Object I nterconnections

The OMG Events Service (Column 9)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis, MO 63130

This column will appear in the February 1997 issue of the
SIGS C++ Report magazine.

1 Introduction

In our previous column, we modified our stock quote system
to implement distributed callbacks using CORBA, as shown
inFigurel.

Quote
Server

Stock
Brokers

REAL-TIME
STOCK QUOTE
DATABASE

\

Figure1l: CORBA Distributed Callback Quoter Architecture

Distributed callbacks differ from CORBA’s conventional
synchronousinvocation model because they decouplethere-
guest for a service from the response(s). Callbacks are often
useful when consumers of events don’t need to wait syn-
chronously for suppliersto generate the events. In addition,
they can be used to deliver responses to long-running opera-
tions, rather than making clients block waiting for operations
to complete.

By definition, distributed callbacks flow from the server
back to the client. Therefore, they turn a standard
client/server relationship into a peer-to-peer relationship.
Thisreinforces the fact that terms like “client” and “ server”
are useful only for describing the roles played for each
CORBA request. By re-architecting our distributed stock
guote server to employ calbacks, we showed how the

Steve Vinoski
vinoski @iona.com
IONA Technologies, Inc.
60 Aberdeen Ave., Cambridge, MA 02138

flexibility of making requests in “both directions’ can
solve problems associated with CORBA's synchronous re-
quest/response model. Chief among these problems is the
network/server saturation caused by polling operations.

As we pointed out last column, however, the distributed
callback design introduced a new set of problems, which
include the following:

e Supplier-side polling: Instead of just looking up stock
values upon request, our Not i f yi ng_Quot er must ac-
tively monitor stock values to detect al changes that dis-
tributed Consumershaveregisteredinterestedin. Performing
this efficiently requires the use of either a separate monitor-
ing thread that pollsthe server (as shown in in Figure 1) or
an active database that triggersthe application when changes
occur. In either case, the complexity of the server increases
and the portability potentially decreases.

o Persistence of callback object references. The Sup-
plier’'sNot i fyi ng_Quot er implementation must persis-
tently maintain al the object references in its callback
Regi strati on Map. Persistenceisnecessary o that de-
activation and subseguent reactivation is transparent to the
callback objectsregistered by Consumers. The need for per-
sistence is new since our origina stock quote server had no
persistent storage requirements of its own (the stock quote
database is considered as being externa to the stock quote
Server).

e QoStradeoffs: OurNot i fyi ng_-Quot er must service
multiple Consumers, each of which may have different qual-
ity of service (QoS) requirements. For instance, some Con-
sumers may be willing to pay extrato receive stock change
notifications immediately, whereas others may want to re-
ceive them in batches in order to reduce costs. Therefore,
our Not i fyi ng_Quot er must issue callbacksin atimely
manner, taking into account different QoS needs. Mesting
all these needs is hard, particularly when we must also ex-
plicitly handlevariability in network/host workload (e.g., the
number of callback objects currently registered with it, the
network congestion, etc.).

o Potential for deadlock: Stock quote Consumers use
the Notifyi ng.Quoter’s unregister _call back
method to remove themselves from the Supplier’s cal-
back map. Since unr egi st er cal | back is a twoway

CORBA call, our distributed callback design can deadlock
if the Supplier tries to push to a Consumer that is si-
multaneoudly trying to unregister. This will amost cer-
tain happen if the ORB doesn't support “nested dispatch-
ing” of twoway calls! If nesting dispatching is not sup-
ported, wewould need to restructuretheHandl er : : push,
Noti fyi ng_-Quot er: :register_call back, and the
Not i fyi ng_Quot er: : unregi ster cal | back

to use oneway semantics. Even thissolution is problematic,
however, since CORBA oneway callsarenotreliable. There-
fore, application devel opers become responsiblefor ensuring
end-to-end reliability, which can betricky and inefficient.

The problems described above with our notifying stock
quoter can be eased somewhat if we separate concerns. In
particular, the Supplier’'sNot i f yi ng_-Quot er implemen-
tation has enough to worry about within its own problem
domain as it monitors and reports changing stock values.
Therefore, we should avoid making it a so responsiblefor de-
livering notificationsto multiple Consumers, handling bl ock-
ing caused by network congestion and endsystem load, and
maintaining a persistent table of callbacks. All these tasks
are independent of the stock quoter application domain.

One way to relieve some of the burden we've placed on
the stock quoter isto utilize an implementation of the OMG
Events Service to deliver notifications. The Events Serviceis
one component in the OMG Common Object Services Spec-
ification (COSS) Volume 1 [2]. Its purpose is to provide
delivery of event data from suppliers to consumers without
requiring these participantsto know about each other explic-
itly. Therefore, implementations of the Events Service act as
“mediators’ that support decoupled communication between
objects.

This column is organized as follows: Section 2 outlines
theroleof key componentsinthe OMG Events Service, Sec-
tion 3 examines the IDL interfaces of the Events Service
components in detail, Section 4 illustrates and evaluates an
implementation of the distributed stock quoter system using
the Events Service, Section 5 discusses the strengths and
weaknesses of the OMG Events Services model and its spec-
ification, and Section 6 provides concluding remarks.

