Experience Using Design Patternsto Develop
Reuseable Object-Oriented Communication Software

Douglas C. Schmidt
schmidt@cs.wustl.edu
http://www.cswustl.edu/~schmidt/
Department of Computer Science
Washington University, St. Louis 63130
(TEL) 314-935-7538, (FAX) 314-935-7302

Thisarticlewill appear inthe Communicationsof the ACM
Specia Issue on Object-Oriented Experiences, Vol. 38, No.
10, October, 1995. Section 2 illustrates an example pattern
description that isa synopsis of material from [1]. Section 3
is new materia that summarizes the lessons learned while
applying a design pattern-based reuse strategy on production
large-scale distributed systems being developed on severa
commercia systems.

Abstract

Design patterns hel p to enhance software quality by address-
ing fundamental challenges in large-scale system develop-
ment. These challenges include communication of archi-
tectural knowledge among devel opers, accommodating new
design paradigms or architectural styles, and avoiding de-
velopment traps and pitfalls that are usually learned only
by experience. This article describes lessons learned from
applying a design pattern-based reuse strategy to develop
object-oriented communication software frameworksfor sev-
eral production distributed systems. Design patterns are in
danger of becoming yet another buzzword. This article at-
temptsto replacethehypewithinsi ghtsand recommendations
gained from several years of experience.

1 Introduction

Despite dramatic increases in network and host performance
it remains difficult to design, implement, and reuse commu-
nication software for complex distributed systems. Exam-
plesof these systemsincludegloba persona communication
systems, network management platforms, enterprise medical
imaging systems, and real-time market data monitoring and
analysis systems. In addition, it is often hard to directly
reuse existing a gorithms, detailed designs, interfaces, or im-
plementations in these systems due to the growing hetero-
geneity of hardware/software architectures and diversity of
operating system platforms.

Design patterns[2] are a promising technique for achiev-
ing widespread reuse of software architectures. Design pat-
terns capture the static and dynamic structures and collabora
tions of componentsin successful solutionsto problems that

arise when building software in domains like business data
processing, telecommunications, graphical user interfaces,
databases, and distributed communi cation software. Petterns
aid thedevel opment of reusable componentsand frameworks
by expressing the structure and collaboration of participants
in a software architecture a a level higher than (1) source
code or (2) object-oriented design models that focus on in-
dividual objects and classes. Thus, patterns facilitate reuse
of software architecture, even when other forms of reuse are
infeasible (e.g., due to fundamenta differences in operating
system features [3]).

This article describes how design patterns are being ap-
plied on anumber of large-scale commercia distributed sys-
tems. Patterns have been used on these projects to enable
widespread reuse of communication software architectures,
developer expertise, and object-oriented framework compo-
nents. These systems include the system control segment
for the Motorola Iridium global personal communications
system [4]; afamily of network monitoring applications for
Ericsson telecommunication switches [3]; and a system for
transporting multi-megabytemedical imagesover high-speed
ATM networks[5] being devel oped at BJC health system and
Washington University School of Medicine (BJC/WUSM).
This article aso presents ways to avoid common traps and
pitfalls of applying design patterns in large-scale software
development processes.

The remainder of thisarticleisorganized asfollows: Sec-
tion 2 illustrates a design pattern that appears frequently in
event-driven communication softwareframeworks; Section 3
summarizes our experiences (both positiveand negative) ap-
plying a design pattern-based reuse strategy in severd large-
scale commercia distributed systems; and Section 4 outlines
pattern-related topics that will be the focus of considerable
research activitiesin the next few years.

2 ExampleDesign Pattern: theReactor

This section describes the Reactor pattern. This pattern was
identified while developing reusable event-driven commu-
nication software at Ericsson, Motorola, and BJC/WUSM.
Portions of the material below was culled from documenta
tion used on these projects.

Design patterns have been described using several formats
[2, 6, 7]. The format used below is based on the work of
Gammaet a. [2]; it contains the following parts:

¢ Theintent of the pattern

e The design forces that motivate the pattern

¢ The solutionto these forces

¢ The structure and roles of classes in the solution

¢ The responsibilitiesand collaborations among classes

e The positive and negative consequences of using the
pattern

o |mplementation guidance
¢ Example source code!
o Referencesto related patterns

21

The Reactor pattern dispatches handlers automatically when
events occur from multiple sources. This pattern smplifies
event-driven applications by decoupling event demultiplex-
ing and event handler dispatching from application services
performed in response to events.

I ntent

2.2 Moaotivation

Communication software must respond to events generated
from multiple sources. For example, network management
applicationsfor monitoring and controlling space vehiclesin
the Motorolalridium satellite constel lation receive traps sent
by HP OpenView agents, telemetry data sent viaCORBA re-
quests, and user interface events generated by Motif. These
events arrive on multiple I/O handles that identify resources
(such as network connections) managed by an operating sys-
tem. Input events from peers may arrive simultaneously on
multiple handles. Therefore, single-threaded software must
not block indefinitely reading from any individual 1/O han-
dle. Blocking can significantly delay the response time for
handling events from peers associated with other handles.

One way to develop this type of event-driven software is
to use multi-threading. In this approach, a separate thread
is spawned for every connected peer. Each thread blocks
onar ead system cal. A thread unblocks when it receives
an event from its associated peer. At this point, the event
is processed within the thread. The thread then re-blocks
awaiting subsequent input fromr ead.

