
The C++ Programming

Language

A Tour Through C++

Outline

C++ Overview

C++ Design Goals

Major C++ Enhancements

Other Enhancements

Language Features Not Part of C++

Function Prototypes

C++ Classes

Class Vector Example

C++ Objects

C++ Object-Oriented Features
1

Inheritance Preview

Inheritance Example: Ada-style Vectors

Dynamic Binding Preview

Overloading

New-Style Comments

Type-Safe Linkage

Inline Functions

Dynamic Memory Management

Const Type Quali�er

Stream I/O

Boolean Type

References

Type Cast Syntax

Default Parameters

Declaration Statements

Abbreviated Type Names

User-De�ned Conversions

Static Initialization

Miscellaneous Di�erences

C++ Overview

� C++ was designed at AT&T Bell Labs by
Bjarne Stroustrup in the early 80's

{ The original cfront translated C++ into C for

portability

� However, this was di�cult to debug and po-

tentially ine�cient

{ Many native host machine compilers now exist

� e.g., Borland, DEC, GNU, HP, IBM, Microsoft,

Sun, Symantec, etc.

� C++ is a mostly upwardly compatible ex-
tension of C that provides:

1. Stronger typechecking

2. Support for data abstraction

3. Support for object-oriented programming

{ C++ supports the Object-Oriented paradigm

but does not require it

2

C++ Design Goals

� As with C, run-time e�ciency is important

{ e.g., unlike Ada, complicated run-time libraries

have not traditionally been required for C++

� Note, that there is no language-speci�c sup-

port for concurrency, persistence, or distri-

bution in C++

� Compatibility with C libraries and UNIX
tools is emphasized, e.g.,

{ Object code reuse

� The storage layout of structures is compat-

ible with C

� Support for X-windows, standard ANSI C li-

brary, UNIX system calls via extern block

{ C++ works with the make recompilation utility

3

C++ Design Goals (cont'd)

� \As close to C as possible, but no closer"

{ i.e., C++ is not a proper superset of C, so that

backwards compatibility is not entirely main-

tained

� Typically not a problem in practice: : :

� Note, certain C++ design goals con
ict
with modern techniques for:

1. Compiler optimization

{ e.g., pointers to arbitrary memory locations

complicate register allocation and garbage

collection

2. Software engineering

{ e.g., separate compilation complicates inlin-

ing due to di�culty of interprocedural anal-

ysis

4

Major C++ Enhancements

1. C++ supports object-oriented program-
ming features

� e.g., single and multiple inheritance, abstract

base classes, and virtual functions

2. C++ facilitates data abstraction and en-
capsulation that hides representations be-
hind abstract interfaces

� e.g., the class mechanism and parameterized

types

3. C++ provides enhanced error handling ca-
pabilities

� e.g., exception handling

4. C++ provides a means for identifying an
object's type at runtime

� e.g., Run-Time Type Identi�cation (RTTI)

5

Other Enhancements

� C++ enforces type checking via function

prototypes

� Allows several di�erent commenting styles

� Provides type-safe linkage

� Provides inline function expansion

� Built-in dynamic memory management via

new and delete operators

� Default values for function parameters

� Operator and function overloading

6

Other Enhancements (cont'd)

� References provide \call-by-reference" pa-

rameter passing

� Declare constants with the const type qual-

i�er

� New mutable type quali�er

� New bool boolean type

� New type-secure extensible I/O interface

called streams and iostreams

7

Other Enhancements (cont'd)

� A new set of \function call"-style cast no-

tations

� Variable declarations may occur anywhere

statements may appear within a block

� The name of a struct, class, enum, or

union is a type name

� Allows user-de�ned conversion operators

� Static data initializers may be arbitrary ex-

pressions

� C++ provides a namespace control mech-

anism for restricting the scope of classes,

functions, and global objects

8

Language Features Not Part of

C++

1. Concurrency

� See \Concurrent C" by Nehrain Gehani

2. Persistence

� See Exodus system and E programming lan-

guage

3. Garbage Collection

� See papers in USENIX C++ 1994

9

Function Prototypes

� C++ supports stronger type checking via
function prototypes

{ Unlike ANSI-C, C++ requires prototypes for

both function declarations and de�nitions

{ Function prototypes eliminate a class of com-

mon C errors

� e.g., mismatched or misnumbered parameter

values and return types

� Prototypes are used for external declara-
tions in header �les, e.g.,

extern char *strdup (const char *s);

extern int strcmp (const char *s, const char *t);

FILE *fopen (const char *�lename, const char *type);

extern void print error msg and die (const char *msg);

10

Function Prototypes (cont'd)

� Proper prototype use detects erroneous
parameter passing at compile-time, e.g.,

#if de�ned (STDC) jj de�ned (cplusplus)

extern int freopen (const char *nm,

const char *tp,

FILE *s);

extern char *gets (char *);

extern int perror (const char *);

#else /* Original C-style syntax. */

extern int freopen (), perror ();

extern char *gets ();

#endif /* de�ned (STDC) */

/* : : : */

int main (void) f

char buf[80];

if (freopen ("./foo", "r", stdin) == 0)

perror ("freopen"), exit (1);

while (gets (buf) != 0)

/* : : :*/;

g

11

Function Prototypes (cont'd)

� The preceeding program fails mysteriously
if the actual calls are:

/* Extra argument, also out-of-order! */

freopen (stdin, "new�le", 10, 'C');

/* Omitted arguments. */

freopen ("new�le", "r");

� A \Classic C" compiler would generally
not detect erroneous parameter passing at
compile time (though lint would)

{ Note, C++ lint utilities are not widely avail-

able, but running GNU g++ -Wall provides

similar typechecking facilities

� Function prototypes are used in both def-
initions and declarations

{ Note, the function prototypes must be consis-

tent!!!