2 Overview of the OMG COS Events
Service

Figure 2 illustrateshow clientsand serversinteract using the
standard CORBA twoway communication model. In this
model, CORBA clients invoke operations on a target object
located at a server and synchronously wait for the server to
reply. One benefit of thisrequest/response model ishow well
it conforms to the expectations of programmers accustomed

INested dispatching enables an ORB to perform upcalls from incoming
requests even while it is “blocked” on the request portion of a twoway
request/response invocation. There are various ways to implement nested
dispatching, such as spawning off a separate thread to handleeach incoming
request or using a non-blocking, reactive [1] event loop within the ORB.

()
request
C—
CLIENT operatlon() SERVER
-—O0
response
G J

Figure 2: The CORBA Reguest/Response Model

to devel oping stand-alone OO applications. One drawback,
however, isthat the server must be available to process the
client’srequest.

There are many situations where the standard CORBA
synchronous request/response model is too restrictive. For
instance, clientsin the origina implementation of our quoter
system had to poll the server repeatedly to retrieve the latest
stock prices. Likewise, there was no way for the server to
efficiently notify groups of interested clients en masse when
stock prices changed.

The OMG COS Events Service is designed to aleviate
these restrictions by supporting decoupled communication
among multiple Suppliers and Consumers. As we noted in
our previous column, a Supplier is an entity that produces
events, while a Consumer isone that receives event notifica-
tionsand data. Events are typically represented as messages
that contain optiona data fields.

The remainder of this section outlines the roles and rela
tionshipsof key componentsin the COS Events Service.

2.1 Events Service Components

Figure 3 shows the three primary components in the OMG

COS Events Service architecture.
EVENTS &

EVENTS

.

Figure 3: High-level View of the OMG COS Events Service

These three components are described below:

¢ Suppliersand Consumers. Consumers are the ultimate
targets of events generated by Suppliers. Suppliersand Con-
sumers can both play active and passive roles. A Push Sup-
plier object can actively push an event to a passive Push

(A) THE CANONICAL PUSH MODEL

(C) THE HYBRID PUSH/PULL MODEL

(B) THE CANONICAL PULL MODEL

(D) THE HYBRID PULL/PUSH MODEL

Figure4: Events Service Communication Models

Consumer object. Likewise, aPull Supplier object can pas-
sively wait for a Pull Consumer object to actively pull an
event fromiit.

e Event Channed: The central abstraction in the COS
Events Service is the Event Channel, which plays the role
of amediator between Consumers and Suppliers. The Event
Channel manages object references to Suppliers and Con-
sumers. The Event Channel appears as a“proxy” Consumer
tothered Supplierson onesideand asa“proxy” Supplier to
the real Consumers on the other side.

Suppliers use Event Channelsto push data to Consumers.
Likewise, Consumers can explicitly pull data from Suppli-
ers. The push and pull methods of event propagation free
Consumers and Suppliers from the synchronous semantics
of the standard CORBA *“request/response” communication
model. Inaddition, an Event Channel servesasasurrogateto
multiple Suppliers and multiple Consumers, which supports
group communication [3].

2.2 Events Service Communication Models

There arefour general model s of component collaborationin
the OMG COS Events Service architecture. Figure 4 shows
the collaborationsbetween Consumers and Suppliersin each
of the models. The following examines these models in
detail:

e The Canonical Push Model: The canonica Push model
shown in Figure 4(A) alows the Suppliers of eventsto ini-
tiate the transfer of event data to Consumers. In this modd,
Suppliersaretheactiveinitiatorsand Consumers are the pas-
sive targets of the requests. Event Channels play the role

of Notifier, as defined by the Observer pattern [4]. Thus,
active Suppliers use Event Channelsto push data to Passive
Consumersthat have registered with the Event Channels.

e The Canonical Pull Modéd: The canonical Pull model
shown in Figure 4(B) alows Consumers to reguest events
from Suppliers. In this model, Consumers are the active
initiators and Suppliers are the passive targets of the pull
requests. Event Channels play the role of Procurer since
they procure events on behaf of Consumers. Thus, active
Consumers can explicitly pull data from Passive Suppliers
viathe Event Channels.

e The Hybrid Push/Pull Moddl: The Push/Pull model
shown in Figure 4(C) is a hybrid that allows Consumers
to request events queued at a Channel by Suppliers. In this
model, both Suppliersand Consumersarethe activeinitiators
of the requests. Event Channels play the role of Queue, as
defined in the Active Object pattern [5]. Thus, active Con-
sumers can explicitly pull data deposited by active Suppliers
viathe Event Channels.

e The Hybrid Pull/Push Modedl: The Pull/Push model
shownin Figure4(D) isanother hybrid that allowsthe Chan-
nel to pull events from Suppliers and push them to Con-
sumers. In this model, Suppliers are passive targets of pull
requests and Consumers are the passive targets of pushes.
Event Channels play the role of intelligent agent. Thus, ac-
tive Event Channels can pull datafrom passive Suppliersand
push that datato passive Consumers.

