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Abstract

Design patterns help to enhance software quality by address-
ing fundamental challenges in large-scale system develop-
ment. These challenges include communication of archi-
tectural knowledge among developers, accommodating new
design paradigms or architectural styles, and avoiding de-
velopment traps and pitfalls that are usually learned only
by experience. This article describes lessons learned from
applying a design pattern-based reuse strategy to develop
object-oriented communication software frameworks for sev-
eral production distributed systems. Design patterns are in
danger of becoming yet another buzzword. This article at-
tempts to replace the hype with insights and recommendations
gained from several years of experience.

1 Introduction

Despite dramatic increases in network and host performance
it remains difficult to design, implement, and reuse commu-
nication software for complex distributed systems. Exam-
ples of these systems include global personal communication
systems, network management platforms, enterprise medical
imaging systems, and real-time market data monitoring and
analysis systems. In addition, it is often hard to directly
reuse existing algorithms, detailed designs, interfaces, or im-
plementations in these systems due to the growing hetero-
geneity of hardware/software architectures and diversity of
operating system platforms.

Design patterns [2] are a promising technique for achiev-
ing widespread reuse of software architectures. Design pat-
terns capture the static and dynamic structures and collabora-
tions of components in successful solutions to problems that

arise when building software in domains like business data
processing, telecommunications, graphical user interfaces,
databases, and distributed communication software. Patterns
aid the development of reusable components and frameworks
by expressing the structure and collaboration of participants
in a software architecture at a level higher than (1) source
code or (2) object-oriented design models that focus on in-
dividual objects and classes. Thus, patterns facilitate reuse
of software architecture, even when other forms of reuse are
infeasible (e.g., due to fundamental differences in operating
system features [3]).

This article describes how design patterns are being ap-
plied on a number of large-scale commercial distributed sys-
tems. Patterns have been used on these projects to enable
widespread reuse of communication software architectures,
developer expertise, and object-oriented framework compo-
nents. These systems include the system control segment
for the Motorola Iridium global personal communications
system [4]; a family of network monitoring applications for
Ericsson telecommunication switches [3]; and a system for
transporting multi-megabyte medical images over high-speed
ATM networks [5] being developed at BJC health system and
Washington University School of Medicine (BJC/WUSM).
This article also presents ways to avoid common traps and
pitfalls of applying design patterns in large-scale software
development processes.

The remainder of this article is organized as follows: Sec-
tion 2 illustrates a design pattern that appears frequently in
event-driven communication software frameworks; Section 3
summarizes our experiences (both positive and negative) ap-
plying a design pattern-based reuse strategy in several large-
scale commercial distributed systems; and Section 4 outlines
pattern-related topics that will be the focus of considerable
research activities in the next few years.

2 Example Design Pattern: the Reactor

This section describes the Reactor pattern. This pattern was
identified while developing reusable event-driven commu-
nication software at Ericsson, Motorola, and BJC/WUSM.
Portions of the material below was culled from documenta-
tion used on these projects.
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Design patterns have been described using several formats
[2, 6, 7]. The format used below is based on the work of
Gamma et al. [2]; it contains the following parts:

� The intent of the pattern

� The design forces that motivate the pattern

� The solution to these forces

� The structure and roles of classes in the solution

� The responsibilities and collaborations among classes

� The positive and negative consequences of using the
pattern

� Implementation guidance

� Example source code1

� References to related patterns

2.1 Intent

The Reactor pattern dispatches handlers automatically when
events occur from multiple sources. This pattern simplifies
event-driven applications by decoupling event demultiplex-
ing and event handler dispatching from application services
performed in response to events.

2.2 Motivation

Communication software must respond to events generated
from multiple sources. For example, network management
applications for monitoring and controlling space vehicles in
the Motorola Iridium satellite constellation receive traps sent
by HP OpenView agents, telemetry data sent via CORBA re-
quests, and user interface events generated by Motif. These
events arrive on multiple I/O handles that identify resources
(such as network connections) managed by an operating sys-
tem. Input events from peers may arrive simultaneously on
multiple handles. Therefore, single-threaded software must
not block indefinitely reading from any individual I/O han-
dle. Blocking can significantly delay the response time for
handling events from peers associated with other handles.

One way to develop this type of event-driven software is
to use multi-threading. In this approach, a separate thread
is spawned for every connected peer. Each thread blocks
on a read system call. A thread unblocks when it receives
an event from its associated peer. At this point, the event
is processed within the thread. The thread then re-blocks
awaiting subsequent input from read.

