocate scarce or shared resources to system compo-
nents. For instance, flight-qualified avionics mission com-
puting systems [14] establish the priorities for all resource
allocation and scheduling decisions very early in the system
lifecycle, i.e., well before run-time. Static strategies have
traditionally been used for mission-critical real-time applica-
From the bottom up, we are developing and using mechians because (1) system resources were insufficient for more
nisms to enhance execution predictability and control resouccgnputationally-intensive dynamic on-line approaches and (2)
management decisions across system boundaries to meetgnplifying analysis and validation was essential to remain on
to-end requirements. From the top down, we are provigidget and on schedule, particularly when systems were de-
ing advanced application-oriented QoS interfaces that adsighed from scratch using low-level, proprietary tools.
to changing conditions and affect resource management decldnfortunately, the static methodologies and techniques out-
sions at lower levels of middleware, OS, and network infraged above are too inflexible to support the requirements of
tructure. In the current phase of our joint DARPA Quorumext-generation QoS-enabled distributed applications. The re-
integration project [2], we are focusing on controlling the remlainder of this section describes requirements of several rep-

PROPERTIES
OS KERNEL

0s1/0 SUBSYSTEM

NETWORK ADAPTERY

NETWORK

Figure 3: Integrated TAO+QuO Middleware Framework

resentative next-generation QoS-enabled applications and dé&working technologies perform and adapt in real-time to the
tills the key research challenges and design forces that aredbenging situational requirements, while still maintaining QoS
ing addressed by our middleware-based QoS research to gurantees.

port these requirements. . . .
Applying tele-immersion to aerospace: The aerospace do-

.) main is tele-immersion applications. In the battle zone of the
2.1 Key Features of Next-generation Applica- fyture, a distributed web of sensors, weapons, and decision-
tions makers must interact rapidly in real-time to gain and preserve

. . ilitary advantage. The battle environment will be changing
One of the most demanding next-generation QoS-enabled qis- et g
tributed applications isele-immersior{15], which combines onstantly, requiring the system to adapt both globally and lo

. : . ally. For instance, multiple unmanned combat air vehicles
tele-conferencing, tele-presence, and virtual reality. Te

immersion places stringent demands at all levels alon -eCAVS) can provide surveiliance, weapons delivery, and bat
P INYe S along qe damage assessment capabilities both on tactical and strate-
end-to-end path for distributed applications. It requires re

. ; ; ; S '88ic scales.
time, predictable behavior froendsystem order to (1) in- With tele-immersion, immediate remote interaction with the

teract with the physical world within specific delay bounds and = ". . . ;
(2) present images or other stimuli in real-time to users [1 ysical environment can help maximize effectiveness at all
Vels of the system. For example, a group of UCAVs can

Likewise, users may be distributed across intranets or the h-
o . share sensor data, post-process data products, and remote op-
ternet thus requiring predictable performance from ribé . S A
erator requests. Next-generation avionics mission comput-

work to provide low-latency and high-bandwidth to apphcallhg systems [17], such as the sensor-driven example shown
tions end-to-end [16].

in Figure 5, must collaborate with remote command and con-

High Level
/O Facade) | 1/0 Facade) Apstraction
2: Demarshaled datg
Sensor Sensor Sensor
Proxy Proxy Proxy
1: 1/0 via interrupt/
.

Aircraft — Low Le_/el
Sensors — Abstraction

Applying tele-immersion to health care: Intensive care
medicine is a domain where tele-immersion can provide sig-
nificant benefits. For instance, teams of medical personnel
must make critical decisions, often at an accelerated tempo,
based on information emerging at a range of time scales and
from a variety of sources. Consultations with remote experts,
modeling of physiological processes, and integration of both
existing and emerging information often must be performed
while in close proximity to the patient, as illustrated in Fig-
ure 4. In this context, it is essential that the computing and

1/0 Facade

Sensor
Proxy

/

PATIENT
RECORDS

PHYSICIAN'S
WORKSTATION

Figure 5: Sensor-driven Avionics Mission Computing Exam-
ple

trol systems, provide on-demand browsing capabilities for a
human operator, and respond flexibly to unanticipated situ-
ational factors that arise in the run-time environment [18].

Moreover, these systems must perform unobtrusively, shield-

METRO
AREA
NETWORK

PHYSIOLOGICAL
MODELING

DIAGNOSTIC
MODALITIES
(cT, MR, CR)

Figure 4: Real-Time Medical Informatics Example

ing human operators from unnecessary details, while simul-
taneously communicating, highlighting, and responding to
mission-critical information in real-time.

The next-generation applications outlined above will re-
quire a range of QoS support from middleware, endsystems,
and networks. The end-to-end QoS received by the appli-
cations will translate directly into users’ perceived worth of
the new applications and related services. For example, if a
medical video conference application routinely delivers pack-
ets late, it will have a relatively low value to its users. Thus, by
providing real-time access to emerging information and real-

time actuation of responses, QoS-enabled systems can Bystem configuration: Developers and managers of next-

vide (1) improved situational awareness, (2) reduced decisigeneration distributed applications must be able to control the

action times, and (3) greater overall responsiveness to emeartgrnal concurrency, resource management, and resource uti-

ing situations. lization configurations throughout networks, endsystems, mid-
dleware and applications, to provide the necessary level of
end-to-end QoS to applications.

2.2 Synopsis of QoS Requirements for Next-

generation Applications System adaptation: Next-generation distributed infrastruc-
The characteristics of the next-generation systems outllnetgil.J iy fr'ameworks and apphce}uons mus@ be aple to (1) rgflect on
) ; .~ Sjtuational factors as they arise dynamically in the run-time en-
Section 2.1 present QoS requirements that can vary signifi- . :
: e vironment and (2) adapt to these factors while preserving the
cantly at run-time. In turn, this increases the demands on engd- . . " L
: . Integrity of key mission-critical activities. Operators must be
to-end system resource management, which makes it hard to .
X . sulated from the programming model for resource manage-
simultaneously (1) create effective resource managers usin . .) o
-) ; ment,e.g, via a set of suitable abstractions for communicating
traditional statically constrained allocators and schedulers an . o .
. S o erator QoS requirements and monitoring/controlling the re-
(2) achieve reasonable resource utilization. In addition, t
e - . ceived QoS.
mission-critical aspects of these systems require that they Té-

spond adaptively to changing situational features in their run- . . i . i
time environment. The distilled requirements of next-generation QoS-enabled

Kev feat fth N i ‘ hasi distributed applications outlined above motivate solutions that
eyteatures orthese next-generalion Systems, SUCh as INtBfoge qeterministic real-time performance end-to-end, (2)

action with the real world, produce stringent requirements t tect resources needed by application-critical operations, (3)

tshe r:/e to ?';t'" ;h de key ;ezearchschallengﬁst and des[[gtr;] for Fomote adaptation to a rapidly evolving environment, and (4)
at must be addressed by QoS research to support thes fE7 flexible configuration and control of key mechanisms

plications. The following design forces characterize the kﬁy{ resource management. In Section 3, we present our ap-

