Achieving Reuse Through Design Patterns

A Case Study of Evolving Object-Oriented
System Software Across OS Platforms

Douglas C. Schmidt' and Paul Stephenson*
schmidt@ics.uci.edu and ebupsn@ebu.ericsson.se
T Department of Information and Computer Science, University of California, Irvine, CA 92717
! Ericsson/GE Mobile Communications, Inc., Cypress, CA 90630

An earlier version of this paper appeared in the 3"¢ SIGS
C++ World Conference in Austin, Texas, November, 1994.

Abstract

Building systemsoftwarethat isreusable across OSpl atforms
presents devel opers with many challenges. It is often diffi-
cult to reuse existing interfaces and i mplementationsdirectly
due to portability, functionality, and efficiency constraints
imposed by different platformsand applications. It may still
be possible, however, to leverage prior devel opment effort by
reusing design patterns. Design patterns embody recurring
architectural themes that underlie solutions to requirements
in particular problem domains. This paper presents a case
study of an object-oriented framework written in C++ that
was ported from several UNIX platforms to the Windows
NT platform. The framework supports concurrent event de-
multiplexing and event handler dispatching. Fundamental
differences in the event demultiplexing and 1/0O mechanisms
on the UNIX and Windows NT platforms precluded direct
reuse of many algorithms and interfaces in the framework.
However, it was possibleto reuse the underlying design pat-
terns, which greatly reduced devel opment effort and project
risk.

1 Introduction

System software provides low-level services and mecha
nisms used by higher-level application software. System
softwareiscomprised of componentssuch aslibraries, frame-
works, and utility programs. These components access and
manipulate hardware devices (such as network adapters and
disk drives) and software mechanisms residing within an OS
kernel (such as alarm timers, synchronization objects, com-
munication ports, and signal handlers).

The digtinction between system software and application
softwareisrather blurry (e.g., isadebugger asystem software
artifact or application software artifact?). In general, system
programmers design software components (such as dynamic
linkers, device drivers, communication protocol stacks, and
distributed file systems) that interface with lower-level hard-
ware devices and operating system mechanisms. The direct

consumers of system software are typically application pro-
grammers and other system programmers. In contrast, end-
users are generally the consumers of application software
(such as databases, graphica user interfaces, CAD/CAM
products, and video-on-demand servers).

1.1 Challengesof Cross-Platform System Soft-
ware Reuse

Devel oping system software that is capable of being directly
reused on different OS platforms is challenging. Severa
key factors that complicate cross-platform reuse of system
software are outlined below:

o Efficiency — Since other components will be layered
upon system software, the techniques used to develop
system software must not degrade performance signifi-
cantly. Otherwise, devel opers may be inclined to build
new, more efficient specia-purpose code, rather than
reuse existing components.

o Portability—In order to meet performance and function-
ality requirements, system software often must access
highly non-portablemechani sms and interfaces (such as
device registers within a network link-layer driver) in
the underlying OS and hardware platform.

e Lack of Functionality — many OS platforms do not
provide adequate functionality to develop portable,
reusable system components. For example, the lack of
kernd-level multi-threading, explicit dynamic linking,
and asynchronous exception handling (as well as up-
to-date C++ compilers that interact correctly with these
features) greatly increases the complexity of developing
and porting reusable system software.

o Need to Master Complex Concepts — Successfully de-
veloping robust, efficient, and portable system software
requires intimate knowledge of complex mechanisms
(such as concurrency control, interrupt handling, and
interprocess communication) offered by one or more
operating systems. It isaso essentia to understand the
relative performance costs associ ated with using alterna-
tive mechanisms (such as shared memory vs. message
passing) on different OS platforms.

There are trade-offs among the factors described above
that further complicate the reuse of system software across
platforms. Often, it may be difficult to develop portable sys-
tem software that does not significantly degrade efficiency
or subtly ater the semantics and robustness of commonly
used operations. For instance, many traditiona operating
system kernels do not support pre-emptive multi-threading,
and writing a portable user-level threads mechanism is of-
ten less efficient than programming with thread mechanisms
supported by the kernel. Likewise, user-level threads may
reduce robustness by restricting the use of OS features such
as signals or synchronous I/O operations.

1.2 Reuse Techniquesfor System Software

Several techniques are useful for enhancing the reusability
of system software. One relatively straightforward approach
isto develop C++ wrappers that hide minor syntactic and se-
manti c differencesthat exist among OSsystemcall interfaces.
A C++ wrapper transforms an existing interface to make it
more object-oriented, without providing additional function-
ality. For example, the | PC_SAP class library described in
[1] encapsulates the differences between BSD UNIX sock-
etsand the System V UNIX Transport Layer Interface (TLI)
within a type-safe C++ wrapper. Writing programs that uti-
lize reusable | PC_SAP C++ wrapper interfaces facilitates
modular devel opment of portable network services such as
remote login, file transfer, and distributed logging. C++
classes and parameterized types are useful programming lan-
guage features for developing C++ wrappers.

A more sophisticated method for enhancing system soft-
ware reuse is to develop object-oriented frameworks that
shield applications from complex semantic differences be-
tween OSplatforms. A framework isan integrated collection
of componentsthat coll aborateto produceareusablearchitec-
turefor afamily of related applications[2]. Object-oriented
frameworks have been used to implement large-scale com-
ponent reuse in domains such as graphical user interfaces[3],
databases [4], operating system kernels[5], and communica-
tion subsystems|[6, 7].

Likethe C++ wrapper approach described above, aframe-
work may be used to provide a common interface that is
portable and reusabl e across OS platforms. Unlikethe wrap-
per approach, however, a framework enables more extensi-
ble, larger-scale reuse of software. Frameworks providein-
tegrated functionality that decouple the application-specific
components in a system from the reusable application-
independent components. |nheritance, dynamic binding, and
object composition are C++ language features that help en-
force dependencies and decouple implementations within a
framework.

This paper presents a case study that describes the evolu-
tion of an object-oriented framework called the React or
[8,9]. The React or framework supports concurrent event
demultiplexing and event handler dispatching. Event han-
diersaretriggered by varioustypes of events (such astimers,
synchronization objects, signals, or I/O events). The pri-

1: METHOD CALL

CLIENT

TARGET
OBJECT

"
NETWORK
SERVER
"

Figure1: An Example of the Proxy Pattern

mary contribution of thispaper isto describe areuse strategy
that facilitates the devel opment of efficient system software
across OS platforms, even when the platforms possess fun-
damentally different functionality. In particular, the paper
examines how we ported the components in the React or

framework from several UNIX platforms to the Windows
NT platform. UNIX and Windows NT provide significantly
different mechanisms for event demultiplexing and 1/O. To
satisfy our performance requirements, it was not possible to
directly reuseimplementationsor interfaces of theReact or

framework across OS platforms. However, it was possible
to reuse the underlying design patterns that were embodied
intheReact or framework.

2 Design Patterns

A design pattern is a recurring architectural theme that
providesasolutionto a particular set of requirements within
a problem domain [10]. For example, the remote object
method invocation mechanism of a CORBA Object Request
Broker (ORB) [11] is based on the Proxy design pattern [10]
illustratedin Figure 1. Inthispattern, oneor more serversim-
plement the methods and attributes of a remote object (such
as an object that provides a distributed logging service). A
client accesses a remote object indirectly via a loca proxy
object, which isa surrogatefor the remote object. The proxy
object defines the same interface as the remote object. Each
method in the proxy simply marshals parameters and for-
wards method invocationsto the remote object residing on a
server.

select (handlers);

-~
/ ——— T~

-/ Reactor "\

| register | handler(h)
\, remove_handler(h) .