There are several drawbacks to using multi-threading for
handling events in communication software:

� threading may require complex concurrency control
schemes;

� threading may lead to poor performance due to context
switching, synchronization, and data movement;

1Due to space limitations the sample code has been omitted from this
article. See [1] for a complete example of the Reactor pattern.

� threading may not be available on an OS platform.

Often, a more convenient and portable way to develop
event-driven servers is to use the Reactor pattern. The Re-
actor pattern manages a single-threaded event loop that per-
forms event demultiplexing and event handler dispatching in
response to events from multiple sources. The Reactor pat-
tern combines the simplicity and efficiency of single-threaded
event loops with the extensibility offered by object-oriented
programming.

2.3 Applicability

Use the Reactor pattern when:

� one or more events may arrive concurrently from mul-
tiple sources, and blocking or continuously polling for
events on any individual source of events is inefficient;

� each individual event handler possesses the following
characteristics:

– it exchanges fixed-sized or bounded-sized mes-
sages with its peers without requiring blocking
I/O;

– it processes each message it receives within a rel-
atively short period of time;

� using multi-threading to implement event demultiplex-
ing is either:

– infeasible – due to lack of multi-threading support
on an OS platform;

– undesirable – due to poor performance on uni-
processors or due to the need for overly complex
concurrency control schemes;

– redundant – due to the use of multi-threading at
higher levels of an application’s architecture.

2.4 Structure

The structure of the Reactor pattern is illustrated in the fol-
lowing Booch [8] class diagram:
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In Booch notation dashed clouds indicate classes, an in-
scribed “A” indicates an abstract class, directed edges indicate
inheritance relationships between classes, and an undirected
edge with a small bullet at one end indicates a composition
relation between two classes.

2.5 Participants

The participants in the Reactor pattern include the following:

� Handles

– Handles identify resources (such as network con-
nections, open files, and synchronization objects)
that are managed by an operating system.

� Reactor

– Defines an interface for registering, removing,
and dispatching Event Handler objects. An
implementation of the Reactor interface pro-
vides a set of application-independent event de-
multiplexing and dispatching mechanisms. These
mechanisms dispatch application-specific Event
Handlers in response to events occuring on one
or more Handles.

� Event Handler

– Specifies an interface used by the Reactor to
dispatch callback methods defined by objects that
are pre-registered to handle certain types of events
(such as input events, output events, and signals).

� Concrete Event Handler

– Implements the customized callback method(s)
that process events in an application-specific man-
ner.

2.6 Collaborations among Participants

� Sources of events (such as network adaptors, file sys-
tems, and transaction managers) communicate with the
Reactor via Handles.

� Developers subclass Event Handlers to imple-
ment application-specific event processing. When an
Event Handler subclass object is registered with the
Reactor the application indicates the type of event(s)
(e.g., input event, output event, signal event, etc.) this
Event Handler wants the Reactor to notify it
about.

� To bind the Reactor with Handles, a subclass of
Event Handler must override the get handle
method. Hence, when an Event Handler sub-
class object is registered with the Reactor the ob-
ject’s Handle is obtained by invoking the Event
Handler::get handle method. The Reactor
then combines this Handle with other registered

Event Handlers and waits for events to occur on
the Handles.

� The Reactor triggers Event Handler methods in
response to events on theHandlers it monitors. When
events occur, the Reactor uses the Handles acti-
vated by the events as keys to locate and dispatch the
appropriateEvent Handler methods. This collabo-
ration is structured using the method callbacks depicted
in the following object interaction diagram:

main

program

REGISTER  HANDLER

DISPATCH  HANDLER(S)

RUN  EVENT  LOOP

EXTRACT  HANDLE

INITIALIZE

callback :

Concrete

Event_Handler

dispatch()

handle_event(event_type)

reactor :

Reactor

get_handle()

Reactor()

register_handler(callback)

select()

: Handles

WAIT  FOR  EVENTS

Thehandle eventmethod is called by theReactor
to perform application-specific functionalityin response
to an event. The type of the event that occurred is passed
as a parameter to the method.

2.7 Consequences

The Reactor pattern has the following benefits:

� It improves the modularity, reusability, and configurabil-
ity of event-driven application software by decoupling
application-independent mechanisms from application-
specific processing policies.

� It improves application portability by allowing its inter-
face to be reused independently of the underlying OS
system calls that perform event demultiplexing.

� It provides applications with coarse-grained concur-
rency control that serializes the invocation of Event
Handlers and minimizes the need for more compli-
cated synchronization or locking within an application
process.