;estea;c;h ;higqugeigvzgage |d|e nt.|f|ed batsed on 0th R&P oach to addressing these requirements, based on adaptive
orts [14, 1, 17, 19, 18, 20] developing next-generation avio ;?_S—enabled middleware.

ics mission computing systems. These forces must be a
dressed by researchers to ensure system correctness, perfor-
mance, adaptability, and adequate resource utilization.
3 Solution Approach: Adaptive QoS-
Diverse inputs: Many next-generation distributed applica- .
tions must simultaneously use diverse sources of information, enabled Middleware
such as raw sensor data, command and control directives, and
operator inputs, while sustaining real-time timing behavior. This section presents our approach to integrating the individ-
ual capabilities of existing QoS technologies to create a uni-
Diverse outputs: Next-generation distributed applicationfied adaptive middleware solution. Our approach leverages
often must concurrently produce diverse outputs, such as fileperties of deterministic end-to-end performance, combined
tered sensor data, mechanical device commands, and imagetli, configurable and adaptive QoS management capabilities,
whose resolution quality and timeliness is crucial to oth&r meet the requirements of next-generation QoS-enabled dis-
systems with which they interact. tributed applications described in Section 2.

N . _ Our work focuses on supplying additional coordination and
Critical operations: QoS management for next-generatiogyniro| capabilities across diverse lower-level QoS mecha-
distributed applications with hard timing constraints fQ{isms to provide end-to-end QoS to a broad range of advanced
application-critical operations must ingglate critica}l Operatiofb%s-enabled distributed applications. Our progress to date in
from the resource demands of non-critical operations. identifying key patterns and developing techniques for adap-

i) . tive and dynamic resource management and applying them
End-to-end requirements: Many next-generation dis-(, req|-time mission-critical systems has focusecadaptive
tributed applications may ope.ratc_e in heterogeneous eNViIrgs enabled middleware architecturagich we describe be-
ments, and must manage distributed resources t0 enfqigein section 3.1. Section 3.2 then presents quantitative and
QoS requirements end-to-end. For example, such systemsiiiative results derived from applying our adaptive middle-

may need to manage resource reservations and allocatipns, 14 several mission-critical real-time distributed applica-
involving several end-system CPUs and network links along &«

request-response path between client and server endsystems.

5

3.1 Adaptive System Architectures Contracts: The operating regions and service requirements

of the application are encodeddnntracts which describe the

During our earlier efforts to integrate adaptation capabiliti%\,\;sime states the system might be in, as well as the actions to
from different low-level system layers and components maflsrform when the state changes.
ually, it became evident that a higher-level, highly automated

integration capability was desirable for the following reason?.elegates: QuoO insertsdelegatesinto the CORBA func-

ional path. Delegates project the same interfaces as the stub
Simplified programming model: Providing a higher-level (client-side delegqte) and th'e skeleton (server-side delegate),
description of the various adaptive capabilities in different syt Support adaptive behavior upon method call and return.

tem layers helps to simplify and reify the programming mod¥{hen a method call or return is made, the delegate checks the
for adaptive real-time mission-critical systems. system state, as recorded by a set of contracts, and selects a

behavior based upon it.

Application-independence: Providing a higher-level de- Contracts and delegates support two means for triggering
scription of system operating regions decouples the adapfi@nager-level, middleware-level, and application-level adap-
architecture from the particulars of any specific applicatidigtion. The delegate triggeis-band adaptation by making
thereby increasing the relevance of the adaptive system aréfRices upon method calls and returns. The contract triggers
tecture across real-time mission-critical system domains. ©Out-of-bandadaptation when region transitions occur which

can be caused by changes in observed system condition ob-
Automated language and tool support: Providing lan- jects.

guage and tool support for these descriptions helps to automgfgtem Condition Objects: These objects provide uniform

and decouple system aspects, such as functionality, timing Besrfaces to multiple levels of system resources, mechanisms,
havior, and fault tolerance, so that (1) new aspects can begfAg managers to translate between application-level concepts,
tegrated when new system requirements arise and (2) integh as operating modes, to resource and mechanism-level
tions between the various aspects can be managed effectiv@lyicepts, such as scheduling methods and real-time attributes.

. - stem condition objects are used to measure the states of sys-
To provide these capabilities, we have developed an archl:

tectural f K that (1 d extends the b resources, mechanisms, and managers that are relevant to
ectural framework tha (1) preserves and extends e DEQ4cts in the overall system. In addition, they can pass in-
efits of individual QoS research contributions while (2) s,

formation to interfaces that control the levels of desired ser-

multaneously defining new middleware services, protocqlﬁceS

and interfaces that provide adaptivity encompassing end'tol'—|igher-level system condition objects can interface to other,

end resources n'eeo'led 0 addrgss QoS requirements OT ""GNer-level system condition objects, forming a tree of system
generation gppllcgtlons involving cooperation OT mUItIpl(‘?ondition objects that translate mechanism data into applica-
systems. This architectural framework is basedgul_ahty Ob- tion data. System condition objects can be eititeserveddr
jects (QuOpandThe ACE ORRTAO) [.7] te.chnolog-|es devel- non-observed Changes in the values measured by observed
oped under the DARPA Quorum object integration [2] P'y stem conditions trigger contract evaluation, possibly result-
gram. Below, we summarize how QuO and TAQ help provi g in region transitions and triggering adaptive behavior.

an adaptive architecture for QoS-enabled applications. Observed system condition objects are suitable for measur-

ing conditions that either change infrequently or for whom a
3.1.1 Overview of QuUO measured change can indicate an event of notice to the applica-

tion or system. Non-observed system condition objects repre-
QuO is a middleware framework designed to develop dient the current value of whatever condition they are measur-
tributed applications that can specify (1) their QoS requirgg, but do not trigger an event whenever the value changes.
ments, (2) the system elements that must be monitored &mstead, they provide the value upon demand, whenever the
controlled to measure and provide QoS, and (3) the behawontract needs if,e., whenever the contract is evaluated due
for adapting to QoS variations that occur at run-time. By prts a method call or return or due to an event from an observed
viding these features, QuO opens up distributed object impigstem condition object.

mentations [21] to control an application’s functional aspegisstirumentation Probes: QuO provides a library ahstru-

and implementation strategies that are encapsulated withinyiisntation probeshat can be inserted throughout the remote

functional interfaces. method invocation path. These probes can be used by the QuO
The functional path of QuO illustrated in Figure 2 is a Stnfrastructure to gather performance statistics and validation

perset of the functional path of CORBA. The components piigformation unobtrusively. To accomplish this, the QuO dele-

vided by QuO to support the above operations are defined §gte adds a data structure to each method call and return. This
low.

structure can be populated or read by any or all the instrumj
tation probes along the method call/return path. |

