

R&D Advances in Middleware for
Distributed Real-time and Embedded Systems

Douglas C. Schmidt

Electrical & Computer Engineering Dept.
University of California, Irvine
Irvine, CA 92697-2625, USA

schmidt@uci.edu

Introduction
Distributed real-time and embedded (DRE) systems are
playing an increasingly important role in modern
application domains. There are many types of DRE
systems, but they have one thing in common: the right
answer delivered too late becomes the wrong answer.
Providing the right answer at the right time is clearly
crucial for life-critical military DRE systems, such as
those that defend ships against missile attacks or that
control unmanned combat air vehicles over wireless links.
It is also crucial for safety-critical civilian DRE systems,
such as control systems that regulate the temperature of
coolant in a nuclear reactor or maintain safe operation of
steel manufacturing machinery.

The affordability of certain types of distributed systems,
such as two and three-tier business systems, can often be
enhanced by using commercial-off-the-shelf (COTS)
technologies. Today’s efforts aimed at integrating COTS
into mission-critical DRE systems, however, focus mainly
on initial non-recurring acquisition costs and do not
reduce recurring software lifecycle costs. Likewise, many
COTS products lack support for controlling key quality of
service (QoS) properties, such as predictable latency,
jitter, and throughput; scalability; dependability; and
security. The inability to control these QoS properties
with sufficient confidence compromises DRE system
adaptability and assurability, e.g., minor perturbations in
conventional COTS products can cause failures that lead
to loss of life and property.

Conventional COTS software has historically been
unsuitable for use in mission-critical DRE systems due to
its either being:
1. Flexible and standard, but incapable of guaranteeing

stringent QoS demands, which limits system
assurability or

2. Partially QoS-enabled, but inflexible and non-
standard, which limits system adaptability and
affordability.

As a result, the rapid progress in COTS software for
mainstream business systems has not yet become as
broadly applicable for mission-critical DRE systems.
Until this problem is resolved effectively, DRE system
integrators and end-users will not be able to take

advantage of future advances in COTS software in a
dependable, timely, and cost effective manner.

This article describes key R&D efforts that are creating
the new generation of assurable, adaptable, and affordable
COTS software technologies to meet the stringent
demands of mission-critical DRE systems. Although the
use of COTS software in DRE systems has been limited
in scope and domain, future prospects will be much
brighter as a result of the work described in this article.

Technical Challenges & Solution Approaches

Some of the most challenging requirements for new and
planned DRE systems can be characterized as follows:
• Multiple QoS properties must be satisfied in real-time
• Different levels of service are appropriate under

different configurations, environmental conditions,
and costs

• The levels of service in one dimension must be
coordinated with and/or traded off against the levels of
service in other dimensions to meet mission needs and

• The need for autonomous and time-critical application
behavior necessitates a flexible distributed system
substrate that can adapt robustly to dynamic changes
in mission requirements and environmental conditions.

Although conventional COTS software cannot meet all of
these requirements, today’s economic and organizational
constraints—along with increasingly complex
requirements and competitive pressures—are making it
infeasible to built complex DRE system software entirely
from scratch. Thus, there is a pressing need to develop,
validate, and ultimately standardize a new generation of
adaptive and reflective middleware [Bla99] technologies
that can support stringent DRE system functionality and
QoS requirements.

Middleware [Sch01] is reusable systems software that
functionally bridges the gap between
1. The end-to-end functional requirements and mission

doctrine of applications and
2. The lower-level underlying operating systems and

network protocol stacks.
Middleware therefore provides capabilities whose quality
and QoS are critical to DRE systems.

Adaptive middleware [Loy01] is software whose
functional and QoS-related properties can be modified
• Statically, e.g., to reduce footprint, leverage

capabilities that exist in specific platforms, enable
functional subsetting, and minimize hardware and
software infrastructure dependencies or

• Dynamically, e.g., to optimize system responses to
changing environments or requirements, such as
changing component interconnections, power-levels,
CPU/network bandwidth, latency/jitter, and
dependability needs.

