
Object Interconnections

The OMG Events Service (Column 9)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the February 1997 issue of the
SIGS C++ Report magazine.

1 Introduction

In our previous column, we modified our stock quote system
to implement distributed callbacks using CORBA, as shown
in Figure 1.

Stock
Brokers

CONSUMER

CONSUMER

CONSUMER

ppush()ush()

ppush()ush()

ppush()ush()

Quote
Server

REALREAL--TIMETIME

STOCK QUOTESTOCK QUOTE

DATABASEDATABASE : Notifying: Notifying
QuoterQuoter

monitormonitor
realtimerealtime
feed()feed()

pull()pull()

: Registration: Registration
MapMap

Figure 1: CORBA Distributed Callback Quoter Architecture

Distributed callbacks differ from CORBA’s conventional
synchronous invocation model because they decouple the re-
quest for a service from the response(s). Callbacks are often
useful when consumers of events don’t need to wait syn-
chronously for suppliers to generate the events. In addition,
they can be used to deliver responses to long-running opera-
tions, rather than making clients block waiting for operations
to complete.

By definition, distributed callbacks flow from the server
back to the client. Therefore, they turn a standard
client/server relationship into a peer-to-peer relationship.
This reinforces the fact that terms like “client” and “server”
are useful only for describing the roles played for each
CORBA request. By re-architecting our distributed stock
quote server to employ callbacks, we showed how the

flexibility of making requests in “both directions” can
solve problems associated with CORBA’s synchronous re-
quest/response model. Chief among these problems is the
network/server saturation caused by polling operations.

As we pointed out last column, however, the distributed
callback design introduced a new set of problems, which
include the following:

� Supplier-side polling: Instead of just looking up stock
values upon request, our Notifying Quoter must ac-
tively monitor stock values to detect all changes that dis-
tributedConsumers have registered interested in. Performing
this efficiently requires the use of either a separate monitor-
ing thread that polls the server (as shown in in Figure 1) or
an active database that triggers the application when changes
occur. In either case, the complexity of the server increases
and the portability potentially decreases.

� Persistence of callback object references: The Sup-
plier’s Notifying Quoter implementation must persis-
tently maintain all the object references in its callback
Registration Map. Persistence is necessary so that de-
activation and subsequent reactivation is transparent to the
callback objects registered by Consumers. The need for per-
sistence is new since our original stock quote server had no
persistent storage requirements of its own (the stock quote
database is considered as being external to the stock quote
server).

�QoS tradeoffs: OurNotifying Quotermust service
multiple Consumers, each of which may have different qual-
ity of service (QoS) requirements. For instance, some Con-
sumers may be willing to pay extra to receive stock change
notifications immediately, whereas others may want to re-
ceive them in batches in order to reduce costs. Therefore,
our Notifying Quoter must issue callbacks in a timely
manner, taking into account different QoS needs. Meeting
all these needs is hard, particularly when we must also ex-
plicitly handle variability in network/host workload (e.g., the
number of callback objects currently registered with it, the
network congestion, etc.).

� Potential for deadlock: Stock quote Consumers use
the Notifying Quoter’s unregister callback
method to remove themselves from the Supplier’s call-
back map. Since unregister callback is a twoway

1

CORBA call, our distributed callback design can deadlock
if the Supplier tries to push to a Consumer that is si-
multaneously trying to unregister. This will almost cer-
tain happen if the ORB doesn’t support “nested dispatch-
ing” of twoway calls.1 If nesting dispatching is not sup-
ported, we would need to restructure theHandler::push,
Notifying Quoter::register callback, and the
Notifying Quoter::unregister callback
to use oneway semantics. Even this solution is problematic,
however, since CORBA oneway calls are not reliable. There-
fore, application developers become responsible for ensuring
end-to-end reliability, which can be tricky and inefficient.

The problems described above with our notifying stock
quoter can be eased somewhat if we separate concerns. In
particular, the Supplier’s Notifying Quoter implemen-
tation has enough to worry about within its own problem
domain as it monitors and reports changing stock values.
Therefore, we should avoid making it also responsible for de-
livering notifications to multiple Consumers, handling block-
ing caused by network congestion and endsystem load, and
maintaining a persistent table of callbacks. All these tasks
are independent of the stock quoter application domain.

One way to relieve some of the burden we’ve placed on
the stock quoter is to utilize an implementation of the OMG
Events Service to deliver notifications. The Events Service is
one component in the OMG Common Object Services Spec-
ification (COSS) Volume 1 [2]. Its purpose is to provide
delivery of event data from suppliers to consumers without
requiring these participants to know about each other explic-
itly. Therefore, implementations of the Events Service act as
“mediators” that support decoupled communication between
objects.

This column is organized as follows: Section 2 outlines
the role of key components in the OMG Events Service, Sec-
tion 3 examines the IDL interfaces of the Events Service
components in detail, Section 4 illustrates and evaluates an
implementation of the distributed stock quoter system using
the Events Service, Section 5 discusses the strengths and
weaknesses of the OMG Events Services model and its spec-
ification, and Section 6 provides concluding remarks.

