
Achieving Reuse Through Design Patterns
A Case Study of Evolving Object-Oriented

System Software Across OS Platforms

Douglas C. Schmidty and Paul Stephensonz

schmidt@ics.uci.edu and ebupsn@ebu.ericsson.se
yDepartment of Information and Computer Science, University of California, Irvine, CA 92717

zEricsson/GE Mobile Communications, Inc., Cypress, CA 90630

An earlier version of this paper appeared in the 3rd SIGS
C++ World Conference in Austin, Texas, November, 1994.

Abstract

Building system software that is reusable across OS platforms
presents developers with many challenges. It is often diffi-
cult to reuse existing interfaces and implementations directly
due to portability, functionality, and efficiency constraints
imposed by different platforms and applications. It may still
be possible, however, to leverage prior development effort by
reusing design patterns. Design patterns embody recurring
architectural themes that underlie solutions to requirements
in particular problem domains. This paper presents a case
study of an object-oriented framework written in C++ that
was ported from several UNIX platforms to the Windows
NT platform. The framework supports concurrent event de-
multiplexing and event handler dispatching. Fundamental
differences in the event demultiplexing and I/O mechanisms
on the UNIX and Windows NT platforms precluded direct
reuse of many algorithms and interfaces in the framework.
However, it was possible to reuse the underlying design pat-
terns, which greatly reduced development effort and project
risk.

1 Introduction

System software provides low-level services and mecha-
nisms used by higher-level application software. System
software is comprised of components such as libraries, frame-
works, and utility programs. These components access and
manipulate hardware devices (such as network adapters and
disk drives) and software mechanisms residing within an OS
kernel (such as alarm timers, synchronization objects, com-
munication ports, and signal handlers).

The distinction between system software and application
software is rather blurry (e.g., is a debugger a system software
artifact or application software artifact?). In general, system
programmers design software components (such as dynamic
linkers, device drivers, communication protocol stacks, and
distributed file systems) that interface with lower-level hard-
ware devices and operating system mechanisms. The direct

consumers of system software are typically application pro-
grammers and other system programmers. In contrast, end-
users are generally the consumers of application software
(such as databases, graphical user interfaces, CAD/CAM
products, and video-on-demand servers).

1.1 Challenges of Cross-Platform System Soft-
ware Reuse

Developing system software that is capable of being directly
reused on different OS platforms is challenging. Several
key factors that complicate cross-platform reuse of system
software are outlined below:

� Efficiency – Since other components will be layered
upon system software, the techniques used to develop
system software must not degrade performance signifi-
cantly. Otherwise, developers may be inclined to build
new, more efficient special-purpose code, rather than
reuse existing components.

� Portability– In order to meet performance and function-
ality requirements, system software often must access
highly non-portable mechanisms and interfaces (such as
device registers within a network link-layer driver) in
the underlying OS and hardware platform.

� Lack of Functionality – many OS platforms do not
provide adequate functionality to develop portable,
reusable system components. For example, the lack of
kernel-level multi-threading, explicit dynamic linking,
and asynchronous exception handling (as well as up-
to-date C++ compilers that interact correctly with these
features) greatly increases the complexity of developing
and porting reusable system software.

� Need to Master Complex Concepts – Successfully de-
veloping robust, efficient, and portable system software
requires intimate knowledge of complex mechanisms
(such as concurrency control, interrupt handling, and
interprocess communication) offered by one or more
operating systems. It is also essential to understand the
relative performance costs associated with using alterna-
tive mechanisms (such as shared memory vs. message
passing) on different OS platforms.

1

There are trade-offs among the factors described above
that further complicate the reuse of system software across
platforms. Often, it may be difficult to develop portable sys-
tem software that does not significantly degrade efficiency
or subtly alter the semantics and robustness of commonly
used operations. For instance, many traditional operating
system kernels do not support pre-emptive multi-threading,
and writing a portable user-level threads mechanism is of-
ten less efficient than programming with thread mechanisms
supported by the kernel. Likewise, user-level threads may
reduce robustness by restricting the use of OS features such
as signals or synchronous I/O operations.

1.2 Reuse Techniques for System Software

Several techniques are useful for enhancing the reusability
of system software. One relatively straightforward approach
is to develop C++ wrappers that hide minor syntactic and se-
mantic differences that exist among OS system call interfaces.
A C++ wrapper transforms an existing interface to make it
more object-oriented, without providing additional function-
ality. For example, the IPC SAP class library described in
[1] encapsulates the differences between BSD UNIX sock-
ets and the System V UNIX Transport Layer Interface (TLI)
within a type-safe C++ wrapper. Writing programs that uti-
lize reusable IPC SAP C++ wrapper interfaces facilitates
modular development of portable network services such as
remote login, file transfer, and distributed logging. C++
classes and parameterized types are useful programming lan-
guage features for developing C++ wrappers.

A more sophisticated method for enhancing system soft-
ware reuse is to develop object-oriented frameworks that
shield applications from complex semantic differences be-
tween OS platforms. A framework is an integrated collection
of components that collaborate to produce a reusable architec-
ture for a family of related applications [2]. Object-oriented
frameworks have been used to implement large-scale com-
ponent reuse in domains such as graphical user interfaces [3],
databases [4], operating system kernels [5], and communica-
tion subsystems [6, 7].

Like the C++ wrapper approach described above, a frame-
work may be used to provide a common interface that is
portable and reusable across OS platforms. Unlike the wrap-
per approach, however, a framework enables more extensi-
ble, larger-scale reuse of software. Frameworks provide in-
tegrated functionality that decouple the application-specific
components in a system from the reusable application-
independent components. Inheritance, dynamic binding, and
object composition are C++ language features that help en-
force dependencies and decouple implementations within a
framework.

This paper presents a case study that describes the evolu-
tion of an object-oriented framework called the Reactor
[8, 9]. The Reactor framework supports concurrent event
demultiplexing and event handler dispatching. Event han-
dlers are triggered by various types of events (such as timers,
synchronization objects, signals, or I/O events). The pri-

SERVER

CLIENT

NETWORK

2: FORWARDED

REQUEST

3: RESPONSE

REQUESTOR
1: METHOD CALL

4: METHOD RETURN

TARGET

OBJECT

PROXY

Figure 1: An Example of the Proxy Pattern

mary contribution of this paper is to describe a reuse strategy
that facilitates the development of efficient system software
across OS platforms, even when the platforms possess fun-
damentally different functionality. In particular, the paper
examines how we ported the components in the Reactor
framework from several UNIX platforms to the Windows
NT platform. UNIX and Windows NT provide significantly
different mechanisms for event demultiplexing and I/O. To
satisfy our performance requirements, it was not possible to
directly reuse implementations or interfaces of theReactor
framework across OS platforms. However, it was possible
to reuse the underlying design patterns that were embodied
in the Reactor framework.

2 Design Patterns

A design pattern is a recurring architectural theme that
provides a solution to a particular set of requirements within
a problem domain [10]. For example, the remote object
method invocation mechanism of a CORBA Object Request
Broker (ORB) [11] is based on the Proxy design pattern [10]
illustrated in Figure 1. In this pattern, one or more servers im-
plement the methods and attributes of a remote object (such
as an object that provides a distributed logging service). A
client accesses a remote object indirectly via a local proxy
object, which is a surrogate for the remote object. The proxy
object defines the same interface as the remote object. Each
method in the proxy simply marshals parameters and for-
wards method invocations to the remote object residing on a
server.