There are several drawbacks to using multi-threading for
handling events in communication software:

o threading may require complex concurrency control
schemes;

o threading may lead to poor performance due to context
switching, synchronization, and data movement;

1Due to space limitations the sample code has been omitted from this
article. See [1] for acomplete exampleof the Reactor pattern.

¢ threading may not be available on an OS platform.

Often, a more convenient and portable way to develop
event-driven servers is to use the Reactor pattern. The Re-
actor pattern manages a single-threaded event loop that per-
forms event demultiplexing and event handler dispatching in
response to events from multiple sources. The Reactor pat-
tern combinesthe simplicity and efficiency of single-threaded
event loops with the extensibility offered by object-oriented
programming.

2.3 Applicability
Use the Reactor pattern when:

e One or more events may arrive concurrently from mul-
tiple sources, and blocking or continuoudy polling for
events on any individual source of eventsisinefficient;

e each individual event handler possesses the following
characterigtics:

— it exchanges fixed-sized or bounded-sized mes-
sages with its peers without requiring blocking
1/0;

— it processes each message it receives within arel-
atively short period of time;

e using multi-threading to implement event demultiplex-
ingiseither:

— infeasible— dueto lack of multi-threading support
on an OS platform;

— undesirable — due to poor performance on uni-
processors or due to the need for overly complex
concurrency control schemes;

— redundant — due to the use of multi-threading at
higher levels of an application’sarchitecture.

24 Structure

The structure of the Reactor pattern isillustrated in the fol-
lowing Booch [8] class diagram:

-

S

A
v dispatch()
) register_handler(h, type) \

/ ST T

(remove_handler(h, type) J Event Handler \\%\
__ - T —— (_— N\
1 S~ \ handle event(type))
- < (/ get_handle() //
c \
wy Handles J A

!

% =
% T=-TN
select (handles) s i Concrete \
foreach h in handles loo N \
h->handle_event (evexrl)t type) N W) Event |
- 2 - -, 5
end loop .. «.,\'oy « Handler
v)} “
\ %,
\ _ L
\ BN BN
/ \
- Reactor N

In Booch notation dashed clouds indicate classes, an in-
scribed” A" indi catesan abstract class, directed edgesindicate
inheritance rel ationships between classes, and an undirected
edge with a small bullet a one end indicates a composition
rel ation between two classes.

25 Participants

The participantsin the Reactor pattern includethe following:

e Handles

— Handles identify resources (such as network con-
nections, open files, and synchronization objects)
that are managed by an operating system.

e Reactor

— Defines an interface for registering, removing,
and dispatching Event Handl er objects. An
implementation of the React or interface pro-
vides a set of application-independent event de-
multiplexing and dispatching mechanisms. These
mechanisms dispatch application-specific Event
Handl er s inresponse to events occuring on one
or more Handl es.

o Event Handler

— Specifies an interface used by the React or to
dispatch callback methods defined by objects that
are pre-registered to handle certain types of events
(such as input events, output events, and signas).

e Concrete Event Handler

— Implements the customized callback method(s)
that process eventsin an applicati on-specific man-
ner.

2.6 Collaborationsamong Participants

e Sources of events (such as network adaptors, file sys-
tems, and transaction managers) communicate with the
React or viaHandl es.

e Developers subclass Event Handl ers to imple-
ment application-specific event processing. When an
Event Handl er subclassobjectisregisteredwiththe
React or the application indicatesthe type of event(s)
(e.g., input event, output event, signal event, etc.) this
Event Handl er wants the React or to notify it
about.

e To bind the React or with Handl es, a subclass of
Event Handl er must override the get _handl e
method. Hence, when an Event Handl er sub-
class object is registered with the React or the ob-
ject’'s Handl e is obtained by invoking the Event
Handl er: : get _.handl e method. The React or
then combines this Handl e with other registered

Event Handl er s and waits for events to occur on
theHand! es.

e TheReact or triggersEvent Handl er methodsin
responseto eventsontheHandl er s it monitors. When
events occur, the React or uses the Handl es acti-
vated by the events as keys to locate and dispatch the
appropriateEvent Handl er methods. This collabo-
ration is structured using the method callbacks depicted
in the following object interaction diagram:

callback :
main Concrete reactor :

program Event_Handler Reactor : Handles
|

|
! Reactor() J

INITIALIZE

. register_handler(callback) }
REGISTER HANDLER = >

A

|
EXTRACT HANDLE ge[*handle() }

dispatch()

RUN EVENT LOOP

select()
WAIT FOR EVENTS

handle_event(event_type
DISPATCH HANDLER(S) - = (_type)

—-————

Thehandl e_event methodiscaledbytheReact or

to perform appli cation-specific functionality in response
toan event. Thetypeof theevent that occurredispassed
as a parameter to the method.

2.7 Consequences

The Reactor pattern has the following benefits:

¢ Itimprovesthemodularity, reusability, and configurabil -
ity of event-driven application software by decoupling
appli cation-independent mechanisms from application-
specific processing policies.

o Itimproves application portability by alowingitsinter-
face to be reused independently of the underlying OS
system calls that perform event demultiplexing.

e It provides applications with coarse-grained concur-
rency control that serializes the invocation of Event
Handl er s and minimizes the need for more compli-
cated synchronization or locking within an application
process.