2 Overview of the OMG COS Events
Service

Figure 2 illustrates how clients and servers interact using the
standard CORBA twoway communication model. In this
model, CORBA clients invoke operations on a target object
located at a server and synchronously wait for the server to
reply. One benefit of this request/response model is how well
it conforms to the expectations of programmers accustomed

1Nested dispatching enables an ORB to perform upcalls from incoming
requests even while it is “blocked” on the request portion of a twoway
request/response invocation. There are various ways to implement nested
dispatching, such as spawning off a separate thread to handle each incoming
request or using a non-blocking, reactive [1] event loop within the ORB.

operation()operation()

response

request

CLIENTCLIENT SERVERSERVER

Figure 2: The CORBA Request/Response Model

to developing stand-alone OO applications. One drawback,
however, is that the server must be available to process the
client’s request.

There are many situations where the standard CORBA
synchronous request/response model is too restrictive. For
instance, clients in the original implementation of our quoter
system had to poll the server repeatedly to retrieve the latest
stock prices. Likewise, there was no way for the server to
efficiently notify groups of interested clients en masse when
stock prices changed.

The OMG COS Events Service is designed to alleviate
these restrictions by supporting decoupled communication
among multiple Suppliers and Consumers. As we noted in
our previous column, a Supplier is an entity that produces
events, while a Consumer is one that receives event notifica-
tions and data. Events are typically represented as messages
that contain optional data fields.

The remainder of this section outlines the roles and rela-
tionships of key components in the COS Events Service.

2.1 Events Service Components

Figure 3 shows the three primary components in the OMG
COS Events Service architecture.

EVENTEVENT

CHANNELCHANNEL

 CONSUMERCONSUMERSUPPLIERSUPPLIER

 SUPPLIERSUPPLIER

 CONSUMERCONSUMER

 CONSUMERCONSUMER

EVENTS

EVENTS

Figure 3: High-level View of the OMG COS Events Service

These three components are described below:

� Suppliers and Consumers: Consumers are the ultimate
targets of events generated by Suppliers. Suppliers and Con-
sumers can both play active and passive roles. A Push Sup-
plier object can actively push an event to a passive Push

2

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()
pull()pull()

pull()pull()

pull()pull()

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()
push()push()

push()push()

push()push()
pull()pull()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

pull()pull()
pull()pull()

pull()pull()

pull()pull()

pull()pull()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

pull()pull()
push()push()

push()push()

push()push()

((AA) T) THEHE C CANONICALANONICAL PUSHPUSH MODELMODEL ((BB) T) THEHE C CANONICALANONICAL PULLPULL MODELMODEL

((CC) T) THEHE HYBRIDHYBRID PUSHPUSH//PULLPULL MODELMODEL ((DD) T) THEHE HYBRIDHYBRID PULLPULL//PUSHPUSH MODELMODEL

EVENT

CHANNEL

(NOTIFIER)

EVENT

CHANNEL

(QUEUE)

EVENT

CHANNEL

(AGENT)

EVENT

CHANNEL

(PROCURER)

Figure 4: Events Service Communication Models

Consumer object. Likewise, a Pull Supplier object can pas-
sively wait for a Pull Consumer object to actively pull an
event from it.

� Event Channel: The central abstraction in the COS
Events Service is the Event Channel, which plays the role
of a mediator between Consumers and Suppliers. The Event
Channel manages object references to Suppliers and Con-
sumers. The Event Channel appears as a “proxy” Consumer
to the real Suppliers on one side and as a “proxy” Supplier to
the real Consumers on the other side.

Suppliers use Event Channels to push data to Consumers.
Likewise, Consumers can explicitly pull data from Suppli-
ers. The push and pull methods of event propagation free
Consumers and Suppliers from the synchronous semantics
of the standard CORBA “request/response” communication
model. In addition, an Event Channel serves as a surrogate to
multiple Suppliers and multiple Consumers, which supports
group communication [3].

2.2 Events Service Communication Models

There are four general models of component collaboration in
the OMG COS Events Service architecture. Figure 4 shows
the collaborations between Consumers and Suppliers in each
of the models. The following examines these models in
detail:

� The Canonical Push Model: The canonical Push model
shown in Figure 4(A) allows the Suppliers of events to ini-
tiate the transfer of event data to Consumers. In this model,
Suppliers are the active initiators and Consumers are the pas-
sive targets of the requests. Event Channels play the role

of Notifier, as defined by the Observer pattern [4]. Thus,
active Suppliers use Event Channels to push data to Passive
Consumers that have registered with the Event Channels.

� The Canonical Pull Model: The canonical Pull model
shown in Figure 4(B) allows Consumers to request events
from Suppliers. In this model, Consumers are the active
initiators and Suppliers are the passive targets of the pull
requests. Event Channels play the role of Procurer since
they procure events on behalf of Consumers. Thus, active
Consumers can explicitly pull data from Passive Suppliers
via the Event Channels.

� The Hybrid Push/Pull Model: The Push/Pull model
shown in Figure 4(C) is a hybrid that allows Consumers
to request events queued at a Channel by Suppliers. In this
model, both Suppliers and Consumers are the active initiators
of the requests. Event Channels play the role of Queue, as
defined in the Active Object pattern [5]. Thus, active Con-
sumers can explicitly pull data deposited by active Suppliers
via the Event Channels.