2

select (handlers);
foreach h in handlers loop
 if (h is input handler)
 h->handle_input()
 if (h is output handler)
 h->handle_output()
 if (h is signal handler)
 h->handle_signal()
end loop
this->expire_timers()

Timer_Queue

Reactor
register_handler(h)
remove_handler(h)
expire_timers()
dispatch()

schedule_timer(h)
cancel_timer(h)
expire_timer(h)

Event_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

Concrete
Event_Handler

n1

n

1

Figure 2: The Reactor Pattern

Design patterns facilitate reuse at an architectural level by
providing “blueprints” or guidelines for defining and com-
posing the components in a software system. In general, a
large amount of reuse is possible at this level of abstraction,
though there is often less reuse of existing components. In
particular, reusing design patterns may not result in direct
reuse of implementations, interfaces, or even detailed de-
signs. For instance, the design and implementation of the
CORBA remote object method invocation mechanism may
vary radically across different vendors’ ORBs and differ-
ent OS platforms. Nevertheless, the Proxy design pattern is
a recurring architectural theme throughout CORBA imple-
mentations, regardless of the vendor or OS platform.

Object-oriented frameworks typically embody a wide
range of design patterns. For example, the ET++ graphi-
cal user-interface (GUI) framework [12] incorporates design
patterns (such as Abstract Factory [10]) that hide the details
of creating user-interface objects. This enables an applica-
tion to be portable across different window systems (such
as X windows and SunView). Likewise, the InterViews [3]
GUI framework contains design patterns (such as Strategy
and Iterator [10]) that allow algorithms and/or application
behavior to be decoupled from mechanisms provided by the
reusable GUI components.

In the distributed application domain, many components
in the ADAPTIVE Service eXecutive (ASX) framework [7]
represent design patterns. These design patterns address re-
curring distributed application software development themes
(such as event demultiplexing, connection establishment,
message routing, and flexible composition of hierarchically-
related services). The ASX framework has been implemented
on several UNIX platforms and on Windows NT. This paper
focuses on two specific design patterns (the Reactor [13] and
Accepter patterns) that are provided by the ASX framework.

2.1 The Reactor Pattern

The Reactor pattern is an object behavioral pattern. This
pattern simplifies the development of event-driven applica-
tions (such as a CORBA ORB, an X-windows host resource
manager, or a UNIX remote login service). The Reactor pat-
tern provides a common infrastructure that integrates event
demultiplexing and the dispatching of event handlers. Event
handlers perform application-specific processing operations
in response to various types of events. An event handler may
be triggered by different operating system entities (such as
timers, communication ports, synchronization objects, and
signal handlers) that are monitored by an application.

The Reactor pattern provides several benefits to distributed
applications:

� It enables multiple event handlers to wait simultane-
ously for events to occur on multiple entities moni-
tored by an application without blocking or continuously
polling for events on any single monitored entity.

� It decouples the application-specific portions of a service
from the reusable application-independent mechanisms
that implement event demultiplexing. This decoupling
allows the event handlers to evolve independently of
the event demultiplexing mechanisms provided by the
underlying OS platform.

Figure 2 illustrates the participants in the Reactor pattern.1

The Reactor class defines an interface for register-
ing, removing, and dispatching Event Handler ob-
jects. A Reactor implementation provides application-
independent mechanisms that automatically perform demul-
tiplexing and dispatching of application-specific concrete

1Relationships between components are illustrated throughout the paper
via Booch notation [14]. Dashed clouds indicate classes; directed edges
indicate inheritance relationships between classes; and an undirected edge
with a solid bullet at one end indicates a composition relation between
two classes. Solid clouds indicate objects; nesting indicates composition
relationships between objects; and undirected edges indicate some type of
link exists between two objects.

3

main
program

INITIALIZE

REGISTER HANDLER

callback :
Concrete

Event_Handler

START EVENT LOOP

DATA ARRIVES

OK TO SEND

reactor
: Reactor

dispatch()

FOREACH EVENT DO

handle_input()

select()

Reactor::Reactor ()

register_handler(callback)

handle_output()

SIGNAL ARRIVES

TIMER EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT HANDLE

Figure 3: Object Interactions within the Reactor Pattern

event handlers. Time-based event dispatching is performed
by a Timer Queue object contained within the Reactor.
Both the Timer Queue and the Reactor class con-
tain references to objects of Concrete Event Handler
subclasses. These subclasses are derived from the
Event Handler abstract base class, which defines vir-
tual methods for handling input, output, signal, and time-
out events. A Concrete Event Handler subclass
may override these virtual methods to perform application-
specific functionality in response to the corresponding events.

When events occur at run-time, the Reactor dispatches
the associated application-specific methods on pre-registered
objects that are derived from the Event Handler base
class. This collaboration takes the form of the method call-
backs depicted by the object interaction diagram shown in
Figure 3. After initializing the Reactor by registering one
or more event handlers, an application calls the Reactor’s
dispatch method to perform its main event-loop.

Certain event handlers are triggered by the occurrence
of events on descriptors that represent OS entities (such
as I/O ports or synchronization objects). To bind the
Reactor together with these descriptors, a subclass of
Event Handler must define the get handle method.
This method returns a descriptor that is used internally within
theReactor’sdispatchmethod to wait for certain events
to occur. When these events occur, the Reactor dispatches
the event handler associated with the descriptor. The code an-
notation in Figure 2 outlines the behavior of the dispatch
method.

An alternative way to implement event demultiplexing is to
use multi-threading. In this approach, an application spawns
a separate thread for each entity it monitors. Every thread
blocks until the entity it monitors receives an event. At this
point, the appropriate event handler code is executed within
the thread. Using multi-threading to implement event demul-
tiplexing has several drawbacks, however. It may require the
use of complex concurrency control schemes; it may lead to

new CLIENT_HANDLER();

Reactor
Event

Handler
A

Client
Handler

Accepter
open()
handle_input()
get_handle()

CLIENT
HANDLER

Instantiated
Accepter

Client
Handler

1 n

Figure 4: The Accepter Pattern

poor performance on uni-processors [7]; and it may not be
available on many popular OS platforms.

On the other hand, certain types of applications perform
long-duration services such as file transfer or remote login.
For these types of applications, multi-threadingand/or multi-
processing may be useful techniques for reducing develop-
ment effort, improving application robustness, and transpar-
ently leveraging off of available multi-processor capabili-
ties. Therefore, it is often useful to use the Reactor pattern
in conjunction with OS multi-threading or multi-processing
mechanisms, as described in Section 2.2.

2.2 The Accepter Pattern

The Accepter pattern is an object creational pattern. This
pattern decouples the act of establishing a connection from
the service(s) provided after a connection is established.
Connection-oriented services (such as file transfer, remote
login, distributed logging, and video-on-demand) are partic-
ularly amenable to this pattern. The Accepter pattern simpli-
fies the development of these types of services by allowing the
application-specific portion of a service to be modified inde-
pendently of the mechanism used to establish a connection.
Furthermore, by using other object-oriented language fea-
tures (such as templates, inheritance, and dynamic binding)
that are based on design patterns (such as Factory Method
or Abstract Factory [10]), it is possible to completely pa-
rameterize the type of service offered by an instance of the
Accepter pattern [13].