The Reactor pattern has the following drawbacks:

� Event Handlers are not preempted while they are execut-
ing. Therefore, a handler should not perform blocking
I/O on a Handle since this will significantly decrease
the responsiveness to clients connected to other I/O han-
dles. Therefore, for long-duration operations (such as
transferring a multi-megabyte medical image) the Ac-
tive Object pattern [9] (which uses multi-threading or
multi-processing) may be more effective.

� Applications written using the Reactor pattern can be
hard to debug because their flow of control oscillates
between the lower-level demultiplexing code (supplied
by the framework) and the higher-level method call-
backs (supplied by application developers).
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2.8 Implementation

The Reactor pattern can be implemented in many ways. This
section discusses several topics related to implementing the
Reactor pattern.

� Event demultiplexing – A Reactor maintains a table
of objects that are derived from the Event Handler
base class. Public methods in the Reactor’s interface
register and remove these objects from this table at run-
time. The Reactor also provides a means to dispatch
the handle event method on an Event Handler
object in response to events the application has regis-
tered to receive.

The Reactor’s dispatch method blocks on an OS
event demultiplexing system call (such as Windows NT
WaitForMultipleObjects or UNIX select)
until one or more events occur. When events occur, the
Reactor returns from the event demultiplexing system
call. It then dispatches the handle event method on
any Event Handler object(s) that are registered to
handle these events. This callback method executes
user-defined code and returns control to the Reactor
when it completes.

� Registering objects vs. functions – The Reactor pat-
tern shown in Section 2.4 registers Event Handler
subclass objects with a Reactor. The use of objects
makes it convenient to subclass Event Handlers in
order to flexibly reuse and extend existing components,
as well as to integrate data and methods together. An-
other approach is to register a function rather than an
object. The use of functions makes it convenient to reg-
ister callbacks without having to define a new class that
inherits from Event Handler. A hybrid approach
can be used to support both objects and functions simul-
taneously.

� Event handling interface – The diagram in Section 2.4
illustrates an implementation of the Event Handler
base class interface that contains a single method
(handle event) used by the Reactor to dispatch
events. In this case, the type of the event (e.g., input
event, output event, signal event, etc.) is passed as a
parameter to the method. This approach makes it pos-
sible to add new types of events without changing the
interface. However, this approach encourages the use
of switch statements in the subclass’s handle event
method, which limits extensibility.

Another way to implement the Event Handler in-
terface is to define separate virtual methods for each type
of event (e.g., handle input, handle output,
handle signal, etc.). This approach is easier to
extend since subclassing does not involve switch state-
ments. However, it requires the framework developer
to anticipate the set of Event Handler methods in
advance.

� Synchronization – The Reactor can serve as a central
event dispatcher in multi-threaded applications. In this
case, critical sections within the Reactor must be se-
rialized to prevent race conditions when modifying or
activating shared variables (such as the table holding
the Event Handler subclass objects). A common
technique for preventing race conditions uses mutual
exclusion mechanisms like semaphores or mutex vari-
ables.

To prevent deadlock, mutual exclusion mechanisms
should use recursive locks. Recursive locks are an ef-
ficient means to prevent deadlock when locks are held
by the same thread across Event Handler method
callbacks within the Reactor. A recursive lock may
be re-acquired by the thread that owns the lock without
blocking the thread. This property is important since
the Reactor’s dispatch method performs callbacks
on application-specificEvent Handler objects. Ap-
plication callback code may subsequently re-enter the
Reactor object using its register handler and
remove handler methods.

� I/O semantics – The I/O semantics of the underlying
OS significantly affect the implementation of the Re-
actor pattern. The standard I/O mechanisms on UNIX
systems provide “reactive” semantics. For example,
the UNIX select system call indicates the subset of
I/O handles that may be read from or written to syn-
chronously without blocking.

Implementing the Reactor pattern using reactive I/O is
straightforward. In UNIX, select indicates which
handle(s) are ready to perform I/O. The Reactor ob-
ject then “reacts” by invoking the Event Handler
handle event callback method for each ready han-
dle. This method performs the I/O operation and the
associated application-specific processing.

In contrast, Windows NT provides “proactive” I/O
semantics. Proactive I/O operations proceed asyn-
chronously and do not cause the caller to block.
An application may subsequently use the WIN32
WaitForMultipleObjects system call to deter-
mine when its outstanding asynchronous I/O operations
have completed.

Variations in the I/O semantics of different operating
systems may cause the class interfaces and class imple-
mentations of the Reactor pattern to vary across plat-
forms. Schmidt and Stephenson [3] provide a detailed
evaluation of how differences between proactive and re-
active event demultiplexing affect implementations of
the Reactor pattern on UNIX and Windows NT.