� The Hybrid Pull/Push Model: The Pull/Push model
shown in Figure 4(D) is another hybrid that allows the Chan-
nel to pull events from Suppliers and push them to Con-
sumers. In this model, Suppliers are passive targets of pull
requests and Consumers are the passive targets of pushes.
Event Channels play the role of intelligent agent. Thus, ac-
tive Event Channels can pull data from passive Suppliers and
push that data to passive Consumers.

The following table summarizes the role of the Event
Channel as a function of the communication model:

3

EVENT

 CHANNEL

ADMIN

MODULE

: Event
Channel

EVENT COMM MODULE

: Supplier
Admin

: Consumer
Admin

: Push
Consumer

: Pull
Consumer

: Push
Supplier

: Pull
Supplier

: Proxy
Push

Consumer

: Proxy
Pull

Supplier

: Proxy
Push

Supplier

: Proxy
Pull

Consumer

Figure 5: Structure of IDL Interfaces in the OMG COS
Events Service

Consumer Role Supplier Role
Push Pull

Push Notifier Agent
Pull Queue Procurer

2.3 Events Service Type Systems

The following two standard type systems are defined in the
OMG Events Service:

� Typed event systems: A “typed” events service is one
where Supplier and Consumer applications share knowledge
of application-dependent interfaces. These interfaces allow
them to pass typed events through an Event Channel. The
Notifying Quoter implementation shown in our last
column shared some characteristics of a typed event system
because both the quoter object and the callback object knew
the exact type of data passed in the event notifications. In ad-
dition, to simplify our design the OMG IDL interfaces used
in the system weren’t based on the standard OMG Events
Service interfaces. Instead, we customized the interfaces for
the specific needs of our stock quoter callback system.

� Untyped event systems: In the untyped approach event
data is passed through the system in the form of the OMG IDL

any type. The any type can hold an instance of any other
built-in or user-defined OMG IDL data type. In addition, it
holds aTypeCode, which is a runtime type tag that identifies
the type of the data. Passing event data as an any means that
applications using the untyped approach can be based on the
standard application-independent interfaces specified in the
OMG COS specification.

We use the untyped approach for the examples shown in
this column since it is the most widely available approach
used in existing Events Services implementations (such as
the HP ORB Plus Events Service and IONA’s OrbixTalk).

3 IDL Interfaces of the Events Service

The interfaces for all OMG Common Object Services (COS)
are defined using OMG IDL. Figure 5 illustrates the structure
and the relationships of the IDL interfaces that comprise the
OMG COS Events Service. The two primary components
in the Events Service architecture are the CosEventComm
module and the CosEventChannelAdminmodule. This
section examines these modules in detail.

3.1 The CosEventComm Module

This module defines a set of IDL interfaces for event com-
munication between push-style and pull-style Consumers and
Suppliers. The following OMG IDL illustrates the key inter-
faces and operations in this module:

module CosEventComm
{
exception Disconnected {};

// A push-style consumer implements this
// interface to receive data from a supplier.
interface PushConsumer { /* ... */ };

// A push-style supplier implements this
// interface to disconnect from a supplier.
interface PushSupplier { /* ... */ };

// A pull-style supplier implements this
// interface to transmit data to a consumer.
interface PullSupplier { /* ... */ };

// A pull-style consumer implements this
// interface to disconnect from a consumer.
interface PullConsumer { /* ... */ };

};

For brevity, only the interfaces are shown. We show more
detail (e.g., operations and exceptions) as needed later on.

3.2 The CosEventChannelAdmin Module

This module defines the interfaces for establishing connec-
tions between Suppliers and Consumers. Connection es-
tablishment is a multi-step process. The OMG IDL shown
below illustrates the EventChannel operations that Con-
sumers and Suppliers must call first. Only the most relevant
interfaces and operations are shown.

4

module CosEventChannelAdmin
{
// A factory for creating proxies
// that allows Consumers to connect
// to an Event Channel.
interface ConsumerAdmin { /* ... */ };

// A factory for creating proxies
// that allows Suppliers to connect
// to an Event Channel.
interface SupplierAdmin { /* ... */ };

interface EventChannel
{
// Returns an object reference
// for creating Supplier proxies.
ConsumerAdmin for_consumers ();

// Returns an object reference
// for creating Consumer proxies.
SupplierAdmin for_suppliers ();

// Shutdown a Channel.
void destroy ();

};
};

Consumer administration and Supplier administrationare de-
fined separately for the following reasons:

� Minimizing “surface area” – Consumers do not have
to be bothered with the additional “surface area” of the
interfaces intended for use only by Suppliers, and vice-
versa. Consumers and Suppliers deal only with the in-
terfaces they need to get connected and push/pull events.
This is useful to simplify applications that don’t need the
full power (and complexity) of COS Event Channels.

� Access control – The creator of a Channel can control the
addition of Suppliers and Consumers. This is useful for
ensuring certain types of security. For instance, a Net-
work Management Agent implemented using an Event
Channel might allow a variety of Consumers to regis-
ter to receive trap events, but restrict Supplier access to
only allow the MIB to update the Channel.

� Third party connections – External agents can transpar-
ently connect multiple Channels together. This is useful
for creating pipelines and graphs of connected Channels.

Next, we examine the key Consumer and Supplier IDL inter-
faces for the COS Events Service in more detail.