Figure 4 illustrates the participants in the Accepter pat-
tern, which leverages off the interfaces and mechanisms
provided by the Reactor pattern. The open method in
template class Accepter initializes a communication end-
point to listen for incoming connection requests from clients.
The get handle method returns the I/O descriptor corre-

4

sponding to the communication end-point. The Accepter
class inherits the demultiplexing and dispatching interface
from the Event Handler base class. When a connec-
tion request arrives from a client, this interface is used by a
Reactor object to trigger a callback on the Accepter’s
virtual handle input method.

Each new connection request from a client causes the
Accepter’s handle input method to create a new
CLIENT HANDLER object dynamically. In the example il-
lustrated in Figure 4, CLIENT HANDLER is a formal param-
eterized type argument defined in the Accepter template
class. The instantiated Accepter class supplies an ac-
tual Client Handler class parameter. This class param-
eter is responsible for implementing a particular application-
specific service (i.e., transferring a file, receiving logging
records, etc.) that will interact with a client.

Note that the Accepter pattern does not dictate the behav-
ior of Client Handler objects it creates. In particular,
a dynamically created Client Handler object may be
executed in any of the following ways:

1. Run in the same thread of control – This approach is im-
plemented by inheriting the Client Handler from
Event Handler and registering each newly created
Client Handler object with the Reactor. Thus,
each Client Handler object is dispatched in the
same thread of control as an Accepter object.

2. Run in a separate thread of control – In this ap-
proach, a Reactor serves as the central event dis-
patcher within an application. When a client con-
nects, the Accepter’s handle input method will
spawn a separate thread of control and arrange for the
Client Handler object to process the connection
within that new thread. Threads are useful for cooperat-
ing services that frequently reference common memory-
resident data structures shared by the threads.

3. Run in a separate OS process – This approach is similar
to the previous bullet. However, a separate process is
created rather than a separate thread. Network services
that base their security mechanisms on process owner-
ship (such as the standard Internet ftp and telnet
services) are typically executed in separate processes to
prevent accidental or intentional access to unauthorized
resources.

The ASX framework described in [7, 15] provides mecha-
nisms that support all three of these types of behavior. The
implementation described in the following section uses the
single-threaded behavior described in the first bullet above.

3 Implementing the Design Patterns

This section outlines how the Reactor and Accepter design
patterns were implemented on BSD and System V UNIX, as
well as on Windows NT. The discussion emphasizes the rele-
vant functional differences between the various OS platforms

and describes how these differences affected the design and
implementation of the patterns.

The implementation of the Reactor pattern was signifi-
cantly affected by the semantics of the event demultiplexing
and I/O mechanisms provided in the underlying operating
system. In general, there are two types of demultiplexing
and I/O semantics: reactive and proactive. Reactive I/O
semantics (which are provided on standard BSD and Sys-
tem V UNIX systems [16]) allow an application to indicate
to the OS which I/O descriptors to notify it about when an
I/O-related operation (such as a read, write, and connection
request/accept) may be performed without blocking. Subse-
quently, when the OS detects that the desired operation may
be performed without blocking on any of the indicated de-
scriptors, it informs the application that the descriptor(s) are
ready. The application then “reacts” by handling the descrip-
tor(s) accordingly (such as reading or writing data, accepting
connections, etc.).

In contrast, proactive I/O semantics (which are pro-
vided on Windows NT [17] and VMS) allow an applica-
tion to proactively initiate I/O-related operations (such as a
read, write, or connection request/accept) or general-purpose
event-signaling operations (such as a semaphore lock being
acquired or a thread terminating). The invoked operation pro-
ceeds asynchronously and does not block the caller. When an
operation completes, it signals the application. At this point,
the application runs a completion routine that determines the
exit status of the operation and potentially starts up another
asynchronous operation.

For performance reasons, it was not feasible to completely
encapsulate the variation in behavior between the UNIX and
Windows NT I/O semantics. Therefore, we could not directly
reuse existing C++ code, algorithms, or detailed designs.
However, it was possible to capture and reuse the concepts
that underlay the Reactor and Accepter design patterns.

We reduced our project’s risk by reusing existing design
patterns. These patterns provided a concise set of architec-
tural blueprints that guided our porting effort from UNIX to
Windows NT. In particular, we did not have to rediscover
the key collaborations between participants in the patterns.
Instead, our task was to determine a suitable mapping of the
pattern participants onto the mechanisms provided by the dif-
ferent OS platforms. Finding an appropriate mapping was
non-trivial, as we describe below. Nevertheless, our knowl-
edge of the design patterns greatly reduced the amount of
redevelopment effort.

3.1 UNIX Implementations

3.1.1 Implementing the Reactor Pattern on UNIX

The standard demultiplexing mechanisms on UNIX operat-
ing systems provide reactive I/O semantics. In particular,
the UNIX select and poll event demultiplexing sys-
tem calls inform an application which subset of descriptors
within a set of I/O descriptors may send/receive messages or
request/accept connections without blocking. Implementing

5

the Reactor pattern using UNIX reactive I/O is straightfor-
ward. Afterselect orpoll indicate which I/O descriptors
have become ready, the Reactor object reacts by invoking
the appropriate Event Handler callback methods (i.e.,
handle input or handle output).

One advantage of the UNIX reactive I/O scheme is that it
decouples (1) event detection and notification from (2) the
operation performed in response to the triggered event. This
allows an application to optimize its response to an event by
using context information available when the event occurs.
For example, a network server might check to see how many
bytes are in a socket receive queue in order to determine
the size of a buffer it allocates for a recv system call. A
disadvantage of UNIX reactive I/O is that operations may not
be invoked asynchronously to run in parallel with subsequent
operations (unless threads are used).

The original implementation of the Reactor pattern
provided by the ASX framework was derived from the
Dispatcher class category available in the InterViews
object-oriented GUI framework [3]. TheDispatcher is an
object-oriented interface to the UNIX select system call.
InterViews uses the Dispatcher to define an application’s
main event loop and to manage connections to one or more
physical window displays. The Reactor framework’s first
modification to the originalDispatcher framework added
support for signal-based event dispatching. The Reactor’s
signal-based dispatching mechanism was modeled closely
on existing mechanisms for timer-based and I/O descriptor-
based event demultiplexing and event handler dispatching.

The next major modification to the Reactor occurred
when porting it from SunOS 4.x (which is based primarily
on BSD 4.3 UNIX) to SunOS 5.x (which is based primar-
ily on System V release 4 (SVR4) UNIX). SVR4 provides
another event demultiplexing interface via the poll system
call. Poll is similar to select, though it uses a differ-
ent interface and provides a broader, more flexible model for
event demultiplexing that supports SVR4 features such as
STREAM pipe band-data [18].

The SunOS 5.x port of the Reactor was enhanced to
support either select or poll as the underlying event
demultiplexer. Although portions of the Reactor’s inter-
nal implementation changed, its external interface remained
the same for both the select-based and the poll-based
versions. This common interface facilitates networking ap-
plication portability between System V and BSD UNIX [9].