In mission-critical DRE systems, adaptive middleware
must make these modifications dependably, i.e., while
meeting stringent end-to-end QoS requirements.

Reflective middleware [Bla99] goes a step further to
permit automated examination of the capabilities it offers,
and to permit automated adjustment to optimize those
capabilities. Reflective middleware therefore supports
more advanced adaptations that can be performed
autonomously based on conditions within the system, in
the system's environment, or in DRE system policies
defined by operators and administrators.

Middleware Layers and R&D Efforts
Just as networking protocol stacks can be decomposed
into multiple layers, middleware can also be decomposed
into multiple layers, such as those shown in Figure 1.

Figure 1. Layers of Middleware & Their Context

Each of these middleware layers is described below, along
with a summary of key R&D efforts at each layer that are
helping to evolve the ability of middleware to meet the
stringent QoS demands of DRE systems.

Host infrastructure middleware encapsulates and
enhances native OS communication and concurrency
mechanisms to create portable and reusable network
programming components, such as reactors, acceptor-
connectors, monitor objects, active objects, and
component configurators [Sch00]. These components
abstract away the accidental incompatibilities of

individual operating systems, and help eliminate many
tedious, error-prone, and non-portable aspects of
developing and maintaining networked applications via
low-level OS programming API, such as Sockets or
POSIX Pthreads.

An example of host infrastructure middleware R&D that
is relevant for DRE systems is the Open Virtual Machine
(OVM) project <http://www.ovmj.org> conducted by
researchers at Purdue, University of Maryland, and SUNY
Oswego as part of the DARPA ITO PCES program. OVM
is an open-source Real-time Java Virtual Machine that
implements the Real-time Specification for Java (RTSJ)
[Bol00]. The RTSJ is a set of extensions to Java that
provide a largely platform-independent way of executing
code by encapsulating the differences between real-time
operating systems and CPU architectures. The key
features of RTSJ include scoped and immortal memory,
real-time threads with enhanced scheduling support,
asynchronous event handlers, and asynchronous transfer
of control within a thread.

The OVM virtual machine is written entirely in Java and
its architecture emphasizes customizability and pluggable
components. Its implementation strives to maintain a
balance between performance and flexibility, allowing
users to customize the implementation of operations such
as message dispatch, synchronization, field access, and
speed. OVM allows dynamic updates of the
implementation of instructions of a running VM.
Although RTSJ VMs like OVM or TimeSys Jtime are
relatively new, they have generated tremendous interest in
the R&D and DRE systems integrator communities due to
their potential for reducing software development and
evolution costs.
Distribution middleware defines higher-level distributed
programming models whose reusable APIs and
mechanisms automate and extend the native OS network
programming capabilities encapsulated by host
infrastructure middleware. Distribution middleware
enables developers to program distributed applications
much like stand-alone applications, i.e., by invoking
operations on target objects without hard-coding
dependencies on their location, programming language,
OS platform, communication protocols and interconnects,
and hardware characteristics. At the heart of distribution
middleware are QoS-enabled object request brokers
(ORBs), such as CORBA, COM+, and Java RMI. These
ORBs allow objects to interoperate across networks
regardless of the language in which they were written or
the OS platform on which they are deployed.

An example of distribution middleware R&D that is
relevant for DRE systems is the TAO project
<http://www.cs.wustl.edu/~schmidt/TAO.html> [Sch98]
conducted by researchers Washington University, St.
Louis and the University of California, Irvine as part of
the DARPA ITO Quorum program. TAO is an open-

source Real-time CORBA ORB [Omg01] that allows
DRE applications to reserve and manage
• Processor resources via thread pools, priority

mechanisms, intra-process mutexes, and a global
scheduling service for real-time systems with fixed
priorities

• Communication resources via protocol properties and
explicit bindings to server objects using priority bands
and private connections and

• Memory resources via buffering requests in queues
and bounding the size of thread pools.