3.3 Interfaces for Event Consumers

In order for Consumer applications to receive events from
a Supplier via an EventChannel, they must each first
connect to the Channel, which requires the steps shown in
Figure 6. These steps are explained below:

1. Obtain a ConsumerAdmin factory: Consumers
that want to connect to an Event Channel must first in-
voke the EventChannel’s for consumers operation
to obtain a ConsumerAdmin object reference. The
ConsumerAdmin is a factory that returns object references
to Supplier proxies. Its IDL interface is shown below:

EVENTEVENT

CHANNELCHANNEL
CONSUMERCONSUMER

for_consumers()for_consumers()

obtain_push_supplier()obtain_push_supplier()

connect_push_consumer(this)connect_push_consumer(this)C
O

N
N

E
C

T
IO

N
P

H
A

S
E

P
U

S
H

P
H

A
S

E push(event)push(event)

OBTAINOBTAIN AA

CONSUMERADMINCONSUMERADMIN

FACTORYFACTORY

OBTAINOBTAIN AA

PROXYPROXY SUPPLIERSUPPLIER

CONNECTCONNECT TOTO

THETHE CHANNELCHANNEL

RECEIVERECEIVE

NOTIFICATIONSNOTIFICATIONS

Figure 6: Connecting a Consumer to an Event Channel

// The following are defined in the
// CosEventChannelAdmin module.

// Define the second step for connecting
// push Consumers to an Event Channel.
interface ProxyPushSupplier { /* ... */ };

// Define the second step for connecting
// pull Consumers to an Event Channel.
interface ProxyPullSupplier { /* ... */ };

// Define the first step for connecting
// Consumers to an Event Channel.

interface ConsumerAdmin
{
// Returns an object reference that can be
// used to connect to a push-style Consumer.
ProxyPushSupplier obtain_push_supplier ();

// Returns an object reference that can be
// used to connect to a pull-style Consumer.
ProxyPullSupplier obtain_pull_supplier ();

};

2. Obtain a Proxy Supplier: After calling the
for consumers operation to get an object reference to
the ConsumerAdmin factory from the EventChannel,
Consumers must decide whether to be passive or ac-
tive with respect to obtaining event notifications. The
obtain push supplier operation is invoked by Con-
sumers that want to receive events passively from active
PushSuppliers via the Channel. This operation returns
an object reference to a ProxyPushSupplier. Con-
versely, the obtain pull supplier operation is in-
voked by Consumers that want to pull events actively from a
PullSupplier.

3. Connect to the Event Channel: Once Consumers ob-
tain the appropriate Supplier proxy, they use the proxy to
connect themselves to the Event Channel. At first glance,
this “double dispatching” handshake between the Consumer
and the Supplier proxies seems unnecessary and overly com-
plex. However, the Channel uses this bi-directionalexchange
of object references to keep track of its Consumers and Sup-
pliers so it can disconnect them gracefully.

As described in our previous column, our stock broker
application wants to avoid polling the stock quoter, so we’ll

5

design it as a passivePushConsumer. Thus, it will connect
using theProxyPushSupplier interface, which is shown
below along with its base interface:

// The following two interfaces are defined
// in the CosEventComm module.

// A push-style supplier implements this
// base interface to disconnect from a supplier.
interface PushSupplier
{
// Called by the Channel to disconnect
// the Supplier.
void disconnect_push_supplier ();

};

// A push-style consumer implements this base
// interface to receive data from a supplier.
interface PushConsumer
{
// Transfer event data to the Consumer.
void push (in any data)
raises (Disconnected);

// Called by the Channel to disconnect
// the Consumer.
void disconnect_push_consumer ();

};

// The following interface is defined
// in the CosEventChannelAdmin module.

// Define the second step for connecting push
// Consumers to an Event Channel.
interface ProxyPushSupplier :
CosEventComm::PushSupplier

{
// Connect pc to the Event Channel
// via the PushSupplier proxy.
void connect_push_consumer

(in CosEventComm::PushConsumer pc)
raises (AlreadyConnected);

};

The ProxyPushSupplier interface is defined in the
CosEventChannelAdmin module. It is derived
from the base PushSupplier interface defined in the
CosEventComm module. The derived class adds the ad-
ministrative connect push consumer operation, which
allows Consumer objects to be connected to the Supplier via
the Event Channel.

3.4 Interfaces for Event Suppliers

Suppliers connect to an Event Channel in a manner that is
symmetrical to the approach used by Consumers. For com-
pleteness, key IDL interfaces are shown below:

// Define the second step for connecting
// push Suppliers to an Event Channel.
interface ProxyPushConsumer { /* ... */ };

// Define the second step for connecting
// pull Suppliers to an Event Channel.
interface ProxyPullConsumer { /* ... */ };

// Define the first step for connecting
// Suppliers to an Event Channel.
interface SupplierAdmin
{
// Returns an object reference that can be
// used to connect to a push-style Supplier.
ProxyPushConsumer obtain_push_consumer ();

// Returns an object reference that can be
// used to connect to a pull-style Supplier.
ProxyPullConsumer obtain_pull_consumer ();

};

As described in our previous column, our quote server
wants to notify Consumers when stock updates arrive from
a real-time market feed. Therefore, we design it to be an
active PushSupplier that connects to the Channel using
the ProxyPushConsumer interface shown below:

interface ProxyPushConsumer :
CosEventComm::PushConsumer

{
void connect_push_supplier

(in CosEventComm::PushSupplier ps)
raises (AlreadyConnected);

};

As before, the ProxyPushConsumer interface of
the CosEventChannelAdmin is derived from the
base PushConsumer interface of the CosEventComm
module. The derived class adds the administrative
connect push supplier operation, which allows Sup-
plier objects to be connected to the Consumer via the Event
Channel.