A portion of the public interface for the UNIX implemen-
tation of the Reactor pattern is shown below:

// Bit-wise or these values to check for
// multiple activities per-descriptor
enum Reactor_Mask {
READ_MASK = 01, WRITE_MASK = 02, EXCEPT_MASK = 04,
RWE_MASK = READ_MASK | WRITE_MASK | EXCEPT_MASK

};

class Reactor
{
public:
// Register an Event_Handler object according
// to the Reactor_Mask(s) (i.e., "reading,"
// "writing," and/or "exceptions")

virtual int register_handler (const Event_Handler *,
Reactor_Mask);

// Remove the handler associated with the
// appropriate Reactor_Mask(s)
virtual int remove_handler (const Event_Handler *,

Reactor_Mask);

// Block process until I/O events occur or timer
// expires, then dispatch Event_Handler(s)
virtual int dispatch (void);

// ...
};

Likewise, the Event Handler interface for UNIX is de-
fined as follows:

typedef int HANDLE; // I/O descriptor

class Event_Handler
{
protected:
// Returns the I/O descriptor associated with the
// derived object (must be supplied by a subclass)
virtual HANDLE get_handle (void) const;

// Called when object is removed from the Reactor
virtual int handle_close (HANDLE, Reactor_Mask);
// Called when input becomes available on FD
virtual int handle_input (HANDLE);
// Called when output is possible on FD
virtual int handle_output (HANDLE);
// Called when urgent data is available on FD
virtual int handle_exception (HANDLE);

// Called when timer expires (TV stores the
// current time and ARG is the argument given
// when the handler was originally scheduled)
virtual int handle_timeout (const Time_Value &tv,

const void *arg = 0);
};

The next major modification to the Reactor enabled it
to be used in conjunction with multi-threaded applications
on SunOS 5.x using Solaris threads [19]. Adding multi-
threading support required changes to the internals of both the
select-based and poll-based versions of the Reactor.
These changes involved a SunOS 5.x mutual exclusion mech-
anism known as a “mutex.” A mutex serializes the execu-
tion of multiple threads by defining a critical section where
only one thread executes the code at a time [20]. Critical
sections of the Reactor’s code that concurrently access
shared resources (such as the Reactor’s internal table of
Event Handler objects) are protected by a mutex.

The standard SunOS 5.x synchronization type (mutex t)
provides support for non-recursive mutexes. The SunOS 5.x
non-recursive mutex provides a simple and efficient form
of mutual exclusion based on adaptive spin-locks. How-
ever, non-recursive mutexes possess the restriction that the
thread currently owning a mutex may not reacquire the mu-
tex without releasing it first. Otherwise, deadlock will occur
immediately.

While developing the multi-threadedReactor, it quickly
became obvious that the default implementation of SunOS
5.x mutex variables was inadequate to support the synchro-
nization semantics required by the Reactor. In particu-
lar, as described in Section 2.1, the Reactor’s dispatch
interface performs callbacks to methods of pre-registered,

6

application-specific event handler objects. The following
C++ pseudo-code illustrates the dispatch logic:

void Reactor::dispatch (void)
{
for (;;) {
// Block until one or more events occur
this->wait_for_events (this->handler_set);

this->lock->acquire (); // Obtain the mutex

// Dispatch all the callback methods on
// handlers who contain active events
foreach active handler in this->handler_set {
if (handler is an input handler)

handler->handle_input (handler);
if (handler is an output handler)

handler->handle_output (handler);
if (handler is a signal handler)

handler->handle_signal (handler);
}

this->expire_timers (); // Handle timers
this->lock->release (); // Release the mutex

}
}

Callback methods (such as the handle input and the
handle outputmethods) defined by the event handler ob-
jects may subsequently re-enter the Reactor object via its
register handler andremove handlermethods, as
shown in the following C++ pseudo-code:

// Global per-process instance of the Reactor.
extern Reactor reactor;

// Application-specific callback method.

int Accepter::handle_input (HANDLE handle)
{
Concrete_Event_Handler *new_handler =
new Concrete_Event_Handler;

*new_handler = this->accept (handle);

// Re-enter the Reactor object.
reactor.register_handler (new_handler,

READ_MASK);

// ...
}

In this case, using non-recursive mutexes will result in dead-
lock since (1) the mutex within the Reactor’s dispatch
method is locked throughout the callback and (2) the
Reactor’s register handler method tries to acquire
the same mutex.

One solution to this problem involved recoding the
Reactor to release its mutex lock before invokingcallbacks
to application-specific Event Handler methods. How-
ever, this solution was tedious and error-prone. It also in-
creased synchronization overhead by repeatedly releasing
and reacquiring mutex locks. A more elegant and effi-
cient solution used recursive mutexes to prevent deadlock
and to avoid modifying the Reactor’s concurrency control
scheme. A recursive mutex allows calls to its acquire
method to be nested as long as the thread that owns the lock

REGISTERED

OBJECTS

: Reactor

NETWORK

SERVER
HOST SERVER LOGGING DAEMON

LOGGING

RECORDS

LOGGING

RECORDS

CLIENT
HOST

: Accepter : Logging
IO

: Logging
IO

CLIENT
HOST

CONNECTION

REQUEST

CLIENT
HOST

Figure 5: The Distributed Logging Facility

is the one attempting to re-acquire it. A portable C++ im-
plementation of recursive mutexes for SunOS 5.x appears in
[21].

The current implementation of the UNIX-based Reactor
pattern is about 1,400 lines of C++ code (not including com-
ments or extraneous whitespace). This implementation is
portable between both System V and BSD UNIX variants.

3.1.2 Implementing the Accepter Pattern on UNIX

To motivate and illustrate the Accepter pattern, consider
the event-driven server for a distributed logging facility
shown in Figure 5 [8, 9]. A distributed logging facility
enables multiple applications running on client hosts to for-
ward logging records to a server logging daemon2 running
on a designated host in a network. Logging records are
event messages that contain error notifications, debugging
information, status reporting, etc. Centralizing the logging
activities of distributed applications within a single server
daemon is useful since it consolidates status reporting and
serializes access to shared output devices (such as consoles,
printers, files, or network management information bases).

As shown in Figure 5, a client logging daemon commu-
nicates with the server logging daemon via an interprocess
communication (IPC) channel (such as a TCP/IP connec-
tion). The server logging daemon processes logging records

2A daemon is an OS process that runs continuously “in the background”
[16].

7

that arrive concurrently on multiple I/O descriptors (i.e., one
descriptor for each client connection). Moreover, the server
also listens on a designated I/O descriptor that accepts con-
nection requests from new clients who would like to par-
ticipate in the logging service. Therefore, it is not feasible
for the server process to perform long-durationoperations by
blocking on any individual I/O descriptor. Using blocking
I/O would significantly delay the response time to handle
logging records or connection requests arriving from clients
that are bound to other descriptors.

A highly modular and extensible way to design the
server logging daemon is to combine the Reactor and Ac-
cepter patterns. Together, these patterns decouple (1) the
application-independent mechanisms that demultiplex and
dispatch pre-registered Event Handler objects from (2)
the application-specific connection establishment and log-
ging record transfer functionality performed by methods in
these objects.