The following table summarizes the role of the Event
Channd as afunction of the communication moddl:

s N
EVENT
CHANNEL : Event
ADMIN Channel
MODULE

Y

: Pull : Pull
Supplier Consumer
Y
: Push
Consumer

EVENT COMM MODULE
\. J

Figure 5: Structure of IDL Interfaces in the OMG COS
Events Service

Consumer Role Supplier Role
Push [Pull

Push Notifier | Agent

Pull Queue | Procurer

2.3 EventsService Type Systems

The following two standard type systems are defined in the
OMG Events Service:

o Typed event systems. A “typed” events service is one
where Supplier and Consumer applications share knowledge
of application-dependent interfaces. These interfaces alow
them to pass typed events through an Event Channel. The
Not i fyi ng_Quot er implementation shown in our last
column shared some characteristics of atyped event system
because both the quoter object and the callback object knew
the exact type of datapassed in the event natifications. In ad-
dition, to simplify our design the OMG IDL interfaces used
in the system weren't based on the standard OMG Events
Service interfaces. Instead, we customized theinterfaces for
the specific needs of our stock quoter callback system.

o Untyped event systems. In the untyped approach event
dataispassed through the systemintheform of theOMG IDL

any type. The any type can hold an instance of any other
built-in or user-defined OMG IDL data type. In addition, it
holdsaTypeCode, whichisaruntimetypetag that identifies
thetypeof thedata. Passing event dataas anany means that
applications using the untyped approach can be based on the
standard application-independent interfaces specified in the
OMG COS specification.

We use the untyped approach for the examples shown in
this column since it is the most widely available approach
used in existing Events Services implementations (such as
the HP ORB Plus Events Service and IONA’s OrbixTa k).

3 IDL Interfaces of the Events Service

Theinterfacesfor all OMG Common Object Services (COS)
aredefined using OMG IDL. Figure5illustratesthe structure
and the relationships of the IDL interfaces that comprise the
OMG COS Events Service. The two primary components
in the Events Service architecture are the CosEvent Conm
module and the CosEvent Channel Adm n module. This
section examines these modulesin detail.

3.1 TheCosEventComm Module

This module defines a set of IDL interfaces for event com-
munication between push-style and pull-style Consumersand
Suppliers. Thefollowing OMG IDL illustratesthe key inter-
faces and operationsin this module:

nmodul e CosEvent Comm
exception Disconnected {};

/1 A push-style consuner inplenents this
/] interface to receive data froma supplier.
interface PushConsuner { /* ... */ };

/1 A push-style supplier inplenents this
/1 interface to disconnect froma supplier.
interface PushSupplier { /* ... */ };

/1 A pull-style supplier inplenents this
/] interface to transnit data to a consuner.
interface Pull Supplier { /* ... */ };

/1 A pull-style consuner inplenents this
/1 interface to disconnect froma consuner.
interface Pull Consumer { /* ... */ };

h

For brevity, only the interfaces are shown. We show more
detail (e.g., operations and exceptions) as needed later on.

3.2 TheCosEventChanned Admin Module

This module defines the interfaces for establishing connec-
tions between Suppliers and Consumers. Connection es-
tablishment is a multi-step process. The OMG IDL shown
below illustratesthe Event Channel operationsthat Con-
sumers and Suppliersmust call first. Only the most relevant
interfaces and operations are shown.

nodul e CosEvent Channel Adm n

/1 A factory for creating proxies

/1 that allows Consuners to connect
/1 to an Event Channel .

interface ConsumerAdmin { /* ... */ };

/1 A factory for creating proxies

/1 that allows Suppliers to connect
/1 to an Event Channel .

interface SupplierAdmin { /* ... */ };

i nterface Event Channel

/1 Returns an object reference
/1 for creating Supplier proxies.
Consuner Admi n for_consuners ();

/1 Returns an object reference
/1 for creating Consumer proxies.
Suppl i erAdmin for_suppliers ();

/1 Shutdown a Channel .
voi d destroy ();
s
s

Consumer administration and Supplier administrationare de-
fined separately for the following reasons:

e Minimizing “ surface area” — Consumers do not have
to be bothered with the additiona “surface area’ of the
interfaces intended for use only by Suppliers, and vice-
versa. Consumers and Suppliersdeal only with thein-
terfacesthey need to get connected and push/pull events.
Thisisuseful tosimplify applicationsthat don’t need the
full power (and complexity) of COS Event Channels.

o Accesscontrol — Thecreator of aChannel can control the
addition of Suppliersand Consumers. Thisisuseful for
ensuring certain types of security. For instance, a Net-
work Management Agent implemented using an Event
Channel might alow a variety of Consumers to regis-
ter to receive trap events, but restrict Supplier access to
only alow the MIB to update the Channel.

e Third party connections— External agents can transpar-
ently connect multiple Channelstogether. Thisisuseful
for creating pipelinesand graphsof connected Channels.

Next, we examine the key Consumer and Supplier IDL inter-
faces for the COS Events Service in more detail.

3.3 Interfacesfor Event Consumers

In order for Consumer applications to receive events from
a Supplier via an Event Channel , they must each first
connect to the Channel, which requires the steps shown in
Figure 6. These steps are explained below:

1. Obtain a ConsumerAdmin factory: Consumers
that want to connect to an Event Channd must first in-
voke the Event Channel 's f or _consumer s operation
to obtain a Consuner Adm n object reference. The
Consuner Admi n isafactory that returnsobject references
to Supplier proxies. ItsIDL interface is shown below:

(D
EVENT
CONSUMER
CHANNEL
"
OBTAIN A for_consumers()
CONSUMERADMIN — »
FACTORY
OBTAIN A obtain_push_supplier()

PROXY SUPPLIER

CONNECTION
PHASE

CONNECT TO (|connect_push_consumer(this)

THE CHANNEL
3]
za RECEIVE push(event) [
S T NOTIFICATIONS |«
il
. J

Figure 6: Connecting a Consumer to an Event Channel

/1 The follow ng are defined in the

/| CosEvent Channel Adm n nodul e.