QBRECT

Quality Description Languages (QDLs) and Code Gener- | Dielegate = = " ivdegate

ators: QuO provides a suite of QDLs, which are simila l G T [l

to CORBA's Interface Description Language (IDL), acade St e s

generatorswhich are similar to the stub and skeleton gener| 1L | manscra EETT anmer

tors of CORBA IDL compilers. QDLs and code generators d — : . e - ;

scribe and automatically output, respectively, the compone ORB [cep—w Network d—soce| ORB

of QuO applications [11, 12, 13]. QuO currently provides : o .

contract description language (CDL); a structure descripti

language (SDL) to specify adaptive behavior and adaptat [" Qu Gateway [OO Gatenay

strategies; and a connector setup language (CSL) to spe 5 par— o §

the components of a QuO application and how they are inst g i

tiated, cgnnected, ang initiaFI)i[z)ed. / § |uop Aton | Comp Repliodin (AQeA) | jyop, ot 3
_ . . " 1 Bnchwindh Reservalion (D{RA| e T

QuO Runtime Kernel and GUI Monitor: QuO provides a F W T e 5

runtime kernelthat coordinates contract evaluation and pr
vides other runtime QuO services [22]. These services incluuc
initializing contracts and system conditions, binding them to
each other and to delegates, triggering contract evaluation, and
triggering adaptive behavior. In addition, the QuO kernel pro-
vides a graphical user interface (GUI) that enables monitorigyrihyted real-time environment with high variability of situ-
applications to observe the QuO middleware in action. THg;nal factors.

GUI displays contracts and regions and indicates the current

active region and the previously active regions. It also dis- ,

plays the system condition objects in the system and their viit-2 Overview of TAO

ues, indicating when region transitions occur and the adaptjygy is a high-performance, real-time ORB endsystem tar-
behavior triggered by the transition. Finally, it displays statigateq for applications with deterministic and statistical QoS

tics showing how much time applications have spent in eaglyuirements, as well as best-effort requirements. The TAO
contract region. ORB endsystem contains the network interface, OS, commu-

QuO Gateway: QuO provides a general object gatewayication protocol, and CORBA-compliant middleware compo-
component, illustrated in Figure 6, which allows lownents and services shown in Figure 7.

level communication mechanisms and special-purpose to b&@AO supports the standard OMG CORBA reference
plugged intoan application [23]. The QuO gateway residemodel [26] and Real-time CORBA specification [8], with en-
between the client and server ORBs. It is a mediator [24] tiencements designed to ensure efficient, predictable, and scal-
intercepts IIOP messages sent from the client-side ORB afide QoS behavior for high-performance and real-time appli-
delivers IIOP messages to the server-side ORB (on the me&sions. Below, we outline the features of TAO’s components
sage return the roles are reversed). On the way, the gatesfaywn in Figure 7.

translates the IIOP messages into a custom transport prom@%mized IDL Stubs and Skeletons: 1DL stubs and skele-

.Srl:]CehQiSOgrgfezvgquilg?risﬁe'rrl]znrtizl'S;tr?dirggpsenlﬂabIsbISgStr%)p's perform marshaling and demarshaling of application op-
tocol featugre [25]y P 9 piugg P ation parameters, respectively. TAO’s IDL compiler gener-

The gateway also provides an AP that allows adaptive l§1et_es stubs/skeletons that can selectively use highly optimized

havior or processing control to be configured below the O@mp"ed and/or |nterpret|ve (de)marshaling [.27]' This flex-
| |{|ty allows application developers to selectively trade off

layer. For example, the gateway can select between alternate o) :

: .. timé and space, which is crucial for high-performance, real-
transport mechanisms based on low-level message flltennq. or L
: , fime, and/or embedded distributed systems.
shaping, as well as the overall system’s state and condition

objects. Likewise, the gateway can be used to integrate seéRaal-time Object Adapter: An Object Adapter associates
rity measures, such as authenticating the sender and verifjgagzants with the ORB and demultiplexes incoming requests
access rights to the destination object. to servants. TAO's real-time Object Adapter [28] uses perfect

Potential applications of this integrated adaptive architdtashing [29] and active demultiplexing [28] optimizations to

ture include end-to-end control of distinct QoS aspects irdispatch servant operations in constaxit) time, regardless

WA

Figure 6: The QuO gateway

atively predictably on conventional I/O subsystems that lack

directional data rate of 2.4 Gbps using zero-copy buffering op-
timization to avoid data copying across endsystem layers. In
addition, TAO runs on conventional real-time interconnects,
such as VME backplanes and multi-processor shared memory
environments, as well as Internet protocols like TCP/IP.

RT ORB CORE

2R
R [CLIENTS] [SERVANTS] . advanced QoS features.
1[\1] L ke E High-speed network interface: At the core of TAO's 1/O
T (o) REQUEST DEMUXER)| 133 subsystem is a “daisy-chained” network interface consisting
I RT OBJECT o of one or more ATM Port Interconnect Controller (APIC)
M ADAPTER C chips [32]. The APIC is designed to sustain an aggregate bi-
E o
P
¢

REACTOR)(REACTOR)(REACTOR }{ REACTOR
Py Py) (P3) Py

PLUGGABLE PROTOCOLS

RT 1/0 3 B
SUBSYSTEM

HIGH-SPEED NETWORK

INTERFACES
(e.g., APIC, VME)

TAO internals: TAO is developed using lower-level mid-
dleware called ACE [33], which implements core concur-
rency and distribution patterns [34] for communication soft-
ware. ACE provides reusable C++ wrapper facades and frame-
work components that support the QoS requirements of high-
performance, real-time applications and higher-level middle-
ware like TAO. ACE and TAO run on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and Vx-
Figure 7: Components in the TAO Real-time ORB Endsystaiorks.

B
U
F
F
E
R
S

(zmrcummcmﬂ

of the number of active connections, servants, and operatigng AO!aIOt'VG System Architecture Implemen-
defined in IDL interfaces. tation and Performance

Run-time Scheduler: TAO'’s run-time scheduler [8] mapsOur recent research has focused on two principal activities.
application QoS requirements, such as bounding end-to-&idt, we have quantified the performance of adaptation on
latency and meeting periodic scheduling deadlines, to ORBall time scales via dynamic scheduling in the TAO Real-
endsystem/network resources, such as CPU, memory, netwionke Event Service when integrated with an adaptive [18]
connections, and storage devices. TAO'’s run-time schedweionics mission computing application, under varying condi-
supports both static [7] and dynamic [19] real-time schedulitigns of CPU load. Second, we have demonstrated the ability
strategies. of the QuO middleware to guide adaptation to changes in sys-
Real-time ORB Core: An ORB Core delivers client re-€m conditions, by adjusting both the rate of event generation