Within the server logging daemon, two subclasses
of the Event Handler base class (Logging IO and
Accepter) perform the actions required to process the dif-
ferent types of events arriving on different I/O descriptors.
The Logging IO event handler is responsible for receiv-
ing and processing logging records transmitted from a client.
Likewise, the Accepter event handler is a factory that
is responsible for accepting a new connection request from
a client, dynamically allocating a new Logging IO event
handler to handle logging records from this client, and reg-
istering the new handler with an instance of a Reactor
object.

The following code illustrates an implementation of a
portion of the server logging daemon. An instance of
the Logging IO template class performs I/O between
the server logging daemon and a particular instance of
a client logging daemon. As shown in the code below,
the Logging IO class inherits from both XPORT IO and
Event Handler. Inheriting from the template parame-
ter XPORT IO provides the reliable TCP capabilities used
to transfer logging records between an application and the
server. The use of templates removes the reliance on a par-
ticular IPC interface (such as BSD sockets or System V TLI).
Inheriting from Event Handler enables a Logging IO
object to be registered with the Reactor. This inheri-
tance also allows a Logging IO object’s handle input
method to be dispatched automatically by a Reactor object
to process logging records when they arrive from clients.

template <class XPORT_IO>
class Logging_IO :
public Event_Handler, public XPORT_IO

{
public:
// Callback method that handles the reception of
// logging transmissions from remote clients.
// Two recv()’s are used to maintain logging
// record framing across a TCP bytestream.

virtual int handle_input (HANDLE)
{
long len;

long n;

// Determine length of a logging record.
n = this->XPORT_IO::recv (&len, sizeof len);

if (n <= 0)
return n;

else {
Log_Record log_record;

// Convert from network to host byte-order.
len = ntohl (len);
this->XPORT_IO::recv (&log_record, len);

// Format the logging record
log_record.format ();
// Print logging record to output device.
log_record.print ();
return 0;

}
}

// Retrieve the underlying I/O descriptor (called
// by the Reactor when a Logging_IO object is
// first registered).

virtual HANDLE get_handle (void) const
{

return this->XPORT_IO::get_handle ();
}

// Close down the I/O descriptor and delete
// the object when a client closes down the
// connection.

virtual int handle_close (HANDLE, Reactor_Mask) {
delete this;
return 0;

}

private:
// Must be private to ensure dynamic allocation.
˜Logging_IO (void) {

this->XPORT_IO::close ();
}

}

The Accepter template class is shown in the C++ code
below. It is a generic factory that performs the steps nec-
essary to (1) accept connection requests from client logging
daemons and (2) create CLIENT HANDLER objects that are
used to perform an actual application-specific service on be-
half of clients. Note that the Accepter object and the
CLIENT HANDLER objects it creates run within a single
thread of control.

The Accepter subclass inherits from both the
XPORT LISTENER class and from the Event Handler
class. Inheriting from the XPORT LISTENER class pro-
vides the capability to listen for connection requests on a
communication port, as well as to accept connection requests
on that port when they arrive from clients. Inheriting from
the Event Handler class enables an Accepter object
to be registered with the Reactor. This inheritance also
allows the Reactor to dispatch the Accepter object’s
handle input method. In turn, the handle input
method invokes the SOCK Listener::accept method
to accept a new client’s connection.

8

Logger
Daemon

REGISTER ACCEPTER

CONNECTION EVENT

DATA EVENT

REGISTER HANDLER
FOR CLIENT I/O

PROCESS LOGGING
RECORD

START EVENT LOOP

A :
Accepter

register_handler(A)

: Reactor

dispatch()

handle_input()

register_handler(L)

handle_input()

print()

Reactor::Reactor()

L:
Logging_IO

INITIALIZE

select()

get_handle()
EXTRACT HANDLE

EXTRACT HANDLE
get_handle()

Figure 6: Server Logging Daemon Interaction Diagram

// Global per-process instance of the Reactor.
extern Reactor reactor;

// Handles connection requests from a remote client.

template <class CLIENT_HANDLER,
class XPORT_LISTENER,
class XPORT_ADDR>

class Accepter
: public Event_Handler, public XPORT_LISTENER

{
public:

// Initialize the accepter endpoint.

Accepter (XPORT_ADDR &addr)
: XPORT_LISTENER (addr) {}

// Callback method that accepts a new connection,
// creates a new CLIENT_HANDLER object to perform
// I/O with the client connection, and registers
// the new object with the Reactor.

virtual int handle_input (HANDLE)
{

CLIENT_HANDLER *handler = new CLIENT_HANDLER;

this->XPORT_LISTENER::accept (*handler);
reactor.register_handler (handler, READ_MASK);
return 0;

}

// Retrieve the underlying I/O descriptor (called
// by the Reactor when a Accepter object is
// first registered).

virtual HANDLE get_handle (void) const {
return this->XPORT_LISTENER::get_handle ();

}

// Close down the I/O descriptor when the
// Accepter is shut down.

virtual int handle_close (HANDLE, Reactor_Mask)
{
return this->XPORT_LISTENER::close ();

}

};

The C++ code shown below illustrates the main entry
point into the server logging daemon. This code creates a
Reactor object and an Accepter object and registers the
Accepter with the Reactor. Note that the Accepter
template is instantiated with the Logging IO class, which
performs the distributed logging service on behalf of clients.
Next, the main program enters theReactor’s event-loop by
calling dispatch. The dispatch method continuously
handles connection requests and logging records that arrive
from clients. The interaction diagram shown in Figure 6
illustrates the collaboration between the various objects in
the server logging daemon at run-time. Note that once the
Reactor object is initialized, it becomes the primary focus
of the control flow within the server logging daemon. All
subsequent activity is triggered by callback methods on the
event handlers controlled by the Reactor.

// Global per-process instance of the Reactor.
Reactor reactor;

// Server port number.
const unsigned int PORT = 10000;

// Instantiate the Logging_IO template
typedef Logging_IO <SOCK_Stream> LOGGING_IO;

// Instantiate the Accepter template
typedef Accepter<LOGGING_IO,

SOCK_Listener,
INET_Addr> ACCEPTER;

int
main (void)
{
INET_Addr addr (PORT);
ACCEPTER accepter (addr);

reactor.register_handler (&accepter,
READ_MASK);

9

// Main event loop that handles client
// logging records and connection requests.
reactor.dispatch ();

return 0;
}

The C++ code example shown above uses templates to
decouple the reliance on the particular type of IPC inter-
face used for connection establishment and communication.
The SOCK Stream, SOCK Listener and INET Addr
classes used in the template instantiations are part of the
SOCK SAP C++ wrapper library [1]. SOCK SAP encapsu-
lates the SOCK STREAM semantics of the socket transport
layer interface within a type-secure, object-oriented inter-
face. SOCK STREAM sockets support the reliable transfer of
bytestream data between two processes, which may run on
the same or on different host machines in a network [16].

By using templates, it is relatively straightforward to in-
stantiate a different IPC interface (such as the TLI SAPC++
wrappers that encapsulate the System V TLI interface [22]).
Templates trade additional compile-time and link-time over-
head for improved run-time efficiency. Note that a similar
degree of decoupling also could be achieved via inheritance
and dynamic binding by using the Abstract Factory or Factory
Method patterns described in [10]. [21] provides a detailed
discussion of the trade-offs between templates and inheri-
tance/dynamic binding.