/ \\

Event Handler \

foreach hin handlersloop
if (hisinput handler)
h->handle_input()
if (hisoutput handler)
h->handle_output()
if (hissignal handler)
h->handle_signal()
end loop

/ expire_timers() //

dl spatch()

—

p———
/

?—EI handle input() |,
\ handle output()‘

! handle_signal() \
/ handle_ti meout())

this->expire_timers()

/

~. L T a et | handle()
/ _ =~
/ / ~ — ’—\\ - ~

~- Timer Queue\

\ schedule tlmer(h)‘l _
/, cancel_timer(h) . Concrete
L expire tlmer(h) / Event_Handler /

——~ -/
_,/ _//

—_———— T T ~_~r

Figure 2: The Reactor Pattern

Design patternsfacilitate reuse at an architectural level by
providing “blueprints’ or guidelines for defining and com-
posing the components in a software system. In generd, a
large amount of reuse is possible at thislevel of abstraction,
though there is often less reuse of existing components. In
particular, reusing design patterns may not result in direct
reuse of implementations, interfaces, or even detailed de-
signs. For instance, the design and implementation of the
CORBA remote object method invocation mechanism may
vary radically across different vendors ORBs and differ-
ent OS platforms. Nevertheless, the Proxy design patternis
a recurring architectural theme throughout CORBA imple-
mentations, regardless of the vendor or OS platform.

Object-oriented frameworks typically embody a wide
range of design patterns. For example, the ET++ graphi-
cal user-interface (GUI) framework [12] incorporates design
patterns (such as Abstract Factory [10]) that hide the details
of creating user-interface objects. This enables an applice-
tion to be portable across different window systems (such
as X windows and SunView). Likewise, the InterViews[3]
GUI framework contains design patterns (such as Strategy
and Iterator [10]) that allow agorithms and/or application
behavior to be decoupled from mechanisms provided by the
reusable GUI components.

In the distributed application domain, many components
in the ADAPTIVE Service eXecutive (ASX) framework [7]
represent design patterns. These design patterns address re-
curring distributed application software devel opment themes
(such as event demultiplexing, connection establishment,
message routing, and flexible composition of hierarchically-
related services). The ASX framework has been implemented
on several UNIX platformsand on Windows NT. This paper
focuses on two specific design patterns (the Reactor [13] and
Accepter patterns) that are provided by the ASX framework.

2.1 TheReactor Pattern

The Reactor pattern is an object behaviora pattern. This
pattern simplifies the devel opment of event-driven applica
tions (such as a CORBA ORB, an X-windows host resource
manager, or aUNIX remote login service). The Reactor pat-
tern provides a common infrastructure that integrates event
demultiplexingand the dispatching of event handlers. Event
handlers perform application-specific processing operations
in responseto varioustypesof events. An event handler may
be triggered by different operating system entities (such as
timers, communication ports, synchronization objects, and
signal handlers) that are monitored by an application.

The Reactor pattern providesseveral benefitsto distributed

applications:

o It enables multiple event handlers to wait simultane-
oudly for events to occur on multiple entities moni-
tored by an applicationwithout blocking or continuously
polling for events on any single monitored entity.

o Itdecouplestheapplication-specific portionsof aservice
from the reusabl e appli cati on-independent mechanisms
that implement event demultiplexing. This decoupling
alows the event handlers to evolve independently of
the event demultiplexing mechanisms provided by the
underlying OS platform.

Figure 2 illustratesthe participantsin the Reactor pattern.t
The Reactor class defines an interface for register-
ing, removing, and dispatching Event _Handl er ob-
jects. A React or implementation provides application-
independent mechanisms that automatically perform demul-
tiplexing and dispatching of application-specific concrete

1Relationships between componentsareillustrated throughout the paper
via Booch notation [14]. Dashed clouds indicate classes; directed edges
indicate inheritance relationships between classes; and an undirected edge
with a solid bullet at one end indicates a composition relation between
two classes. Solid clouds indicate objects; nesting indicates composition
relationships between objects; and undirected edges indicate some type of
link exists between two objects.

callback :
main Concrete reactor
program Event_Handler : Reactor

\ Reactor::Reactor ()
reg|ster handler(callback)
get_handle()

dispatch()

INITIALIZE

REGISTER HANDLER

EXTRACT HANDLE

- —1

START EVENT LOOP

select()
FOREACH EVENT DO

handle_input()

A

DATA ARRIVES
handle_output()

A

SIGNAL ARRIVES handle signal()

handle_timeout()

l:IJ?—:Ll:IA;AaAAAA I

\
\
\
[
\
OK TO SEND }
\
\
\
\
[

TIMER EXPIRES

A

Figure 3: Object Interactions within the Reactor Pattern

event handlers. Time-based event dispatching is performed
by aTi mer _Queue object contained within the React or .
Both the Ti ner _Queue and the React or class con-
tain references to objects of Concr et e_Event _Handl er
subclasses. These subclasses are derived from the
Event _Handl er abstract base class, which defines vir-
tual methods for handling input, output, signa, and time-
out events. A Concret e Event _Handl er subclass
may override these virtual methods to perform application-
specificfunctionality inresponseto the corresponding events.

When events occur at run-time, the React or dispatches
the associated appli cation-specific methods on pre-registered
objects that are derived from the Event Handl er base
class. This collaboration takes the form of the method call-
backs depicted by the object interaction diagram shown in
Figure 3. After initializingthe React or by registering one
or more event handlers, an application calsthe React or ’s
di spat ch method to perform its main event-loop.

Certain event handlers are triggered by the occurrence
of events on descriptors that represent OS entities (such
as /O ports or synchronization objects). To bind the
React or together with these descriptors, a subclass of
Event _Handl er must define the get _handl e method.
Thismethod returnsa descriptor that isused internally within
theReact or 'sdi spat ch methodtowait for certain events
to occur. When these events occur, theReact or dispatches
theevent handl er associ ated with the descriptor. The codean-
notation in Figure 2 outlinesthe behavior of thedi spat ch
method.

Andternativeway toimplement event demultiplexingisto
use multi-threading. In thisapproach, an application spawns
a separate thread for each entity it monitors. Every thread
blocks until the entity it monitors receives an event. At this
point, the appropriate event handler code is executed within
thethread. Using multi-threadingtoimplement event demul-
tiplexing has several drawbacks, however. It may requirethe
use of complex concurrency control schemes; it may lead to

______ (TS
- nc Event
(
) Reactor 0———11 Handler \>
Y
new CLIENT HANDLER()E o\ | CLIENT |
Acc t HANDLER|
> i ep er g
=~ /
~_ ", open() /
K handle mput()
o~ . get_handle()
- \ _//,;\\//~
\ Client
| Handler / Client
o //\Q fL____ Handler
* Instantiated
\
(_éggepter ;

Figure 4: The Accepter Pattern

poor performance on uni-processors [7]; and it may not be
available on many popular OS platforms.

On the other hand, certain types of applications perform
long-duration services such as file transfer or remote login.
For these types of applications, multi-threadingand/or multi-
processing may be useful techniques for reducing develop-
ment effort, improving application robustness, and transpar-
ently leveraging off of available multi-processor capabili-
ties. Therefore, it is often useful to use the Reactor pattern
in conjunction with OS multi-threading or multi-processing
mechanisms, as described in Section 2.2.

2.2 TheAccepter Pattern

The Accepter pattern is an object creational pattern. This
pattern decouples the act of establishing a connection from
the service(s) provided after a connection is established.
Connection-oriented services (such as file transfer, remote
login, distributed logging, and video-on-demand) are partic-
ularly amenable to this pattern. The Accepter pattern simpli-
fiesthedevel opment of thesetypesof servicesby alowingthe
application-specific portion of a service to be modified inde-
pendently of the mechanism used to establish a connection.
Furthermore, by using other object-oriented language fea-
tures (such as templates, inheritance, and dynamic binding)
that are based on design patterns (such as Factory Method
or Abstract Factory [10Q]), it is possible to completely pa
rameterize the type of service offered by an instance of the
Accepter pattern[13].