2.9 Known Uses

The Reactor pattern has been used in many object-oriented
frameworks and event-driven applications:
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� The X windows toolkit uses a version of the Reactor
pattern to structure its main event loop. This implemen-
tation registers and dispatches function calls, rather than
objects.

� The InterViews window system distribution [10] im-
plements the Reactor pattern in its Dispatcher class
category. The Dispatcher is used to define an appli-
cation’s main event loop and to manage connections to
one or more physical GUI displays.

� The ADAPTIVE Service eXecutive (ASX) framework
[1] uses the Reactor pattern as the central event de-
multiplexer/dispatcher in an object-oriented toolkit for
experimenting with high-performance parallel commu-
nication protocol stacks.

� The Reactor pattern has been used in a number of com-
mercial products. These products include the Bellcore
and Siemens Q.port ATM signaling software product,
the Ericsson EOS family of telecommunication switch
management applications [3], the network management
portion of the Motorola Iridium global personal com-
munications system [4], and in an enterprise medical
image delivery system for BJC/WUSM [5].

2.10 Related Patterns

The Reactor pattern may be viewed as a variation on the
Observer pattern [2]. In the Observer pattern, subscribers are
updated automatically when a single subject changes. In the
Reactor pattern, handlers are informed automatically when
events from multiple sources occur.

A Reactor provides a Facade [2] for event demultiplex-
ing. A Facade is an interface that shields applications from
complex object relationships within a subsystem.

The virtual methods provided by the Event Handler
base class are Template Methods [2]. These template meth-
ods are used by the Reactor to trigger callbacks to the
appropriate application-specific processing functions in re-
sponse to events.

The Active Object pattern [9] decouples method execution
from method invocation in order to simplify synchronized
access to a shared resource by methods invoked in different
threads of control. This pattern is often used in place of
(or in conjunction with) the Reactor pattern when Event
Handlers perform long-duration activities. Likewise, the
Reactor pattern can be used in place of (or in conjunction
with) the Active Object pattern when threads are not available
or when the overhead and complexity of managing large
numbers of threads is undesirable.

3 Lessons Learned

This section describes lessons learned from developing
object-oriented communication frameworks based on de-
sign patterns at Motorola Iridium [4, 11], Ericsson [3],
and BJC/WUSM [5]. These large-scale distributed system

projects have identified, documented, and applied dozens of
new or existing design patterns. Patterns were used to lever-
age prior development expertise, as well as to reduce risk by
reusing software architectures across diverse OS platforms
and subsystems.

The Motorola Iridium and Ericsson projects were among
the first large-scale distributed system projects to adopt a
software reuse strategy based on the concepts, notations, and
techniques of design patterns. Patterns identified and applied
in these projects have been described in [3, 4, 1, 9, 11, 12].
These projects have clarified many of the benefits and draw-
backs of using design patterns to systematically capture and
articulate communication software architectures.

This section discusses the lessons learned and outlines
workarounds for problems we encountered using design
pattern-based reuse strategies in production software envi-
ronments. Our experiences using patterns on the Ericsson,
Motorola, and BJC/WUSM projects were quite similar. Rec-
ognizing these common themes across different projects in-
creased our confidence that these experiences generalize to
using patterns on other large-scale software systems.

� Patterns enable widespread reuse of of software ar-
chitecture even if reuse of algorithms, implementations,
interfaces, or detailed designs is not feasible. The constraints
of the underlying OS and hardware platform significantly
affect design and implementation decisions. This is partic-
ularly problematic for communication software, where non-
portable OS features are often used to enhance performance
and functionality.

The Ericsson telecommunication switch management
project [3] illustrated the importance of patterns-based archi-
tectural reuse. This project underwent several major changes
over three years. The original prototype was developed on
UNIX using sockets, select, and TCP/IP as the commu-
nication mechanisms. After six months, however, the OS
platform changed to Windows NT with WIN32 named pipes,
NETBEUI, WaitForMultipleObjects, and TCP/IP as
the communication mechanisms. A year later, the scope of
the project changed again to integrate with a much larger
switch management subsystem. All these changes involved
extensive porting and modification of existing communica-
tion software.

In such a volatile environment, reusing design patterns
was often the only viable means of leveraging previous de-
velopment expertise. For example, fundamental differences
in the I/O mechanisms available on Windows NT and UNIX
precluded the direct reuse of Reactor pattern implementa-
tions across those OS platforms. We were, however, able
to reuse the Reactor pattern itself, customizing portions of
it to conform with the characteristics of the OS platforms.
This reduced project risk significantly and simplified our re-
development effort.