TAO is implemented with reusable frameworks from the
ACE [Sch02] host infrastructure middleware toolkit
<http://www.cs.wustl.edu/~schmidt/ACE.html>. ACE and
TAO are mature examples of middleware R&D transition,
having been used in hundreds of DRE systems, including
telecom network management and call processing, online
trading services, avionics mission computing, software
defined radios, radar systems, surface mount “pick and
place” systems, and hot rolling mills.
Common middleware services augment distribution
middleware by defining higher-level domain-independent
components that allow application developers to
concentrate on programming application logic, without
the need to write the “plumbing” code needed to develop
distributed applications by using lower level middleware
features directly. Whereas distribution middleware
focuses largely on managing end-system resources in
support of an object-oriented distributed programming
model, common middleware services focus on allocating,
scheduling, and coordinating various end-to-end resources
throughout a distributed system using a component
programming and scripting model. Developers can reuse
these services to manage global resources and perform
recurring distribution tasks, such as event notification,
logging, persistence, real-time scheduling, fault tolerance,
and transactions, that would otherwise be implemented in
an ad hoc manner by each application or integrator.

An example of common middleware services R&D that is
relevant for DRE systems is the QuO project
<http://www.dist-systems.bbn.com/tech/QuO> [Loy01]
conducted by researchers at BBN Technologies as part of
the DARPA ITO Quorum and PCES programs. QuO is a
set of open-source middleware services based on the
layered middleware architecture shown in Figure 2. The
QuO architecture decouples DRE middleware and
applications along the following two dimensions:
• Functional paths, which are flows of information

between client and remote server applications. In
distributed systems, middleware ensures that this
information is exchanged efficiently, predictably,
scaleably, dependably, and securely between remote
peers. The information itself is largely application-
specific and determined by the functionality being
provided (hence the term “functional path”).

• QoS paths, which are responsible for determining how
well the functional interactions behave end-to-end

with respect to key DRE system QoS properties, such
as
1. How and when resources are committed to

client/server interactions at multiple levels of DRE
systems

2. The proper application and system behavior if
available resources do not satisfy the expected
resources and

3. The failure detection and recovery strategies
necessary to meet end-to-end dependability
requirements.

Figure 2. The QuO Architecture

The QuO middleware is responsible for collecting,
organizing, and disseminating QoS-related meta-
information needed to monitor and manage how well the
functional interactions occur at multiple levels of DRE
systems. It also enables the adaptive and reflective
decision-making needed to support non-functional QoS
properties robustly in the face of rapidly changing
application requirements and environmental conditions,
such as local failures, transient overloads, and dynamic
functional or QoS reconfigurations.
Domain-specific middleware services are tailored to the
requirements of particular DRE system domains, such as
avionics mission computing, radar processing, online
financial trading, or distributed process control. Unlike
the previous three middleware layers—which provide
broadly reusable “horizontal” mechanisms and services—
domain-specific middleware services are targeted at
vertical markets. From both a COTS and R&D
perspective, domain-specific services are the least mature
of the middleware layers, due in part to the historical lack
of distribution middleware and common middleware
service standards needed to provide a stable base upon
which to create domain-specific middleware services.
Since they embody knowledge of a domain, however,
domain-specific middleware services have the most
potential to increase the quality and decrease the cycle-
time and effort that integrators require to develop
particular classes of DRE systems.

An example of domain-specific middleware services
R&D that is relevant for DRE systems is the Boeing Bold
Stroke architecture [Sha98], which has been used as the
open experimentation platform on many DARPA ITO
programs. Bold Stroke is an open architecture for mission
computing avionics capabilities, such as navigation,
heads-up display management, weapons targeting and
release, and airframe sensor processing. The domain-
specific middleware services in Bold Stroke are layered
upon COTS processors (PowerPC), network interconnects
(VME), operating systems (VxWorks), infrastructure
middleware (ACE), distribution middleware (TAO), and
common middleware services (QuO and the CORBA
Event Service).