Figure 4 illustrates the participants in the Accepter pat-
tern, which leverages off the interfaces and mechanisms
provided by the Reactor pattern. The open method in
template class Accept er initializes acommunication end-
point to listen for incoming connection requests from clients.
The get _handl e method returns the 1/O descriptor corre-

sponding to the communication end-point. The Accept er
class inherits the demultiplexing and dispatching interface
from the Event _Handl er base class. When a connec-
tion request arrives from a client, thisinterfaceis used by a
React or object to trigger a calback on the Accept er’s
virtual handl e_i nput method.

Each new connection request from a client causes the
Accept er’s handl e_i nput method to create a new
CLI ENT_HANDLER object dynamically. In the example il-
lustrated in Figure 4, CL1 ENT_HANDLERisaformal param-
eterized type argument defined in the Accept er template
class. The instantiated Accept er class supplies an ac-
tual C i ent _Handl er class parameter. This class param-
eter isresponsiblefor implementing a particular application-
specific service (i.e., transferring a file, receiving logging
records, etc.) that will interact with a client.

Note that the Accepter pattern does not dictate the behav-
ior of C i ent _Handl er objectsit creates. In particular,
a dynamicaly crested Cl i ent _Handl er object may be
executed in any of the following ways:

1. Runinthesamethread of control — Thisapproach isim-
plemented by inheriting the Cl i ent _Handl er from
Event _Handl er and registering each newly created
d i ent _Handl er object with the React or. Thus,
each Cl i ent Handl er object is dispatched in the
same thread of control as an Accept er object.

2. Run in a separate thread of control — In this ap-
proach, a React or serves as the centra event dis-
patcher within an application. When a client con-
nects, the Accept er 'shandl e_i nput method will
spawn a separate thread of control and arrange for the
C i ent _Handl er object to process the connection
withinthat new thread. Threads are useful for cooperat-
ing servicesthat frequently reference common memory-
resident data structures shared by the threads.

3. Runina separate OSprocess— Thisapproachissimilar
to the previous bullet. However, a separate process is
created rather than a separate thread. Network services
that base their security mechanisms on process owner-
ship (such as the standard Internet ft p and t el net
services) aretypically executed in separate processes to
prevent accidenta or intentional access to unauthorized
resources.

The ASX framework described in [7, 15] provides mecha
nisms that support all three of these types of behavior. The
implementation described in the following section uses the
single-threaded behavior described in thefirst bullet above.

3 Implementing the Design Patterns

This section outlines how the Reactor and Accepter design
patterns were implemented on BSD and System VV UNIX, as
well ason WindowsNT. The discussion emphasizestherele-
vant functional differences between the various OS platforms

and describes how these differences affected the design and
implementation of the patterns.

The implementation of the Reactor pattern was signifi-
cantly affected by the semantics of the event demultiplexing
and 1/0O mechanisms provided in the underlying operating
system. In general, there are two types of demultiplexing
and /O semantics: reactive and proactive. Reactive /0O
semantics (which are provided on standard BSD and Sys-
tem V UNIX systems [16]) alow an application to indicate
to the OS which 1/O descriptors to notify it about when an
I/O-related operation (such as a read, write, and connection
request/accept) may be performed without blocking. Subse-
guently, when the OS detects that the desired operation may
be performed without blocking on any of the indicated de-
scriptors, it informsthe application that the descriptor(s) are
ready. The applicationthen “reacts’ by handling the descrip-
tor(s) accordingly (such as reading or writing data, accepting
connections, etc.).

In contrast, proactive I/O semantics (which are pro-
vided on Windows NT [17] and VMS) dlow an applica
tion to proactively initiate 1/O-related operations (such as a
read, write, or connection request/accept) or general-purpose
event-signaling operations (such as a semaphore lock being
acquired or athread terminating). Theinvoked operation pro-
ceeds asynchronously and does not block thecaller. When an
operation compl etes, it signalsthe application. At thispoint,
the application runs a completion routinethat determinesthe
exit status of the operation and potentialy starts up another
asynchronous operation.

For performance reasons, it was not feasible to completely
encapsul ate the variation in behavior between the UNIX and
WindowsNT I/O semantics. Therefore, we could not directly
reuse existing C++ code, algorithms, or detailed designs.
However, it was possible to capture and reuse the concepts
that underlay the Reactor and Accepter design patterns.

We reduced our project’s risk by reusing existing design
patterns. These patterns provided a concise set of architec-
tural blueprintsthat guided our porting effort from UNIX to
Windows NT. In particular, we did not have to rediscover
the key collaborations between participants in the patterns.
Instead, our task was to determine a suitable mapping of the
pattern partici pantsonto the mechani sms provided by thedif-
ferent OS platforms. Finding an appropriate mapping was
non-trivial, as we describe below. Nevertheless, our knowl-
edge of the design patterns greatly reduced the amount of
redevelopment effort.

3.1 UNIX Implementations
3.1.1 Implementingthe Reactor Pattern on UNIX

The standard demultiplexing mechanisms on UNIX operat-
ing systems provide reactive 1/O semantics. In particular,
the UNIX sel ect and pol | event demultiplexing sys-
tem calls inform an application which subset of descriptors
withinaset of 1/0 descriptors may send/receive messages or
request/accept connections without blocking. Implementing

the Reactor pattern using UNIX reactive 1/0 is straightfor-
ward. Aftersel ect orpol | indicatewhich I/Odescriptors
have become ready, theReact or object reacts by invoking
the appropriate Event _Handl er callback methods (i.e,
handl e_i nput or handl e_out put).

One advantage of the UNIX reactive 1/0O scheme isthat it
decouples (1) event detection and notification from (2) the
operation performed in response to thetriggered event. This
allows an application to optimizeits response to an event by
using context information available when the event occurs.
For example, anetwork server might check to see how many
bytes are in a socket receive queue in order to determine
the size of a buffer it alocates for ar ecv system cdl. A
disadvantage of UNIX reactivel/Oisthat operations may not
beinvoked asynchronoudly to runin parallel with subsequent
operations (unless threads are used).

The origina implementation of the Reactor pattern
provided by the ASX framework was derived from the
Di spat cher class category avalable in the InterViews
object-oriented GUI framework [3]. TheDi spat cher isan
object-oriented interface to the UNIX sel ect system call.
InterViewsusesthe Di spat cher todefinean application’s
main event loop and to manage connections to one or more
physical window displays. The React or framework’sfirst
modificationtotheorigina Di spat cher framework added
support for signal-based event dispatching. The React or’s
signal-based dispatching mechanism was modeled closely
on existing mechanisms for timer-based and 1/O descriptor-
based event demultiplexing and event handler dispatching.

The next major modification to the React or occurred
when porting it from SunOS 4.x (which is based primarily
on BSD 4.3 UNIX) to SunOS 5.x (which is based primar-
ily on System V release 4 (SVR4) UNIX). SVR4 provides
another event demultiplexing interface viathepol | system
cal. Poll issimilar to sel ect, though it uses a differ-
ent interface and provides a broader, more flexible model for
event demultiplexing that supports SVR4 features such as
STREAM pipe band-data[18].

The SunOS 5.x port of the React or was enhanced to
support either sel ect or pol | as the underlying event
demultiplexer. Although portions of the React or 'sinter-
nal implementation changed, its external interface remained
the same for both the sel ect -based and the pol | -based
versions. This common interface facilitates networking ap-
plication portability between System V and BSD UNIX [9].