@g the priorities of events. Below, we summarize the quanti-

guests to the Object Adapter and returns responses (if anyji¢ = -
clients. TAO's real-time ORB Core [30] uses a multi-threade 'tlve and qualitative results gleaned from both these research

preemptive, priority-based connection and concurrency arcftvities.

tecture [27] to provide an efficient and predictable CORBA

protocol engine. TAO's ORB Core allows customized protg-2.1 Avionics Mission Computing Application Integra-
cols to be plugged into the ORB without affecting the standard tion

CORBA application programming model. Benchmark overview: The focus of the benchmarks de-

Real-time I/O subsystem: TAQO's real-time 1/0O (RIO) sub- scribed below is to quantify the benefits and costs of schedul-
system [31] extends support for CORBA into the OS. RIO asg systems using hybrid static/dynamic approaches, when
signs priorities to real-time I/O threads so that the schedulalsibmpared to statically scheduled systems. Our hypothesis is
ity of application components and ORB endsystem resourtiegt hybrid approaches, though they can incur additional run-
can be enforced. When integrated with advanced hardwdiree overhead, will prove to be more flexible, both in terms
such as the high-speed network interfaces described belofnapplication development ease and overall computational
RIO can (1) perform early demultiplexing of I/O events ontihroughput.

prioritized kernel threads to avoid thread-based priority inver-Ease of application development is facilitated by two adap-
sion and (2) maintain distinct priority streams to avoid packeitre properties of hybrid static/dynamic scheduling: (1) when
based priority inversion. TAO also runs efficiently and relead exceeds the schedulable bound, non-critical operations

are dropped, whereas critical operations are scheduled, and *
(2) dynamic scheduling supports selectively dropping non-
critical operations that will miss deadlines, while preserving
non-critical operations that might be schedulable later. Encap-
sulating fine-grain adaptive control over operation dispatching
in the middleware layers relieves developers of tedious, error-
prone, and often redundant tasks related to developing this as-
pect of their applications.

Increased computational throughput is achieved through =
greater processor utilization compared to static systems, which
generally require under-utilization of the CPU to be schedu- e EaLAERRBIEGGEEATABEEE 0G5885448
lable. Here too, hybrid static/dynamic scheduling provides
fine-grain adaptive control over operation dispatching so thagure 8: Measured RMS and MUF Enqueue Dispatching
more operations can be scheduled to increase CPU utilizatomerhead
Moreover, dropping operation dispatch requests that will not

meet their QoS requirements can improve the amount of Uggit on anot emptyor not full condition variable and then en-

ful computation that is performed. queue or dequeue the operation after acquiring the appropriate
Below, we report the results of benchmarks that quantitck. Therefore, it was necessary to exclude the time spent

key aspects of our hypothesis outlined above. As shown belguiiting for locks from the measurement, so that only the CPU

computational overhead is a primary metric because schedige actually consumed by the dynamic queue was measured.

ing operations are run frequently with respect to applicatigmis was achieved by extending the time probe class provided

execution frequency. Thus, overly burdensome algorithig ACE [33] framework to log suspend and resume time probe

or algorithm implementations that scale poorly as applicatiefients around the call to acquire the lock, and to assess total
size grows will be undesirable in most real-time applicationgverhead accordingly.

Benchmark configuration: Our experiment used a com- Figure 9 shows a graph of the measured dequeue dispatch-
9 ' P innq overhead using both the MUF and RMS scheduling strate-

pl_ete real-time emb_edded |nf(_)rmat|on SVS‘eF“S _appllcatléles_ As Figure 8 and Figure 9 show, several anomalous data
with roughly 70 distinct operations. The application ran us-

ing the TAO ORB [7], the TAO Scheduling Service [19], and
the TAO Real-Time Event Service [14], configured for var-
ious scheduling strategies. We conducted measurements on
four key areas of resource control overhedidpatching over-

head operation execution timesperation cancellationand
protecting critical operations The analysis below features a
comparison of two publically available scheduling algorithms, £ *
Maximum Urgency First (MUF) [35] and Rate Monotonic ~ °
Scheduling (RMS) [36]. Measurements were conducted on
200 MHz Power PC Single Board Computers running the Vx-
Works 5.3 operating system.

T 600

erhead (usec)

8

400

Dispatch Number

400

200

Benchmark Results: 8885 §8%3:38288E58885588C0c8RBEHEST
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm
. HARSSIDBIRREIS I NS AEENNERERH

Dispatch Number

e Dispatching overhead: We measured the time spengggrrﬁega Measured RMS and MUF Dequeue Dispatching

within the mechanisms that actually assign the processor to
application functions. The dispatching mechanism is madepuints were observed in the measured enqueue and dequeue
of multiple dispatching queues, each serviced by a threacbatrheads. We attribute these to non-determinism in our ex-
a different priority level. For dynamic scheduling, the queupgrimental setup, possibly due to network interrupt handling
must be reordered according to laxity or time to deadline iashe VxWorkstNetTask , rather than to the behavior of the
requests age. gueues themselves. Excluding these outlying data points, the
Figure 8 shows a graph of the measured enqueue owdrserved enqueue and dequeue overheads were approximately
head, collected at the same time as the dequeue measurentaetsame for the static RMS scheduling strategy and the hy-
Dynamic queues may perform re-ordering before trying boid static/dynamic MUF scheduling strategy, with a slightly

higher overhead observed for the dynamic queues used for TG e
MUE. T G

These results indicate that (1) the amount of dynamic re- =
ordering was low in this experiment, and (2) the fundamental
overhead for dynamic and static queue management is com-*°
parable when there is little dynamic reordering. For future
investigation, we plan to conduct similar experiments acrosg °
a wider range of real-time embedded applications and appliz
cation features. In particular, we hope to determine whethet
increased heterogeneity of application features would induce
greater levels of reordering for dynamic scheduling, and if so
at what resulting cost.

tio

6

e Operation execution times: We compared the execu-
tion times of both critical and non-critical operations, which °
comprise a representative subset of all operations in the sys- sample
tem. All Operations were scheduled using MUF, which re_FigUI'e 11: Effects of Non-Ciritical Operation Cancellation
orders operations dynamically by laxity in each priority level.

Figure 10 illustrates this comparison. The operation X4 the number of operations that were dispatched and then

missed their deadlines, the number of operations that made
their deadlines in each case was comparable. We attribute this
to the short execution times of several of the non-critical op-
erations. In fact, the variation with cancellation had slightly
lower numbers of non-critical operations that were success-
fully dispatched, as operation cancellation is necessarily pes-
simistic.