4 Using the OMG COS Events Service
for the Stock Quoter System

The OMG Events Service specification [2] has been available
for several years. It concisely describes the IDL interfaces of
Event Channels, Consumers, and Suppliers. However, it is
beyond the scope of the standard to illustrate how to develop
applications using the Events Service. Therefore, the intent
of this section is to explain how to program our stock quoter
system using the OMG Events Service.

Stock
Brokers

ppush()ush()

ppush()ush()

EVENT

CHANNEL

ppush()ush()

ppush()ush()

Quote
Server

REALREAL--TIMETIME

STOCK QUOTESTOCK QUOTE

DATABASEDATABASE

pull()pull()
: My: My

PushPush

SupplierSupplier

: My: My

PushPush

ConsumerConsumer

: My: My

PushPush

ConsumerConsumer

: My: My

PushPush

ConsumerConsumer

Figure 7: The Stock Quote System Design (Push Model)

All applications that make use of Event Channels must
choose one of the usage models described in Section 2.2. As

6

explained in our last several columns, our stock quote sys-
tem uses the Push model to eliminate the Consumer polling
that would be required if the synchronous request/response
communication model were used. Figure 7 shows how the
Event Channel fits into the overall configuration of our stock
quote system.

To use an Event Channel, push Consumer and push Sup-
plier applications need an EventChannel object refer-
ence and an object reference for an object implementing
thePushConsumer or PushSupplier interface, respec-
tively. The remainder of this section shows how the stock
broker application and stock quote server use these object
references to decouple the Suppliers from Consumers.

4.1 Using The Event Consumer Interface for
the Stock Broker Application

The stock broker application, acting in the role of a
push Consumer, first creates itself and then obtains an
EventChannel object reference (e.g., via the COS Nam-
ing or Trading Services, or via a user-defined factory), as
follows:

// The stock broker application creates
// a push consumer object implementation.
MyPushConsumer *pc_impl = new MyPushConsumer;

// Obtain the PushConsumer object reference.
PushConsumer_var my_pc = pc_impl->_this ();

// EventChannel obtained from the COS
// Naming Service (not shown).
EventChannel_var ec = // ...

This code assumes that the MyPushConsumer C++ class
supports the PushConsumer interface and implements
the appropriate stock broker logic. Next, we call this
on the MyPushConsumer instance to get its object
reference.2 The stock application then connects itself to the
EventChannel in the following manner:

// Obtain ConsumerAdmin object reference.
ConsumerAdmin_var ca = ec->for_consumers ();

// Obtain ProxyPushSupplier from
// the ConsumerAdmin object.
ProxyPushSupplier_var pps =
ca->obtain_push_supplier ();

// Connect our PushConsumer to
// the ProxyPushSupplier.
pps->connect_push_consumer (my_pc);

When an event arrives in the Event Channel, it will invoke the
push operation on the registered PushConsumer object
reference. This, in turn, will deliver the event any data via
an invocation of the push method of the pc impl instance
of the MyPushConsumer C++ class. It is important to
remember that theProxyPushSupplier object reference

2Calling this in the manner shown here is supported by several ORB
products, but it is not required by the CORBA 2.0 specification. With both
IONA’s Orbix and Expersoft’s PowerBroker, for example, object implemen-
tations are derived from the object reference class,allowing object references
to be obtained by merely taking the address of the implementation object.

used here refers to an object within the Event Channel and
is not an object reference for the real Supplier on the “other
side” of the Event Channel (i.e., in the stock quote server).

Our example shows only a single Consumer in the sys-
tem. However, “real world” applications using the OMG
Events Service normally have multiple consumers,and some-
times multiple suppliers as well. In a system with only
one Consumer it may be easier and more efficient to just
let the Supplier call back directly to the Consumer, as the
Notifying Quoter did in our previous column. It’s easy
to accomplish this with only minimal changes to our imple-
mentation, e.g., by changing the ProxyPushConsumer
object reference to point directly to a Consumer rather than
to a Channel.

4.2 Using the Event Supplier Interface for the
Quote Server

As with the stock broker Consumer application, the
quote server Supplier needs an object reference for
an EventChannel and an object reference for a
PushSupplier to tie itself to the Channel. The quote
server Supplier accomplishes this task in a very similar way
to the manner in which the stock broker Consumer applica-
tion did:

// Create the push supplier object implementation.
MyPushSupplier *ps_impl = new MyPushSupplier;

// Obtain a PushSupplier object reference.
PushSupplier_var my_ps = ps_impl->_this ();

// EventChannel obtained from the Naming
// Service (not shown).
EventChannel_var ec = // ...

// Obtain SupplierAdmin object reference.
SupplierAdmin_var sa = ec->for_suppliers ();

// Obtain ProxyPushConsumer from
// SupplierAdmin object.
ProxyPushConsumer_var ppc =
sa->obtain_push_consumer ();

// Connect our PushSupplier to
// the ProxyPushConsumer.
ppc->connect_push_supplier (my_ps);

Once the Consumer registrationshown earlier and the Sup-
plier registration code shown here get executed, both the
stock broker application and the quote server are connected
to the Event Channel. At this point, Consumer(s) will auto-
matically receive stock quote update events that are pushed
by the Suppliers through the Channel. Additional Consumers
and Suppliers can now register with the Event Channel while
the system is running without affecting the quote server.