Define the second step for connecting
push Consuners to an Event Channel .

/
/
interface ProxyPushSupplier { /* ... */ };

5~

/1 Define the second step for connecting
/1 pull Consumers to an Event Channel.
interface ProxyPul | Supplier { /* ... */ };

/1 Define the first step for connecting
/1 Consurers to an Event Channel.

interface Consuner Adm n

{

/1l Returns an object reference that can be
/1 used to connect to a push-style Consuner.
Pr oxyPushSuppl i er obtain_push_supplier ();

/'l Returns an object reference that can be
/1 used to connect to a pull-style Consuner.
ProxyPul | Suppl i er obtain_pull_supplier ();

b

2. Obtain a Proxy Supplier: After cdling the
f or consumner s operation to get an object reference to
the Consuner Adm n factory from the Event Channel ,
Consumers must decide whether to be passive or ac-
tive with respect to obtaining event notifications. The
obt ai n_push_suppl i er operation is invoked by Con-
sumers that want to receive events passively from active
PushSuppl i er s viathe Channel. This operation returns
an object reference to a ProxyPushSuppl i er. Con-
versdly, the obt ai n_pul | _suppl i er operation is in-
voked by Consumers that want to pull events actively from a
Pul | Supplier.

3. Connect to the Event Channd: Once Consumers ob-
tain the appropriate Supplier proxy, they use the proxy to
connect themselves to the Event Channel. At first glance,
this“ double dispatching” handshake between the Consumer
and the Supplier proxies seems unnecessary and overly com-
plex. However, the Channel usesthisbi-directional exchange
of object references to keep track of its Consumers and Sup-
pliersso it can disconnect them gracefully.

As described in our previous column, our stock broker
application wants to avoid polling the stock quoter, so we'll

designitasapassivePushConsurmer . Thus, itwill connect
usingthePr oxyPushSuppl i er interface, whichisshown
below along with its base interface:

/1 The following two interfaces are defined
/1 in the CosEvent Comm nodul e.

Il A push-style supplier inplenents this
/] base interface to disconnect froma supplier.
interface PushSupplier

/1 Called by the Channel to disconnect
/1 the Supplier.
voi d di sconnect _push_supplier ();

h

/1 A push-style consurmer inplenents this base
/1 interface to receive data froma supplier.
interface PushConsuner

/1 Transfer event data to the Consuner.
voi d push (in any data)
rai ses (Di sconnected);

/1 Called by the Channel to disconnect
/1 the Consuner.
voi d di sconnect _push_consuner ();

H

/1 The followi ng interface is defined
/1 in the CosEvent Channel Adm n nodul e.

/1 Define the second step for connecting push
/1 Consuners to an Event Channel.
interface ProxyPushSupplier :

CosEvent Conm : PushSuppl i er

/1 Connect pc to the Event Channel
/1 via the PushSupplier proxy.
voi d connect _push_consuner
(i n CosEvent Conm : PushConsuner pc)
rai ses (Al readyConnected);

}s

The Pr oxyPushSuppl i er interface is defined in the
CosEvent Channel Adni n - module. It is derived
from the base PushSuppl i er interface defined in the
CosEvent Conmmodule. The derived class adds the ad-
ministrativeconnect _push_consurmner operation, which
allows Consumer objectsto be connected to the Supplier via
the Event Channdl.

34 Interfacesfor Event Suppliers

Suppliers connect to an Event Channel in a manner that is
symmetrical to the approach used by Consumers. For com-
pleteness, key IDL interfaces are shown below:

/1 Define the second step for connecting
/1 push Suppliers to an Event Channel .
interface ProxyPushConsuner { /* ... */ };

/1 Define the second step for connecting
/1 pull Suppliers to an Event Channel .
interface ProxyPul | Consuner { /* ... */ };

/1 Define the first step for connecting
/1 Suppliers to an Event Channel.
interface SupplierAdnin

/1l Returns an object reference that can be
/] used to connect to a push-style Supplier.
Pr oxyPushConsuner obtai n_push_consuner ();

/'l Returns an object reference that can be
// used to connect to a pull-style Supplier.
ProxyPul | Consuner obtain_pul | _consuner ();

As described in our previous column, our quote server
wants to notify Consumers when stock updates arrive from
a red-time market feed. Therefore, we design it to be an
active PushSuppl i er that connects to the Channel using
the Pr oxyPushConsurer interface shown below:

interface ProxyPushConsurner :
CosEvent Corm : PushConsuner

voi d connect _push_supplier
(in CosEvent Conm : PushSuppl i er ps)
rai ses (Al readyConnected);

b

As before, the ProxyPushConsumer interface of
the CosEvent Channel Admi n is derived from the
base PushConsuner interface of the CosEvent Conm
module. The derived class adds the adminigtrative
connect _push_suppl i er operation, which allows Sup-
plier objects to be connected to the Consumer via the Event
Channel.

4 Usingthe OMG COS Events Service
for the Stock Quoter System

The OMG Events Service specification [2] hasbeen available
for several years. It concisaly describesthe DL interfaces of
Event Channels, Consumers, and Suppliers. However, it is
beyond the scope of the standard to illustrate how to develop
applications using the Events Service. Therefore, the intent
of this section isto explain how to program our stock quoter
system using the OMG Events Service.