1800

1600

1200

1000

800

ecution time (usec)

¢ Protecting critical operations: We examined the rela-

1 tive effects of CPU overload on critical and non-critical oper-
I ations, in the hybrid static/dynamic MUF scheduling strategy
. and the static RMS strategy. Figure 12 shows the number of
T TR R R AR R B i P EEREREERES 4‘+ sssss pR—v— ’—
® —- VY V RMSNCMME V :;\TMicmlsTd\f r\s‘RMsis‘m??e\f \ VVYVYV VY --
Figure 10: Execution Times of Critical and Non-Critical Op- e

erations

tion times showed several anomalous spikes, similar in value = MWHWWWWW
and prevalence to those observed in the dispatching overhead: «

measurements. We again interpret these as the result of non-£ ,
determinism in our experimental configuration rather than in [/
dispatching the operations themselves. Otherwise, the opera-
tion execution times were reasonably deterministic, even with
all operations dispatched from dynamically managed queues.

e Operation cancellation: Figure 11 shows the effects """ " """ 777 %~ e TFTUERSSARERRARS
of operation cancellation for non-critical operations in dy-
namic scheduling strategies. As described above, the MUFigure 12: Effects of CPU Overload under RMS and MUF
scheduling strategy can use operation cancellation to reduce
the amount of wasted work performed in operations that msadlines made and missed for each strategy. With no opera-
their deadlines. Assuming there is no residual value of an ¢ipn cancellation, MUF meets all of its deadlines, while RMS
eration that completes past its deadline, this time increasesrttigses between 2 and 6 critical operations per sample. Fur-
amount of unusable overhead. Note that while the MUF stritermore, MUF successfully dispatches additional non-critical
egy with operation cancellation was more effective in limibperations. We investigated whether adding operation can-

10

cellation might have reduced the number of missed deadlinetn general, sensor-actuator applications have crucial QoS
for critical operations with RMS, by reducing the amount akquirements, such as real-time response, dependability, and
wasted work. However, it appears that the overhead of operssource utilization. Moreover, the set of QoS requirements
tion cancellation in fact makes matters worse, missing betwekat must be satisfied can be highly variable, differing (1) be-
6 and 7 operations per sample. We interpret this to mean tivegen families of aircraft and between specific products within
there were few opportunities for effective non-critical opera-family of aircraft, (2) between subsystems within a single
tion cancellation in RMS under the experimental conditionsaircraft, and (3) even between missions and between operating
modes, within a single aircraft subsystem.
3.2.2 Adaptive Middleware Layer Integration Currently fielded avionics systems are designed to be con-
figured between missions, so that pilots can manually switch
Integration overview: The QuO and TAO QoS policies anthetween mission computer operating modes [20]. However,
mechanisms described in Sections 3.1.1 and 3.1.2 prOVidQ(_ﬁrthe most part current avionics software Systems are con-
adaptive framework for meeting the application requiremetigured statically. Therefore, changes occur in the form of
listed in Section 2.2. To illustrate how we have integratEd TA&ftware upgrade Cycles and mission reprogramming_ These
and QuO framework to meet the QoS requirements of missifyacy sensor-actuator systems are inflexible because the sen-
critical real-time applications, we describe an example sens@irs are tightly coupled to the actuators, and the software is
actuator application, representative of those found in evegfen tightly coupled to special-purpose hardware.

driven avionics systems [14]. To overcome these limitations, it is necessary to apply

Synopsis of sensor-actuator applications: As illustrated in New engineering methods to the process of developing these

Figure 13, sensor-actuator applications contain many subgystems. In particular, improving the reliability and flexibility
of distributed real-time systems requires advanced techniques,

such as leveraging COTS hardware and software, increasing
Consumers

software reuse through middleware, and applying design pat-
terns and adaptive object-oriented programming techniques.
@ I/ Facade I/O Facade Moreover, these techniques serve to manage the monetary and
N P time costs of the overall system development lifecycle.
A

Supporting sensor-actuator applications with QuO and
TAO: As part of the TAO and QuO integration, we have

3: push (delmarshaled data)

developed a prototypical sensor-actuator application test-bed

that uses the QuO adaptation engine to adjust the rate of event

generation and the priority of generated events in response to
2: push (demarshaled data) system conditions. As illustrated in Figure 14, this test-bed

can be configured with multiple suppliers that generate events

at similar priorities. Other suppliers can flood the TAO real-
Sensor S
Proxy =
B . pushij | CONEUmEr

" Hon-craical | Manmrs |

Suppllers

Sensor Sensor
Proxy Proxy

Sensor
Proxy

S/ Sappler el Ev Ddsonyl * - -
1\/O vra interrupt:] el . iiE
| Criieal | ooa. 7 Evem | MM .
Aircraft | Supplier Pl Sl :_- ., Consumer
Sensors __| —— .- o —
Flessihing pishi pblE
Supplier L CmEig

Figure 13: A Real-time Event-Driven Avionics System ' T
Figure 14: QuO Control of TAO Real-time Event Channel

tems operating in concert, responding to sensor data events,

and managing functions of the aircraft. These subsystemstime event channel in response to an external stimulus. A QuO
clude functionality, such as the heads-up display and naviggstem condition object recognizes that events are not being
tion subsystems. Sensor data can come from a number of siativered on time and, in response, the QuO delegate of the
sors on the aircraft, such as a global positioning satellite ren-critical supplier reduces the rate at which it is generating
ceivers, or various radar sensors. events. Similarly, the delegate of the non-critical supplier can

11

reduce the priority of the events that it is generating. Colpeen used historically. By preserving the best attributes of
versely, a delegate of the critical supplier can increase the finese approaches and extending their capabilities as efficiently
orities of its events. as possible, we believe a new generation of mission-critical
Our results to date indicate that adaptive QoS-enabled madaptive real-time systems can be realized. For example,
dleware frameworks, such as QuO and TAO, implement thensor-driven systems with hard real-time processing require-
necessary patterns, strategies, and infrastructure needeahdnts can benefit greatly from dynamic scheduling capabili-
build modern, more flexible avionics systems. In the eties, particularly to make effective use of over-provisioned re-
ample illustrated in Figure 13, sensors and actuators are stmirces during non-peak loads.
coupled and largely hidden from one another through sensoAnother valuable feature used in many real-time systems
proxies and event channels. This allows sensors and acisiatatically allocated priority banding [19], which can be en-
tors to be independently reconfigured, upgraded, or replafmded by preemptive thread priorities. Priority banding is es-
dynamically without affecting the other subsystems. Furthgential because higher priority operations can be shielded from
more, the avionics software can automatically adapt to chatige resource demands of lower priority operations. Hybrid
ing missions and operational conditions by making tradeo#fiatic-dynamic scheduling techniques [35] offer a way to pre-
between QoS dimensions, and dynamically reallocating serve the off-line scheduling guarantees for critical operations,
sources. For example, an avionics system may temporavilyile increasing overall system utilization.
sacrifice progress of non-critical operations for increased perAs more real-time systems are interconnected, both with

formance of critical operations. each other and with non-real-time systems, the need to sup-
Integration benefits: This adaptive TAO+QuO architecturePort flexible and configurable scheduling capabilities [19] be-
provides the following combined assets: comes increasingly important. We also believe that emerg-

D i d enf t The int ted midd ing standards for dynamic and adaptive resource management
* ecoudp ing aln en orceme(rjl j ¢ etm egfha?le fr‘fm ale-in [eal—time mission-critical systems,g, the OMG Dynamic
ware can decouple sensors and actuators while ofiering r%%Fleduling RFP [40], should extend corresponding standards

time enforcement, such as that provided by the TAO real-tl%t? static resource management. For example, standards for

ORB. dynamic CPU scheduling in real-time middleware should ex-

e Flexible integration: The architecture readily supportsend the existing static CPU scheduling mechanisms of current
integrating other layers and components, such as dynamicead-time middleware specifications, so that the existing static
source managers and mechanisms, such as RT-ARM [37hmichanisms will interoperate with additional capabilities for
Darwin [38]. dynamic scheduling.