Recent Progress and Future Needs
Significant progress has occurred during the last five
years in DRE middleware research, development, and
deployment, stemming in large part from the following
advances:

• Years of research, iteration, refinement, and
successful use – The use of middleware and DOC
middleware is not new [Sch01]. Middleware concepts
emerged alongside experimentation with the early
Internet (and even its predecessor ARPAnet), and
DOC middleware systems have been continuously
operational since the mid 1980’s, with the advent of
BBN’s Cronus and Corbus systems. Over that period
of time, the ideas, designs, and most importantly, the
software that incarnates those ideas have had a chance
to be tried and refined (for those that worked), and
discarded or redirected (for those that didn’t). This
iterative technology development process takes a good
deal of funding and time to get right and be accepted
by user communities, and a good deal of patience to
stay the course. When this process is successful, it
often results in standards that codify the boundaries,
and patterns and frameworks that reify the knowledge
of how to apply these technologies, as described in the
following bullets.

• The maturation of standards – Over the past decade,
middleware standards have been established and have
matured considerably with respect to DRE
requirements. For instance, the OMG has adopted the
following specifications in the past three years:
o Minimum CORBA, which removes non-essential

features from the full OMG CORBA specification to
reduce footprint so that CORBA can be used in
memory-constrained embedded systems.

o Real-time CORBA, which includes features that
allow applications to reserve and manage network,
CPU, and memory resources predictably end-to-end.

o CORBA Messaging, which exports additional QoS
policies, such as timeouts, request priorities, and
queueing disciplines, to applications.

o Fault-tolerant CORBA, which uses entity
redundancy of objects to support replication, fault
detection, and failure recovery.

 Multiple interoperable and robust implementations of
these CORBA capabilities and services are now
available. Moreover, emerging standards such as
Dynamic Scheduling Real-Time CORBA, the Real-
Time Specification for Java, and the Distributed Real-
Time Specification for Java are extending the scope of
open standards for a wider range of DRE applications.

• The dissemination of patterns and frameworks – A
substantial amount of R&D effort during the past
decade has focused on the following means of
promoting the development and reuse of high quality
middleware technology:
o Patterns codify design expertise that provides time-

proven solutions to commonly occurring software
problems that arise in particular contexts [Gam95,
Sch00]. Patterns can simplify the design,
construction, and performance tuning of DRE
applications by codifying the accumulated expertise
of developers who have successfully confronted
similar problems before. Patterns also elevate the
level of discourse in describing software
development activities to focus on strategic
architecture and design issues, rather than just the
tactical programming and representation details.

o Frameworks are concrete realizations of groups of
related patterns [John97]. Well-designed
frameworks reify patterns in terms of functionality
provided by the middleware itself, as well as
functionality provided by an application.
Frameworks also integrate various approaches to
problems where there are no a priori, context-
independent, optimal solutions. Middleware
frameworks, such as OVM, ACE, TAO, and QuO,
can include strategized selection and optimization
patterns so that multiple independently-developed
capabilities can be integrated and configured
automatically to meet the functional and QoS
requirements of particular DRE applications.

• Sustained government R&D investments – Much of

the pioneering R&D on middleware patterns and
frameworks was conducted over the past five years in
the DARPA ITO Quorum and PCES programs. These
programs focused heavily on CORBA and Java open
systems middleware and yielded many results that
transitioned into standardized service definitions and
implementations for the Real-time and Fault-tolerant
CORBA specification and commercialization efforts.
Quorum and PCES are examples of how focused
government R&D efforts can leverage its results by
exporting them into, and combining them with, other
on-going public and private activities that also used a
common open middleware substrate. Prior to the
viability of standards-based open middleware

platforms, these same R&D results would have been
buried within custom or proprietary systems, serving
only as an existence proof, rather than as the basis for
fundamentally reshaping the R&D and integrator
communities.

Due to the advances described above, standards-based
middleware has now been successfully demonstrated and
deployed in a number of mission-critical DRE systems,
such as avionics mission computing, software defined
radios, and submarine information systems. Since COTS
middleware technology has not yet matured to cover the
realm of large-scale, dynamically changing systems,
however, these middleware applications have been
relatively small-scale and statically configured DRE
systems.

