Object I nterconnections

Distributed Callbacks and Decoupled Communication in CORBA (Column 8)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science

Washington University, St. Louis, MO 63130

This column will appear in the October 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

We're changing gears in this column. Our recent columns
have used a distributed stock quoting example to focus on
different concurrency models for devel oping multithreaded
server applications. In this column, we'll start looking at
another aspect of distributed object computing systems. de-
coupling the relationship between “clients’ and “ servers.”

Our examples to date have focused exclusively on re-
quest/response communication. In this approach, requests
flow from client to server and responses flow back from
server to client. In this column, we'll discuss distributed
callbacks and extend our stock quoting exampl e to show why
they’'re useful. We'll aso briefly discuss the OMG Events
object service[1], which supports decoupl ed peer-to-peer re-
| ationships between consumers and suppliers. We intend to
cover the OMG Events object servicein more detail in future
columns.

2 Revisiting the Distributed Stock
Quoting Application

We're going to start off by revisiting the distributed stock
guoting application to identify the limitationswith our orig-
inal client/server design. In particular, we'll see that our
origina design has serious problems that show up as our ap-
plication requirements evolve. But first, we need to define
our terminology more precisaly.

21 “Client-Server” vs. “Peer-to-Peer”

Theterms“client” and “server” arewidely used in distributed
computing circles, but what do they realy mean? In dis-
tributed object computing systemsthese termsare useful only
to describe the sender and receiver of asinglerequest. That
is, for a given request, the “client” is the entity making the
request, whilethe“server” isthe entity acting uponit. More-
over, the client of one request may well be the server for

Steve Vinoski

vinoski @ch.hp.com
Hewlett-Packard Company
Chdmsford, MA 01824

another request.

A more accurate way to view distributed object collab-
oration is to think of terms like client and server as roles
that are played by various objects at varioustimes. In prac-
tice, distributed objects change their client and server roles
quite frequently. For instance, objects often participate in
peer-to-peer relationships, rather than in strict client-server
relationships.

2.2 TheDrawbacks of Request/Response Sys-
tems

In our May 1995 column, we showed the following OMG
IDL definitionfor aSt ock: : Quot er interface:

modul e Stock {
/'l Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
/1 Returns the current stock value or
/1 throw an Invalid_Stock exception.
long get_quote (in string stock_nane)
rai ses (lnvalid_Stock);

}s
}s

Thisinterface providesaget _quot e operationthat allowsa
broker to query (i.e., poll) thestock quoter object. Sincestock
trading strategies are often triggered when a stock reaches a
certain value, this design allows a broker to monitor a stock
andto buy or sell it when adesired valueisreached. Figurel
illustratesthe architecture of a distributed polling quoter.

The client application codefor apolling broker might ook
asfollows:

usi ng nanmespace Stock;

/1 ...initialize ORB...

Quot er _var quoter =

/1 Use Nami ng or Trader service to
/1 get quoter object reference...

const CORBA:: Long desired = TRADI NG THRESHOLD;
CORBA: : Long actual ;

do {
actual = quoter->get_quote ("ACME ORB Inc.");
} while (actual != desired);

QUOTE SERVER

: Quoter get_quote()

Proxy <+—O0

Figure 1. Architecture of a Distributed Polling Quoter

/1 Exercise buy or sell order.

Whilethe polling approach could conceivably providethe
desired results, it suffers from a number of drawbacks, in-
cluding:

e Server saturation: Thisquoter application is capable of
sending many requests to the server in a very short period
of time. Depending on implementation issues (such as the
hardware platform, operating system, or concurrency mode!),
theserver may becomesaturated and thusunabl etofulfill new
requests. For instance, an excessive amount of memory and
CPU resources may be consumed if the server uses athread-
per-request concurrency model. This problem is worse for
servers that take a long time to service requests. In this
case, severa polling clients can easily cause these servers
to consume all their available resources while trying to keep
pace with incoming reguests.

o Network saturation: Evenif serversarevery efficient at
servicing requests, apolling approach can still allow applica
tions to use excessive network bandwidth. Polling applica-
tionsthat flood the network with request messages and their
responses may cause all services on the network to suffer
due to increased response times and error rates. Moreover,
if congestion becomes too severe, the entire network may
become incapacitated.

e Limited application utility: A polling application that
saturates its server and its network isn’'t good for much else.
If it weren't polling, it might be able to perform other useful
work (e.g., refreshing the user-interface, providing adequate
quality of service to other users or applications, etc). Per-
forming the polling in a separate thread can help alleviate
thisproblem, but not without increasing application resource
consumption and programming complexity.