The Reactor pattern has the following drawbacks:

¢ Event Handlersarenot preempted whilethey are execut-
ing. Therefore, a handler should not perform blocking
I/0 onaHandl e since thiswill significantly decrease
theresponsivenessto clientsconnected to other I/O han-
dles. Therefore, for long-duration operations (such as
transferring a multi-megabyte medical image) the Ac-
tive Object pattern [9] (which uses multi-threading or
multi-processing) may be more effective.

o Applications written using the Reactor pattern can be
hard to debug because their flow of control oscillates
between the lower-level demultiplexing code (supplied
by the framework) and the higher-level method call-
backs (supplied by application devel opers).

2.8 Implementation

The Reactor pattern can beimplemented in many ways. This
section discusses several topics related to implementing the
Reactor pattern.

e Event demultiplexing — A React or maintains a table
of objectsthat are derived fromthe Event Handl er
base class. Public methodsinthe React or 'sinterface
register and remove these objectsfromthistableat run-
time. The React or aso provides a means to dispatch
thehandl e_event method onan Event Handl er
object in response to events the application has regis-
tered to receive.

The React or 'sdi spat ch method blocks on an OS
event demultiplexing system call (such as WindowsNT
Wai t For Mul ti pl eCbj ects or UNIX sel ect)
until one or more events occur. When events occur, the
React or returnsfromtheevent demultiplexing system
cal. It then dispatchesthe handl e_event method on
any Event Handl er object(s) that are registered to
handle these events. This callback method executes
user-defined code and returns control to the React or

when it compl etes.

¢ Registering objects vs. functions — The Reactor pat-
tern shown in Section 2.4 registers Event Handl er
subclass objects with a React or . The use of objects
makesit convenient to subclassEvent Handl er sin
order to flexibly reuse and extend existing components,
as well as to integrate data and methods together. An-
other approach is to register a function rather than an
object. The use of functionsmakesit convenient to reg-
ister callbacks without having to define anew class that
inherits from Event Handl er. A hybrid approach
can be used to support both objects and functionssimul-
taneoudly.

e Event handling interface — The diagram in Section 2.4
illustratesan implementation of theEvent Handl er
base class interface that contains a single method
(handl e_event) used by the React or to dispatch
events. In this case, the type of the event (e.g., input
event, output event, signal event, etc.) is passed as a
parameter to the method. This approach makes it pos-
sible to add new types of events without changing the
interface. However, this approach encourages the use
of switch statementsin the subclass'shandl e_event
method, which limits extensibility.

Another way to implement the Event Handl er in-
terfaceisto define separatevirtual methodsfor each type
of event (eg., handl e.i nput, handl e_out put,
handl e_si gnal , etc.). This approach is easier to
extend since subclassing does not involve switch state-
ments. However, it requires the framework devel oper
to anticipate the set of Event Handl er methodsin
advance.

e Synchronization—The React or can serve as acentral

event dispatcher in multi-threaded applications. In this
casg, critical sections withinthe React or must be se-
rialized to prevent race conditions when modifying or
activating shared variables (such as the table holding
the Event Handl er subclass objects). A common
technique for preventing race conditions uses mutual
exclusion mechanisms like semaphores or mutex vari-
ables.

To prevent deadlock, mutua exclusion mechanisms
should use recursive locks. Recursive locks are an ef-
ficient means to prevent deadlock when locks are held
by the same thread across Event Handl er method
callbacks within the React or . A recursive lock may
be re-acquired by the thread that owns the lock without
blocking the thread. This property is important since
the Reactor’s di spat ch method performs callbacks
onapplication-specificEvent Handl er objects. Ap-
plication callback code may subsequently re-enter the
React or object usingitsr egi st er _handl er and
renove_handl er methods.

[/O semantics — The I/O semantics of the underlying
OS dignificantly affect the implementation of the Re-
actor pattern. The standard 1/0 mechanisms on UNIX
systems provide “reactive’ semantics. For example,
the UNIX sel ect system cal indicates the subset of
[/0O handles that may be read from or written to syn-
chronously without blocking.

Implementing the Reactor pattern using reactive 1/O is
straightforward. In UNIX, sel ect indicates which
handle(s) are ready to perform I/O. The React or ob-
ject then “reacts’ by invoking the Event Handl er
handl e_event calback method for each ready han-
dle. This method performs the 1/O operation and the
associated application-specific processing.

In contrast, Windows NT provides “proactive’ 1/0O
semantics. Proactive 1/0O operations proceed asyn-
chronously and do not cause the caler to block.
An application may subsequently use the WIN32
Wai t For Mul ti pl eCbj ect's system cal to deter-
mine when its outstanding asynchronous |/O operations
have completed.

Variations in the 1/O semantics of different operating
systems may cause the class interfaces and class imple-
mentations of the Reactor pattern to vary across plat-
forms. Schmidt and Stephenson [3] provide a detailed
evaluation of how differences between proactiveand re-
active event demultiplexing affect implementations of
the Reactor pattern on UNIX and Windows NT.