« Application control: Adaptable middleware, such as Finally, important insights can be gleaned from the oper-
the QuUO system, can provide application-level control aAing System and networking research communities. These
adaptation based upon changing mission goals, operatiG@anmunities have developed a plethora of QoS policies and

modes, environmental conditions, and changing QoS traf&chanisms that address enforcement, allocation, and adap-
offs. tation. These research activities have addressed specific is-

sues, such as hierarchical scheduling [41], fair resource alloca-

These capabilities are complementary. The TAO ORB &fs, 142], distributed signaling protocols [43], and admission
ables the decoupling of sensor and actuator functionality whilg, iy policies [44].

guaranteeing real-time delivery of sensor events. Dynamic

resource managers enable access to and reallocation oCtte networking technologies: During the past decade,

sources in response to changing system conditions and misgiefie has been substantial R&D emphasis togh-speed

needs, while the QuO middleware enables the application- argworkingand performance optimizationfor network ele-

subsystem-level control to allocate the resources and functigtents [45] and protocols [3]. These efforts have paid off such

ality to the proper mission or operating mode. that networking products are now available off-the-shelf that
can support Gbps on every po#,g, Gigabit Ethernet and

. ATM switches. Moreover, OC-12 (622 Mbps) ATM connec-
4 Relatlonshlp to EX|St|ng Technlques tivity in WAN backbones are becoming standard and OC-48

and Research Communities (2.4 Gbps) is being deployed for advanced networks such as
Abilene [46] and Advanced Technology Demonstration Net-

We view the techniques discussed in this paper, such aswgrk (ATDnet) [47]. There are already plans to deploy OC-
namic scheduling [19], multi-resource scheduling [39], ad®2 (9.6Gbps) within these backbones as it becomes practical.
adaptive reconfiguration [1], as necessary and appropriate eAdvanced architectures for modern high-performance
tensions to the static resource allocation techniques that hateers and switches are being designed and constructed to

12

support novel approaches for providing QoS. For examplerent R&D focuses outlined above have not, in general, ad-

the Active Network Node (ANN) [48] project at Washingtomressed providing middleware with standard QoS models and
University is using the Washington University Gigabit Switcimterfaces. And very little has been done to provide applica-

(WUGS) [49] switch with the Smart Port Cards (SPC) [50] tiion developers with a standard programming interface that

provide a robust environment to support active networking acahn leverage the underlying advances to provide end-to-end
QoS research and development. QoS guarantees.

QoS architectures and models: The various real-time ap-. Application developers need a standardized framework and

plications demand QoS assurance at the endsystem and'R qfaces which allow for QoS specification and to receive

work resource levels. Providing QoS guarantees at both thgggrantees from the underlying network and QoS infrastruc-

levels ensures true end-to-end QoS. There is extensive .%'rq?' There have been several attempts [57] at designing and

going research at both these levels. AQUA (Adaptive ngplementmg a unified QoS API that leverages the QoS fea-

ity of service Architecture) [51] is a resource-management &+ > available in networks and end-systems. Our QoS API

chitecture, at the endsystem level, in which applications {a'prowd'es a simple mterface for the uSers t0 QoS enable
the OS cooperate to dynamically adapt to variations in?@-e |r.qppllcat|ons, &) hld_es the underlymg platfor_m{protocol
source requirements and availability. AQUA manages tﬁeecmp ISSUes ofaQoS |mpIementat|on., an_d (3) is integrated
CPU and network-I/O resources in an integrated fashionVlQ)th m|ddlewargl|ke CORBA.’ sothe apphcgtlo'n ngt only con-
provide predictable QoS. At the network resource level tnges to benefit from the middleware for distribution but also
current Internet supports only best-effort service, irres:pecttg/%tS QoS guarantees through the standard middleware APIs.

of user expectations. Moreover, application heterogeneity dic-
tates that there be service heterogeneity and service diffegen-
tiation. QoS architectures and models have been proposed to

address the end-to-end QoS challenge. For example, the I%'(/Fer the past decade, individual QoS technologies, such as

has several ongoing efforts directed to defln!ng an arcmt?ﬁﬁerentiated Services [52] or the Resource ReSerVation Pro-
ture and proposing necessary protocols and mfrastructuret(r)((a:—0 | (RSVP) [3], have emerged from previous R&D efforts
guirements. These working groups include Differentiated Ser- I

vices (DiffServ) [52], Integrated Services (IntServ) [53] an nd been applied successfully to specific application domains,

. e uch as audio/video streaming. In isolation, however, these
Integrated Services over Specific Link Layers (ISSLL) [54] . oo yield only a portion of the potential benefits for

:igg{ggzl%rﬂ}g Igitf?é?:rtfiggf s\l\e/:cr)\rllr(lrelg %g’;gnza[ssg]r)o &%seﬁﬁe broad domain of next-generation QoS-enabled distributed
commercial equipment is deployed in order to investigate I pplications and _serwce_sh For exzmplg, m;maglng netvvprk
ferent approaches or implementations supporting the DiffSen?ource reservations, without coordinating these reservations

X Wwith other resource management mechanisms, such as prior-
”?Ode'- These all supportthe aIIocatpn qf resources to provfﬁlzeed thread pools or global middleware resource manage-
different levels of guarantees to applications.

. X X L ment, is insufficient to meet the end-to-end QoS requirements
IntServ is defined in RFC 1633 [56] and is intended to pr8TDnext-generation systems Q q

vide QoS transport over IP internets. IntServ effort uses RSV During the same time period, commercial-off-the-shelf

(R_esource ReSerVation P.rotocol) [3] for_sygnghng resource ‘OTS) middleware, such as CORBA, Java EJB, and COM+,
guirements. IntServ requires flow classification and forward-

) . f i R&D eff li
ing state for each active flow at each router along each o? emerged from previous R&D efforts and been applied

o . uccessfully to reduce the development cost and cycle-time
path._ .ISSLL IS |r_1tended to prqwde QoS transport for IP OV&Ssociated with developing distributed applications. How-
specific networking technologies.