� Pattern descriptions should contain concrete examples.
Because patterns abstract the properties of successful designs
they are not limited to a single implementation. As described
above, this makes it possible to evolve and adapt patterns to
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changes in environments and requirements. Although pat-
terns are inherently abstractions, however, patterns should
not be described too abstractly. We found that many devel-
opers had a hard time understanding precisely how to imple-
ment patterns when they were described using only object
diagrams and structured prose.

To overcome this problem, we provided source code ex-
amples with our pattern descriptions that gave concrete guid-
ance for implementing the patterns. Whenever possible, we
presented multiple implementations of each pattern to help
developers overcome the “tunnel vision” that resulted from a
limited pattern vocabulary. Many examples used in our pat-
tern descriptions came directly from communication frame-
works we built for the projects. This helped developers grasp
the key points of each pattern because they already under-
stood the forces and requirements that motivated the pattern.
In addition, this approach helped convince management to
support the use of patterns because it reinforced our claim
that design patterns had direct relevance to their projects.

� Patterns improve communication within and across
software development teams because they provide devel-
opers with shared vocabulary and concepts. Patterns capture
essential properties of software architecture, while suppress-
ing details that are not relevant at a given level of abstraction.
Thus, they provide a comprehensible way of documenting
complex software architectures by expressing the structure
and collaboration of participants at a level higher than (1)
source code or (2) object-oriented design models that focus
on individual objects and classes.

We found that patterns helped to elevate the level of dis-
course among team members. For example, once developers
understood patterns like Factory Method [2] and the Reactor
they could convey and justify their design and implemen-
tation decisions swiftly and clearly to other team members.
In addition, patterns helped to bridge the communication
gap that existed between software developers, managers, and
non-technical team members in marketing and sales. Man-
agers and non-technical team members often could not un-
derstand the system at the level of detailed object models
or source code. However, they frequently could understand
and evaluate the consequences and tradeoffs among software
architecture concepts that were expressed as patterns. Their
feedback was valuable to ensure that our technical solutions
did not drift away from the overall system requirements.

� Pattern names should be chosen carefully and used
consistently. For patterns to achieve widespread use on
a project, developers must share an unambiguous vocabulary
of common patterns. Selecting appropriate pattern names is
hard due to the tension between parsimony and descriptive-
ness. Concise names like Reactor or Iterator are appealing
because they convey the essence of a pattern with minimal
verbal effort. This brevity is conducive to rapid-fire design
brainstorming sessions. However, these verbal shorthands
can be confusing unless developers have internalized the un-
derlying concepts and can associate them immediately with
the appropriate patterns.

We addressed this problem by publishingmore descriptive
aliases along with our patterns. For example, the Reactor
pattern’s alias was “dispatch handlers automatically when
events occur from multiple sources.” Ensuring names and
aliases are used consistently throughout a project reduces
the likelyhood that developers will waste time debating the
consequences, structure, etc. of a pattern, only to realize they
were actually talking about different patterns, or different
variations of the same pattern.

� Patterns explicitly capture knowledge that experienced
developers already understand implicitly. Therefore, af-
ter being introduced to design patterns, most developers
adopted pattern nomenclature and concepts eagerly. This
enthusiasm stemmed in part from the fact that pattern de-
scriptions explicitly codified knowledge they understood in-
tuitively. For example, many developers intuitively under-
stand the forces that cause certain solutions to be preferred
over alternatives. However, these non-functional forces are
often not captured adequately with existing design methods
and notations. We found that the use of patterns helped
experts document, discuss, and reason systematically about
sophisticated architectural concepts.

In addition, explicitly capturing expertise through patterns
helps to impart this knowledge to less experienced develop-
ers. For example, the Reactor pattern reused across OS plat-
forms in the Ericsson project represented knowledge gained
over years of experience with event-driven communication
software on many projects at different companies. By care-
fully documenting key patterns in our domain, we were able
to preserve and share this expertise. This saved developers
a great deal of time that would have otherwise been spent
rediscovering these patterns in new contexts.

� Patterns may lead developers to think they know more
about the solution to a problem than they actually do.
One downside to the intuitive nature of patterns is that de-
velopers may not fully appreciate the challenges associated
with implementing a pattern. Simply knowing the structure
and participants in a pattern (such as the Reactor pattern) is
only the first step. As described in [3], a significant develop-
ment effort and commitment of time and resources may be
necessary to implement a pattern correctly, efficiently, and
portably in a particular context. We addressed this problem
by continually emphasizing to developers that learning pat-
terns complements, but does not substitute for, solid design
and implementation skills.