12

Overloading

� Two or more functions or operators may
be given the same name provided the type
signature for each function is unique:

1. Unique argument types:

double square (double);
Complex &square (Complex &);

2. Unique number of arguments:

void move (int);
void move (int, int);

� A function's return type is not considered
when distinguishing between overloaded in-
stances

{ e.g., the following declarations are ambiguous

to the C++ compiler:

extern double operator / (Complex &, Complex &);
extern Complex operator / (Complex &, Complex &);

� Note, overloading is really just \syntactic

sugar!"

13

C++ Classes

� The class is the basic protection and data
abstraction unit in C++

{ i.e., rather than \per-object" protection

� The class mechanism facilitates the cre-
ation of user-de�ned Abstract Data Types
(ADTs)

{ A class declarator de�nes a type comprised of

data members, as well as method operators

� Data members may be both built-in and user-

de�ned

{ Classes are \cookie cutters" used to de�ne ob-

jects

� a.k.a. instances

14

C++ Classes (cont'd)

� For e�ciency and C compatibility reasons,
C++ has two type systems

1. One for built-in types, e.g., int,
oat, char,

double, etc.

2. One for user-de�ned types, e.g., classes, structs,

unions, enums etc.

� Note that constructors, overloading, in-
heritance, and dynamic binding only apply
to user-de�ned types

{ This minimizes surprises, but is rather cumber-

some to document and explain: : :

15

C++ Classes (cont'd)

� A class is a \type constructor"

{ e.g., in contrast to an Ada package or a Mod-

ula 2 module

� Note, these are not types, they are \encap-

sulation units"

{ Until recently, C++ did not have a higher-level

modularization mechanism: : :

� This was a problem for large systems, due

to lack of library management facilities and

visibility controls

{ Recent versions of the ANSI C++ draft stan-

dard include mechanisms that addresses names-

pace control and visibility/scoping, e.g.,

� Name spaces

� Nested classes

16

C++ Classes (cont'd)

� General characteristics of C++ classes:

{ Any number of class objects may be de�ned

� i.e., objects, which have identity, state, and

behavior

{ Class objects may be dynamically allocated and

deallocated

{ Passing class objects, pointers to class objects,

and references to class objects as parameters

to functions are legal

{ Vectors of class objects may be de�ned

� A class serves a similar purpose to a C
struct

{ However, it is extended to allow user-de�ned

behavior, as well

17

Class Vector Example

� There are several signi�cant limitations with
built-in C and C++ arrays, e.g.,

1. The size must be a compile-time constant,

e.g.,

void foo (int i)

f

int a[100], b[100]; // OK

int c[i]; // Error!

g

2. Array size cannot vary at run-time

3. Legal array bounds run from 0 to size � 1

4. No range checking performed at run-time, e.g.,

f

int a[10], i;

for (i = 0; i <= 10; i++)

a[i] = 0;

g

5. Cannot perform full array assignments, e.g.,

a = b; // Error!

18

Class Vector Example (cont'd)

� We can write a C++ class to overcome
some of these limitations, i.e.,

{ (1) compile-time constant size

{ (4) lack of range checking

� Later on we'll use inheritance to �nish the
job, i.e.,

{ (2) resizing

{ (3) non-zero lower bounds

{ (5) array assignment

19

Class Vector Example (cont'd)

� /* File Vector.h (this ADT is incomplete
wrt initialization and assignment: : : !) */

#if !de�ned (VECTOR H) // Wrapper section

#de�ne VECTOR H

typedef int T;

class Vector f

public:

Vector (size t len = 100) f

this->size = len;

this->buf = new T[len];

g

~Vector (void) f delete [] this->buf ; g

size t size (void) const f return this->size ; g

bool set (size t i, T item);

bool get (size t i, T &item) const;

private:

size t size ;

T *buf ;

bool in range (size t i) const f

return i >= 0 && i < this->size ();

g

g;

#endif /* VECTOR H */
20

Class Vector Example (cont'd)

� /* File Vector.C */

#include "Vector.h"

bool Vector::set (size t i, T item) f

if (this->in range (i)) f

this->buf [i] = item;

return true;

g

else

return false;

g

bool Vector::get (size t i, T &item) const f

if (this->in range (i)) f

item = this->buf [i];

return true;

g

else

return false;

g

21

Class Vector Example (cont'd)

buf

len dynamically allocated memory of size len

� The control block that represents an ob-
ject of class Vector

{ Note, the control block may be allocated o�

the stack, the global data segment, or the heap

{ However, the buf �eld always points to mem-

ory allocated o� the heap

22

Class Vector Example (cont'd)

� // File test.C

#include <libc.h>
#include "Vector.h"
void foo (size t size) f

Vector user vec (size); // Call constructor
int c vec[size]; // Error, no dynamic range

c vec[0] = 0;
user vec.set (0, 0);

for (int i = 1; i < user vec.size (); i++) f
int t;
user vec.get (i � 1, t);
user vec.set (i, t + 1);
c vec[i] = c vec[i � 1] + 1;

g

// Error, private and protected data inaccessible
size = user vec.size � 1;
user vec.buf [size] = 100;

// Run-time error, index out of range
if (user vec.set (user vec.size (), 1000) == false)

err ("index out of range");

// Index out of range not detected at runtime!
c vec[size] = 1000;

// Destructor called when user vec leaves scope
g

23

Class Vector Example (cont'd)

� Note that this example has several unnec-
essary limitations that are addressed by
additional C++ features, e.g.,

{ set/get paradigm di�ers from C's built-in sub-

script notation

{ Error checking via return value is somewhat

awkward

{ Only works for a vector of ints

{ Classes that inherit from Vector may not al-

ways want the extra overhead of range checking: : :

� The following example illustrates several
more advanced C++ features

{ Don't worry, we'll cover these features in much

greater detail over the course of the class!!!!