4.3 Exchanging and Processing Event Data

The events exchanged between Supplier and Consumer must
always be specified in OMG IDL so that they can be stored
into an any. The event data in our last column consisted
of the stock name and its value grouped into an OMG IDL
struct. We’ve now added a third field, as shown below:

7

module Stock {
// forward declaration
interface StockTrader;

struct CallbackInfo {
// Name of the stock we’re
// interested in.
string stock_name;

// Current value of that stock.
fixed<6,2> value;

// Object reference to a stock trader
// that allows us to buy and sell.
StockTrader trader;

};
// ...

};

For the stock value, our CallbackInfo struct makes
use of a new feature of OMG IDL: the fixed data type. It
is a template type that allows fixed precision values, such as
monetary values, to be mapped into programming language
types that are easy to manipulate. In addition, we’ve provided
an object reference to a stock trader3 that enables Consumers
to buy and sell stocks at the indicated value.

In order to push an event, the quote server Supplier must
create and initialize a CallbackInfo struct, put it into
a CORBA::Any, and call push on the Event Channel
PushConsumer interface:

// Supplier-side implementation.

using namespace Stock;

// Create CallbackInfo struct.
CallbackInfo info;
info.stock_name =
CORBA::string_dup ("ACME ORB Inc.");

info.value = 103;
info.trader = // Obtain an object reference

// to a StockTrader (not shown).

CORBA::Any event_data;

// Put the value into an Any.
event_data <<= info;

try {
// Push the event to Consumer(s).
ppc->push (event_data);

} catch (const Disconnected &) {
// deal with disconnection

} catch (const CORBA::SystemException &sx) {
cerr << "CORBA system exception occured: "

<< sx << endl;
// ...

}

The insertion of the CallbackInfo struct into the
CORBA::Any is accomplished using the overloaded
operator<<=, which is defined in the OMG IDL C++
Mapping Specification [6]. The TypeCode for the
CORBA::Any is set as a side-effect of this operation since the
TypeCode is implied by the C++ CallbackInfo struct
type.

3Note that this use of the term “trader” should not be confused with the
OMG Trading Service, which allows applications to obtain object references
based on object properties.

Once the Event Channel receives an event from the
quote server Supplier, it pushes the event data to the Con-
sumer(s) by invoking the push operation on the registered
PushConsumer object reference. Note that push is a
twoway call that doesn’t return a value. Therefore, it can
throw exceptions, so we must surround the call within a try
block.

The implementation of the stock broker Consumer push
operation is shown below:

// Consumer-side implementation.

void
MyPushConsumer::push
(const CORBA::Any &event)

{
Stock::CallbackInfo *info;

// Extract the value of the Any into
// the CallbackInfo struct.
if (event >>= info)
{

cout << "Value of "
<< info->stock_name
<< " is "
<< info->value
<< endl;

// Logic to determine whether to
// buy or sell goes here...

}
}

The consumer push function must ensure the event data
it receives is actually the correct type it’s expecting. This is
accomplished using the overloaded operator>>= to ex-
tract typed data from a CORBA::Any. If the TypeCode
implied by the second argument to operator>>= matches
the TypeCode in the Any the extraction succeeds and the
stock name and value from the CallbackInfo struct are
printed to standard output. If the Typecode of the desired
type does not match the TypeCode of the data within the
any the extraction fails and the event data is safely and cor-
rectly ignored.

Other manipulation of the stock information, such as using
it to buy or sell shares of the stock, could be performed at this
point as well. In fact, the Consumer could perform these op-
erations using synchronous requests, rather than going back
through the Event Channel, as follows:

if (buy)
info->trader->buy (info->stock_name_,

num_shares,
info->value_);

else if (sell)
info->trader->sell (info->stock_name_,

num_shares,
info->value_);

// ...

This type of hybrid “asynchronous notification – syn-
chronous invocation” architecture is commonly known as
“trap-directed polling” in the network management litera-
ture.

8

4.4 Evaluating the OMG COS Events Services
Solution

4.4.1 Benefits

We decided to use a COS Event Channel to handle
event deliveries and callback registrations to relieve the
Notifying Quoter from many low-level communica-
tion details. Our revised Notifying Quoter receives
no callback registration invocations. Therefore, it need not
maintain any persistent storage for such registrations. It
now has to monitor stock values, just as it did before, and
generate events for those stock values that change. The
EventChannel ensures that each event is distributed to all
registered Consumers.

The symmetry underlying the Events Service model might
also be considered as a benefit. It allows Consumers and
Suppliers to connect and register with Event Channels in
symmetrical ways. This simplifies application development
and allows Event Channels to be chained together for bridg-
ing or filtering purposes. However, as we’ll see below, this
symmetry also has its drawbacks.

4.4.2 Drawbacks

Although our new solution improves some problems from
last our column, using Event Channels has its own set of
drawbacks. Some drawbacks are new and others are ones that
our original Notifying Quoter shown in Figure 1 had
already fixed. The following describes all these problems:

� Complicated Consumer registration: Instead of using
the simple callback registration interface previously provided
by our Notifying Quoter, our Consumer application
now must know all the details of registering with Event Chan-
nels.