� Resist the temptation to recast everything as a pattern.
Another downside to the intuitive nature of patterns is that it
may lead to pattern overload. We noticed that the benefits of
patterns became diluted if too many aspects of a project were
expressed as patterns. This problem arose when development
practices were relabled as patterns without significantly im-
proving them. For example, some developers spent a great
deal of time recasting relatively mundane concepts (such as
binary search, building a linked list, or recursion) using the
pattern form. Although this was intellectually satisfying,
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pattern overload became counter productive when it did not
markedly improve software quality.

� Focus on developing patterns that are strategic to the
domain and reuse existing tactical patterns. Existing
pattern catalogs [2, 7] do an excellent job of documenting
many domain-independent, tactical patterns (such as Factory
Method, Abstract Factory, and Singleton). Tactical patterns
have a relatively localized impact on a software architecture.
For instance, the Iterator pattern [2] allows elements in a
collection to be accessed sequentially without violating data
encapsulation. Although this pattern is widely applicable,
the problem it addresses does not have sweeping architec-
tural implications.

In contrast, strategic design patterns have an extensive
impact on the software architecture for solutions in a particu-
lar domain. For example, the Half-Sync/Half-Async pattern
[12] decouples synchronous I/O from asynchronous I/O in
a system to simplify concurrent programming effort without
degrading execution efficiency. This pattern greatly sim-
plifies synchronization strategies in complex concurrent sys-
tems (such as BSD UNIX). We focused most of our energy on
documenting patterns related to our domain (communication
software) and we reused existing tactical patterns rather than
reinventing them. Focusing on strategic domain patterns also
helped to minimize the likelyhood of pattern overload.

� Institutionalize rewards for developing patterns. Un-
familiar design paradigms and methods may be perceived
as threats to the traditional power structure and base of ex-
pertise in an organization. We observed a manifestation of
this problem where some developers were reluctant to share
their domain patterns. They viewed this knowledge as a
competitive advantage over other developers. These types of
problems are indicative of deeper issues related to the reward
structure in a corporate culture, which is often hard to change
[13]. We addressed this problem to the extent possible by
instituting incentives for developing useful pattern descrip-
tions. These descriptions were counted as “deliverables”
used to measure individual performance. We measured the
utility of design patterns by how widely they were adopted
and used successfully (particularly by developers other than
the original authors).

�Useful patterns arise from practical experience. There-
fore, we found that it was important to work closely with
domain experts in order to identify and document key pat-
terns in the communication domain. One consequence of
the experiential basis of patterns is that they are discovered
“bottom-up” rather than invented “top down.” One sign
that pattern overload is taking place is when developers start
planning to “invent patterns.”

�Patterns help ease the transition to object-oriented tech-
nology for developers who were trained in traditional de-
sign techniques. Many patterns in our communication frame-
works (such as the “pipes and filters architecture” [7]) origi-
nated in non-object-oriented contexts such as operating sys-
tems and databases. By explicitly recognizing and reward-

ing the experiential basis of useful patterns, we were able
to leverage valuable developer expertise from earlier design
paradigms [14].

� Patterns are validated by experience rather than by
testing, in the traditional sense of “unit testing” or “inte-
gration testing” of software. This can be problematic because
it is hard to determine when a pattern description is complete
and correct. The most effective way we found to validate
our patterns was through periodic pattern reviews. These
reviews helped to enrich the pattern vocabulary within and
across development teams. We modeled these pattern re-
views as “writers workshops.” At these reviews, developers
from different teams presented useful patterns they observed
in their software. Group members discussed the strengths and
weaknesses of each pattern, accentuating positive aspects of
the patterns, sharing their own experience, and suggesting
improvements in content and style.

�Directly involve pattern authors with application devel-
opers and domain experts. We found that isolatingpattern
authors from development teams resulted in overly abstract
patterns that did not capture the essence of successful de-
signs. This is similar to the problem that arises in large-scale
reuse initiatives that become disconnected from application
development. In both cases the resulting software artifacts
can be too general to solve the actual domain requirements.
We addressed this problem by using the pattern review tech-
niques described above to glean system-level patterns from
domain experts on the projects. These patterns were incor-
porated into the project following careful scrutiny in pattern
reviews.

� Integrating patterns into a software development pro-
cess is a human-intensive activity. Like other software
reuse technologies, reuse of patterns does not come for free
[14]. Identifying and documenting useful patterns requires
both concrete experience in a domain and the ability to ab-
stract away from concrete details to capture the general prop-
erties of patterns. We found that relatively few individuals
possess both these skills with equal proficiency. Therefore,
engaging groups of developers with diverse backgrounds and
skills in pattern review sessions was essential to leverage pat-
terns effectively.