A portion of the public interface for the UNIX implemen-
tation of the Reactor pattern is shown below:

/1 Bit-wi se or these values to check for

/1l multiple activities per-descriptor

enum React or _Mask {

READ MASK = 01, WRI TE_MASK = 02, EXCEPT_MASK = 04,
RWE_MASK = READ MASK | WRI TE_MASK | EXCEPT_MASK
3

cl ass Reactor

publi c:
/'l Register an Event_Handl er object according
/1 to the Reactor_Mask(s) (i.e., "reading,"
/1 "witing," and/or "exceptions")

virtual int register_handl er (const Event_Handl er *,

React or _Mask) ;

/! Rermove the handl er associated with the

/] appropriate Reactor_Mask(s)

virtual int renove_handl er (const Event_Handler *,
React or _Mask) ;

/1 Block process until |/O events occur or tiner
/] expires, then dispatch Event _Handl er(s)
virtual int dispatch (void);

o
b

Likewise, the Event _Handl er interface for UNIX is de-
fined as follows:

typedef int HANDLE; // I/0O descriptor
cl ass Event _Handl er

protected:
/1 Returns the I/O descriptor associated with the
/1 derived object (rmust be supplied by a subcl ass)
virtual HANDLE get_handl e (void) const;

/1 Called when object is renoved fromthe Reactor
virtual int handl e_cl ose (HANDLE, Reactor_Mask);
/1 Called when input becones avail able on FD
virtual int handl e_i nput (HANDLE);

/1 Called when output is possible on FD

virtual int handl e_output (HANDLE);

/1 Called when urgent data is available on FD
virtual int handl e_exception (HANDLE);

/1 Called when timer expires (TV stores the

/1 current tine and ARG is the argunent given

/1 when the handl er was originally schedul ed)

virtual int handle_tineout (const Tine_Value &tv,
const void *arg = 0);

The next major modification to the React or enabled it
to be used in conjunction with multi-threaded applications
on SunOS 5.x using Solaris threads [19]. Adding multi-
threading support required changesto theinternal sof boththe
sel ect -based and pol | -based versions of the React or .
These changesinvolved aSunOS 5.x mutual exclusion mech-
anism known as a “mutex.” A mutex serializes the execu-
tion of multiple threads by defining a critical section where
only one thread executes the code at a time [20]. Critica
sections of the React or’'s code that concurrently access
shared resources (such as the React or 'sinterna table of
Event _Handl er objects) are protected by a mutex.

The standard SunOS 5.x synchronizationtype (mut ex_t)
provides support for non-recursive mutexes. The SunOS 5.x
non-recursive mutex provides a simple and efficient form
of mutual exclusion based on adaptive spin-locks. How-
ever, non-recursive mutexes possess the restriction that the
thread currently owning a mutex may not reacquire the mu-
tex without releasing it first. Otherwise, deadlock will occur
immediately.

Whiledevel opingthemulti-threaded React or , it quickly
became obvious that the default implementation of SunOS
5.x mutex variables was inadequate to support the synchro-
nization semantics required by the React or. In particu-
lar, as described in Section 2.1, the Reactor’s di spat ch
interface performs callbacks to methods of pre-registered,

application-specific event handler objects. The following
C++ pseudo-codeillustratesthe di spat ch logic:

voi d Reactor::dispatch (void)

{
for (5;) {
/1 Block until one or nmore events occur
this->wait_for_events (this->handler_set);

this->lock->acquire (); // Obtain the nutex

/1 Dispatch all the callback nethods on
/1 handl ers who contain active events
foreach active handler in this->handler_set {
if (handler is an input handler)
handl er - >handl e_i nput (handl er);
if (handler is an output handl er)
handl er - >handl e_out put (handl er);
if (handler is a signal handler)
handl er - >handl e_si gnal (handl er);
}

this->expire_timers (); // Handle timers
this->lock->release (); // Release the mutex

}
}

Callback methods (such as the handl e_i nput and the
handl e_out put methods) defined by the event handler ob-
jects may subsequently re-enter the React or object viaits
regi st er _handl er andr enove_handl er methods, as
shown in the following C++ pseudo-code:

/1 d obal per-process instance of the Reactor.
extern Reactor reactor;

/1 Application-specific callback nethod.
int Accepter::handle_i nput (HANDLE handl e)

Concrete_Event _Handl er *new_handl er =
new Concr et e_Event _Handl er;

*new_handl er = this->accept (handle);

/!l Re-enter the Reactor object.
reactor.regi ster_handl er (new_handl er,
READ_MASK) ;

...
}

In this case, using non-recursive mutexeswill result in dead-
lock since (1) the mutex withinthe React or 'sdi spat ch
method is locked throughout the callback and (2) the
React or'sr egi st er _handl er method triesto acquire
the same mutex.

One solution to this problem involved recoding the
React or toreleaseitsmutex lock beforeinvoking callbacks
to application-specific Event Handl er methods. How-
ever, this solution was tedious and error-prone. It aso in-
creased synchronization overhead by repeatedly releasing
and reacquiring mutex locks. A more elegant and effi-
cient solution used recursive mutexes to prevent deadlock
and to avoid modifying the React or 'sconcurrency control
scheme. A recursive mutex allows calls to its acqui r e
method to be nested as long as the thread that owns the lock

SERVER
HOST

SERVER LOGGING DAEMON

REGISTERED
OBJECTS

LOGGING
RECORDS

NETWORK

CONNECTION LOGGING

REQUEST

CLIENT
HOST

CLIENT
HOST

CLIENT
HOST

Figure5: The Distributed Logging Facility

is the one attempting to re-acquire it. A portable C++ im-
plementation of recursive mutexesfor SUNOS 5.x appearsin
[21].

The current implementation of the UNIX-based Reactor
patternis about 1,400 lines of C++ code (not including com-
ments or extraneous whitespace). This implementation is
portabl e between both System V and BSD UNIX variants.

3.1.2 Implementingthe Accepter Pattern on UNIX

To motivate and illustrate the Accepter pattern, consider
the event-driven server for a distributed logging facility
shown in Figure 5 [8, 9]. A distributed logging facility
enables multiple applications running on client hoststo for-
ward logging records to a server logging daemon? running
on a designated host in a network. Logging records are
event messages that contain error notifications, debugging
information, status reporting, etc. Centralizing the logging
activities of distributed applications within a single server
daemon is useful since it consolidates status reporting and
serializes access to shared output devices (such as consoles,
printers, files, or network management information bases).

As shown in Figure 5, a client logging daemon commu-
nicates with the server logging daemon via an interprocess
communication (IPC) channel (such as a TCP/IP connec-
tion). The server logging daemon processes logging records

2A daemonis an OS processthat runs continuously “in the background”
[16].

that arrive concurrently on multiplel/O descriptors (i.e., one
descriptor for each client connection). Moreover, the server
also listens on a designated /O descriptor that accepts con-
nection requests from new clients who would like to par-
ticipate in the logging service. Therefore, it is not feasible
for the server process to perform long-duration operations by
blocking on any individua 1/O descriptor. Using blocking
I/0 would significantly delay the response time to handle
logging records or connection requests arriving from clients
that are bound to other descriptors.

A highly modular and extensible way to design the
server logging daemon is to combine the Reactor and Ac-
cepter patterns. Together, these patterns decouple (1) the
application-independent mechanisms that demultiplex and
dispatch pre-registered Event _Handl er objects from (2)
the application-specific connection establishment and log-
ging record transfer functionality performed by methods in
these objects.

Within the server logging daemon, two subclasses
of the Event Handl er base class (Loggi ng_l O and
Accept er) perform the actions required to process the dif-
ferent types of events arriving on different 1/O descriptors.
The Loggi ng_l O event handler is responsible for receiv-
ing and processing logging records transmitted from aclient.
Likewise, the Accept er event handler is a factory that
is responsible for accepting a new connection request from
a client, dynamically alocating a new Loggi ng_l O event
handler to handle logging records from this client, and reg-
istering the new handler with an instance of a React or
object.