24

Class Vector Example (cont'd)

� /* File Vector.h */

// typedef int T;

template <class T>

class Vector f

public:

struct RANGE ERROR fg;

Vector (size t len = 100): size (len) f

if (this->size <= 0)

throw Vector<T>::RANGE ERROR ();

else this->buf = new T[this->size];

g

~Vector (void) f delete [] this->buf ; g

size t size (void) const f return this->size ; g

T &operator[] (size t i) f

if (this->in range (i))

return this->buf [i];

else throw Vector<T>::RANGE ERROR ();

g

protected:

T &elem (size t i) f return this->buf [i]; g

private:

size t size ;

T *buf ;

bool in range (size t i) f

return i >= 0 && i < this->size ;

g

g;
25

Class Vector Example (cont'd)

� // File test.C

#include <libc.h>
#include "Vector.h"
void foo (size t size) f

try f // Illustrates exception handling: : :

Vector<int> user vec (size); // Call constructor
int c vec[size]; // Error, no dynamic range

c vec[0] = user vec[0] = 0;

for (int i = 1; i < user vec.size (); i++) f
user vec[i] = user vec[i � 1] + 1;
c vec[i] = c vec[i � 1] + 1;

g

// Error, private and protected data inaccessible
size = user vec.size � 1;
user vec.buf [size] = 100;
user vec.elem (3) = 120;

// Run-time error, RANGE ERROR thrown
user vec[user vec.size ()] = 1000;

// Index out of range not detected at runtime!
c vec[size] = 1000;

// Destructor called when user vec leaves scope
g

catch (Vector<int>::RANGE ERROR) f /* : : :*/ g

g

26

C++ Objects

� A C++ object is an instance of a class (or

any other C++ type for that matter: : :)

� An object can be instantiated or disposed

either implicitly or explicitly, depending on

its life-time

� As with C, the life-time of a C++ object
is either static, automatic, or dynamic

{ C and C++ refer to this as the \storage class"

of an object

27

C++ Objects (cont'd)

� Life-time or \storage class:"

1. Static

{ i.e., it lives throughout life-time of process

{ static can be used for local, global, or class-

speci�c objects (note, their scope is di�er-

ent)

2. Automatic

{ i.e., it lives only during function invocation,

on the \run-time stack"

3. Dynamic

{ i.e., it lives between corresponding calls to

operators new and delete

� Or malloc and free

{ Dynamic objects have life-times that extend

beyond their original scope

28

C++ Objects (cont'd)

Uninitialized

Global Data

Initialized

Global Data

Text

Stack

Heap

Automatic

Variables

Dynamic

Variables

Static

Variables

High

Addresses

Low

Addresses
Read-Only

Code and

Data

� Typical layout of memory objects in the

process address space

29

C++ Objects (cont'd)

� Most C++ implementations do not sup-
port automatic garbage collection of dy-
namically allocated objects

{ In garbage collection schemes, the run-time

system is responsible for detecting and deal-

locating unused dynamic memory

{ Note, it is very di�cult to implement garbage

collection correctly in C++ due to pointers and

unions

� Therefore, programmersmust explicitly deal-
locate objects when they want them to go
away

{ C++ constructors and destructors are useful

for automating certain types of memory management: : :

30

C++ Objects (cont'd)

� Several workarounds exist, however, e.g.,

{ Use Ei�el or LISP ;-)

{ Use inheritance to derive from base class Col-

lectible

� However, this only works then for a sub-

set of classes (i.e., doesn't work for built-in

types: : :)

{ Use the class-speci�c new and delete opera-

tors to de�ne a memory management facility

using reference counts to reclaim unused mem-

ory

{ Adapt Hans Boehm's conservative garbage col-

lector for C to C++: : :

� No solution is optimal, however, so stor-

age management is often performed \by

hand" (ugh ;-))

31

C++ Object-Oriented Features

� C++ provides three characteristics gen-
erally associated with object-oriented pro-
gramming:

1. Data Abstraction

{ Package a class abstraction so that only the

public interface is visible and the implemen-

tation details are hidden from clients

{ Allow parameterization based on type

2. Single and Multiple Inheritance

{ A derived class inherits operations and at-

tributes from one or more base classes, pos-

sibly providing additional operations and/or

attributes

3. Dynamic Binding

{ The actual type of an object (and thereby

its associated operations) need not be fully

known until run-time

� Compare with C++ template feature, which

are instantiated at compile-time

32

C++ Object-Oriented Features

(cont'd)

� C++'s object-oriented features encourage
designs that

1. Explicitly distinguish general properties of re-

lated concepts from

2. Speci�c details of particular instantiations of

these concepts

� e.g., an object-oriented graphical shapes

library design using inheritance and dy-

namic binding

� This approach facilitates extensibility and

reusability

33

C++ Object-Oriented Features

(cont'd)

Point

Shape

TriangleCircle

Color

Rectangle

1
1

AA
11

� Note, the \OOD challenge" is to map ar-

bitrarily complex system architectures into

inheritance hierarchies

34

C++ Object-Oriented Features

(cont'd)

� Inheritance and dynamic binding facilitate
the construction of \program families" and
frameworks

{ Program families are sets of programs whose

common properties are so extensive that it is

advantageous to study the common proper-

ties of the programs before analyzing individual

members

{ A framework is an integrated set of compo-

nents that collaborate to product a reuseable

architecture for a family of related applications

� It also supports the open/closed principle

{ i.e., open with respect to extensibility, closed

with respect to stability

35

Inheritance Preview

� A type can inherit or derive the character-
istics of another base type. These derived
types act just like the base type, except
for an explicit list of:

1. Operations that are implemented di�erently,

i.e., overridden

2. Additional operations and extra data members

3. Modi�ed method access privileges

� C++ supports both single and multiple
inheritance, e.g.,

class X f /* : : : */ g;

class Y : public X f /* : : : */ g;

class Z : public X f /* : : :*/ g;

class YZ : public Y, public Z f /* : : :*/ g;

36

Inheritance Example: Ada-style

Vectors

� /* File Ada Vector.h (still incomplete wrt
assignment and initialization) */

#if !de�ned (ADA VECTOR H)

#de�ne ADA VECTOR H

#include "Vector.h"

template <class T>

class Ada Vector : private Vector<T>

f

public:

Ada Vector (int l, int h);

T &operator() (int i);

// extend visibility from class Vector

Vector::size;

Vector::RANGE ERROR;

// Note, destructor is not inherited: : :

private:

int lo bnd ;

g;

#endif /* ADA VECTOR H */

37

Inheritance Example: Ada-style

Vectors (cont'd)

� /* File Ada Vector.C */

template <class T>

Ada Vector<T>::Ada Vector (int l, int h)

: lo bnd (l), Vector<T> (h � l + 1) fg

template <class T>

T &Ada Vector<T>::operator() (int i) f

if (this->in range (i � this->lo bnd))

// Call inherited operation, no range checking

return this->elem (i � this->lo bnd);

else

throw Ada Vector<T>::RANGE ERROR ();

/* or

(*this)[i � this->lo bnd]; */

g

38

Inheritance Example: Ada-style

Vectors (cont'd)

� Example Ada Vector Usage

{ // File main.C

#include <stream.h>
#include "Ada Vector.h"
extern "C" int atoi (const char *);

int main (int argc, char *argv[]) f
try f

int lower = atoi (argv[1]);
int upper = atoi (argv[2]);
Ada Vector<int> ada vec (lower, upper);

ada vec (lower) = 0;

for (int i = lower + 1; i <= ada vec.size (); i++)
ada vec (i) = ada vec (i � 1) + 1;

// Run-time error, index out of range
ada vec (upper + 1) = 100;

// Vector destructor called when
// ada vec goes out of scope

g

catch (Ada Vector<int>::RANGE ERROR) f /* : : : *
g

39

Dynamic Binding Preview

� Dynamic binding is a mechanism used along

with inheritance to support a form of poly-

morphism

� C++ uses virtual functions to implement
dynamic binding:

{ The actual method called at run-time depends

on the class of the object used when invoking

the virtual method

� C++ allows the class de�ner the choice
of whether to make a method virtual or
not

{ This leads to time/space performance vs.
ex-

ibility tradeo�s

� Virtual functions introduce a small amount

of overhead for each virtual function call

40

Dynamic Binding Preview

(cont'd)

� e.g.,

struct X f /* Base class */

int f (void) f puts ("X::f"); g // Non-virtual

virtual int vf (void) f puts ("X::vf"); g // Virtual

g;

struct Y : public X f /* Derived class */

int f (void) f puts ("Y::f"); g // Non-virtual

virtual int vf (void) f puts ("Y::vf"); g // Virtual

g;

void foo (X *x) f /* Note, can also use references: : : */

x->f (); /* direct call: f 1X (x); */

x->vf (); /* indirect call: (*x->vptr[1]) (x) */

g

int main (void) f

X x;

Y y;

foo (&x); // X::f, X::vf

foo (&y); // X::f, Y::vf

g

41

Dynamic Binding Preview

(cont'd)

� Each class with 1 or more virtual func-
tions generates one or more virtual tables
(vtables)

{ Note, multiple inheritance creates multiple vta-

bles

� A vtable is logically an array of pointers
to methods

{ A vtable is typically implemented as an array

of pointers to C functions

� Each object of a class with virtual func-
tions contains one or more virtual point-
ers (vptrs), which point at the appropriate
vtable for the object

{ The constructor automatically assigns the vp-

trs to point to the appropriate vtable

42

New-Style Comments

� C++ allows two commenting styles:

1. The traditional C bracketed comments, which

may extend over any number of lines, e.g.,

/*
This is a multi-line C++ comment

*/

2. The new \continue until end-of-line" comment

style, e.g.,

// This is a single-line C++ comment

� Note, C-style comments do not nest

/*
/* Hello world program */
int main (void) f

printf ("hello world\n");
g

*/

� However, these two styles nest, so it is
possible to comment out code containing
other comments, e.g.,

/* assert (i < size) // check index range */
// if (i != 0 /* check for zero divide */ && 10 / i)

43

New-Style Comments (cont'd)

� Naturally, it is still possible to use C/C++
preprocessor directives to comment out
blocks of code:

#if 0

/* Make sure only valid C++ code goes here! */

/* i.e., don't use apostrophes! */

#endif

� Beware of subtle whitespace issues: : :

int b = a //* divided by 4 */4;

-a;

/* C++ preprocessing and parsing. */

int b = a -a;

/* C preprocessing and parsing. */

int b = a/4; -a;

� Note, in general it is best to use whites-
pace around operators and other syntactic
elements, e.g.,

char *x;

int foo (char * = x); // OK

int bar (char*=x); // Error
44

Type-Safe Linkage

� Type-safe linkage allows the linker to de-
tect when a function is declared and/or
used inconsistently, e.g.,:

// File abs.c

long abs (long arg)

f

return arg < 0 ? -arg : arg;

g

// File application.c

#include <stdio.h>

int abs (int arg);

int main (void) f printf ("%d\n", abs (�1)); g

� Without type-safe linkage, this error would
remain hidden until the application was
ported to a machine where ints and longs
were di�erent sizes

{ e.g., Intel 80286

45

Type-Safe Linkage (cont'd)

� Type-safe linkage encodes all C++ func-

tion names with the types of their argu-

ments (a.k.a. \name mangling"!)