Stock
Brokers

Quote
Server

REAL-TIME
STOCK QUOTE
DATABASE

Figure 7: The Stock Quote System Design (Push Model)

All applications that make use of Event Channels must
choose one of the usage modelsdescribed in Section 2.2. As

explained in our last several columns, our stock quote sys-
tem uses the Push model to eiminate the Consumer polling
that would be required if the synchronous request/response
communication model were used. Figure 7 shows how the
Event Channel fitsinto the overall configuration of our stock
quote system.

To use an Event Channel, push Consumer and push Sup-
plier applications need an Event Channel object refer-
ence and an object reference for an object implementing
thePushConsuner or PushSuppl i er interface, respec-
tively. The remainder of this section shows how the stock
broker application and stock quote server use these object
references to decouple the Suppliersfrom Consumers.

4.1 Using The Event Consumer Interface for
the Stock Broker Application

The stock broker application, acting in the role of a
push Consumer, first creates itsef and then obtains an
Event Channel object reference (e.g., viathe COS Nam-
ing or Trading Services, or via a user-defined factory), as
follows:

/1 The stock broker application creates
/1 a push consuner object inplenentation.
MyPushConsuner *pc_i npl = new MyPushConsuner;

/1 Ootain the PushConsuner object reference.
PushConsuner _var my_pc = pc_inpl->_this ();

/1 Event Channel obtained fromthe COS
/1 Nami ng Service (not shown).
Event Channel _var ec =// ...

This code assumes that the MyPushConsuner C++ class
supports the PushConsuner interface and implements
the appropriate stock broker logic. Next, we cdl _t hi s
on the MyPushConsumer instance to get its object
reference.? The stock application then connects itself to the
Event Channel inthefollowing manner:

/1 Qotain Consuner Admi n obj ect reference.
Consuner Admi n_var ca = ec->for_consuners ();

/1 Obtain ProxyPushSupplier from
/1 the Consumer Adm n obj ect.
Pr oxyPushSuppl i er_var pps =

ca- >obt ai n_push_supplier ();

/1 Connect our PushConsuner to
/1 the ProxyPushSupplier.
pps->connect _push_consuner (ny_pc);

When an event arrivesinthe Event Channel, it will invokethe
push operation on the registered PushConsuner object
reference. This, in turn, will deliver the event any datavia
an invocation of the push method of thepc_i npl instance
of the MyPushConsuner C++ class. It is important to
remember that thePr oxyPushSuppl i er object reference

2Calling _t hi s in the manner shown hereis supported by several ORB
products, but it is not required by the CORBA 2.0 specification. With both
IONA's Orbix and Expersoft’'s PowerBroker, for example, object implemen-
tationsare derived from the object reference class, all owing object references
to be obtained by merely taking the address of the implementation object.

used here refers to an object within the Event Channel and
is not an object reference for the real Supplier on the “ other
side’ of the Event Channel (i.e., in the stock quote server).

Our example shows only a single Consumer in the sys-
tem. However, “rea world” applications using the OMG
Events Servicenormally have multipleconsumers, and some-
times multiple suppliers as well. In a system with only
one Consumer it may be easier and more efficient to just
let the Supplier call back directly to the Consumer, as the
Not i f yi ng_Quot er didinour previouscolumn. It'seasy
to accomplish thiswith only minimal changes to our imple-
mentation, e.g., by changing the Pr oxyPushConsuner
object reference to point directly to a Consumer rather than
to a Channd.

4.2 UsingtheEvent Supplier Interfacefor the
Quote Server

As with the stock broker Consumer application, the
guote server Supplier needs an object reference for
an Event Channel and an object reference for a
PushSuppl i er to tie itsdf to the Channel. The quote
server Supplier accomplishes thistask in avery similar way
to the manner in which the stock broker Consumer applice-
tiondid:

/] Create the push supplier object inplenentation.
MyPushSupplier *ps_inmpl = new MyPushSupplier;

/1 Obtain a PushSupplier object reference.
PushSupplier_var nmy_ps = ps_inpl->_this ();

/1 Event Channel obtained fromthe Nami ng
/1 Service (not shown).
Event Channel _var ec =// ...

/1 Obtain SupplierAdm n object reference.
Suppl i er Admi n_var sa = ec->for_suppliers ();

/1 Obtain ProxyPushConsuner from
/1 SupplierAdm n object.
ProxyPushConsuner _var ppc =

sa- >obt ai n_push_consuner ();

/1 Connect our PushSupplier to
/1 the ProxyPushConsuner.
ppc- >connect _push_supplier (my_ps);

Oncethe Consumer registration shown earlier and the Sup-
plier registration code shown here get executed, both the
stock broker application and the quote server are connected
to the Event Channel. At this point, Consumer(s) will auto-
matically receive stock quote update events that are pushed
by the Suppliersthroughthe Channel. Additional Consumers
and Supplierscan now register with the Event Channel while
the system is running without affecting the quote server.