3.2 Windows NT Implementation

This section describes the Windows NT implementation of
the Reactor and Accepter design patterns. The Windows NT
port was performed at the Ericsson/GE Mobile Communi-
cations facility in Cypress, California. The design patterns
and framework described in this paper are currently being
applied at Ericsson on a family of client/server applications
as part of the External Operating Systems project [23]. This
project uses the Reactor and Accepter patterns as the basis
for a network management framework. This framework en-
hances the flexibility and reuse of applications that monitor
and manage telecommunication switch performance across
multiple hardware and software platforms.

We initially attempted to port the existing Reactor im-
plementation from UNIX to Windows NT using theselect
function from the Windows Sockets (WinSock) library.3 This
approach failed because the WinSock version of select
does not interoperate with standard Win324 I/O HANDLEs.
Our applications required the use of Win32 I/O HANDLEs
to support network protocols (such as Microsoft’s NetBIOS
Extended User Interface (NetBEUI)) that are not supported
by WinSock version 1.1. Next, we tried to reimplement
the Reactor interface using the Win32 API system call
WaitForMultipleObjects. The goal was to maintain

3WinSock is a Windows-oriented transport layer programming interface
based on the BSD socket paradigm [24].

4Win32 is the 32-bit Windows subsystem of the Windows NT operating
system.

the original UNIX interface, but transparently supply a dif-
ferent implementation.

Transparent reimplementation failed to work due to funda-
mental differences in the proactive vs. reactive I/O semantics
on Windows NT and UNIX outlined in Section 3. We ini-
tially considered circumventing these differences by using a
technique that asynchronously initiateda 0-sizedReadFile
request on an overlapped I/O HANDLE. Overlapped I/O is
an Win32 mechanism that supports asynchronous input and
output. With this technique, the overlapped event would sig-
nal when data arrives and a synchronous ReadFile would
then be invoked to receive the data. Unfortunately, this solu-
tion would have doubled the number of system calls for ev-
ery input operation, which caused unacceptable performance
overhead. In addition, this approach still did not adequately
emulate the output semantics provided by the UNIX reactive
I/O mechanisms.

At this point it became clear that the direct reuse of class
method interfaces, attributes, or algorithms was not a feasible
type of reuse under the circumstances. Instead, we needed to
elevate the level of abstraction for reuse to the level of design
patterns. Regardless of the underlying OS event demulti-
plexing I/O semantics, the Reactor pattern is applicable for
event-driven applications that must process multiple event
handlers triggered concurrently by various types of events.
Although differences between OS platforms precluded direct
reuse of implementations or interfaces, the design knowl-
edge we had invested in the Reactor and Accepter patterns
was reusable.

The remainder of this section describes the modifications
we made to the implementations of the Reactor and Accepter
design patterns in order to port them to Windows NT.

3.2.1 Implementing the Reactor Pattern on Windows
NT

Windows NT provides proactive I/O semantics that are typ-
ically used in the following manner. First, an application
creates a HANDLE that corresponds to an I/O channel for
the type of networking mechanism being used (such as named
pipes or sockets). The overlapped I/O attribute is specified
to the HANDLE creation system call (WinSock sockets are
created for overlapped I/O by default). Next, an application
creates a HANDLE to a Win32 event object and uses this
event object HANDLE to initialize an overlapped I/O struc-
ture. The HANDLE to the I/O channel and the overlapped I/O
structure are then passed to the WriteFile or ReadFile
system calls when initiating either a send or receive oper-
ation, respectively. The initiated operation proceeds asyn-
chronously and does not block the caller. When the operation
completes, the event object specified inside the overlapped
I/O structure is set to the “signaled” state. Subsequently,
Win32 system calls such as WaitForSingleObject or
WaitForMultipleObjects may be used to detect the
signaled state of the Win32 event object, thereby determining
when an outstanding asynchronous operation has completed.

The Win32 WaitForMultipleObjects system call

10

is functionally similar to the UNIX select and poll
system calls. It blocks on an array of HANDLEs wait-
ing for one or more of them to signal. Unlike the two
UNIX system calls (which wait only for I/O descriptors),
WaitForMultipleObjects is a general purpose routine
that may be used to wait for any type of Win32 object (such as
a thread, process, synchronization object, I/O handle, named
pipe, socket, or timer). It may be programmed to return to
its caller either when any one of the HANDLEs becomes
signaled or when all of the HANDLEs become signaled.
WaitForMultipleObjects returns the index location
in the HANDLE array of the lowest signaled HANDLE.

The generality of WaitForMultipleObjects is both
a strength and a weakness. While it provides the flexibility
to synchronize on a wide range Win32 objects, it is also more
complicated to program for applications that must synchro-
nize simultaneous send and receive operations on the same
I/O channel. For example, in order to distinguish the com-
pletion of a send operation from a receive operation, separate
overlapped I/O structures and Win32 event objects must be
allocated for input and output. Furthermore, two elements in
theWaitForMultipleObjectsHANDLE array (which
is currently limited to a rather small maximum of 64 HAN-
DLEs) are consumed by the separate send and receive event
object HANDLEs.

An advantage of the Windows NT proactive I/O scheme is
that it may improve performance by allowing I/O operations
to execute asynchronously with respect to other functions
performed by the operating system. In contrast, the reactive
I/O semantics offered by UNIX do not support asynchronous
I/O directly (threads may be used instead). However, design-
ing and implementing the Reactor pattern using proactive I/O
on Windows NT turned out to be more difficult than using
reactive I/O on UNIX.

Two characteristics of WaitForMultipleObjects
significantly complicated the implementation of the Win-
dows NT version of the Reactor pattern:

1. Each Win32 WaitForMultipleObjects call only
returns notification on a single HANDLE. Therefore, to
achieve the same behavior as the UNIX select and
poll system calls (which return a set of descriptors),
multiple WaitForMultipleObjects must be per-
formed.

2. The semantics of WaitForMultipleObjects do
not result in a fair distribution of notifications. In par-
ticular, the lowest signaled HANDLE in the array is al-
ways returned, regardless of how long other HANDLEs
further back in the array may have been pending.

The implementation techniques required to handle these
characteristics of Windows NT were rather complicated.
Therefore, a Handler Repository class was created to
shield the Reactor from this complexity. This class pro-
vides a container for Event Handler objects registered
with a Reactor. This container class implements standard
operations for inserting, deleting, suspending, and resum-
ing Event Handlers. Each Reactor object contains

a Handler Repository object in its private data por-
tion. A Handler Repository maintains the array of
HANDLEs passed to WaitForMultipleObjects and
it also provides methods for inserting, retrieving, and “re-
prioritizing” the HANDLE array. Re-prioritizationalleviates
the inherent unfairness in the way that the Windows NT
WaitForMultipleObjects system call notifies appli-
cations when HANDLEs become signaled.