� e.g.,

long abs (long arg) ! abs Fl

int abs (int arg) ! abs Fi

� Therefore, the linker may be used to de-

tect mismatches between function proto-

types, function de�nitions, and function

usage

46

Type-Safe Linkage (cont'd)

� Name mangling was originally created to

support overload resolution

� Only function names are mangled

{ i.e., variables, constants, enums, and types are

not mangled: : :

� On older C++ compilers, diagnostic mes-
sages from the linker are sometimes rather
cryptic!

{ See the c++filt program: : :

47

Typesafe Linkage (cont'd)

� Language interoperability issues

{ This problem arises as a side e�ect of using

type-safe linkage in C++

{ C functions used in C++ code (e.g., standard

UNIX library functions) must be explicitly de-

clared as requiring C linkage (i.e., names are

not mangled) via the new extern "C" declara-

tion

� e.g.,

extern "C" int abs (int i);

double abs (double d);

Complex abs (Complex &c);

int foo (int bar) f

cout << abs (Complex (�10, 4.5));

// calls abs F7Complex

<< abs (bar) // calls abs

<< abs (3.1416) // calls abs Fd

g

48

Typesafe Linkage (cont'd)

� Language interoperability issues (cont'd)

{ Other syntactic forms of extern blocks:

extern "C" f

char *mktemp (const char *);

char *getenv (const char *);

g

{ Encapsulating existing header �les

#if de�ned (cplusplus)

extern "C" f

#endif /* cplusplus */

#include <string.h>

#ifdef cplusplus

g

#endif /* cplusplus */

{ Note, extern blocks also support other languages: : :

� e.g., FORTRAN, Pascal, Ada, etc.

49

Inline Functions

� Many programming languages force devel-
opers to choose between:

1. Modularity/abstraction (function call)

2. Performance (macro or inline-expansion by-hand)

� C++ allows inline function expansion, which
has several advantages:

1. It combines the e�ciency of a macro with the

type-security and abstraction of a function call

2. It reduces both execution time and code size

(potentially)

3. It discourages the traditional reliance upon macro

preprocessor statements

50

Inline Functions (cont'd)

� Here's an example of a common C prob-
lem with the preprocessor:

{ Classic C macro, no sanity-checking at macro

expansion time

#de�ne SQUARE(X) ((X) * (X))

int a = 10;

int b = SQUARE (a++); // trouble!!! (a++) * (a++)

{ C++ inline function template

template<class T> inline

T square (T x) f return x * x; g

int c = square (a++); // OK

51

Inline Functions (cont'd)

� Points to consider about inline functions:

1. Class methods that are de�ned in their decla-

ration are automatically expanded inline

2. It is di�cult to debug code where functions

have been inline expanded and/or optimized

3. Compilers require more time and space to com-

pile when there are many inline functions

4. Inline functions do not have the pseudo-polymorphic

properties of macros

{ However, inline templates approximate this

functionality

5. Compilers often have limits on the size and

type of function that can be inlined.

{ e.g., if stack frame is very large:

int foo (void) f
int local array[1000000];
// : : :

{ This can cause surprising results wrt code

size, e.g.,

int bar (void) f foo (); foo (); g

52

Inline Functions (cont'd)

� As an example of inlining in C++, we
will discuss a simple run-time function call
\trace" facility

{ Provides a rudimentary debugging facility

� e.g., useful for long-running network servers

� The goals are to be able to:

1. Determine the dynamic function calling behav-

ior of the program, i.e., \tracing"

2. Allow for �ne-grain control over whether trac-

ing is enabled, e.g.,

{ At compile-time (remove all traces of Trace

and incur no run-time penalty)

{ At run-time (via signals and/or command-

line options)

3. Make it easy to automate source code instru-

mentation

53

{ e.g., write a regular expression to match func-

tion de�nitions and then insert code auto-

matically

Inline Functions (cont'd)

� Example output:

% CC -D__INLINE__ main.C trace.C
% a.out 10 1
enter int main (int argc, char *argv[]) in file main.C on line 25
enter void foo (void) (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
enter void foo (void) in (file main.C, line 8)
leave void foo (void)

leave void foo (void)
leave void foo (void)

leave void foo (void)
leave void foo (void)

leave void foo (void)
leave void foo (void)

leave void foo (void)
leave void foo (void)

leave void foo (void)
leave void foo (void)

leave int main (int argc, char *argv[])

54

Inline Functions (cont'd)

� e.g., main.C

#include "Trace.h"

void foo (int max depth) f

T ("void foo (void)");

/* Trace ("void foo (void)", 8, "main.c") */

if (max depth > 0) foo (max depth � 1);

/* Destructor called automatically */

g

int main (int argc, char *argv[]) f

const int MAX DEPTH =

argc == 1 ? 10 : atoi (argv[1]);

if (argc > 2)

Trace::set nesting indent (atoi (argv[2]));

if (argc > 3)

Trace::stop tracing ();

T ("int main (int argc, char *argv[])");

foo (MAX DEPTH);

return 0;

/* Destructor called automatically */

g

55

Inline Functions (cont'd)

� // Trace.h

#if !de�ned (TRACE H)
#de�ne TRACE H
#if de�ned (NTRACE) // compile-time omission
#de�ne T(X)
#else

#de�ne T(X) Trace (X, LINE , FILE)
#endif /* NTRACE */

class Trace f

public:
Trace (char *n, int line = 0, char *�le = "");
~Trace (void);
static void start tracing (void);
static void stop tracing (void);
static int set nesting indent (int indent);

private:
static int nesting depth ;
static int nesting indent ;
static int enable tracing ;
char *name ;

g;
#if de�ned (INLINE)
#de�ne INLINE inline

#include "Trace.i"
#else

#de�ne INLINE
#endif /* INLINE */
#endif /* TRACE H */

56

Inline Functions (cont'd)