4.3 Exchanging and Processing Event Data

The events exchanged between Supplier and Consumer must
always be specified in OMG IDL so that they can be stored
into an any. The event data in our last column consisted
of the stock name and its value grouped into an OMG IDL
struct. We' ve now added athird field, as shown bel ow:

modul e Stock {
/1 forward declaration
interface StockTrader;

struct Cal |l backlnfo {
/1 Name of the stock we're
/] interested in.
string stock_nane;

/1 Current value of that stock.
fi xed<6, 2> val ue;

/] Object reference to a stock trader
/1 that allows us to buy and sell.
St ockTr ader trader;

For the stock value, our Cal | backl nf o struct makes
use of a new feature of OMG IDL: thef i xed datatype. It
isatemplate typethat allowsfixed precision values, such as
monetary vaues, to be mapped into programming language
typesthat are easy to manipulate. In addition, we' ve provided
an object reference to astock trader® that enables Consumers
to buy and sell stocks at theindicated value.

In order to push an event, the quote server Supplier must
create and initialize a Cal | backl nf o struct, put it into
a CORBA: : Any, and cal push on the Event Channel
PushConsurer interface:

/1 Supplier-side inplenentation.
usi ng nanmespace Stock;

/] Create Callbacklnfo struct.
Cal | backl nfo i nfo;
info.stock_nanme =
CORBA: : string_dup ("ACME ORB Inc.");
info.value = 103;
info.trader = // Obtain an object reference
/'l to a StockTrader (not shown).

CORBA: : Any event _dat a;

/] Put the value into an Any.
event _data <<= info;

try {
/1 Push the event to Consuner(s).
ppc->push (event _data);
} catch (const Disconnected & {
/1 deal w th disconnection
} catch (const CORBA:: SystenException &sx) {
cerr << "CORBA system exception occured: "
<< sx << endl;
...
}

The insertion of the Cal | backl nfo struct into the
CORBA: : Any is accomplished using the overloaded
oper at or <<=, which is defined in the OMG IDL C++
Mapping Specification [6]. The TypeCode for the
CORBA: : Any isset asaside-effect of thisoperationsincethe
TypeCode isimplied by the C++ Cal | backl nf o struct

type.

3Note that this use of the term “trader” should not be confused with the
OMG Trading Service, which allows applicationsto obtain object references
based on object properties.

Once the Event Channel receives an event from the
guote server Supplier, it pushes the event data to the Con-
sumer(s) by invoking the push operation on the registered
PushConsurer object reference. Note that push is a
twoway call that doesn't return a value. Therefore, it can
throw exceptions, so we must surround the call withinat ry
block.

The implementation of the stock broker Consumer push
operation is shown bel ow:

/1 Consuner-side inplenmentation.

voi d
MyPushConsuner : : push
(const CORBA:: Any &event)

St ock: : Cal | backl nfo *info;

/'l Extract the value of the Any into
/1 the Call backlnfo struct.

if (event >>= info)

{

cout << "Value of "
<< i nfo->stock_nane
<< jg "
<< i nfo->val ue
<< endl;

/1 Logic to determ ne whether to
/1 buy or sell goes here...

}
}

The consumer push function must ensure the event data
it receivesis actualy the correct typeit's expecting. Thisis
accomplished using the overloaded oper at or >>= to ex-
tract typed data from a CORBA: : Any. If the TypeCode
implied by the second argument to oper at or >>= matches
the TypeCode in the Any the extraction succeeds and the
stock name and value from the Cal | backl nf o struct are
printed to standard output. If the Typecode of the desired
type does not match the TypeCode of the data within the
any the extraction fails and the event data is safely and cor-
rectly ignored.

Other mani pul ation of the stock information, such asusing
it to buy or sell shares of the stock, could be performed at this
point aswell. Infact, the Consumer could perform these op-
erations using synchronous requests, rather than going back
through the Event Channel, as follows:

if (buy)
i nf o->trader->buy (info->stock_nane_,
num shares,
i nfo->val ue_);
else if (sell)
info->trader->sell (info->stock_nane_,
num shares,
i nfo->val ue_);
...

This type of hybrid “asynchronous notification — syn-
chronous invocation” architecture is commonly known as
“trap-directed polling” in the network management litera-
ture.

4.4 EvaluatingtheOMG COSEventsServices
Solution

441 Benefits

We decided to use a COS Event Channel to handle
event deliveries and callback registrations to relieve the
Not i fyi ng_-Quot er from many low-level communica
tion details. Our revised Not i fyi ng_-Quot er receives
no callback registration invocations. Therefore, it need not
maintain any persistent storage for such registrations. It
now has to monitor stock values, just as it did before, and
generate events for those stock values that change. The
Event Channel ensuresthat each eventisdistributedtoall
registered Consumers.

The symmetry underlying the Events Service model might
also be considered as a benefit. It alows Consumers and
Suppliers to connect and register with Event Channels in
symmetrical ways. This simplifies application devel opment
and allows Event Channels to be chained together for bridg-
ing or filtering purposes. However, as we'll see below, this
symmetry also hasits drawbacks.