The following code illustrates an implementation of a
portion of the server logging daemon. An instance of
the Loggi ng-l O template class performs 1/0O between
the server logging daemon and a particular instance of
a client logging daemon. As shown in the code below,
the Loggi ng_l O class inherits from both XPORT_l O and
Event _Handl er. Inheriting from the template parame-
ter XPORT_l O provides the reliable TCP capabilities used
to transfer logging records between an application and the
server. The use of templates removes the reliance on a par-
ticular IPCinterface (such asBSD socketsor SystemV TLI).
Inheriting from Event Handl er enablesaloggi ng_I O
object to be registered with the React or. This inheri-
tance dso allowsalLoggi ng_l Oobject’'shandl e_i nput
method to be dispatched automatically by aReact or object
to process logging records when they arrive from clients.

tenpl ate <cl ass XPORT_I O>
class Logging_|O:
publ i c Event _Handl er, public XPORT_I O

{
public:
/1 Call back nmethod that handles the reception of
/1 1ogging transm ssions fromrenote clients.
/1 Two recv()'s are used to maintain | ogging
/'l record fram ng across a TCP bytestream

virtual int handl e_i nput (HANDLE)

long | en;

I ong n;

/Il Determine length of a |ogging record.
n = this->XPORT_I G :recv (& en, sizeof |len);

if (n<=0)
return n;
el se {

Log_Record | og_record;

/1 Convert fromnetwork to host byte-order.
len = ntohl (len);
this->XPORT_IO :recv (& og_record, len);

/1 Format the |ogging record
log_record.format ();

/1 Print logging record to output device.
log_record.print ();

return O;

}
}

/1 Retrieve the underlying |I/O descriptor (called
/1 by the Reactor when a Logging_| O object is
/1 first registered).

virtual HANDLE get _handl e (void) const

{
return this->XPORT_I O :get_handle ();

}

/1 Cose down the I/0O descriptor and del ete
/1 the object when a client closes down the
/1 connection.

virtual int handle_close (HANDLE, Reactor_Mask) {
del ete this;
return O;

}

private:
/1 Must be private to ensure dynam c all ocation.
“Logging_I O (void) {
this->XPORT_I O :close ();
}
}

The Accept er template class is shown in the C++ code
below. It is a generic factory that performs the steps nec-
essary to (1) accept connection requests from client logging
daemons and (2) create CLI ENT_HANDL ER objects that are
used to perform an actua application-specific service on be-
half of clients. Note that the Accept er object and the
CLI ENT_HANDLER objects it creates run within a single
thread of control.

The Accepter subclass inherits from both the
XPORT_LI STENER class and from the Event _Handl er
class. Inheriting from the XPORT_LI STENER class pro-
vides the capability to listen for connection reguests on a
communi cation port, aswell asto accept connection requests
on that port when they arrive from clients. Inheriting from
the Event _Handl er class enables an Accept er object
to be registered with the React or. This inheritance aso
allows the React or to dispatch the Accept er object’'s
handl e_i nput method. In turn, the handl e_ nput
method invokes the SOCK Li st ener : : accept method
to accept anew client’s connection.

e N
L ogger A L:
Daemon Accepter Logging_IO : Reactor
INITIALIZE | I Reactor::Reactor()I > :
- |
REGISTER ACCEPTER lreglster_handl er(A)l .
| |
EXTRACT HANDLE i: get_handle() :
; T
START EVENT LOOP : dispatch() : _ » | select()
CONNECTION EVENT I < : handle input) | «—
REGISTER HANDLER I register_handler(L)| .
I >
FOR CLIENT |/O I ! | get_handle()
EXTRACT HANDLE | | [-
DATA EVENT ' | handle_input()
| | o 0
I | prin
PROCESS LOGGING
RECORD : I |<——| .
\ y,

Figure 6: Server Logging Daemon Interaction Diagram

/1 d obal per-process instance of the Reactor.
extern Reactor reactor;

/1 Handl es connection requests froma renpte client.

tenpl ate <cl ass CLI ENT_HANDLER,
cl ass XPORT_LI| STENER,
cl ass XPORT_ADDR>
cl ass Accepter
public Event _Handl er, public XPORT_LI STENER

L
publi c:
/1 Initialize the accepter endpoint.

Accept er (XPORT_ADDR &addr)
: XPORT_LI STENER (addr) {}

/1 Call back nmethod that accepts a new connecti on,
/'l creates a new CLI ENT_HANDLER object to perform
/1 1/Owith the client connection, and registers

/1 the new object with the Reactor.

virtual int handl e_i nput (HANDLE)

{
CLI ENT_HANDLER *handl er = new CLI ENT_HANDLER;

t hi s- >XPORT_LI STENER: : accept (*handl er);
reactor.register_handl er (handl er, READ MASK);
return O;

}

/1 Retrieve the underlying |I/O descriptor (called
/'l by the Reactor when a Accepter object is
/1 first registered).

virtual HANDLE get_handl e (void) const {
return this->XPORT_LI STENER : get _handle ();
}

/1 Cose down the |I/O descriptor when the
/1 Accepter is shut down.

virtual int handl e_cl ose (HANDLE, Reactor_Mask)

{
return this->XPORT_LI STENER : cl ose ();

}

}s

The C++ code shown below illustrates the main entry
point into the server logging dagmon. This code crestes a
React or object and an Accept er object and registersthe
Accept er with the React or . Note that the Accept er
template is instantiated with the Loggi ng-l Oclass, which
performsthe distributed logging service on behaf of clients.
Next, themain programenterstheReact or 'sevent-loop by
caling di spat ch. The di spat ch method continuously
handles connection requests and logging records that arrive
from clients. The interaction diagram shown in Figure 6
illustrates the collaboration between the various objects in
the server logging daemon at run-time. Note that once the
React or object isinitialized, it becomes the primary focus
of the control flow within the server logging daemon. All
subsequent activity is triggered by callback methods on the
event handlers controlled by the React or .

/1 d obal per-process instance of the Reactor.
React or reactor;

/1 Server port nunber.
const unsigned i nt PORT = 10000;

/1 Instantiate the Logging | O tenplate
typedef Logging_| O <SOCK_Streanr LOGGE NG | O

/'l Instantiate the Accepter tenplate
typedef Accept er<LOGGE NG_| O

SOCK_Li st ener,

| NET_Addr > ACCEPTER;

int
mai n (voi d)

I NET_Addr addr (PORT);
ACCEPTER accepter (addr);

reactor.register_handl er (&accepter,
READ_MASK) ;

/1 Main event |oop that handles client
/1 1ogging records and connection requests.
reactor.di spatch ();

return O;

The C++ code example shown above uses templates to
decouple the reliance on the particular type of IPC inter-
face used for connection establishment and communication.
The SOCK_St r eamy SOCK Li st ener and | NET_Addr
classes used in the template instantiations are part of the
SOCK_SAP C++ wrapper library [1]. SOCK_SAP encapsu-
lates the SOCK_STREAM semantics of the socket transport
layer interface within a type-secure, object-oriented inter-
face. SOCK_STREAMsockets support the reliabletransfer of
bytestream data between two processes, which may run on
the same or on different host machinesin anetwork [16].

By using templates, it is relatively straightforward to in-
stantiateadifferent IPC interface (such asthe TLI _SAP C++
wrappers that encapsulate the System V TLI interface [22]).
Templates trade additiona compile-timeand link-time over-
head for improved run-time efficiency. Note that a similar
degree of decoupling also could be achieved viainheritance
and dynamic binding by using the Abstract Factory or Factory
Method patterns described in [10]. [21] provides a detailed
discussion of the trade-offs between templates and inheri-
tance/dynamic binding.