29 Known Uses

The Reactor pattern has been used in many object-oriented
frameworks and event-driven applications:

e The X windows toolkit uses a version of the Reactor
pattern to structureitsmain event loop. Thisimplemen-
tation registersand dispatchesfunction calls, rather than
objects.

e The InterViews window system distribution [10] im-
plements the Reactor pattern initsDi spat cher class
category. The Di spat cher isused to define an appli-
cation’smain event loop and to manage connections to
one or more physical GUI displays.

e The ADAPTIVE Service eXecutive (ASX) framework
[1] uses the Reactor pattern as the central event de-
multiplexer/dispatcher in an object-oriented toolkit for
experimenting with high-performance parallel commu-
nication protocol stacks.

¢ The Reactor pattern has been used in a number of com-
mercial products. These products include the Bellcore
and Siemens Q.port ATM signaling software product,
the Ericsson EOS family of telecommunication switch
management applications[3], the network management
portion of the Motorola Iridium global personal com-
munications system [4], and in an enterprise medical
image delivery system for BJC/WUSM [5].

210 Related Patterns

The Reactor pattern may be viewed as a variation on the
Observer pattern[2]. Inthe Observer pattern, subscribersare
updated automatically when a single subject changes. In the
Reactor pattern, handlers are informed automatically when
events from multiple sources occur.

A React or providesaFacade [2] for event demultiplex-
ing. A Facade is an interface that shields applications from
complex object relationships within a subsystem.

The virtua methods provided by the Event Handl er
base class are Template Methods [2]. These template meth-
ods are used by the React or to trigger callbacks to the
appropriate application-specific processing functions in re-
sponse to events.

TheActive Object pattern [9] decouples method execution
from method invocation in order to simplify synchronized
access to a shared resource by methods invoked in different
threads of control. This pattern is often used in place of
(or in conjunction with) the Reactor pattern when Event
Handl er s perform long-duration activities. Likewise, the
Reactor pattern can be used in place of (or in conjunction
with) the Active Object patternwhen threadsarenot available
or when the overhead and complexity of managing large
numbers of threads isundesirable.

3 LessonsL earned

This section describes lessons learned from developing
object-oriented communication frameworks based on de-
sign patterns at Motorola Iridium [4, 11], Ericsson [3],
and BJC/WUSM [5]. These large-scale distributed system

projects have identified, documented, and applied dozens of
new or existing design patterns. Patternswere used to lever-
age prior devel opment expertise, aswell asto reducerisk by
reusing software architectures across diverse OS platforms
and subsystems.

The Motorola Iridium and Ericsson projects were among
the first large-scale distributed system projects to adopt a
software reuse strategy based on the concepts, notations, and
techniques of design patterns. Patternsidentified and applied
in these projects have been described in [3, 4, 1, 9, 11, 12].
These projects have clarified many of the benefits and draw-
backs of using design patternsto systematically capture and
arti culate communication software architectures.

This section discusses the lessons learned and outlines
workarounds for problems we encountered using design
pattern-based reuse strategies in production software envi-
ronments. Our experiences using patterns on the Ericsson,
Motorola, and BJC/WUSM projectswere quitesimilar. Rec-
ognizing these common themes across different projectsin-
creased our confidence that these experiences generaize to
using patterns on other large-scal e software systems.

¢ Patterns enable widespread reuse of of software ar-
chitecture even if reuse of agorithms, implementations,
interfaces, or detailed designsisnot feasible. The constraints
of the underlying OS and hardware platform significantly
affect design and implementation decisions. This s partic-
ularly problematic for communication software, where non-
portable OS features are often used to enhance performance
and functionality.

The Ericsson telecommunication switch management
project [3] illustrated theimportance of patterns-based archi-
tectural reuse. Thisproject underwent several magjor changes
over three years. The original prototype was developed on
UNIX using sockets, sel ect, and TCP/IP as the commu-
nication mechanisms. After six months, however, the OS
platform changed to Windows NT with WIN32 named pi pes,
NETBEUI, Wai t For Mul t i pl eObj ect s,and TCP/IPas
the communication mechanisms. A year later, the scope of
the project changed again to integrate with a much larger
switch management subsystem. All these changes involved
extensive porting and modification of existing communica
tion software.

In such a volatile environment, reusing design patterns
was often the only viable means of leveraging previous de-
velopment expertise. For example, fundamental differences
in the I/O mechanisms available on Windows NT and UNIX
precluded the direct reuse of Reactor pattern implementa
tions across those OS platforms. We were, however, able
to reuse the Reactor pattern itself, customizing portions of
it to conform with the characteristics of the OS platforms.
Thisreduced project risk significantly and simplified our re-
development effort.

o Pattern descriptions should contain concrete examples.
Because patternsabstract the properties of successful designs
they are not limited to asingleimplementation. Asdescribed
above, thismakes it possible to evolve and adapt patterns to

changes in environments and requirements. Although pat-
terns are inherently abstractions, however, patterns should
not be described too abstractly. We found that many devel-
opers had a hard time understanding precisely how to imple-
ment patterns when they were described using only object
diagrams and structured prose.