� e.g., /* Trace.i */

#include <stdio.h>

INLINE

Trace::Trace (char *n, int line, char *�le) f

if (Trace::enable tracing)

fprintf (stderr, "%*senter %s (�le %s, line %d)\n",

Trace::nesting indent *

Trace::nesting depth ++,

"", this->name = n, �le, line);

g

INLINE

Trace::~Trace (void) f

if (Trace::enable tracing)

fprintf (stderr, "%*sleave %s\n",

Trace::nesting indent *

--Trace::nesting depth ,

"", this->name);

g

57

Inline Functions (cont'd)

� e.g., /* Trace.C */

#include "Trace.h"

#if !de�ned (INLINE)

#include "Trace.i"

#endif /* INLINE */

/* Static initializations */

int Trace::nesting depth = 0;

int Trace::nesting indent = 3;

int Trace::enable tracing = 1;

void Trace::start tracing (void)

Trace::enable tracing = 1;

g

void Trace::stop tracing (void) f

Trace::enable tracing = 0;

g

int Trace::set nesting indent (int indent) f

int result = Trace::nesting indent ;

Trace::nesting indent = indent;

return result;

g

58

Dynamic Memory Management

� Dynamic memory management is now a
built-in language construct, e.g.,

{ Traditional C-style

void *malloc (size t);
void free (void *);
// : : :

int *a = malloc (10 * sizeof *a);
free ((void *) a);

{ C++ syntax

int *a = new int[10];
int *b = new int;
// : : :

delete [] a;
delete b;

� Built-in support for memory management
improves:

1. Type-security

2. Extensibility

3. E�ciency

59

Const Type Quali�er

� C++ data objects and methods are qual-
i�able with the keyword const, making
them act as \read-only" objects

{ e.g., placing them in the \text segment"

{ const only applies to objects, not to types

� e.g.,

const char *foo = "on a clear day";

char *const bar = "you can C forever!";

const char *const zippy = "yow!";

foo = "To C or not to C?" // OK

foo[7] = 'C'; // error, read-only location

// error, can't assign to const pointer bar

bar = "avoid cliches like the plague.";

// OK, but be careful of read-only memory!!!

bar[1] = 'D';

const int index = 4 � 3; // index == 1

// read-only an array of constant ints

const int array[index + 3] = f2, 4, 8, 16g;
60

Const Type Quali�er (cont'd)

� User-de�ned const data objects:

{ A const quali�er can also be applied to an

object of a user-de�ned type, e.g.,

const String string constant ("Hi, I'm read-only!");

const Complex complex zero (0.0, 0.0);

string constant = "This will not work!"; // ERROR

complex zero += Complex (1.0); // ERROR

complex zero == Complex (0.0); // OK

� Ensuring \const correctness" is an impor-
tant aspect of designing C++ interfaces,
e.g.,

1. It ensures that const objects may be passed

as parameters

2. It ensures that data members are not acciden-

tally corrupted

61

Const Type Quali�er (cont'd)

� const methods

{ const methods may specify that certain read-

only operations take place on user-de�ned const

objects, e.g.,

class String f

public:

size t size (void) const f return this->len ; g

void set (size t index, char new char);

// : : :

private:

size t len;

g;

const String string constant ("hello");

string constant.size (); // Fine

{ A const method may not directly modify its

this pointer

string constant.set (1, 'c'); // Error

62

Stream I/O

� C++ extends standard C library I/O with

stream and iostream classes

� Several goals

1. Type-Security

{ Reduce type errors for I/O on built-in and

user-de�ned types

2. Extensibility (both above and below)

{ Allow user-de�ned types to interoperate syn-

tactically with existing printing facilities

� Contrast with printf/scanf-family

{ Transparently add new underlying I/O de-

vices to the iostream model

� i.e., share higher-level formatting opera-

tions

63

Stream I/O (cont'd)

� The stream and iostream class categories

replace stdin, stdout, and stderr with cout,

cin, and cerr

� These classes may be used by overloading
the << and >> operators

{ C++ does not get a segmentation fault since

the "correct" function is called

#include <iostream.h>

char *name = "joe";

int id = 1000;

cout << "name = " << name << ", id = " << id << '\n';

// cout.operator<< ("name = ").operator<< ("joe"): : :

{ In contrast, old C-style I/O o�ers no protection

from mistakes, and gets a segmentation fault

on most systems!

printf ("name = %s, id = %s\n", name, id);

64

Stream I/O (cont'd)

� Be careful using Stream I/O in construc-

tors and destructors for global or static

objects, due to unde�ned linking order and

elaboration problems: : :

� In addition, the Stream I/O approach does
not work particularly well in a multi-threaded
environment: : :

{ This is addressed in newer compilers that o�er

thread-safe iostream implementations

65

Boolean Type

� C++ has added a new build-in type called
bool

{ The bool values are called true and false

{ Converting numeric or pointer type to bool

takes 0 to false and anything else to true

{ bool promotes to int, taking false to 0 and

true to 1

{ Statements such as if and while are now con-

verted to bool

{ All operators that conceptually return truth

values return bool

� e.g., the operands of &&, jj, and !, but not

&, j, and ~

66

References

� C++ allows references, which may be:

1. Function parameters

2. Function return values

3. Other objects

� A reference variable creates an alternative

name (a.k.a. \alias") for an object

� References may be used instead of point-
ers to facilitate:

1. Increased code clarity

2. Reduced parameter passing costs

3. Better compiler optimizations

� References use call-by-value syntax, but

possess call-by-reference semantics

67

References (cont'd)