However, pattern reviews required a significant investment
by organizations. The review process is fundamentally inter-
active and creative, rather than automated and rote. Organi-
zations that do not actively encourage these reviews (e.g., due
to tight schedules or due to a view that software development
should be a mechanical process) may devote inadequate time
and developer resources to this review process.

While we generally found the educational benefits of the
pattern reviews justified the costs, we also recognized that
this style of review process does not scale up easily. For
example, experienced developers with deep knowledge of
the communication domain were fertile sources of strategic
and tactical patterns, as well as invaluable mentors in pattern
reviews. However, these experts were often very busy with
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other tasks, and could not always spare much time to write
or review pattern descriptions thoroughly. This is another
reason why documenting patterns should be institutionalized
in an organization’s reward structure.

�Pattern descriptions explicitly record engineering trade-
offs and design alternatives that resolve non-functional
forces. Because pattern descriptions explicitly enumerate
consequences and implementation tradeoffs they can be used
to record why certain design choices were selected and oth-
ers rejected. For example, the description of the Reactor
pattern in Section 2 explains precisely when to apply the pat-
tern (e.g., when each event can be processed quickly) and
when to avoid it (e.g., when transferring large amounts of
bulk data). If this rationale is not captured explicitly it may
be lost over time. This loss deprives maintenance teams of
critical design information, and makes it difficult to motivate
strategic design choices to other groups within a project or
organization.

� Carefully document the contexts where patterns apply
and do not apply. When developers first write pattern de-
scriptions they tend to emphasize the beneficial consequences
of the patterns without thoroughly covering the drawbacks
of using the pattern in certain contexts. For example, as de-
scribed in the previous paragraph, the Reactor pattern can
be an inefficient event demultiplexing mechanism on multi-
processor platforms because it serializes application concur-
rency at a coarse-grained level [9]. If this caveat is not
explicitly captured in a pattern description, developers may
apply the pattern inappropriately. Therefore, pattern descrip-
tions should enumerate both the benefits and the drawbacks
of a pattern, as well as motivate the context in which the
pattern applies or does not apply.

� Successful pattern descriptions capture both structure
and behavior. Expressing the behavioral aspects of a pat-
tern is hard because behaviors involve dynamic collaboration
between participants. However, patterns that do not clearly
describe dynamic behavior are difficult to understand and
apply. We found object interaction diagrams and object in-
teraction graphs were particularly useful for depicting key
collaborations in a design without requiring the attention to
detail necessary to understand source code.

�Patterns facilitate training of new developers by allow-
ing developers joining the projects to absorb the key strate-
gies and tactics in the software design quickly. We exposed
developers to our pattern documentation before having them
delve into the software. We found that the ability to express
the intent, structure, and behavior of our frameworks in terms
of patterns lowered the learning curve for new developers by
giving them a broad understanding of the architecture in our
communication frameworks.

We expect that this aspect of patterns will prove useful for
maintenance programmers. However, the projects at Eric-
sson, Motorola, and BJC/WUSM are all new systems that
have not yet entered the long-term maintenance phase. We

are collecting additional information on how patterns affect
maintenance over the software lifecycle.

� Implementing patterns efficiently requires careful se-
lection of language features. Existing patterns literature
[2, 6, 7, 15] has focused primarily on software quality factors
other than performance. This may be acceptable in domains
where non-functional requirements are more important than
efficiency. For example, graphical user interfaces are often
judged more in terms of their usability, extensibility, and
portability than their raw performance.

In contrast, communication software has traditionally em-
phasized high performance more than other software quality
factors. Thus, we found that many developers were initially
concerned about the performance costs of using design pat-
terns in the communication domain. To allay these concerns,
many of our pattern implementations used C++ parameter-
ized types extensively, rather than inheritance and dynamic
binding. Parameterized types do not degrade the run-time
efficiency of performance-critical applications because tem-
plate instantiation occurs at compile-time. In contrast, al-
ternative techniques for extensibility using inheritance and
dynamic binding incur a run-time performance penalty in
C++, due to virtual function table dispatching overhead.

� Patterns help to transcend “programming language-
centric” viewpoints. Focusing on design patterns helped
us to move away from “programming language-centric”
views of the object paradigm. This was beneficial because
it enabled experienced developers from different language
communities (such as Lisp, Smalltalk, Ada, Eiffel, C++, C,
and Erlang) to share design insights of mutual interest without
being distracted by “language wars.”

Once we moved beyond language syntax and semantic
differences, it was remarkable how much commonality was
shared by successful software solutions for a given design
problem. However, we also found that many developers
wanted to see pattern examples illustrated with the program-
ming language they were most familiar with (C++ in our
projects).