The Handler Repository’s re-prioritization method
is invoked by specifying the index of the HANDLE which
has signaled and been dispatched by the Reactor. The
method’s algorithm moves the signaled HANDLE toward
the end of the HANDLE array. This allows signaled HAN-
DLEs that are further back in the array to be returned by
subsequent calls to WaitForMultipleObjects. Over
time, HANDLEs that signal frequently migrate to the end of
the HANDLE array. Likewise, HANDLES that signal in-
frequently migrate to the front of the HANDLE array. This
algorithm ensures a reasonably even distribution of HAN-
DLE dispatching.

The implementation techniques described in the previ-
ous paragraph did not affect the external interface of the
Reactor. Unfortunately, certain aspects of Windows NT
proactive I/O semantics, coupled with the desire to fully
utilize the flexibility of WaitForMultipleObjects,
forced visible changes to the Reactor’s external interface.
In particular, Windows NT overlapped I/O operations must
be initiated immediately (rather than waiting until it becomes
possible to perform an operation, as with the UNIX reactive
I/O scenario described above). Therefore, it was necessary
for the Windows NT Event Handler interface to distin-
guish between I/O HANDLEs and synchronization object
HANDLES, as well as to supply additional information (such
as message buffers and event HANDLEs) to the Reactor.

The following modifications to the Reactor were re-
quired to support Windows NT I/O semantics. The
Reactor Mask enumeration was modified to include a
new SYNC MASK value to allow the registration of an
Event Handler that is dispatched when a general Win32
synchronizationobject signals. Thesendmethod was added
to the Reactor class to proactively initiate output opera-
tions on behalf of an Event Handler.

// Bit-wise or these values to check for
// multiple activities per-descriptor
enum Reactor_Mask {
READ_MASK = 01, WRITE_MASK = 02, SYNC_MASK = 04,
RWS_MASK = READ_MASK | WRITE_MASK | SYNC_MASK

};

class Reactor
{
public:
// Same as UNIX Reactor

// Initiate an asynchronous send operation
virtual int send (const Event_Handler *,

const Message_Block *);

// ...
};

Likewise, the Event Handler interface for Windows NT

11

was also modified, as follows:

class Event_Handler
{
protected:
// Returns the Win32 I/O HANDLE associated with the
// derived object (must be supplied by a subclass)
virtual HANDLE get_io_handle (void) const;
// Returns the Win32 synchronization HANDLE
// associated with the derived object (must be
// supplied by a subclass)
virtual HANDLE get_sync_handle (void) const;

// Called when object is removed from the Reactor
virtual int handle_close (Message_Block *,

Reactor_Mask);
// Called when input operation has completed
virtual int handle_input (Message_Block *);
// Called when output operation has completed
virtual int handle_output (Message_Block *);
// Called when a synchronization object has signaled
virtual int handle_sync (void);

// Called when timer expires (TV stores the
// current time and ARG is the argument given
// when the handler was originally scheduled)
virtual int handle_timeout (const Time_Value &tv,

const void *arg = 0);

// Allocates a message for the Reactor
virtual Message_Block *get_message (void);

// Get/set input and output events
virtual HANDLE input_event (void);
virtual void input_event (HANDLE in_event);
virtual HANDLE output_event (void);
virtual void output_event (HANDLE out_event);

// ...
};

When a derived Event Handler is registered for in-
put with the Reactor an overlapped input operation is
immediately initiated on its behalf. In order to do this,
the Reactor must obtain an I/O mechanism HANDLE,
destination buffer, and a Win32 event object HANDLE
for synchronization from the derived Event Handler.
A derived Event Handler returns the I/O mechanism
HANDLE via its get io handle method and returns the
destination buffer location and length information via the
Message Block abstraction described in [7].

An event HANDLE for input synchronization is returned
by the first overloaded input event definition shown
above. Since the creation of Win32 event objects is a com-
mon operation, the derived Event Handler may choose
to defer the operation to the Reactor. This is done
by returning a NULL HANDLE from input event. A
NULL HANDLE signals the Reactor to allocate a Win32
event object for use with input operations for the derived
Event Handler. The allocated event object HANDLE
is returned to the derived Event Handler via the sec-
ond overloaded input event definition. The derived
Event Handler then assumes responsibility for properly
closing the event object HANDLE when it is deleted. Each
time an input operation completes and is successfully dis-
patched, the Reactor acquires a new Message Block
and proactively initiates the next input operation. The
output event methods are similar to the input event
methods, though they handle output semantics rather than
input semantics.

When a derived Event Handler object is regis-
tered for synchronization with the Reactor the object’s
get sync handle method is invoked automatically to
obtain the Win32 synchronization object HANDLE. The
synchronization object HANDLE is placed directly in the
WaitForMultipleObjectHANDLE array (in contrast,
an I/O mechanism HANDLE is triggered indirectly via an
event object HANDLE). Note that the Reactor performs
no proactive operation that will cause the Win32 synchro-
nization object to signal. Moreover, the Reactor does not
perform any operation to reset or re-arm the synchroniza-
tion object once it has signaled and been dispatched. The
Reactor simply registers a synchronization object HAN-
DLE and dispatches its derived Event Handler when it
signals.

Given the behavior of Event Handler objects that are
registered for synchronization, together with the semantics
of the WaitForMultipleObject system call, one may
question the need for specialized input and output process-
ing within the Reactor. In other words, why not simply
implement the Win32 version of the Reactor to handle
only synchronization objects and push I/O handling func-
tionality into the derived Event Handlers? Our motiva-
tion for maintaining this distinction is that the Reactor is
intended to perform I/O multiplexing within server applica-
tions. By encapsulating the details of initiating, completing,
and dispatching I/O operations within theReactor, derived
Event Handlers are able to reuse this functionalityand to
focus on data pre- and postprocessing (rather than focusing
on I/O operation details).

The current implementation of the Windows NT-based
Reactor pattern is about 1,600 lines C++ code (not includ-
ing comments or extraneous whitespace). This code is ap-
proximately 200 lines longer than the UNIX version. The
additional code is required primarily to handle the com-
plex WaitForMultipleObjects event demultiplexing
semantics discussed above. Although Windows NT event
demultiplexing is more complex than UNIX, the behavior
of Win32 mutex objects eliminated the need for the separate
Mutex interface with recursive-mutex semantics discussed
in Section 3.1.1. Under Win32, a thread will not be blocked
if it attempts acquire a mutex specifying the HANDLE to a
mutex that it already owns. However, to release its owner-
ship, the thread must release a Win32 mutex once for each
time that the mutex was acquired.