� Lack of persistence: The COS Events Service standard
doesn’t mandate that Event Channels provide persistence.
Therefore, if problems occur and processes/hosts shut down
unexpectedly, it’s possible for Event Channels to lose events
and connectivity information.

� Lack of filtering: The standard OMG COS Events Ser-
vice specifies no filtering capabilities. Event Channels can
have multiple Consumers connected to them, and they deliver
all event data they receive to each and every connected Con-
sumer. Because our new Notifying Quoter no longer
receives callback registrations from Consumers directly, it
has no choice but to push all stock value changes into the
Event Channel. This, in turn, means that each of our Con-
sumer callback objects must filter its own event data. More
importantly, it means that all stock value changes get pushed
to each and every Consumer.

� Increased endsystem network utilization: If stock val-
ues change rapidly on the server, the Event Channel may
end up sending many notifications to Consumers. However,
because all filtering is performed by each callback object, the
programs housing such objects use endsystem and network

resources just to throw events away. Our original decision to
use the callback approach was based on the desire to reduce
network traffic by eliminating polling. Ironically, by using
an Event Channel we may have actually increased network
utilization! The problem, of course, is that the Consumers
are now notified every time any stock changes value, rather
than just when they are interested in reading the latest quote.

� Multiple Suppliers: An Event Channel can have mul-
tiple Suppliers connected to it, and each event from each
Supplier is delivered to all connected Consumers. Depend-
ing upon how widely advertised the Event Channel object
reference is, it could end up being used for many different
purposes, by many different Suppliers. This multiplies the
negative effects resulting from the lack of filtering and in-
creased network utilization.

� Lack of type-safety: With an untyped event channel,
event data is delivered via the OMG IDLany type. Multiple
Suppliers can be connected to the same Channel, with each
Supplier potentially delivering events for a different reason.
Therefore, each Consumer must be prepared to actively dis-
tinguish the events it understands from those it does not.

� Over-generalization: While the symmetry provided by
the Events Service model is elegant, it is also the source of
unnecessary complexity since a less general event notification
scheme would probably not support a “pull” model, and thus
it would not need to support a bi-directional object reference
handshake with Suppliers.

In our example, distinguishing stock callback data from
other event data pushed by other Suppliers is accomplished
by using the overloaded operator>>= function, which at-
tempts to extract ourStock::CallbackInfo struct from
the event any data. If the event any does not contain an
instance of Stock::CallbackInfo, the extraction fails,
and the event can be ignored.

The exchange of stock value notification data through
an untyped Event Channel is analogous to two parts of a
C++ program exchanging the same data by converting point-
ers to Stock::CallbackInfo instances to void*, and
then casting thevoid* back to Stock::CallbackInfo
pointers. The errors associated with the use of void* in
C++ are well known and widely documented, and similar
types of problems can be encountered when using untyped
Event Channels.

4.4.3 Workarounds

It seems that our attempt to separate concerns to simplify our
Notifying Quoter has resulted in a system with more
problems than it solved. The severity of these problems can
be reduced somewhat by making a tighter coupling between
the Notifying Quoter and its Event Channel. Specifi-
cally, we need to:

� Use a specific registration interface: Rather than rely-
ing on the untyped Event Channel interfaces for Consumer
registration, we could completely hide the fact that an Event

9

Channel is being used by returning to our original (strongly
typed) callback registration interface. This approach uses the
Event Channel as a transport mechanism, in much the same
way that networking services like FTP, TELNET, and HTTP
use the TCP protocol as a transport mechanism.

� Hide the Event Channel: We could ensure that no other
Supplier applications are using our Event Channel by mak-
ing the Notifying Quoter responsible for creating its
own Event Channel. By using the appropriate access control
mechanisms of C++, we can ensure that object references are
not “leaked” to other Consumers and Suppliers.

� Provide event filtering: Once the Event Channel is hid-
den, we can register special filtering Consumers with it so that
our real Consumers only see the callbacks in which they’re
interested. In practice, some implementations of Event Chan-
nels [7] extend the COS Events Service to add event filtering
and correlation. More importantly, by the time this column
is published, the OMG Telecommunications Domain Task
Force will most likely have issued an RFP for a filtering
Notification Service that uses an Events Service underneath
it.

� Reduce network traffic: By making our private Event
Channel and our filters local to our Notifying Quoter,
we can eliminate the additional network traffic resulting from
the use of an untyped remote Event Channel.

Stock
Brokers

pull()pull()

pull()pull()

EVENT
CHANNEL

push()push()

pull()pull()

Quote
Server

REALREAL--TIMETIME

STOCK QUOTESTOCK QUOTE

DATABASEDATABASE

pull()pull()
: My: My

PushPush

SupplierSupplier

: My: My

PullPull

ConsumerConsumer

: My: My

PullPull

ConsumerConsumer

: My: My

PullPull

ConsumerConsumer

Figure 8: Alternative The Stock Quote System Design
(Push/Pull Model)

� Build an event queueing system: Figure 8 illustrates an
alternative design for the stock quote system. This design
uses the Push/Pull model (described in Section 2.2), which
queues up the events and allows clients to pull them at their
leisure. This results in a potential decrease in network traffic
since Consumers can now pull sequences of events instead
of requesting them one at a time. In fact, this approach is
similar to the Pull-based implementation described in our
earlier columns. The Event Channel for such an approach

could provide the normal COS Events interfaces for Sup-
plier registration and the pushing of event data, but would
require special interfaces for Consumers to allow them to
pull sequences of events.