To satisfy the highly application- and mission-specific
QoS requirements in network-centric DRE “system of
system” environments, considerable additional R&D
efforts are required to enhance middleware, particularly
common and domain-specific middleware services. If
these efforts are successful, future middleware
technologies will be able to control individual and
aggregate resources used by multiple system components
at multiple system levels to dependably manage
communication bandwidth, scheduling and allocation of
DRE system artifacts, dependability, and security.

Concluding Remarks
Middleware has become strategic to developing effective
distributed real-time and embedded (DRE) systems by
bridging the gap between application programs and the
underlying operating systems and network protocol stacks
to provide reusable services whose qualities are critical to
DRE systems. The economic payoffs of middleware R&D
stem from moving standardization up several levels of
abstraction by maturing DRE software technology
artifacts, such as middleware frameworks, protocols,
service components, and patterns, so that they will
ultimately be available for COTS acquisition and
customization. Given the proper advanced R&D context
and an effective process for transitioning R&D results, the
COTS middleware market will adapt, adopt, and
implement the types of robust hardware and software
capabilities needed for mission-critical DRE systems.

As a result of the R&D efforts described in this article—
and many other similar efforts throughout academia and
industry—the next generation of middleware will be able
to adapt effectively to dynamically changing conditions
for the purpose of utilizing the available computer and
network infrastructure to the highest degree possible in
support of application needs. Additional information on
DRE middleware R&D efforts are available at
http://www.cs.wustl.edu/~schmidt.

References
 [Bla99] Blair, G.S., F. Costa, G. Coulson, H. Duran, et al,
“The Design of a Resource-Aware Reflective Middleware
Architecture”, Proceedings of the 2nd International
Conference on Meta-Level Architectures and Reflection,
St.-Malo, France, Springer-Verlag, LNCS, Vol. 1616,
1999.

[Bol00] Bollella, G., Gosling, J. “The Real-Time Spec-
ification for Java,” Computer, June 2000.

[Gam95] Gamma E., Helm R., Johnson R., Vlissides J.,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[John97] Johnson R., “Frameworks = Patterns + Compon-
ents”, Communications of the ACM, Volume 40, Number
10, October, 1997.

[Loy01] Loyall JL, Gossett JM, Gill CD, Schantz RE,
Zinky JA, Pal P, Shapiro R, Rodrigues C, Atighetchi M,
Karr D. “Comparing and Contrasting Adaptive Middle-
ware Support in Wide-Area and Embedded Distributed
Object Applications”. Proceedings of the 21st IEEE
International Conference on Distributed Computing
Systems (ICDCS-21), April 16-19, 2001, Phoenix,
Arizona.

[Omg01] Object Management Group, “The Common Ob-
ject Request Broker: Architecture and Specification,”
Revision 2.6, OMG Technical Document, December,
2001.
[Sch98] Schmidt D., Levine D., Mungee S. “The Design
and Performance of the TAO Real-Time Object Request
Broker”, Computer Communications Special Issue on
Building Quality of Service into Distributed Systems,
21(4), 1998.

[Sch00] Schmidt D., Stal M., Rohnert H., Buschmann F.,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Wiley and Sons,
2000.

[Sch01] Schantz R., Schmidt D., “Middleware for Dist-
ributed Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of Software
Engineering, Wiley & Sons, 2001.

[Sch02] Schmidt D. and Huston S., “C++ Network
Programming: Mastering Complexity with ACE and
Patterns,” Addison-Wesley, 2002.

[Sha98] Sharp, David C., “Reducing Avionics Software
Cost Through Component Based Product Line Devel-
opment”, Software Technology Conference, April 1998.

	Introduction
	Technical Challenges & Solution Approaches
	Middleware Layers and R&D Efforts
	Recent Progress and Future Needs
	Concluding Remarks