3.2.2 Implementing the Accepter Pattern on Windows
NT

The following example C++ code illustrates an implemen-
tation of the Accepter pattern based on the Windows NT
version of the Reactor pattern. The application is the same
server logging daemon presented in Section 3.1.2. However,
the example below uses a C++ wrapper for Win32 named
pipes in place of the SOCK SAP C++ wrappers for the socket
interface.

template <class XPORT_IO>

12

class Logging_IO :
public Event_Handler, public XPORT_IO

{
public:
// Callback method that handles the reception of
// logging transmissions from remote clients. Note
// the use of the Message_Block data structure, which
// stores an incoming message received from a client.

virtual int handle_input (Message_Block *msg)
{
Log_Record *log_record =
(Log_Record *) msg->get_rd_ptr ();

// Format record in preparation for printing.
log_record.format ();
// Print logging record to output device.
log_record.print ();
delete msg;
return 0;

}
}

// Retrieve the underlying I/O HANDLE (called
// by the Reactor when a Logging_IO object is
// first registered).

virtual HANDLE get_handle (void) const
{
return this->XPORT_IO::get_handle ();

}

// Return a dynamically allocated buffer
// to store an incoming logging message.

virtual Message_Block *get_message (void) {
return new Message_Block (sizeof (Log_Record));

}

// Close down the I/O descriptor and delete
// the object when a client closes down the
// connection.

virtual int handle_close (Message_Block *msg,
Reactor_Mask) {

delete msg;
delete this;
return 0;

}

private:
// Must be private to ensure dynamic allocation.
˜Logging_IO (void) {
this->XPORT_IO::close ();

}
}

The Accepter class is essentially the same as the one
illustrated in Section 3.1.2, though it uses thehandle sync
method to complete connection acceptance rather than the
handle input method. Likewise, the interaction diagram
that describes the collaboration between objects in the server
logging daemon is also very similar to the one shown in
Figure 6. The primary difference is that Win32 Named Pipe
C++ wrappers are used in place of the socket C++ wrappers
in the main program, as shown in the code below:

// Global per-process instance of the Reactor.
Reactor reactor;

// Server endpoint
const char ENDPOINT[] = "logger";

// Instantiate the Logging_IO template
typedef Logging_IO <NPipe_IO> LOGGING_IO;

// Instantiate the Accepter template
typedef Accepter<LOGGING_IO,

NPipe_Listener,
Local_Pipe_Name> ACCEPTER;

int
main (void)
{
Local_Pipe_Name addr (ENDPOINT);
ACCEPTER accepter (addr);

reactor.register_handler (&accepter,
SYNC_MASK);

accepter.initiate ();

// Main event loop that handles client
// logging records and connection requests
reactor.dispatch ();

return 0;
}

The named pipe Accepter object (accepter) is regis-
tered with the Reactor to handle asynchronous connection
establishment. Due to the semantics of Windows NT proac-
tive I/O, the accepter object must explicitly initiate the
acceptance of a named pipe connection via its initiate
method. Each time a connection acceptance is completed, the
Reactor dispatches thehandle syncmethod of the named
pipe Accepter to create a new Client Handler that will
receive logging records from the client. The Reactor will
also initiate the next connection acceptance sequence asyn-
chronously.

4 Concluding Remarks

Design patterns facilitate the reuse of an abstract architecture
that is independent from any concrete realization of this archi-
tecture. Design patterns are particularly useful when devel-
oping system software components and frameworks that are
reusable across OS platforms. This paper describes two de-
sign patterns (Reactor and Accepter) that are commonly used
in distributedsystem software. These design patterns charac-
terize the collaboration between objects that are used to auto-
mate common activities (such as event demultiplexing, event
handler dispatching, and connection establishment) used to
implement distributed systems.

This case study describes how a framework based on the
Reactor and Accepter design patterns were ported from sev-
eral UNIX platforms to the Windows NT Win32 platform. It
was difficult to directly reuse the implementations, interfaces,
or detailed designs of these frameworks across the different
OS platforms. In particular, performance constraints and
fundamental differences in the I/O mechanisms available on
Windows NT and UNIX platforms prevented us from encap-
sulating event demultiplexing functionality within a com-
pletely reusable framework. However, we were able to reuse
the underlying design patterns, which significantly reduced
project risk.

13

Our experiences also underscore that the transition from
object-oriented analysis to object-oriented design and im-
plementation may be challenging. Often, the constraints of
the underlying OS and hardware platform influence design
and implementation details significantly. This is particularly
problematic for system software, which is frequently targeted
for particular platforms with particular non-portable charac-
teristics. In such circumstances, reuse of design patterns may
be the only viable means to leverage previous development
expertise.

The UNIX version of the ASX framework components de-
scribed in this paper are freely available via anonymous ftp
from the Internet host ics.uci.edu (128.195.1.1) in the
file gnu/C++ wrappers.tar.Z. This distribution con-
tains complete source code, documentation, and example
test drivers for the C++ components developed as part of
the ADAPTIVE project [25] at the University of Califor-
nia, Irvine. Components in the ASX framework have been
ported to both UNIX and Windows NT and are currently
being used in a number of commercial products including
the AT&T Q.port ATM signaling software product and the
Ericsson EOS family of network management applications
for telecommunication switches.

References
[1] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to

Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[2] R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22–35,
June/July 1988.

[3] M. A. Linton, J. Vlissides, and P. Calder, “Composing User
Interfaces with InterViews,” IEEE Computer, vol. 22, pp. 8–
22, February 1989.

[4] D. Batory and S. W. O’Malley, “The Design and Implementa-
tion of Hierarchical Software Systems Using Reusable Com-
ponents,” ACM Transactions on Software Engineering and
Methodology, vol. 1, Oct. 1992.

[5] R. Campbell, V. Russo, and G. Johnson,“The Design of a Mul-
tiprocessor Operating System,” in Proceedingsof the USENIX
C++ Workshop, pp. 109–126, USENIX Association, Novem-
ber 1987.

[6] J. M. Zweig, “The Conduit: a Communication Abstraction in
C++,” in Proceedings of the 2nd USENIX C++ Conference,
pp. 191–203, USENIX Association, April 1990.

[7] D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[8] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

[9] D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX I/O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

[11] S. Vinoski, “Distributed Object Computing with CORBA,”
C++ Report, vol. 5, July/August 1993.

[12] A. Weinand, E. Gamma, and R. Marty, “ET++ - an object-
oriented application framework in C++,” in Proceedings of
the Object-Oriented Programming Systems, Languages and
Applications Conference, pp. 46–57, ACM, Sept. 1988.

[13] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Dispatching,” in Pro-
ceedings of the 1st Annual Conference on the Pattern Lan-
guages of Programs, (Monticello, Illinois), August 1994.

[14] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[15] D. C. Schmidt and T. Suda, “The Service Configurator Frame-
work: An Extensible Architecture for Dynamically Config-
uring Concurrent, Multi-Service Network Daemons,” in Pro-
ceedings of the Second International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 190–201,
IEEE, Mar. 1994.

[16] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[17] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[18] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[19] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[20] A. D. Birrell, “An Introduction to Programming with
Threads,” Tech. Rep. SRC-035, Digital Equipment Corpo-
ration, January 1989.

[21] D. C. Schmidt, “Transparently Parameterizing Synchroniza-
tion Mechanisms into a Concurrent Distributed Application,”
C++ Report, vol. 6, July/August 1994.

[22] D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: Object-Oriented Network Programming Components
for Developing Client/Server Applications,” in Proceedings
of the 12th Annual Sun Users Group Conference, (San Fran-
cisco, CA), pp. 214–225, SUG, June 1994.

[23] D. C. Schmidt and P. Stephenson,“An Object-Oriented Frame-
work for Developing Network Server Daemons,” in Proceed-
ings of the 2nd C++ World Conference, (Dallas, Texas), SIGS,
Oct. 1993.

[24] Windows Sockets - An Open Interface for Network Program-
ming underMicrosoftWindows, Version 1.1 ed., January 1993.

[25] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Journalof Concurrency: Prac-
tice and Experience, vol. 5, pp. 269–286, June 1993.

14