4.4.2 Drawbacks

Although our new solution improves some problems from
last our column, using Event Channels has its own set of
drawbacks. Somedrawbacksare new and othersare onesthat
our original Not i fyi ng_Quot er shown in Figure 1 had
aready fixed. The following describes dl these problems:

o Complicated Consumer registration: Instead of using
thesimplecallback registrationinterface previously provided
by our Not i f yi ng_Quot er, our Consumer application
now must know all thedetail s of registering with Event Chan-
nels.

e Lack of persistence: The COS Events Service standard
doesn't mandate that Event Channels provide persistence.
Therefore, if problems occur and processes/hosts shut down
unexpectedly, it's possible for Event Channelsto lose events
and connectivity information.

e Lack of filtering: The standard OMG COS Events Ser-
vice specifies no filtering capabilities. Event Channels can
have multiple Consumersconnected to them, and they deliver
all event datathey receive to each and every connected Con-
sumer. Because our new Not i f yi ng_Quot er no longer
receives callback registrations from Consumers directly, it
has no choice but to push all stock value changes into the
Event Channel. This, in turn, means that each of our Con-
sumer callback objects must filter its own event data. More
importantly, it means that all stock value changes get pushed
to each and every Consumer.

¢ Increased endsystem network utilization: If stock val-
ues change rapidly on the server, the Event Channe may
end up sending many notifications to Consumers. However,
because dl filtering is performed by each callback object, the
programs housing such objects use endsystem and network

resources just to throw events away. Our origina decision to
use the callback approach was based on the desire to reduce
network traffic by eliminating polling. Ironicaly, by using
an Event Channel we may have actudly increased network
utilization! The problem, of course, is that the Consumers
are now notified every time any stock changes value, rather
than just when they are interested in reading the latest quote.

e Multiple Suppliers: An Event Channel can have mul-
tiple Suppliers connected to it, and each event from each
Supplier is delivered to al connected Consumers. Depend-
ing upon how widely advertised the Event Channdl object
reference is, it could end up being used for many different
purposes, by many different Suppliers. This multiplies the
negative effects resulting from the lack of filtering and in-
creased network utilization.

e Lack of type-safety: With an untyped event channedl,
event dataisdelivered viatheOMG IDL any type. Multiple
Suppliers can be connected to the same Channel, with each
Supplier potentialy delivering events for a different reason.
Therefore, each Consumer must be prepared to actively dis-
tinguish the events it understands from those it does not.

o Over-generalization: While the symmetry provided by
the Events Service model is elegant, it is aso the source of
unnecessary complexity sinceal essgeneral event notification
scheme would probably not support a*“pull” model, and thus
it would not need to support a bi-directional object reference
handshake with Suppliers.

In our example, distinguishing stock callback data from
other event data pushed by other Suppliers is accomplished
by using the overloaded oper at or >>= function, which at-
temptsto extract our St ock: : Cal | backl nf o structfrom
the event any data. If the event any does not contain an
instance of St ock: : Cal | backl nf o, the extractionfails,
and the event can be ignored.

The exchange of stock value notification data through
an untyped Event Channel is analogous to two parts of a
C++ program exchanging the same data by converting point-
ersto St ock: : Cal | backl nf o instancesto voi d*, and
then castingthevoi d* back to St ock: : Cal | backl nfo
pointers. The errors associated with the use of voi d* in
C++ are well known and widely documented, and similar
types of problems can be encountered when using untyped
Event Channels.

4.4.3 Workarounds

It seems that our attempt to separate concernsto simplify our
Not i f yi ng_Quot er has resulted in a system with more
problemsthan it solved. The severity of these problems can
be reduced somewhat by making a tighter coupling between
the Not i fyi ng_Quot er and its Event Channel. Specifi-
caly, we need to:

o Use a specific registration interface: Rather than rely-
ing on the untyped Event Channel interfaces for Consumer
registration, we could completely hide the fact that an Event

Channdl is being used by returning to our origina (strongly
typed) callback registrationinterface. Thisapproach usesthe
Event Channd as a transport mechanism, in much the same
way that networking services like FTR, TELNET, and HTTP
use the TCP protocol as atransport mechanism.

e Hidethe Event Channel: We could ensure that no other
Supplier applications are using our Event Channel by mak-
ing the Not i fyi ng_Quot er responsible for creating its
own Event Channel. By using the appropriate access control
mechanisms of C++, we can ensure that object references are
not “leaked” to other Consumers and Suppliers.

¢ Provide event filtering: Once the Event Channel is hid-
den, wecan register specia filtering Consumerswithit so that
our real Consumers only see the callbacks in which they're
interested. In practice, someimplementationsof Event Chan-
nels[7] extend the COS Events Serviceto add event filtering
and correlation. More importantly, by the time this column
is published, the OMG Telecommunications Domain Task
Force will most likely have issued an RFP for a filtering
Notification Service that uses an Events Service undernesth
it.

e Reduce network traffic. By making our private Event
Channel and our filterslocal to our Not i f yi ng_Quot er,
we can eliminatethe additional network traffic resulting from
the use of an untyped remote Event Channel.

Stock
Brokers

Quote
Server

REAL-TIME
STOCK QUOTE
DATABASE

: My
Pull
Consumer

pull)

\

Figure 8: Alternative The Stock Quote System Design
(Push/Pull Model)

¢ Build an event queueing system: Figure 8illustratesan
alternative design for the stock quote system. This design
uses the Push/Pull model (described in Section 2.2), which
gueues up the events and alows clientsto pull them at their
leisure. Thisresultsin apotentia decrease in network traffic
since Consumers can now pull sequences of events instead
of requesting them one at a time. In fact, this approach is
similar to the Pull-based implementation described in our
earlier columns. The Event Channel for such an approach

10

could provide the norma COS Events interfaces for Sup-
plier registration and the pushing of event data, but would
require specia interfaces for Consumers to alow them to
pull sequences of events.