As an alternative, thBifferentiated ServicefiffServ) [4] ever, meeting the increasingly demanding QoS requirements

! . .of next-generation applications is currently beyond the capa-
working group was formed to address perceived scalabil 9 P y bey P

f)t?’fities of conventional COTS middleware solutions. In partic-
and implementation issues associated with IntServ. DiffServ P

aggregates flows into service classes rather than maintaimlr?r’ meeting the QOS requirements of these next-generation
9greg %gtems requires more than higher-level design and program-
|

Concluding Remarks

per flow state. Moreover, QoS requirements are specified q hg techniques, such as encapsulation and separation of con-

of-band, removing the ngcgssity for a signaling pro.tocol sug rns, associated with conventional COTS middleware. In-
as RSVP. Packet classification is based on the setting of a %Vad, it requires an integrated architecture, based on adaptive

bits in the IP header. real-time middleware, network, and application patterns, poli-
Providing QoS to applications: Most existing approachescies, and mechanisms, that can deliver end-to-end QoS support
are highly platform/protocol-specific, however, which maked multiple levels in distributed systems.

it hard to develop and deploy portable applications. The dif-This paper has illustrated how next-generation applications

13

with a variety of QoS requirements can be supported by adapecific requirements of individual domains and applications.
tive middleware, such as QuO and TAQO, in order to meet threover, building these frameworks offers practical insights
QoS requirements end-to-end. To make the example concriett®, additional patterns and techniques for QoS management
and to document our on-going R&D activities in the DARPA adaptive middleware for distributed and embedded systems.
Quorum integration effort [2], we have focused our examples

and empirical benchmarks on the avionics mission compuyt-

ing domain. In our future work, however, we are addressiég ACknOWledgememS

the following research issues to demonstrate the broaderyail})-

plicability of our adaptive multi-level middleware strategy fofVe would like to thank Bryan Doerr and Greg Holtmeyer
QoS-enabled distributed applications: of the Boeing Company for their support of the research de-

scribed in this paper. Both have contributed to our vision of
Leveraging existing QoS research: The operating systemadaptive end-to-end QoS, and have supported our work to-
and networking research communities have produced a we@jifid that vision. We would also like to thank Alia Atlas of
of techniques, architectures, and empirical information f8BN Technologies/GTE Internetworking for her contributions

QoS management issues in the network and OS kernel lgyour research on integrating adaptive middleware layers, de-
ers. These techniques must be used as the basis for develogifiged in Section 3.2.2.

and evaluating middleware QoS management approaches, and

wherever possible built into end-to-end middleware solutions.

Some middleware solutions leverage particular point—:solutigés.mcerenCeS

for QoS management.g, TAO leverages preemptive thready) 3. A zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
scheduling in the OS kernel to enforce static priorities. How- Quality of Service for CORBA ObjectsTheory and Practice of Object
ever, a more comprehensive integration of policies and mech- Systemsvol. 3, no. 1, 1997.

anismsat the middleware leve$ needed. [2] DARPA, “The Quorum Program.” _
http://www.darpa.mil/ito/research/quorum/index.html, 1999.

Identifying general-purpose patterns: To leverage exist- [3] R. Braden et al, “Resource ReSerVation Protocol (RSVP) Version 1
ing QoS research at the OS and networking levels effectively, Functional SpecificationNetwork Working Group RFC 2205

it is necessary to identify the key general-purpose patterns for PP 1-112 Sep 1997.

composinghe lower level mechanisms end-to-end. For exant4] S: Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An

. g . . architecture for differentiated servicedjetwork Information Center
ple, identifying different patterns for co-scheduling network grc 2475 December 1998. N

and CPU resources_ along a requeSt'reSponS? pa}th betwe%] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchronization
clientand a server will be relevant to many applications. These Protocols for Multiprocessors,” iRroceedings of the Real-Time
client-server resource allocation patterns will in turn guide the Systems Symposiugiuntsville, Alabama), December 1988.
creation of flexible middleware that is suited to the commof] C. O'Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, |. Pyarali,

; ; ; and D. Levine, “Evaluating Policies and Mechanisms for Supportin
re.qwremems of a wide range of QoS-enabled client-server ap- Embedded, Real-Time Agplications with CORBA 3.0 "FPmcezzingsg
plications.

of the6t” IEEE Real-Time Technology and Applications Symposium

o . o . Washington DC), IEEE, May 2000.
Identifying domain-specific patterns: Where effective res- (9 _) _ Y _
D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and

olutions of common de-S|g.n.forces ar_e c_aptured b_y geneng Performance of Real-Time Object Request BrokeZamputer

purpose patterns, each individual application domain also pro- cCommunicationsvol. 21, pp. 294-324, Apr. 1998.

duces design forces that are specific to that domain. Q@ object Management GrouRealtime CORBA Joint Revised

requirements such as timing, utilization, or reliability con- SubmissionOMG Document orbos/99-02-12 ed., March 1999.

straints may differ between different application domagng, [9] S.Wang, Y.-C. Wang, and K.-J. Lin, “A General Scheduling

telecommunications and sensor-actuator systems. Additional Framework for Real-Time Systems,” IBEE Real-Time Technology
. . . : and Applications SymposiyEEE, June 1999.

research is needed to identify the key design forces for each

. .] E.D. Jensen, “Eliminating the Hard/Soft Real-Time Dichotomy,”
domain, along with the patterns that can resolve those forcEd) Embedded Systems Programmivg. 7, Oct. 1994

Building flexible QoS frameworks: After identifying the [11] J.P.Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken, “Specifying
_ AL if ; and measuring quality of service in distributed object systems,” in

generalipurpose and domain-specific pattems outlined above, Proceedings of The 1st IEEE International Symposium on
along with the necessary lower-level mechanisms for QoS en- opject-oriented Real-time distributed Computing (ISORG 8gYil
forcement, it is possible to reify these patterns in flexible QoS 1998.
frameworks. Implementing key QoS mechanisms, strategies J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. Karr,
and policies, and embedding these within middleware frame- R-Vanegas, and K. R. Anderson, “Qus aspect languages and their

K llows middleware to support (1) the common require- runtime integration,’Proceedings of the Fourth Workshop on
WOrkKs, a W. pp b q Languages, Compilers and Runtime Syste,s for Sclable Comppnents
ments of a wide range of QoS-enabled applications and (2) the May 1998.

14

(23]

[14]

[15]

[16]

(17]

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

P. Pal, J. Loyall, R. Schantz, J. Zinky, , R. Shapiro, and J. Megquier, [30]
“Using qdl to specify gos aware distributed (quo) application
configuration,” inProceedings of The 3rd IEEE International

Symposium on Object-oriented Real-time distributed Computing
(ISORC 00)to appear March 2000.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service, Pioceedings of
OOPSLA '97 (Atlanta, GA), ACM, October 1997.

A. Network and I. Services, “National Tele-lmmersion Initiative.”
http://www.advanced.org/tele-immersion.

[31]

(32]

J. Lanier, “Tele-lmmersion: The Ultimate QoS-Critical Application,” in
First Internet2 Joint Applications/ Engineering QoS Workshdpy
1998.