2.3 TheDistributed Callback Solution

One way to avoid the problems associated with polling is
to employ distributed callbacks. In terms of our example

UOTE CONSUME
QUOTE SUPPLIER

M;

: My A
Callback, : My

Callback
Prox;

: My
Notifying
Quoter

: My
Callback
Prox

Figure 2: Architecture of a Distributed Callback Quoter

described above, a distributed callback involves a “role re-
versd,” i.e, the“server” calsback to the quoter “client” ap-
plication. The Quoter object uses this callback to notify the
quoter applicationthat the stock it’sinterested in has reached
the desired value. Figure 2 illustrates the participants and
collaborationin the distributed callback solution.

2.3.1 Common Examplesof Callbacks

CORBA distributed callbacks are similar to ordinary call-
backs used in C++ programming. An example of aC++ cal-
back is the function pointer passed to set _new_handl er .
If a new handler callback has been instaled, any time
oper at or new is unable to alocate memory it will in-
vokethe callback function hoping that the application or run-
time environment can somehow free up some memory. This
approach is obviously simpler than having the application
continually poll the status of the heap.

Another well-known example of a non-distributed call-
back is afunction pointer registered to handle graphica user
interface (GUI) events, such astheclick of amouse buttonin
awindow. Whenthebuttonisclicked, theregistered function
iscaledto alow the application toreact to theevent. By us-
ing callbacks, the user interface framework can be decoupled
from application-specific behavior performed in response to
events, thereby increasing reuse and extensibility.

Distributed callbacks shoul d not be confused with the“ up-
cals’ made by the Object Adapter and the IDL skeletons,
which dispatch requests to object implementations. These
upcalls are mechanically similar to GUI callbacks, and in
fact are typically implemented by ORB vendors as ordinary
C++ callbacks. The mgjor difference between distributed
callbacks and object implementation upcallsisthat they oc-
cur a different levelsin the CORBA system. In fact, object
implementation upcalls are akey component of adistributed

callback or any other distributed request handling mecha-
nism.

Note that the term “ distributed callback” is a bit midead-
ing. This is because an object can be located in the same
address space as its caller. In this case, a quality ORB im-
plementation will bypass remote messaging mechanisms and
perform local function calls between a caller and atarget ob-
ject whenever possible. Thus, a callback in such a system
is not always necessarily “distributed.” In the current exam-
ple, however, we'll assume that al callbacks occur between
distributed objects.

2.3.2 Problems Solved by Distributed Callbacks

The following pointsexplain how using distributed callbacks
in CORBA can help address the problems with our origina
polling solution described above.

e Saturation problems: Since the quoter applicationisn’t
flooding theserver or the network with requestsany more, the
saturation problems no longer occur. However, depending
upon how the detection of the stock price changes isimple-
mented in the server, adistributed callback solution may till
cause the server to consume alarge amount of computing re-
sources. For instance, it may need to filter dataarriving from
ared-time quote feed to determine which events to forward
to clientsthat subscribe to the data.

e Limited application utility: Sincethequoter application
is no longer polling, and is instead waiting for the server to
notify it, it can be used to work on other problems while it
waits. The use of distributed callbacks also aleviates the
need for multiple threads and the added complexity associ-
ated with multi-threaded programming.

Note that the definition of “distributed callback” provided
here shows the terminology problem we described in Sec-
tion 2.1: for a distributed callback, the server sends the re-
guest (and is thus a client), whereas the quoter application
receives therequest (andisthusaserver). Aswe'll seebelow,
the use of distributed callbacks results in peer-to-peer rela
tionships—the “client” and “server” are peers because each
isan object that both sends and receives requests. Therefore,
we'll use different terminology from now on. A “supplier”
is an entity that produces events, whilea " consumer” is one
that receives event notificationsand data. Thismodel, where
one or more applicationsregister to receive data asit is gen-
erated, is often referred to as the “publish/subscribe’ model.
The publish/subscribe model has its roots in patterns like
Observer [2] and Modéel/View/Controller [3].

3 Using Distributed Callbacks in the
Quoter Application
This section illustrates how to use distributed callbacks to

implement a more flexible, and potentially more efficient,
stock quoter application.

3.1 DefiningthelDL Interface

As we've shown in our last few columns, CORBA appli-
cations must have an object reference before a request can
be issued. Therefore, two resources are needed before a
CORBA digtributed callback can be made: acallback object
and itsobject reference. Oneway to obtain these resourcesis
to pass the distributed callback object reference as aparame-
ter to another object, which registersthedistributed callback.
This behavior is shown by ther egi st er _cal | back in-
vocationsin Figure 2.