To overcome this problem, we provided source code ex-
ampleswith our pattern descriptionsthat gave concrete guid-
ance for implementing the patterns. Whenever possible, we
presented multiple implementations of each pattern to help
developers overcomethe “tunnd vision” that resulted from a
limited pattern vocabulary. Many examples used in our pat-
tern descriptions came directly from communication frame-
workswe built for the projects. Thishel ped developersgrasp
the key points of each pattern because they already under-
stood the forces and requirements that motivated the pattern.
In addition, this approach helped convince management to
support the use of patterns because it reinforced our claim
that design patterns had direct relevance to their projects.

o Patterns improve communication within and across
software development teams because they provide devel -
operswith shared vocabulary and concepts. Patterns capture
essential propertiesof software architecture, while suppress-
ing detail sthat are not relevant at agivenlevel of abstraction.
Thus, they provide a comprehensible way of documenting
complex software architectures by expressing the structure
and collaboration of participants a a level higher than (1)
source code or (2) object-oriented design models that focus
on individual objects and classes.

We found that patterns helped to devate the level of dis-
course among team members. For example, once developers
understood patternslike Factory Method [2] and the Reactor
they could convey and justify their design and implemen-
tation decisions swiftly and clearly to other team members.
In addition, patterns helped to bridge the communication
gap that existed between software devel opers, managers, and
non-technical team members in marketing and sdes. Man-
agers and non-technical team members often could not un-
derstand the system at the level of detailed object models
or source code. However, they frequently could understand
and eval uate the conseguences and tradeoffs among software
architecture concepts that were expressed as patterns. Their
feedback was valuable to ensure that our technical solutions
did not drift away from the overall system requirements.

e Pattern names should be chosen carefully and used
consistently. For patterns to achieve widespread use on
aproject, devel opers must share an unambiguousvocabul ary
of common patterns. Selecting appropriate pattern names is
hard due to the tension between parsimony and descriptive-
ness. Concise names like Reactor or Iterator are appealing
because they convey the essence of a pattern with minimal
verbal effort. This brevity is conducive to rapid-fire design
brainstorming sessions. However, these verba shorthands
can be confusing unless devel opers haveinternalized the un-
derlying concepts and can associate them immediately with
the appropriate patterns.

We addressed this problem by publishing more descriptive
aliases along with our patterns. For example, the Reactor
pattern’s adias was “dispatch handlers automatically when
events occur from multiple sources.” Ensuring names and
aliases are used consistently throughout a project reduces
the likelyhood that devel opers will waste time debating the
consequences, structure, etc. of apattern, only to realize they
were actually talking about different patterns, or different
variations of the same pattern.

o Patterns explicitly capture knowledge that experienced
developersalready understand implicitly. Therefore, af-
ter being introduced to design patterns, most developers
adopted pattern nomenclature and concepts eagerly. This
enthusiasm stemmed in part from the fact that pattern de-
scriptions explicitly codified knowledge they understood in-
tuitively. For example, many devel opers intuitively under-
stand the forces that cause certain solutionsto be preferred
over dternatives. However, these non-functional forces are
often not captured adequately with existing design methods
and notations. We found that the use of patterns helped
experts document, discuss, and reason systematically about
sophisticated architectural concepts.

In addition, explicitly capturing expertise through patterns
helpsto impart this knowledge to less experienced devel op-
ers. For example, the Reactor pattern reused across OS plat-
formsin the Ericsson project represented knowledge gained
over years of experience with event-driven communication
software on many projects a different companies. By care-
fully documenting key patternsin our domain, we were able
to preserve and share this expertise. This saved developers
a great deal of time that would have otherwise been spent
rediscovering these patternsin new contexts.

o Patterns may lead developersto think they know more
about the solution to a problem than they actually do.
One downside to the intuitive nature of patterns is that de-
velopers may not fully appreciate the challenges associated
with implementing a pattern. Simply knowing the structure
and participantsin a pattern (such as the Reactor pattern) is
only thefirst step. Asdescribed in[3], asignificant devel op-
ment effort and commitment of time and resources may be
necessary to implement a pattern correctly, efficiently, and
portably in a particular context. We addressed this problem
by continually emphasizing to devel opers that learning pat-
terns complements, but does not substitute for, solid design
and implementation skills.

¢ Resist thetemptation to recast everything as a pattern.
Another downsideto theintuitive nature of patternsisthat it
may lead to pattern overload. We noticed that the benefits of
patterns became diluted if too many aspects of aproject were
expressed as patterns. Thisproblem arose when devel opment
practices were relabled as patterns without significantly im-
proving them. For example, some developers spent a great
deal of time recasting relatively mundane concepts (such as
binary search, building a linked list, or recursion) using the
pattern form. Although this was intellectualy satisfying,

pattern overload became counter productive when it did not
markedly improve software quality.

¢ Focus on developing patterns that are strategic to the
domain and reuse existing tactical patterns. Existing
pattern catalogs [2, 7] do an excellent job of documenting
many domain-independent, tactical patterns (such as Factory
Method, Abstract Factory, and Singleton). Tactica patterns
have arelatively localized impact on a software architecture.
For instance, the Iterator pattern [2] allows elements in a
collection to be accessed sequentially without violating data
encapsulation. Although this pattern is widely applicable,
the problem it addresses does not have sweeping architec-
tural implications.