3.2 WindowsNT Implementation

This section describes the Windows NT implementation of
the Reactor and Accepter design patterns. The Windows NT
port was performed at the Ericsson/GE Mobile Communi-
cations facility in Cypress, Cdifornia. The design patterns
and framework described in this paper are currently being
applied at Ericsson on afamily of client/server applications
as part of the Externa Operating Systems project [23]. This
project uses the Reactor and Accepter patterns as the basis
for a network management framework. This framework en-
hances the flexibility and reuse of applications that monitor
and manage telecommunication switch performance across
multiple hardware and software platforms.

We initially attempted to port the existing React or im-
plementation from UNIX to WindowsNT usingthesel ect
function from the Windows Sockets (WinSock) library.2 This
approach failed because the WinSock version of sel ect
does not interoperate with standard Win32* 1/0 HANDLES.
Our applications required the use of Win32 I/O HANDLEs
to support network protocols (such as Microsoft’s NetBIOS
Extended User Interface (NetBEUI)) that are not supported
by WinSock version 1.1. Next, we tried to reimplement
the React or interface using the Win32 APl system cdll
Wi t For Mul ti pl eCbj ect s. The goal was to maintain

3WinSock is aWindows-oriented transport layer programminginterface
based on the BSD socket paradigm [24].

4Win32 is the 32-bit Windows subsystem of the Windows NT operating
system.

10

the original UNIX interface, but transparently supply a dif-
ferent implementation.

Transparent reimplementation failed to work dueto funda-
mental differencesintheproactivevs. reactivel/O semantics
on Windows NT and UNIX outlined in Section 3. We ini-
tially considered circumventing these differences by using a
techniquethat asynchronoudly initiateda0-sized ReadFi | e
request on an overlapped 1/O HANDLE. Overlapped 1/O is
an Win32 mechanism that supports asynchronous input and
output. With thistechnique, the overlapped event would sig-
nal when data arrives and a synchronous ReadFi | e would
then beinvoked to receive thedata. Unfortunately, thissolu-
tion would have doubled the number of system calls for ev-
ery input operation, which caused unacceptabl e performance
overhead. In addition, this approach still did not adequately
emulate the output semantics provided by the UNIX reactive
[/O mechanisms.

At this point it became clear that the direct reuse of class
method i nterfaces, attributes, or a gorithmswasnot afeasible
type of reuse under the circumstances. |nstead, we needed to
elevatetheleve of abstractionfor reusetothelevel of design
patterns. Regardless of the underlying OS event demulti-
plexing 1/0 semantics, the Reactor pattern is applicable for
event-driven applications that must process multiple event
handlers triggered concurrently by various types of events.
Although differences between OS platformsprecluded direct
reuse of implementations or interfaces, the design knowl-
edge we had invested in the Reactor and Accepter patterns
wasreusable.

The remainder of this section describes the modifications
we made to the implementati onsof the Reactor and Accepter
design patternsin order to port them to Windows NT.

3.21 Implementing the Reactor Pattern on Windows

NT

Windows NT provides proactive |/O semantics that are typ-
ically used in the following manner. First, an application
creates a HANDLE that corresponds to an 1/0O channel for
thetype of networking mechanism being used (such asnamed
pipes or sockets). The overlapped 1/0O attribute is specified
to the HANDLE creation system call (WinSock sockets are
created for overlapped 1/O by default). Next, an application
creates a HANDLE to a Win32 event object and uses this
event object HANDLE to initialize an overlapped /O struc-
ture. TheHANDLE tothel/O channel andtheoverlapped 1/O
structure are then passed tothe Wi t eFi | e or ReadFi | e
system calls when initiating either a send or receive oper-
ation, respectively. The initiated operation proceeds asyn-
chronously and does not block thecaller. When theoperation
completes, the event object specified inside the overlapped
I/O structure is set to the “signaled” state. Subsequently,
Win32 system calls such as Wi t For Si ngl eObj ect or
Wi t For Mul ti pl eCbj ect s may be used to detect the
signaled state of theWin32 event obj ect, thereby determining
when an outstanding asynchronous operation has compl eted.

The Win32 Wai t For Mul t i pl eObj ect s system cdl

is functionaly similar to the UNIX sel ect and pol |
system calls. It blocks on an array of HANDLES wait-
ing for one or more of them to signa. Unlike the two
UNIX system calls (which wait only for 1/O descriptors),
Wi t For Mul ti pl eCbj ect sisageneral purposeroutine
that may be used towait for any type of Win32 object (such as
athread, process, synchronization object, 1/0 handle, named
pipe, socket, or timer). It may be programmed to return to
its caler either when any one of the HANDLES becomes
signaled or when al of the HANDLES become signaled.
Wi t For Mul ti pl eCbj ect s returns the index location
inthe HANDLE array of the lowest signaled HANDLE.

The generality of i t For Mul ti pl eObj ect s isboth
a strength and a weakness. While it provides the flexibility
to synchronize on awiderange Win32 objects, it isalso more
complicated to program for applications that must synchro-
nize simultaneous send and receive operations on the same
[/O channel. For example, in order to distinguish the com-
pletion of asend operation from areceive operation, separate
overlapped 1/O structures and Win32 event objects must be
allocated for input and output. Furthermore, two elementsin
theWai t For Mul ti pl eCbj ect s HANDLE array (which
is currently limited to a rather small maximum of 64 HAN-
DLEs) are consumed by the separate send and receive event
object HANDLEs.

An advantage of theWindows NT proactivel/O schemeis
that it may improve performance by allowing 1/0O operations
to execute asynchronously with respect to other functions
performed by the operating system. In contrast, the reactive
I/0 semantics offered by UNIX do not support asynchronous
I/O directly (threads may be used instead). However, design-
ing and implementing the Reactor pattern using proactivel/O
on Windows NT turned out to be more difficult than using
reactive 1/0O on UNIX.

Two characteristics of Wai t For Mul ti pl eQhj ects
significantly complicated the implementation of the Win-
dows NT version of the Reactor pattern:

1. Each Win32 Wai t For Mul t i pl eObj ect s call only
returns notification on asingle HANDLE. Therefore, to
achieve the same behavior as the UNIX sel ect and
pol | system cals (which return a set of descriptors),
multiple Wai t For Mul ti pl eObj ect s must be per-
formed.

2. The semantics of Wai t For Mul ti pl eObj ect s do
not result in afair distribution of notifications. In par-
ticular, the lowest signaled HANDLE inthe array is a-
ways returned, regardl ess of how long other HANDLEs
further back in the array may have been pending.

The implementation techniques required to handle these
characteristics of Windows NT were rather complicated.
Therefore, aHandl er _Reposi t ory class was created to
shield the React or from this complexity. This class pro-
vides a container for Event _Handl er objects registered
withaReact or . This container class implements standard
operations for inserting, deleting, suspending, and resum-
ing Event _Handl ers. Each React or object contains

11

a Handl er _Reposi t ory object in its private data por-
tion. A Handl er _Reposi t ory maintains the array of
HANDLEs passed to Wai t For Mul ti pl eObj ect s and
it also provides methods for inserting, retrieving, and “re-
prioritizing” theHANDLE array. Re-prioritizationalleviates
the inherent unfairness in the way that the Windows NT
Wai t For Mul ti pl eCbj ect s system call notifies appli-
cationswhen HANDLEs become signaled.