The example below extends the IDL declarations shown
above with a distributed callback interface and registration
operation:
modul e Stock {

/'l Requested stock does not exist.
exception Invalid_Stock {};

/1 Distributed callback infornmation.
nodul e Cal | back {
struct Info {
string stock_nane;
| ong val ue;

h

/1 Distributed callback interface
/1 (invoked by the Supplier).
interface Handl er {

voi d push (in Info data);

};'

/1 This is the same as in our earlier colums.
interface Quoter {
long get_quote (in string stock_nane)
rai ses (lnvalid_Stock);

b

interface Notifying Quoter {
/1 Register a distributed call back
/1 handler that is invoked when the
/1 given stock reaches the desired
/1 threshold val ue.
voi d register_call back
(in string stock_nane,
in long threshol d_val ue,
in Call back:: Handl er handl er)
rai ses (Ilnvalid_Stock);

/1 Renove the handler.
voi d unregi ster_cal | back
(in Call back:: Handl er handl er);

Several key changes have been made to our original IDL
interface;

¢ A new module named Cal | back has been nested in-
side the St ock module. We used nesting so that both the
I nf o struct and the Handl er interface could be prop-
erly scoped and grouped together, without having to in-
clude the string “Callback” in the name of each type (e.g.,
Cal I back.l nf o).

o Withinthe Cal | back module, thel nf o struct and the
Handl er distributed callback interface have been defined.
Thel nf o struct is used to inform the callback object of the
name and value of the stock in question. This information
is necessary to allow one callback object to be registered for

multiplestock callbacks. TheHandl er interfacedefinesthe
type expected for object references registered as callbacks.

e Anewinterface Noti fyi ng_Quot er , hasbeen added.
It supplies two operations. r egi st er _cal | back alows
calback handler object references to be added to the sup-
plier, while unr egi st er _cal | back is used to remove
calback handlers. Note that Not i f yi ng_Quot er could
derivefrom our original Quot er interface. However, doing
thismeansthat all Not i f yi ng_Quot er objects must sup-
port both polling and callbacks. This feature is something
that most clients are unlikely to require, so we omitted it.

3.2 Definingthe Consumer’s Callback Behav-
ior

To register a distributed callback object, a consumer
passes a Cal | back: : Handl er object reference to
the Noti fyi ng_Quoter: :register _call back op-
eration, whichisimplemented by the supplier. Thefollowing
class defines the callback object implementation provided by
the consumer:

/1 1nmplenented by the consuner.

class My_Cal | Back
publ i ¢ HPSQA_ St ock: : Cal | back: : Handl er
/1 This base class is explained bel ow.

-
publi c:
...

/1 Handl e cal | back from quoter supplier.
voi d push (const Stock:: Call back::Info& info)

/1 dass BuyOrder is defined el sewhere.
Buy_Order buy (info.stock, 1000);

/1 1ssue a "buy" order.
buy.issue ();

o
}
b

The push method of My _Cal | back isinvoked by the sup-
plier when thethreshol d specified by the consumer isreached.
In responseto thisnotification, the consumer creates an order
to buy 1,000 shares of the stock.

3.3 TheConsumer Main Function

After defining the consumer’s callback behavior, we'll
write our consumer application mai n. This function
gets the callback object reference and registers it with the
Not i f yi ng_-Quot er onthe supplier.

/1 Consuner application.

int main (int argc, char *argv[])

{

usi ng namespace Stock;

CORBA: : ORB_var orb =
CORBA: : ORB_init (argc, argv, 0);
CORBA: : HPSOA var hpsoa =

orb->HPSOA init (argc, argv, CORBA::HPSQAi d);
const char *stock_nanme = "ACME ORB Inc.";

/] Create a new inpl ementation object.
My_Cal | back *cb = new My_Cal | back;

/1 Get the callback object reference.
Cal | back: : Handl er _var handler = cb->_this ();

/1 Ootain a Notifying_Quoter object reference,
/1l e.g., fromthe Nam ng or Trader service

/1 (which is not shown).

Noti fyi ng_Quoter_var quoter =// ...

CORBA: : Long t hreshol d = TRADI NG_THRESHOLD;

/'l Register callback with the supplier.
quot er - >regi st er _cal | back (stock_nane,
threshol d, handler);

/1 Now instruct the object adapter to
/1 wait for callbacks fromthe supplier.
hpsoa->run ();

/* NOTREACHED */

In this example, we're using the HP Smplified Object
Adapter supplied by the HP ORB Plus product to obtain
an object reference for our callback object. As we've de-
scribed in our previouscolumns, CORBA 2.0 currently lacks
a portable Object Adapter interface. Therefore, in this col-
umn we'll use the object adapter supplied by the ORB ven-
dor we're using. When the OMG completes its portability
enhancement work (which is currently in progress), we'll
update our examples to use the new portable object adapter
mapping.

When the vaue of ACME ORB stock reaches the
“TRADI NG THRESHOLD" (e.g., $103.00), the supplier (in
the same process as the Quoter object, perhaps even the
Quoter itself) will call back to the registered handler object
likethis:

/1 Inmplemented by the supplier.