� e.g., consider a swap abstraction:

void swap (int x, int y)

f

int t = x; x = y; y = t;

g

int main (void) f

int a = 10, b = 20;

printf ("a = %d, b = %d\n", a, b);

swap (a, b);

printf ("a = %d, b = %d\n", a, b);

g

� There are several problems with this code

1. It doesn't swap!

2. It requires a function call

3. It only works for integers!

68

References (cont'd)

� e.g., swap

void swap (int *xp, int *yp) f

int t = *xp; *xp = *yp; *yp = t;

g

int main (void) f

int a = 10, b = 20;

printf ("a = %d, b = %d\n", a, b);

swap (&a, &b);

printf ("a = %d, b = %d\n", a, b);

g

#de�ne SWAP(X,Y,T) \

do fT = (X); (X) = (Y); (Y) = ;g while (0)

int main (void) f

int a = 10, b = 20;

printf ("a = %d, b = %d\n", a, b);

SWAP (a, b, int); // beware of a++!

printf ("a = %d, b = %d\n", a, b);

g

69

References (cont'd)

� e.g., swap

template <class T> inline void

swap (T &x, T &y) f

T t = x;

x = y;

y = t;

g

int main (void) f

int a = 10, b = 20;

double d = 10.0, e = 20.0;

printf ("a = %d, b = %d\n", a, b);

printf ("d = %f, e = %e\n", d, e);

swap (a, b);

swap (d, e);

printf ("a = %d, b = %d\n", a, b);

printf ("d = %f, e = %e\n", d, e);

g

70

References (cont'd)

10

iir

� With references (as with classes), it is im-
portant to distinguish initialization from
assignment, e.g.,

int i = 10;
// initialization of ir
int &ir = i; // Equivalent to int *const ip = &i;
ir = ir + 10; // dereference is automatically done

// *ip = *ip + 10;

� Once initialized, a reference cannot be changed

{ i.e., it may not be reassigned to reference a

new location

{ Note, after initialization all operations a�ect

the referenced object

� i.e., not the underlying const pointer: : :

71

Type Cast Syntax

� C++ introduces a new type cast syntax
in addition to Classic C style casts. This
"function-call" syntax resembles the type
conversion syntax in Ada and Pascal, e.g.,

// function prototype from math.h library

extern double log10 (double param);

if ((int) log10 ((double) 7734) != 0)

; /* C style type cast notation */

if (int (log10 (double (7734))) != 7734)

; // C++ function-style cast notation

� This \function call" is performed at com-

pile time

72

Type Cast Syntax (cont'd)

� This type cast syntax is also used to spec-
ify explicit type conversion in the C++
class mechanism

{ This allows multiple-argument casts, i.e., \con-

structors"

� e.g.,:

class Complex f

public:

Complex (double, double = 0.0);

// : : :

private:

double real, imaginary;

g;

// Convert 10.0 and 3.1416 into a Complex object

Complex c = Complex (10.0, 3.1416);

// Note that old-style C syntax would not su�ce here: : :

Complex c = (Complex) (10.0, 3.1416);

73

Type Cast Syntax (cont'd)

� Note, there are a variety of syntactical
methods for constructing objects in C++,
e.g.,

1. Complex c1 = 10.0;

2. Complex c2 = (Complex) 10.0;

3. Complex c3 = Complex (10.0);

4. Complex c4 (10.0);

� I recommend version 4 since it is the most
consistent and also works with built-in types: : :

{ It also generalizes to multiple-argument casts: : :

74

Default Parameters

� C++ allows default argument values in
function de�nitions

{ If trailing arguments are omitted in the actual

function call these values are used by default,

e.g.,

void assign grade (char *name, char *grade = "A");

// additional declarations and de�nitions: : :

assign grade ("Bjarne Stroustrup", "C++");

// Bjarne needs to work harder on his tasks

assign grade ("Jean Ichbiah");

// Jean gets an "A" for Ada!

� Default arguments are useful in situations
when one must change a class without af-
fecting existing source code

{ e.g., add new params at end of argument list

(and give them default values)

75

Default Parameters (cont'd)

� Default parameter passing semantics are
similar to those in languages like Ada:

{ e.g., only trailing arguments may have defaults

/* Incorrect */
int x (int a = 10, char b, double c = 10.1);

{ Note, there is no support for \named parame-

ter passing"

� However, it is not possible to omit argu-
ments in the middle of a call, e.g.,

extern int foo (int = 10, double = 2.03, char = 'c');

foo (100, , 'd'); /* ERROR!!! */

foo (1000); /* OK, calls foo (1000, 2.03, 'c');

� There are several arcane rules that per-

mit successive redeclarations of a func-

tion, each time adding new default argu-

ments

76

Declaration Statements

� C++ allows variable declarations to occur
anywhere statements occur within a block

{ The motivations for this feature are:

1. To localize temporary and index variables

2. Ensure proper initialization

{ This feature helps prevent problems like:

f

int i, j;

/* many lines of code: : :*/

// Oops, forgot to initialize!

while (i < j) /* : : :*/;

g

{ Instead, you can use the following

f

for (int i = x, j = y; i < j;)

/* : : : */;

g

77

Declaration Statements (cont'd)

� The following example illustrates declara-
tion statements and also shows the use of
the \scope resolution" operator

#include <iostream.h>

struct Foo f static int var; g;

int Foo::var = 20;

const int MAX SIZE = 100;

int var = 10;

int main (void) f

int k;

k = call something ();

// Note the use of the \scope resolution" operator

// (::) to access the global variable var
int var = ::var � k + Foo::var;

for (int i = var; i < MAX SIZE; i++)

for (int j = 0; j < MAX SIZE; j++) f

int k = i * j;

cout << k;

double var = k + ::var * 10.4;

cout << var;

g

g

78

Declaration Statements (cont'd)