The Handl er _Reposi t or y’'sre-prioritization method
isinvoked by specifying the index of the HANDLE which
has signaled and been dispatched by the React or. The
method's algorithm moves the signaled HANDLE toward
the end of the HANDLE array. This allows signaled HAN-
DLEs that are further back in the array to be returned by
subsequent calls to Wai t For Mul ti pl eCbj ects. Over
time, HANDLESs that signal frequently migrate to the end of
the HANDLE array. Likewise, HANDLES that signd in-
frequently migrate to the front of the HANDLE array. This
algorithm ensures a reasonably even distribution of HAN-
DLE dispatching.

The implementation techniques described in the previ-
ous paragraph did not affect the externd interface of the
React or. Unfortunately, certain aspects of Windows NT
proactive 1/0 semantics, coupled with the desire to fully
utilize the flexibility of Wai t For Mul ti pl eCObj ect s,
forced visible changesto the React or 'sexterna interface.
In particular, Windows NT overlapped /O operations must
beinitiated immediately (rather than waiting until it becomes
possibleto perform an operation, as with the UNIX reactive
I/0 scenario described above). Therefore, it was necessary
for the Windows NT Event _Handl er interface to distin-
guish between 1/0 HANDLEs and synchronization object
HANDLES, aswell asto supply additional information (such
as message buffers and event HANDLES) to the React or .

The following modifications to the React or were re-
quired to support Windows NT /O semantics. The
React or _Mask enumeration was modified to include a
new SYNC.MASK vaue to alow the registration of an
Event _Handl er that isdispatched when a genera Win32
synchronizationobject signals. Thesend method was added
to the React or class to proactively initiate output opera-
tionson behalf of an Event _Handl er .

/1 Bit-wi se or these values to check for

/1l multiple activities per-descriptor

enum React or _Mask {

READ MASK = 01, WRI TE_MASK = 02, SYNC MASK = 04,
RWS_MASK = READ MASK | WRI TE_MASK | SYNC MASK
3

cl ass Reactor

{
publi c:
/1 Same as UN X React or

/1 Initiate an asynchronous send operation
virtual int send (const Event_Handler *,
const Message_Bl ock *);
1.
3

Likewise, the Event _Handl| er interface for Windows NT

was also modified, as follows:

cl ass Event _Handl er

protected:

/! Returns the Wn32 I/ O HANDLE associated with the

/1 derived object (rmust be supplied by a subcl ass)

virtual HANDLE get i o_handl e (void) const;

/1 Returns the Wn32 synchroni zati on HANDLE

/] associated with the derived object (nust be
/1 supplied by a subcl ass)

virtual HANDLE get_sync_handl e (void) const;

/1 Called when object is renoved fromthe Reactor

virtual int handl e_cl ose (Message Bl ock *,
React or _Mask) ;

/1 Called when input operation has conpl eted

virtual int handle_i nput (Message_Bl ock *);

/1 Called when out put operation has conpl et ed

virtual int handl e_output (Message_Bl ock *);

/1 Called when a synchroni zati on object has signal ed

virtual int handle_sync (void);

/1 Called when timer expires (TV stores the

// current time and ARG is the argunent given

/1 when the handl er was originally schedul ed)

virtual int handle_tineout (const Tinme_Value &v,
const void *arg = 0);

/1 Allocates a nessage for the Reactor
virtual Message_Bl ock *get _nessage (void);

/] Get/set input and output events

virtual HANDLE input_event (void);

virtual void input_event (HANDLE in_event);
virtual HANDLE out put _event (void);

virtual void output_event (HANDLE out_event);

When a derived Event _Handl er is registered for in-
put with the React or an overlapped input operation is
immediately initiated on its behalf. In order to do this,
the React or must obtain an 1/0O mechanism HANDLE,
destination buffer, and a Win32 event object HANDLE
for synchronization from the derived Event _Handl er.
A derived Event _Handl er returns the I/O mechanism
HANDLE viaitsget _i o_handl e method and returns the
destination buffer location and length information via the
Message_Bl ock abstraction described in [7].

An event HANDLE for input synchronization is returned
by the first overloaded i nput _event definition shown
above. Since the creation of Win32 event objectsis a com-
mon operation, the derived Event _Handl er may choose
to defer the operation to the React or. This is done
by returning a NULL HANDLE from i nput _event. A
NULL HANDLE signalsthe React or to alocate a Win32
event object for use with input operations for the derived
Event Handl er. The alocated event object HANDLE
is returned to the derived Event _Handl er via the sec-
ond overloaded i nput _event definition. The derived
Event _Handl er then assumes responsibility for properly
closing the event object HANDLE when it is deleted. Each
time an input operation completes and is successfully dis-
patched, the React or acquires a new Message Bl ock
and proactively initiates the next input operation. The
out put _event methodsare similar tothei nput _event
methods, though they handle output semantics rather than
input semantics.

12

When a derived Event _Handl er object is regis
tered for synchronization with the React or the object’'s
get sync_handl e method is invoked automaticaly to
obtain the Win32 synchronization object HANDLE. The
synchronization object HANDLE is placed directly in the
Wi t For Mul ti pl eCbj ect HANDLE array (in contrast,
an 1/0 mechanism HANDLE is triggered indirectly via an
event object HANDLE). Note that the React or performs
no proactive operation that will cause the Win32 synchro-
nization object to signal. Moreover, the React or does not
perform any operation to reset or re-arm the synchroniza-
tion object once it has signaled and been dispatched. The
React or simply registers a synchronization object HAN-
DLE and dispatches its derived Event _Handl er when it
signals.

Given the behavior of Event _Handl er objectsthat are
registered for synchronization, together with the semantics
of the WAi t For Mul ti pl eCbj ect system call, one may
question the need for specialized input and output process-
ing within the React or . In other words, why not simply
implement the Win32 version of the React or to handle
only synchronization objects and push 1/0O handling func-
tionality into the derived Event _Handl er s? Our motiva-
tion for maintaining this distinction is that the React or is
intended to perform I/O multiplexing within server applica
tions. By encapsulating the details of initiating, completing,
and dispatching /O operationswithintheReact or , derived
Event _Handl er sareableto reusethisfunctionality and to
focus on data pre- and postprocessing (rather than focusing
on 1/O operation details).

The current implementation of the Windows NT-based
Resactor pattern is about 1,600 lines C++ code (not includ-
ing comments or extraneous whitespace). This code is ap-
proximately 200 lines longer than the UNIX version. The
additiona code is required primarily to handle the com-
plex Wai t For Mul ti pl eQbj ect s event demultiplexing
semantics discussed above. Although Windows NT event
demultiplexing is more complex than UNIX, the behavior
of Win32 mutex objects eliminated the need for the separate
Mut ex interface with recursive-mutex semantics discussed
in Section 3.1.1. Under Win32, a thread will not be blocked
if it attempts acquire a mutex specifying the HANDLE to a
mutex that it already owns. However, to release its owner-
ship, the thread must release a Win32 mutex once for each
time that the mutex was acquired.

322

Implementing the Accepter Pattern on Windows
NT

The following example C++ code illustrates an implemen-
tation of the Accepter pattern based on the Windows NT
version of the Reactor pattern. The application is the same
server logging daemon presented in Section 3.1.2. However,
the example below uses a C++ wrapper for Win32 named
pipesin place of the SOCK_SAP C++ wrappers for the socket
interface.

tenpl ate <cl ass XPORT_| O

class Logging_|O:
public Event_Handl er, public XPORT_I O

{

publi c:
/1 Call back nmethod that handles the reception of
/1 1ogging transm ssions fromrenote clients.

vi rtual

{

Log_Record *log_record =
(Log_Record *) nsg->get_rd_ptr ();

int handl e_i nput (Message_Bl ock *nsQ)

/'l Format record in preparation for printing.
log_record.format ();
/1 Print logging record to output device.
log_record.print ();
del ete nsg;
return O;
}
}

/1 Retrieve the underlying |/O HANDLE (call ed
/1 by the Reactor when a Logging_| O object is
/1 first registered).

vi rtual

{
return this->XPORT_I G :get_handle ();

}

/1 Return a dynamically allocated buffer
// to store an incom ng | oggi ng nessage.