�Managing expectations is crucial to using patterns effec-
tively. One recurring problem we encountered using pat-
terns centered around managing the expectations of devel-
opment team members. Some team members had miscon-
ceptions about precisely how and what design patterns con-
tributed to project success. For example, the use of patterns
does not guarantee flexible and efficient software. More-
over, in their abstract form, patterns cannot be used directly
by programmers in their implementations. Tools do not yet
exist that transform design patterns into code automatically.
Custom implementation is often required, unless the patterns
have been integrated into a reusable framework or library.

We worked hard at Ericsson, Motorola, and BJC/WUSM
to prevent design patterns from becoming yet another buz-
zword. We did this by candidly reporting the benefits and
limitations of patterns and stressing that patterns are just
one of many important tools in a development organization’s
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toolkit. Patterns are no silver bullet that will absolve devel-
opers from having to wrestle with complex analysis, design,
and implementation issues. In our experience, there is simply
no substitute for creativity, experience, and diligence on the
part of developers.

Over time, the contribution of patterns will become ev-
ident as software developers gain experience incorporating
patterns into their development practices. Our experience
applying design patterns in large-scale distributed systems
was that they contributed to developing quality software by
addressing fundamental challenges in large-scale system de-
velopment. These challenges include communication of ar-
chitectural knowledge among developers, accommodating
new design paradigms or architectural styles, and avoiding
development traps and pitfalls that are usually learned only
by experience.

4 Concluding Remarks

Patterns capture the static and dynamic aspects of successful
solutions to problems that commonly arise when building
software systems. If software is to become an engineering
discipline, these successful practices and design expertise
must be documented systematically and disseminated widely.
Patterns are important tools for documenting these practices
and expertise, which traditionally existed primarily in the
minds of expert software architects.

Over the next few years a wealth of software design knowl-
edge will be captured in the form of strategic and tactical
patterns that span disciplines such as client/server program-
ming, distributed processing, organizational design, software
reuse, real-time systems, business and financial systems, and
human interface design. In addition, the following aspects
of patterns will receive increased attention in the next few
years:

� Integration of design patterns together with frameworks
– Patterns can be viewed as abstract descriptions of
frameworks that facilitate widespread reuse of software
architecture. Frameworks can be viewed as concrete
realizations of patterns that facilitate direct reuse of de-
sign and code. One difference between patterns and
frameworks is that patterns are described in language-
independent manner, whereas frameworks are generally
implemented in a particular language. However, pat-
terns and frameworks are highly synergistic concepts,
with neither subordinate to the other.

The next generation of object-oriented frameworks will
explicitly embody dozens or hundreds of patterns – and
patterns will be widely used to document the form and
contents of frameworks [16]. Ideally, systems of pat-
terns and frameworks will be integrated with tools like
on-line pattern browsers that contain hyper-text links to
navigate quickly through multiple levels of abstraction.

� Integration of design patterns to form systems of pat-
terns – most literature on patterns is currently organized

as design pattern catalogs [2, 6, 7]. These catalogs
present a collection of individual solutions to common
design problems. As more experience is gained us-
ing these patterns, developers will integrate groups of
related patterns to form pattern systems (also called pat-
tern languages). These pattern systems will encompass
a family of related patterns that cover a particular do-
main (such as communication software).

In the same sense that comprehensive application frame-
works support larger-scale reuse of design and code than
do class libraries, pattern systems will support larger-
scale reuse of software architecture than individual pat-
terns. Developing comprehensive systems of patterns is
challenging and time consuming, but will likely provide
the greatest payoff for pattern-based software develop-
ment during the next few years.

� Integration with popular object-oriented methods and
software process models – Patterns help to alleviate soft-
ware complexity at several phases in the software lifecy-
cle. Although patterns are not a software development
method or process, they complement existing methods
and processes. For instance, patterns help to bridge
the abstractions in the analysis and architectural design
phases with the concrete realizations of these abstrac-
tions in the implementation and maintenance phases. In
the analysis and design phases, patterns help to guide
developers in selecting from software architectures that
have proven to be successful. In the implementation
and maintenance phases they help document the strate-
gic properties of software systems at a level higher than
source code and individual object models.

This paper just scratches the surface of activities the pat-
terns community is currently engaged in. A number of books
[2, 6, 7, 15] have been published (or will soon be published)
on these topics. The Pattern Languages of Programming
conference [6] is an annual forum dedicated to improving
the expression of patterns. There are also pattern work-
shops at on object-oriented conferences (such as OOPSLA,
ECOOP, and USENIX COOTS). The World Wide Web URL
http://st-www.cs.uiuc.edu/users/patterns
contains a comprehensive on-line reference to pattern-related
material.
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