In contrast, strategic design patterns have an extensive
impact on the software architecture for solutionsin aparticu-
lar domain. For example, the Half-Sync/Half-Async pattern
[12] decouples synchronous 1/0 from asynchronous 1/O in
a system to simplify concurrent programming effort without
degrading execution efficiency. This pattern greatly sim-
plifies synchronization strategiesin complex concurrent sys-
tems (such asBSD UNIX). Wefocused most of our energy on
documenting patterns rel ated to our domain (communication
software) and we reused existing tactical patternsrather than
reinventing them. Focusing on strategic domain patternsalso
hel ped to minimize the likelyhood of pattern overload.

o Ingtitutionalizerewards for developing patterns. Un-
familiar design paradigms and methods may be perceived
as threats to the traditiona power structure and base of ex-
pertise in an organization. We observed a manifestation of
this problem where some devel opers were reluctant to share
their domain patterns. They viewed this knowledge as a
competitive advantage over other devel opers. These typesof
problemsareindicative of deeper issuesrelated to the reward
structureinacorporate culture, whichisoften hard to change
[13]. We addressed this problem to the extent possible by
ingtituting incentives for developing useful pattern descrip-
tions. These descriptions were counted as “deliverables’
used to measure individua performance. We measured the
utility of design patterns by how widely they were adopted
and used successfully (particularly by devel opers other than
the original authors).

o Useful patternsarisefrom practical experience. There-
fore, we found that it was important to work closdly with
domain experts in order to identify and document key pat-
terns in the communication domain. One consequence of
the experiential basis of patternsis that they are discovered
“bottom-up” rather than invented “top down.” One sign
that pattern overload istaking place iswhen devel opers start
planning to “invent patterns.”

¢ Patternshelp easethetransition to object-oriented tech-
nology for developers who were trained in traditional de-
signtechniques. Many patternsinour communication frame-
works (such as the “pipes and filters architecture” [7]) origi-
nated in non-object-oriented contexts such as operating sys-
tems and databases. By explicitly recognizing and reward-

ing the experiential basis of useful patterns, we were able
to leverage valuable devel oper expertise from earlier design
paradigms [14].

o Patterns are validated by experience rather than by
testing, in the traditional sense of “unit testing” or “inte-
grationtesting” of software. Thiscan be problematic because
it ishard to determine when a pattern descriptionis complete
and correct. The most effective way we found to validate
our patterns was through periodic pattern reviews. These
reviews helped to enrich the pattern vocabulary within and
across development teams. We modeled these pattern re-
views as “writers workshops.” At these reviews, developers
from different teams presented useful patternsthey observed
intheir software. Group membersdiscussed the strengthsand
weaknesses of each pattern, accentuating positive aspects of
the patterns, sharing their own experience, and suggesting
improvementsin content and style.

o Directly involvepattern author swith application devel-
opersand domainexperts. Wefoundthat isol ating pattern
authors from devel opment teams resulted in overly abstract
patterns that did not capture the essence of successful de-
signs. Thisissimilar to the problem that arisesin large-scale
reuse initiatives that become disconnected from application
development. In both cases the resulting software artifacts
can be too general to solve the actual domain regquirements.
We addressed this problem by using the pattern review tech-
niques described above to glean system-level patterns from
domain experts on the projects. These patterns were incor-
porated into the project following careful scrutiny in pattern
reviews.

¢ Integrating patterns into a software development pro-
cess is a human-intensive activity. Like other software
reuse technol ogies, reuse of patterns does not come for free
[14]. ldentifying and documenting useful patterns requires
both concrete experience in a domain and the ability to ab-
stract away from concrete detail sto capturethe genera prop-
erties of patterns. We found that relatively few individuas
possess both these skills with equal proficiency. Therefore,
engaging groupsof devel operswith diverse backgroundsand
skillsin pattern review sessionswas essentia to leverage pat-
terns effectively.

However, pattern reviewsrequired asignificant investment
by organizations. Thereview processisfundamentaly inter-
active and cregtive, rather than automated and rote. Organi-
zationsthat do not actively encouragethesereviews(e.g., due
totight schedules or dueto aview that software devel opment
should be amechanical process) may devote inadequatetime
and devel oper resources to thisreview process.

While we generally found the educational benefits of the
pattern reviews justified the costs, we also recognized that
this style of review process does not scae up essily. For
example, experienced developers with deep knowledge of
the communi cation domain were fertile sources of strategic
and tactical patterns, aswell asinvaluable mentorsin pattern
reviews. However, these experts were often very busy with

other tasks, and could not aways spare much time to write
or review pattern descriptions thoroughly. This is another
reason why documenting patterns should be ingtitutionalized
in an organization’sreward structure.

o Pattern descriptionsexplicitly record engineeringtrade-
offs and design alternatives that resolve non-functional
forces. Because pattern descriptions explicitly enumerate
conseguences and i mplementati on tradeoffs they can be used
to record why certain design choices were selected and oth-
ers rejected. For example, the description of the Reactor
patternin Section 2 explains precisely when to apply the pat-
tern (e.g., when each event can be processed quickly) and
when to avoid it (e.g., when transferring large amounts of
bulk data). If thisrationaleis not captured explicitly it may
be lost over time. This loss deprives maintenance teams of
critical design information, and makesit difficult to motivate
strategic design choices to other groups within a project or
organi zation.

o Carefully document the contexts where patterns apply
and do not apply. When devel opers first write pattern de-
scriptionsthey tend to emphasi zethe beneficial conseguences
of the patterns without thoroughly covering the drawbacks
of using the pattern in certain contexts. For example, asde-
scribed in the previous paragraph, the Reactor pattern can
be an inefficient event demultiplexing mechanism on multi-
processor platformsbecause it serializes application concur-
rency at a coarse-grained level [9]. If this caveat is not
explicitly captured in a pattern description, devel opers may
apply the pattern inappropriately. Therefore, pattern descrip-
tions should enumerate both the benefits and the drawbacks
of a pattern, as well as motivate the context in which the
pattern applies or does not apply.