HANDLE get _handl e (voi d) const

virtual Message_ Bl ock *get_nessage (void) {
return new Message_Bl ock (sizeof (Log_Record));

}

/1 Cose down the I/O descriptor and del ete
/1 the object when a client closes down the
/1 connection.

virtual int handl e_cl ose (Message_ Bl ock *nsg,
React or _Mask) {
del ete nsg;
delete this;
return O;
}
private:

/1 Must be private to ensure dynam c allocation.
“Loggi ng_I O (void) {
thi s->XPORT_I O : close ();
}
}

The Accept er class is essentially the same as the one
illustratedin Section 3.1.2, thoughit usesthehandl e_sync
method to complete connection acceptance rather than the
handl e_i nput method. Likewise, theinteractiondiagram
that describes the collaboration between objectsin the server
logging daemon is also very similar to the one shown in
Figure 6. The primary differenceis that Win32 Named Pipe
C++ wrappers are used in place of the socket C++ wrappers
in the main program, as shown in the code bel ow:

/1 d obal per-process instance of the Reactor.
React or reactor;

/1 Server endpoint

const char ENDPO NT[] = "l ogger";

Not e
/1 the use of the Message Bl ock data structure, which
/] stores an incom ng nessage received froma client.

13

/1 Instantiate the Logging | O tenplate
typedef Logging_| O <NPi pe_| &> LOGAE NG_I G,

/'l Instantiate the Accepter tenplate
typedef Accept er<LOGGE NG_| O

NPi pe_Li st ener,

Local _Pi pe_Nane> ACCEPTER;

int
mai n (voi d)

Local _Pi pe_Nane addr (ENDPQO NT);
ACCEPTER accepter (addr);

reactor.register_handl er (&accepter,
SYNC_MASK) ;

accepter.initiate ();

/1 Main event |oop that handles client
/1 1ogging records and connection requests
reactor.dispatch ();

return O;

The named pipe Accepter object (accept er) isregis
tered with the Reactor to handle asynchronous connection
establishment. Due to the semantics of Windows NT proac-
tive 1/0O, the accept er object must explicitly initiate the
acceptance of a named pipe connection viaitsi niti at e
method. Each timeaconnection acceptanceiscompleted, the
Resactor dispatchesthehandl e_sync method of thenamed
pipe Accepter to create anew Cl i ent _Handl er that will
receive logging records from the client. The React or will
also initiate the next connection acceptance sequence asyn-
chronously.

4 Concluding Remarks

Design patternsfacilitate the reuse of an abstract architecture
that isindependent from any concreterealization of thisarchi-
tecture. Design patterns are particularly useful when devel-
oping system software components and frameworks that are
reusable across OS platforms. This paper describes two de-
sign patterns (Reactor and A ccepter) that are commonly used
indistributed system software. These design patternscharac-
terizethe coll aboration between objectsthat are used to auto-
mate common activities (such asevent demultiplexing, event
handler dispatching, and connection establishment) used to
implement distributed systems.

This case study describes how a framework based on the
Reactor and Accepter design patterns were ported from sev-
eral UNIX platformsto the Windows NT Win32 platform. It
wasdifficult to directly reusetheimplementations, interfaces,
or detailed designs of these frameworks across the different
OS platforms. In particular, performance constraints and
fundamental differences in the I/O mechanisms available on
WindowsNT and UNIX platforms prevented us from encap-
sulating event demultiplexing functionality within a com-
pletely reusable framework. However, we were ableto reuse
the underlying design patterns, which significantly reduced
project risk.

Our experiences aso underscore that the transition from
object-oriented analysis to object-oriented design and im-
plementation may be challenging. Often, the constraints of
the underlying OS and hardware platform influence design
and implementation details significantly. Thisis particularly
problematic for system software, whichisfrequently targeted
for particular platforms with particular non-portable charac-
teristics. In such circumstances, reuse of design patternsmay
be the only viable means to leverage previous devel opment
expertise.

The UNIX version of the ASX framework components de-
scribed in this paper are fredy available via anonymous ftp
from the Internet hosti cs. uci . edu (128.195.1.1) in the
file gnu/ C++_wr apper s. t ar. Z. This distribution con-
tains complete source code, documentation, and example
test drivers for the C++ components developed as part of
the ADAPTIVE project [25] a the University of Califor-
nia, Irvine. Components in the ASX framework have been
ported to both UNIX and Windows NT and are currently
being used in a number of commercial products including
the AT&T Q.port ATM signaling software product and the
Ericsson EOS family of network management applications
for telecommunication switches.

References

[1] D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22-35,
June/July 1988.

M. A. Linton, J. Vlissides, and P. Calder, “Composing User
Interfaces with InterViews,” |EEE Computer, vol. 22, pp. 8-
22, February 1989.

D. Batory and S. W. O’ Malley, “The Design and Implementa-
tion of Hierarchical Software Systems Using Reusable Com-
ponents,” ACM Transactions on Software Engineering and
Methodology, vol. 1, Oct. 1992.

R. Campbell, V. Russo, and G. Johnson, “ The Design of aMul-
tiprocessor Operating System,” in Proceedingsof the USENIX
C++ Workshop, pp. 109-126, USENIX Association, Novem-
ber 1987.

J. M. Zweig, “The Conduit: a Communication Abstractionin
C++,” in Proceedings of the 2"¢ USENIX C++ Conference,
pp. 191-203, USENIX Association, April 1990.

D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6'" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994,

D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX I/O Mullti-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

S. Vinoski, “Distributed Object Computing with CORBA,”
C++ Report, vol. 5, July/August 1993.

(2]

(3]

[4]

(5]

(6]

(9]

[10]

[11]

14

[12] A. Weinand, E. Gamma, and R. Marty, “ET++ - an object-
oriented application framework in C++,” in Proceedings of
the Object-Oriented Programming Systems, Languages and
Applications Conference, pp. 46-57, ACM, Sept. 1988.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Dispatching,” in Pro-
ceedings of the 1°* Annual Conference on the Pattern Lan-
guages of Programs, (Monticello, Illinois), August 1994.

G. Booch, Object Oriented Analysis and Design with Ap-
plications (2"¢ Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

D. C. Schmidt and T. Suda, “ The Service Configurator Frame-
work: An Extensible Architecture for Dynamically Config-
uring Concurrent, Multi-Service Network Daemons,” in Pro-
ceedings of the Second International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 190-201,
IEEE, Mar. 1994.

W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

A. D. Birrell, “An Introduction to Programming with
Threads,” Tech. Rep. SRC-035, Digital Equipment Corpo-
ration, January 1989.

D. C. Schmidt, “Transparently Parameterizing Synchroniza-
tion Mechanismsinto a Concurrent Distributed Application,”
C++ Report, vol. 6, July/August 1994.

D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: Object-Oriented Network Programming Components
for Developing Client/Server Applications,” in Proceedings
of the 12" Annual Sun Users Group Conference, (San Fran-
cisco, CA), pp. 214-225, SUG, June 1994.

D. C. Schmidt and P. Stephenson, “ An Object-Oriented Frame-
work for Developing Network Server Daemons,” in Proceed-
ingsof the2™® C++ World Conference, (Dallas, Texas), SIGS,
Oct. 1993.

Windows Sockets - An Open Interface for Network Program-
ming under Microsoft Windows, Version1.1 ed., January 1993.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Journal of Concurrency: Prac-
tice and Experience, vol. 5, pp. 269-286, June 1993.

[13]

[14]

[19]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