D. L. Levine, C. D. Gill, and D. C. Schmidt, “Dynamic Scheduling
Strategies for Avionics Mission Computing,” Proceedings of the 17th
IEEE/AIAA Digital Avionics Systems Conference (DAS@y. 1998.

B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt,
“Adaptive Scheduling for Real-time, Embedded Information Systemsj34)
in Proceedings of the 18tHiEEE/AIAA Digital Avionics Systems
Conference (DASCPct. 1999.

C. D.Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Servitag
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middlewar2000.

(33]

[35]

B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures fro[ge]
Execution Dependencies,” Proceedings of the 11th Annual Software
Technology Conferencépr. 1999.

G. Kiczales, “Beyond the black box: Open implementatidBEE
Software 1996.

R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and D. E.
Bakken, “Quo’s runtime support for quality of service in distributed
objects,”Proceedings of Middleware 98, the IFIP International
Conference on Distributed Systems Platform and Open Distributed
Processing September 1998.

R. E. Schantz, J. A. Zinky, D. A. Karr, D. E. Bakken, J. Megquier, and

J. P. Loyall, “An object-level gateway supporting integrated-property [39]
quality of service,” inProceedings of The 2nd IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC 99)May 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@Esign Patterns:
Elements of Reusable Object-Oriented Softw&eading, MA:
Addison-Wesley, 1995. [40]

C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for [41]
Real-time Distributed Object Computing Middleware,”Rnoceedings

of the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

Object Management Groufphe Common Object Request Broker:
Architecture and Specificatio.3 ed., June 1999.

A. Gokhale and D. C. Schmidt, “Optimizing a CORBA 11OP Protocol
Engine for Minimal Footprint Multimedia Systemslournal on 43]
Selected Areas in Communications special issue on Service Enabling
Platforms for Networked Multimedia Systemsl. 17, Sept. 1999.

I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of
Real-time ORBs,” irProceedings of th&t” Conference on
Object-Oriented Technologies and Systg(Ban Diego, CA),
USENIX, May 1999.

D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,” in
Proceedings of the™d C++ Conference (San Francisco, California), [46]
pp. 87-102, USENIX, April 1990.

[37]

(38]

[42]

[44]

[45]

15

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokeisyirnal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Interneto appear 2000.

F. Kuhns, D. C. Schmidt, C. O’'Ryan, and D. Levine, “Supporting
High-performance 1/O in QoS-enabled ORB Middlewat€luster
Computing: the Journal on Networks, Software, and Applications
2000.

Z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach to
High Performance Network Interface Design: Protected DMA and
Other Techniques,” iffroceedings of INFOCOM '9{Kobe, Japan),

pp. 179-187, IEEE, April 1997.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework for
Dynamically Configuring Extensible Distributed Communication
Systems,IEE/BCS Distributed Systems Engineering Journal (Special
Issue on Configurable Distributed Systeyws). 2, pp. 280-293,
December 1994.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume New York, NY: Wiley & Sons, 2000.

D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of
Sensor-Based Control Systems,'Real-Time Programming

(W. Halang and K. Ramamritham, eds.), Tarrytown, NY: Pergamon
Press, 1992.

C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time EnvironmentJACM, vol. 20, pp. 4661, January
1973.

J. Huang et al., “RT-ARM: A real-time adaptive resource management
system for distributed mission-critical applications,"Workshop on
Middleware for Distributed Real-Time Systems, RTSS®ah

Francisco, California), IEEE, 1997.

P. Chandra and et. al, “Darwin: Resource Management for
Value-Added Customizable Network Service,"Sixth IEEE
International Conference on Network Protocols (ICNP’9@ustin,
TX), IEEE, Oct. 1998.

J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S.
Lauzac and B. Kannikeswaran and K. Schwan and W. Zhao and R.
Bettati, “RT-ARM: A real-time adaptive resource management system
for distributed mission-critical applications,” Workshop on

Middleware for Distributed Real-Time Systems, RTSI®ah

Francisco, California), IEEE, 1997.

Object Management Groupynamic SchedulingDMG Document
orbos/99-03-32 ed., March 1999.

Z.Deng and J. W.-S. Liu, “Scheduling Real-Time Applications in an
Open Environment,” ilProceedings of the 18th IEEE Real-Time
Systems SymposiutEEE Computer Society Press, Dec. 1997.

H.-Y. Tyan and J. C. Hou, “A rate-based message scheduling
paradigm,” inFourth International Workshop on Object-Oriented,
Real-Time Dependable SystentEE, January 1999.

P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. Ching Liaw, T.
Lyon, and G. Minshall, “Ipsilon’s General Switch Management
Protocol Specification Version 2.0,” Standards Track RFC 2297,
Network Working Group, March 1998.

A. Mehra, A. Indiresan, and K. G. Shin, “Structuring Communication
Software for Quality-of-Service Guaranteed§EE Transactions on
Software Engineeringrol. 23, pp. 616—634, Oct. 1997.

C. P. et al., “A fifty gigabit per second ip routetEEE Journal of
Transactions on Networkingol. 6, pp. 237-248, June 1998.

U. C. for Advanced Internet Development, “Abilene is an advanced
backbone for the Internet2 project.” http://www.internet2.edu/abilene/.

[47] ATD, “Advanced Technology Demonstration Network.”
http://www.atd.net/.

[48] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner,
“A Scalable, High Performance Active Network Nod&EEE Network
Magazine vol. 13, January/February 1999.

[49] J. Turner and N. Yamanaka, “Architectural Choices in Large Scale
ATM Switches,”ICICE Transactions1998.

[50] W. N. Eatherton and T. Aramaki, “SPC Specification,” Applied
Research Lab, Working Notes ARL-WN-98-02, Washington
University, St. Louis, 1998.

[51] R.F. K. Lakshman, Raj Yavatkar, “Integrated CPU and Network-1/O
QoS Management in an Endsystem,Aroceedings of the IFIP Fifth
International Workshop on Quality of Service (IWQoS ;a997.

[52] IETF, “Differentiated services (diffserv).”
http://www.ietf.org/html.charters/diffserv-charter.html, 2000.

[53] IETF, “Integrated services (intserv).”
http://www.ietf.org/html.charters/intserv-charter.html, 2000.

[54] 1. S. over Specific Link Layers (issll), “IETF.”
ttp://www.ietf.org/html.charters/issll-charter.html.

[55] I. Q. W. G. Draft, “QBone Architecture (v1.0),” tech. rep., Internet2,
August 1999.

[56] B. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture,’Network Information Center RFC 1633une 1994.

[57] B.Riddle, A. Adamson, “A QoS API Proposal.” Pre-Workshop Draft,
May 1998.
http://www.internet2.edu/qos/may98Workshop/html/apiprop.html.

16