The use of the Push/Pull model as described above could
result in a decrease of network traffic. However, it could
also increase the resource utilization of the Event Channel
as compared to the Push model. This is because the Event
Channel is responsible for storing event data until Consumers
pull them. Since resources are finite, the Event Channel must
implement some kind of policy or policies by which it throws
events away if they are not pulled within some period of
time or if a certain number of events accumulate. A high
quality Event Channel implementing the Push/Pull model
would allow its queuing policies to be configurable for each
Consumer.

Our next column will provide an implementation of our
stock quote system using some of these features.

5 Evaluating the OMG COS Events
Service Specification

For a general events service, the COS Events Service model
is quite reasonable. Its flexibility allows different imple-
mentations that make very different tradeoffs to be built,
thus allowing application developers to avoid “one size fits
all” implementations that rarely work well for anything. This
flexibilityallows applications to avoid responsibility for con-
cerns such as timely notification, multiple registrations, and
event data persistence and instead rely on Event Channels to
handle such things for them. The Events Service interfaces
are fairly simple to understand, and Consumer and Supplier
connections and event delivery/procurement are symmetrical
and straightforward. A side effect of this symmetry is that
specialized Event Channels can be chained together, with
one channel serving as either the Supplier or Consumer for
another, for purposes of filtering or buffering events.

There are, however, several general limitations with the
OMG COS Events Service specification:

� Overly flexible: Although the Events Service is highly
flexible, it can be hard to use due to multi-step connection
establishment process. The complexity stems from the need
to use the Events Service within many different application
domains, each with differing requirements for decoupling
Consumer and Supplier communication. The fact that the
Events Service supports the four different models of compo-
nent collaboration described in Section 2.2 above is a clear
indication of the flexibility of the specification. However, for
many simple use-cases, this flexibility is overkill.

� Lack of standard semantics and protocols: The Events
Service specification is intentionally vague, to avoid over-
constraining the innovation and opportunity for optimization
of implementors. This is beneficial to the extent that it keeps
the specification concise and avoids forcing all users to pay

10

for features (e.g., transaction, persistence, filtering, etc.) that
they don’t need.

However, a downside to the underspecified nature of the
COS Events Service is that there is no standard definition
of how Event Channels will behave. This makes it difficult
to compose Channels written by different vendors, whose
filtering and queueing logic may be different. In addition,
there no standard definition of the communication protocol
used to implement inter-Channel communication.

For example, IONA has released an implementation of
the OMG COS Events Service called OrbixTalk. OrbixTalk
distributes events via IP multicast, using a negative acknowl-
edgement scheme to ensure delivery to every interested Con-
sumer. On the other hand, other implementations of the
Events Service, such as the HP ORB Plus Events Service,
are based on IIOP, with simple sequential delivery of event
data to Consumers. The existence of Events Service imple-
mentations with different design centers provides application
developers the opportunity to choose the implementation that
best fits in their systems. However, it should be noted that
due to their use of different protocols, the ORB Plus Events
Service and OrbixTalk do not interoperate yet.

6 Conclusion

In this column we attempted to correct some deficiencies in
our Notifying Quoter stock quote callback system. It
was our goal to utilize the OMG COS Events Service to sep-
arate the concerns of event delivery from the issues involved
in monitoring stock quotes. Specifically, we hoped to use
the Events Service to eliminate the need for our stock quote
server to persistently store callback object references and han-
dle issues related to scalability and deadlock. Unfortunately,
our new solution introduces as many or more problems than
did our original hand-crafted callback system. Our next col-
umn will show how some of the problems introduced by the
solution developed here can be alleviated.

We’d like to note a change in our email address. Steve
recently left Hewlett-Packard to become a Senior Archi-
tect at IONA Technologies, so our old email address,
object_connect@ch.hp.com, has changed. Com-
ments on this or any of our columns may now be sent to our
new address, object_connect@cs.wustl.edu. As
always, if there are any topics that you’d like us to cover,
please send us email.

Thanks to Wolfgang Lugmayr for comments on this article.

References

[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and EventHandler Dispatch-
ing,” in Pattern Languages of Program Design (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley,1995.

[2] Object Management Group, CORBAServices: Common Object
ServicesSpecification, Revised Edition, 95-3-31 ed., Mar. 1995.

[3] S. Maffeis and D. C. Schmidt, “Constructing Reliable Dis-
tributed Communication Systems with CORBA,” IEEE Com-
munications Magazine, vol. 14, February 1997.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[5] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern
Languages of Program Design (J. O. Coplien, J. Vlissides, and
N. Kerth, eds.), (Reading, MA), Addison-Wesley, 1996.

[6] Object Management Group, The Common Object Request Bro-
ker: Architecture and Specification, 2.0 ed., July 1995.

[7] R. Stewart, J. Storey, and D. Huang, “Event Handling in
a CORBA-based Telecommunications Management System
Framework,” C++ Report, vol. 9, February 1997.

11