¢ Successful pattern descriptions capture both structure
and behavior. Expressing the behavioral aspects of a pat-
ternishard because behaviorsinvol ve dynamic collaboration
between participants. However, patternsthat do not clearly
describe dynamic behavior are difficult to understand and
apply. We found object interaction diagrams and object in-
teraction graphs were particularly useful for depicting key
collaborationsin a design without requiring the attention to
detail necessary to understand source code.

¢ Patternsfacilitatetraining of new developers by alow-
ing devel opers joining the projects to absorb the key strate-
gies and tactics in the software design quickly. We exposed
developersto our pattern documentati on before having them
delve into the software. We found that the ability to express
theintent, structure, and behavior of our frameworksinterms
of patternslowered the learning curve for new devel opers by
giving them a broad understanding of the architecture in our
communication frameworks.

We expect that this aspect of patternswill prove useful for
maintenance programmers. However, the projects at Eric-
sson, Motorola, and BJC/WUSM are dl new systems that
have not yet entered the long-term maintenance phase. We

are collecting additional information on how patterns affect
maintenance over the software lifecycle.

o Implementing patterns efficiently requires careful se-
lection of language features. Existing patterns literature
[2, 6, 7, 15] hasfocused primarily on software quality factors
other than performance. This may be acceptable in domains
where non-functiona requirements are more important than
efficiency. For example, graphica user interfaces are often
judged more in terms of their usability, extensibility, and
portability than their raw performance.

In contrast, communication software has traditionally em-
phasized high performance more than other software quality
factors. Thus, we found that many developers were initially
concerned about the performance costs of using design pat-
ternsin the communication domain. To alay these concerns,
many of our pattern implementations used C++ parameter-
ized types extensively, rather than inheritance and dynamic
binding. Parameterized types do not degrade the run-time
efficiency of performance-critical applications because tem-
plate instantiation occurs at compile-time. In contrast, a-
ternative techniques for extensibility using inheritance and
dynamic binding incur a run-time performance penaty in
C++, dueto virtual function table dispatching overhead.

o Patterns help to transcend “programming language-
centric’ viewpoints. Focusing on design patterns helped
us to move away from “programming language-centric’
views of the object paradigm. This was beneficia because
it enabled experienced developers from different language
communities (such as Lisp, Smaltak, Ada, Eiffel, C++, C,
and Erlang) to share designinsightsof mutual interest without
being distracted by “language wars.”

Once we moved beyond language syntax and semantic
differences, it was remarkable how much commonality was
shared by successful software solutions for a given design
problem. However, we aso found that many developers
wanted to see pattern examples illustrated with the program-
ming language they were most familiar with (C++ in our
projects).

e Managing expectationsiscrucial tousingpatter nseffec-
tively. One recurring problem we encountered using pat-
terns centered around managing the expectations of devel-
opment team members. Some team members had miscon-
ceptions about precisely how and what design patterns con-
tributed to project success. For example, the use of patterns
does not guarantee flexible and efficient software. More-
over, in their abstract form, patterns cannot be used directly
by programmers in their implementations. Tools do not yet
exist that transform design patterns into code automatically.
Custom implementationis often required, unlessthe patterns
have been integrated into a reusable framework or library.
We worked hard at Ericsson, Motorola, and BJC/WUSM
to prevent design patterns from becoming yet another buz-
zword. We did this by candidly reporting the benefits and
limitations of patterns and stressing that patterns are just
one of many important toolsin a devel opment organization’s

toolkit. Petterns are no silver bullet that will absolve devel -
opers from having to wrestle with complex analysis, design,
and implementationissues. Inour experience, thereissmply
no substitute for creativity, experience, and diligence on the
part of devel opers.

Over time, the contribution of patterns will become ev-
ident as software developers gain experience incorporating
patterns into their development practices. Our experience
applying design patterns in large-scale distributed systems
was that they contributed to developing quality software by
addressing fundamental challenges in large-scal e system de-
velopment. These challenges include communication of ar-
chitectural knowledge among developers, accommodating
new design paradigms or architectura styles, and avoiding
development traps and pitfalls that are usually learned only
by experience.

4 Concluding Remarks

Patterns capture the static and dynamic aspects of successful
solutions to problems that commonly arise when building
software systems. If software is to become an engineering
discipline, these successful practices and design expertise
must bedocumented systematically and disseminated widely.
Patterns are important tools for documenting these practices
and expertise, which traditionaly existed primarily in the
minds of expert software architects.

Over thenext few yearsaweal th of software design knowl-
edge will be captured in the form of strategic and tactica
patterns that span disciplines such as client/server program-
ming, distributed processing, organizationa design, software
reuse, red -time systems, business and financia systems, and
human interface design. In addition, the following aspects
of patterns will receive increased attention in the next few
years.

o Integration of design patternstogether with frameworks
— Patterns can be viewed as abstract descriptions of
frameworks that facilitate widespread reuse of software
architecture. Frameworks can be viewed as concrete
realizations of patternsthat facilitate direct reuse of de-
sign and code. One difference between patterns and
frameworks is that patterns are described in language-
independent manner, whereas frameworks are generally
implemented in a particular language. However, pat-
terns and frameworks are highly synergistic concepts,
with neither subordinate to the other.