� However, the declaration statement fea-

ture may encourage rather obscure code

since the scoping rules are not always in-

tuitive or desirable

� Note, new features in ANSI C++ allow

de�nitions in the switch, while, and if

condition expressions: : :

� According to the latest version of the ANSI/ISO
C++ draft standard, the scope of the def-
inition of i in the following loop is limited
to the body of the for loop:

f

for (int i = 0; i < 10; i++)

/* : : :*/;

for (int i = 0; i < 20; i++)

/* : : :*/;

g

79

Abbreviated Type Names

� Unlike C, C++ allows direct use of user-
de�ned type tag names, without requiring
a preceding union, struct, class, or enum
speci�er, e.g.,

struct Tree Node f /* C code */
int item ;
struct Tree Node *l child , * child ;

g;

struct Tree Node f /* C++ code */
int item ;
Tree Node *l child , *r child ;

g

� Another way of looking this is to say that
C++ automatically typedefs tag names,
e.g.,

typedef struct Tree Node Tree Node;

� Note, this C++ feature is incompatible
with certain Classic and ANSI C identi�er
naming conventions, e.g.,

struct Bar f /* : : : */ g;
struct Foo f g;
typedef struct Foo Bar; // Illegal C++, legal C!

80

User-De�ned Conversions

� The motivation for user-de�ned conver-
sions are similar to those for operator and
function overloading

{ e.g., reduces \tedious" redundancy in source

code

{ However, both approaches have similar prob-

lems with readability: : :

� User-de�ned conversions allow for more
natural looking mixed-mode arithmetic for
user-de�ned types, e.g.,:

Complex a = Complex (1.0);

Complex b = 1.0; // implicit 1.0 -> Complex (1.0)

a = b + Complex (2.5);

a = b + 2.5 // implicit 2.5 -> Complex (2.5)

String s = a; // implicit a.operator String ()

81

User-De�ned Conversions

(cont'd)

� Conversions come in two
avors:

1. Constructor Conversions:

{ Create a new object from objects of existing

types

2. Conversion Operators:

{ Convert an existing object into an object of

another type

� e.g.,

class Complex f

public:
Complex (double); // convert double to Complex
operator String (); // convert Complex to String
// : : :

g;
int foo (Complex c) f

c = 10.0; // c = Complex (10.0);
String s = c; // c.operator String ();
cout << s;

g

82

User-De�ned Conversions

(cont'd)

� In certain cases, the compiler will try a
single level of user-de�ned conversion to
determine if a type-signature matches a
particular use, e.g.,

class String f

public:

String (const char *s);

String &operator += (const String &);

g;

String s;

s += "hello"; // s += String ("hello");

� Note, it is easy to make a big mess by
abusing the user-de�ned conversion lan-
guage feature: : :

{ Especially when conversions are combine with

templates, inheritance virtual functions, and

overloading, etc.

83

Static Initialization

� In C, all initialization of static objects must
use constant expressions, e.g.,:

int i = 10 + 20; /* �le scope */

int foo (void) f

static int j = 100 * 2 + 1; /* local scope */

g

� However, static initializers can be com-
prised of arbitrary C++ expressions, e.g.,

extern int foo (void); // �le scope

int a = 100;

int i = 10 + foo ();

int j = i + *new int (1);

int foo (void) f

static int k = foo ();

return 100 + a;

g

� Note, needless to say, this can become

rather cryptic, and the order of initializa-

tion is not well de�ned between modules

84

Miscellaneous Di�erences

� In C++, sizeof ('a') == sizeof (char); in
C, sizeof ('a') == sizeof (int)

{ This facilitates more precise overloading: : :

� char str[5] = "hello" is valid C, but C++

gives error because initializer is too long

(because of hidden trailing '\0')

� In C++, a function declaration int f();
means that f takes no arguments (same
as int f(void);). In C it means that f can
take any number of arguments of any type
at all!

{ C++ would use int f (: : :);

� In C++, a class may not have the same

name as a typedef declared to refer to a

di�erent type in the same scope

85

Miscellaneous Di�erences

(cont'd)

� In C++, a struct or class is a scope; in
C a struct, enum, or enum literal are
exported into the \global scope," e.g.,

struct Foo f enum Bar fBAZ, FOOBAR, BIZBUZZg; g;

/* Valid C, invalid C++ */

enum Bar bar = BAZ;

// Valid C++, invalid C

Foo::Bar bar = Foo::BAZ;

� The type of an enum literal is the type of
its enumeration in C++; in C it is an int,
e.g.,

/* True in C, not necessarily true in C++. */

sizeof BAZ == sizeof (int);

/* True in C++, not necessarily true in C. */

sizeof Foo::BAZ == sizeof (Foo::Bar);

86

Miscellaneous Di�erences

(cont'd)

� In ANSI C, a global const has external
linkage by default; in C++ it has internal
linkage, e.g.,

/* In C++, \global1" is not visible to other modules. */

const int global1 = 10;

/* Adding extern makes it visible to other modules. */

extern const int global2 = 100;

� In ANSI C, a void * may be used as the
right-hand operand of an assignment or
initialization to a variable of any pointer
type, whereas in C++ it may not (without
using a cast: : :)

void *malloc (size t);

/* Valid C, invalid C++ */

int *i = malloc (10 * sizeof *i);

/* Valid C, valid C++ */

int *i = (int *) malloc (10 * sizeof *i);

87

Summary

� C++ adds many, many, many new fea-

tures to the C programming language

� It is not necessary to use all the features

in order to write e�cient, understandable,

portable applications

� C++ is a \moving target"

{ Therefore, the set of features continues to change

and evolve

{ However, there are a core set of features that

are important to understand and are ubiquitous

88