The use of the Push/Pull model as described above could
result in a decrease of network traffic. However, it could
also increase the resource utilization of the Event Channel
as compared to the Push model. This is because the Event
Channél isresponsiblefor storing event datauntil Consumers
pull them. Sinceresources arefinite, the Event Channel must
implement some kind of policy or policiesby whichit throws
events away if they are not pulled within some period of
time or if a certain number of events accumulate. A high
quality Event Channel implementing the Push/Pull model
would alow its queuing policies to be configurable for each
Consume.

Our next column will provide an implementation of our
stock quote system using some of these features.

5 Evaluating the OMG COS Events
Ser vice Specification

For a general events service, the COS Events Service model
is quite reasonable. Its flexibility allows different imple-
mentations that make very different tradeoffs to be built,
thus alowing application developers to avoid “one size fits
al” implementationsthat rarely work well for anything. This
flexibility alows applicationsto avoid responsibility for con-
cerns such as timely notification, multiple registrations, and
event data persistence and instead rely on Event Channelsto
handle such things for them. The Events Service interfaces
are fairly simple to understand, and Consumer and Supplier
connectionsand event delivery/procurement are symmetrical
and straightforward. A side effect of this symmetry is that
specialized Event Channels can be chained together, with
one channel serving as either the Supplier or Consumer for
another, for purposes of filtering or buffering events.

There are, however, severa genera limitations with the
OMG COS Events Service specification:

e Overly flexible: Although the Events Service is highly
flexible, it can be hard to use due to multi-step connection
establishment process. The complexity stems from the need
to use the Events Service within many different application
domains, each with differing requirements for decoupling
Consumer and Supplier communication. The fact that the
Events Service supportsthe four different models of compo-
nent collaboration described in Section 2.2 above is a clear
indication of theflexibility of the specification. However, for
many simple use-cases, thisflexibility isoverkill.

o Lack of standard semanticsand protocols. The Events
Service specification is intentionaly vague, to avoid over-
constraining the innovation and opportunity for optimization
of implementors. Thisisbeneficial to the extent that it keeps
the specification concise and avoids forcing all users to pay

for features (e.g., transaction, persistence, filtering, etc.) that
they don’t need.

However, a downside to the underspecified nature of the
COS Events Service is that there is no standard definition
of how Event Channels will behave. This makes it difficult
to compose Channels written by different vendors, whose
filtering and queueing logic may be different. In addition,
there no standard definition of the communication protocol
used to implement inter-Channel communication.

For example, IONA has released an implementation of
the OMG COS Events Service called OrbixTalk. OrbixTalk
distributesevents vial P multicast, using a negative acknowl-
edgement schemeto ensure delivery to every interested Con-
sumer. On the other hand, other implementations of the
Events Service, such as the HP ORB Plus Events Service,
are based on I1OP, with simple sequential delivery of event
datato Consumers. The existence of Events Service imple-
mentationswith different design centers providesapplication
devel operstheopportunity to choose the implementationthat
best fits in their systems. However, it should be noted that
due to their use of different protocols, the ORB Plus Events
Service and OrbixTalk do not interoperate yet.

6 Conclusion

In this column we attempted to correct some deficiencies in
our Not i fyi ng_Quot er stock quote calback system. It
was our goal to utilize the OMG COS Events Service to sep-
arate the concerns of event delivery from the issuesinvolved
in monitoring stock quotes. Specificaly, we hoped to use
the Events Service to eliminate the need for our stock quote
server to persistently storecallback object referencesand han-
dieissuesrelated to scaability and deadlock. Unfortunately,
our new solution introduces as many or more problems than
did our original hand-crafted callback system. Our next col-
umn will show how some of the problems introduced by the
solution developed here can be aleviated.

We'd like to note a change in our email address. Steve
recently left Hewlett-Packard to become a Senior Archi-
tect at IONA Technologies, so our old email address,
obj ect _connect @h. hp. com has changed. Com-
ments on this or any of our columns may now be sent to our
new address, obj ect _connect @s. wust| . edu. As
always, if there are any topics that you'd like us to cover,
please send us email.

Thanksto Wolfgang Lugmayr for commentsonthisarticle.

References

[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatch-
ing,” in Pattern Languages of Program Design (J. O. Coplien
andD. C. Schmidt, eds.), Reading, MA: Addison-Wesley, 1995.

[2] Object Management Group, CORBAServices: Common Object
Services Specification, Revised Edition, 95-3-31 ed., Mar. 1995.

11

[3] S. Maffeis and D. C. Schmidt, “Constructing Reliable Dis-
tributed Communication Systems with CORBA,” |IEEE Com+-
munications Magazine, vol. 14, February 1997.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-

ing, MA: Addison-Wesley, 1995.

R. G. Lavender and D. C. Schmidt, “ Active Object: an Object
Behaviora Pattern for Concurrent Programming,” in Pattern
Languagesof ProgramDesign (J. O. Coplien, J. Vlissides, and
N. Kerth, eds.), (Reading, MA), Addison-Wesley, 1996.

Object Management Group, The Common Object Request Bro-
ker: Architecture and Specification, 2.0 ed., July 1995.

R. Stewart, J. Storey, and D. Huang, “Event Handling in
a CORBA-based Telecommunications Management System
Framework,” C++ Report, vol. 9, February 1997.

(5]

(6]
(7]