The next generation of object-oriented frameworks will
explicitly embody dozens or hundreds of patterns—and
patterns will be widely used to document the form and
contents of frameworks [16]. ldedly, systems of pat-
terns and frameworks will be integrated with tools like
on-line pattern browsers that contain hyper-text linksto
navigate quickly through multiplelevels of abstraction.

¢ Integration of design patterns to form systems of pat-
terns—most literatureon patternsis currently organized

as design pattern catalogs [2, 6, 7]. These catalogs
present a collection of individua solutionsto common
design problems. As more experience is gained us-
ing these patterns, developers will integrate groups of
related patternsto form pattern systems (al so called pat-
tern languages). These pattern systems will encompass
afamily of related patterns that cover a particular do-
main (such as communication software).

Inthe same sensethat comprehensiveapplication frame-
workssupport larger-scal e reuse of designand codethan
do class libraries, pattern systems will support larger-
scale reuse of software architecture than individua pat-
terns. Devel oping comprehensive systems of patternsis
challenging and time consuming, but will likely provide
the greatest payoff for pattern-based software develop-
ment during the next few years.

o Integration with popular object-oriented methods and
software process model s— Patternshel pto all eviate sof t-
warecomplexity at severa phasesinthe softwarelifecy-
cle. Although patterns are not a software devel opment
method or process, they complement existing methods
and processes. For instance, patterns help to bridge
the abstractionsin the analysis and architectural design
phases with the concrete redlizations of these abstrac-
tionsin the implementation and mai ntenance phases. In
the analysis and design phases, patterns help to guide
developersin selecting from software architectures that
have proven to be successful. In the implementation
and maintenance phases they help document the strate-
gic propertiesof software systems at alevel higher than
source code and individual object models.

This paper just scratches the surface of activities the pat-
ternscommunity iscurrently engaged in. A number of books
[2, 6, 7, 15] have been published (or will soon be published)
on these topics. The Pattern Languages of Programming
conference [6] is an annual forum dedicated to improving
the expression of patterns. There are aso pattern work-
shops at on object-oriented conferences (such as OOPSLA,
ECOOR, and USENIX COOTS). The World Wide Web URL
http://st-ww. cs. ui uc. edu/ users/ patterns
containsacomprehensiveon-linereference to pattern-rel ated
meaterial.

Acknowledgements

| would like to thank Mohamed Fayad, Jim Coplien, Adam
Porter, Tim Harrison, Ehab Al-Shaer, and the anonymous
reviewersfor improving the quality of thispaper. | would also
liketo thank Paul Stephenson of Ericsson for many hours of
discussion on design patterns and techniques for devel oping
object-oriented communication software frameworks.

References

(1]

(2]

(3]

[4]

(5]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

D. C. Schmidt and P. Stephenson, “Experiences Using De-
sign Patterns to Evolve System Software Across Diverse OS
Platforms,” in Proceedings of the 9" European Conference
on Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

D. C. Schmidt, “A System of Reusable Design Patterns for
Communication Software,” in The Theory and Practice of
Object Systems (Special Issue on Patterns and Pattern Lan-
guages) (S. P. Berczuk, ed.), Wiley and Sons, 1995.

G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71-81, 1994.

J. O. Coplien and D. C. Schmidt, eds., Pattern Languages of
ProgramDesign. Reading, MA: Addison-Wesley, 1995.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture- A Systemof
Patterns. Wileys and Sons, to appear 1996.

G. Booch, Object Oriented Analysis and Design with Ap-
plications (2"¢ Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

R. G. Lavenderand D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2"¢ Annual Conference on the Pattern Languages
of Programs, (Monticello, lllinais), pp. 1-7, September 1995.

M. A. Linton and P. R. Calder, “The Design and Implemen-
tation of InterViews,” in Proceedings of the USENIX C++
Workshop, November 1987.

D. C. Schmidt, “ Acceptor and Connector: Design Patterns for
Active and Passive Establishment of Network Connections,”
in Workshop on Pattern Languages of Object-Oriented Pro-
gramsat ECOOP ' 95, (Aarhus, Denmark), August 1995.

D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current 1/0,” in Proceedings of the 2"¢ Annual Conference
on the Pattern Languagesof Programs, (Monticello, lllinais),
pp. 1-10, September 1995.

J. O. Coplien, “A Development Process Generative Pattern
Language,” in Pattern Languages of Programs(J. O. Coplien
andD. C. Schmidt, eds.), Reading, MA: Addison-Wesley, June
19095.

M. Fayad, W. Tsai, and M. Fulghum, “Transition to Object-
Oriented Software Development,” Communications of the
ACM, Jan. 1996.

W. Pree, Design Patterns for Object-Oriented Software De-
velopment. Reading, MA: Addison-Wesley, 1994.

R. Johnson, “Documenting Frameworks Using Patterns,” in
OOPLSA '92, (Vancouver, British Columbia), pp. 63-76,
ACM, October 1992.

10