St ock: : Cal | back: : Handl er _ptr handl er;
Cal | back: : I nfo info;

/1 Assign name and val ue.
i nfo.stock_nanme =
CORBA: : string_dup ("ACME ORB Inc.");
i nfo.threshol d_val ue = TRADI NG_THRESHCOLD;

/1l Query the real-time quote feed database

/!l to see if the threshold is reached.

Il (see detailed inplenentation bel ow).

if (reached_threshold (info.stock_nane,
info.threshol d_val ue))

/1 Disseminate info to the consuner(s).
handl er - >push (i nfo);

...
}

Upon receiving the distributed callback from the supplier
(the quoter service), the consumer (the stock quoter applica
tion) can examine the members of the Cal | back: : I nfo
struct passedtoit. The consumer application can usethis
st ruct invariousways. For example, it can determinethe
name of the stock and itscurrent value, and use thisinforma:
tionto issue abuy or sall order for that particular stock.

Stock
Brokers

Quote
Server

REAL-TIME
STOCK FEED
DATABASE

Figure 3: Interna Architecture of the Quote Supplier

If the consumer is no longer interested in receiving call-
backs, it can unregister the callback handler using the
unr egi st er _cal | back operation:

quot er - >unr egi st er _cal | back (handl er);

4 Implementing the Distributed Call-
back Supplier

This section examines the implementation of the supplier-
side of the quoter service.

4.1 Supplier Architecture

Our stock quote supplier has three primary components
(shown in Figure 3):

1. Registration map — This map associates each callback
object reference with a stock name and threshold value.
To simplify programming, we use STL multimaps to
implement this association.

2. Real-time stock feed database — We assume that the
stock feed provides a continuous stream of stock
names and their associated values are stored in a
database that can be read by our implementation of the
Not i f yi ng_Quot er interface.

3. Monitor for real-timestock feed — Thismonitor provides
up-to-date stock informationto the stock quote supplier.
The supplier uses this information to determine when
callbacks should be issued to consumer (s).

OurNot i fyi ng_-Quot er implementationisan “active ob-
ject” [4]. It spawns athread in its constructor to monitor the
real-time stock feed. This means that our registration and
unregistration operations must occur in their own threads.
Therefore, we must make surethat updatesto theregistration
map do not occur while the monitoring method accesses the

map. To do this, we'll use mutex locks, which ensure the
integrity of our registration map.

HP ORB Plus uses a C++ threads portability class library
called MSD to achieve independence from platform-specific
threads APIs. Thislibrary is also available to applications
that use the ORB. Our Not i f yi ng_-Quot er implementa
tion therefore makes use of the MSD_Thr ead, MSD_Mut ex,
and MSD_Lock classes provided by the MSDlibrary to spawn
threads and provide mutual exclusion.

To actualy implement aNot i f yi ng_Quot er, we first
defineaC++ class. ORBsgenerally allow theimplementor to
select how to integratetheir code with the skeleton generated
by the IDL compiler. Aswe ve shown in previous columns,
the two main choices are variants of the Adapter pattern [2]:

o ClassAdapter —which derivestheimplementation class
from a skeleton class generated by an OMG IDL com-
piler;

o Object Adapter —which makesastand-a oneclasswhere

aninterface (the Adapter) del egatesto an object it holds
(the implementation).

In thiscolumn, we' Il use the inheritance method provided
by HP ORB Plus. Therefore, we derive our class from the
abstract HPSQA St ock: : Not i f yi ng_Quot er skeleton
class, asfollows:

class My_Cal | back_Quot er
publ i c HPSOA St ock:: Notifying_Quoter
{

publi c:
My_Cal | back_Quoter (void) {
/1 Spawn a thread to nonitor the feed.
thread_ = new MSD Thread (start_thread, this);

}
“My_Cal | back_Quoter (void) {
delete thread_;

}

/1 Register a distributed call back
/1 handler to callback when threshold
/1 is reached.
virtual void register_call back
(const char *stock,
CORBA: : Long t hreshol d_val ue,
St ock: : Cal | back: : Handl er _ptr handl er)
t hrow (CORBA: : Syst enExcepti on,
St ock: : I nval i dSt ock) ;

/'l Renove the handl er when consuner is
/1 no longer interested in receiving callbacks.
virtual void unregister_call back

(Stock: : Cal | back: : Handl er _ptr handl er);

private:
I/l Performthe work of nmonitoring the real-tinme
/1 quote feed.
void nmonitor_realtine_feed (void);

/! Determines if stock has reached its threshold.
int reached_threshold (char *, |ong);

/1 Static menber function passed to
/1 the MsD _Thread constructor.
static void *start_nonitor (void *p) {
My_Cal | back_Quoter *q =
static_cast<My_Cal | back_Quoter*> (p);
g->nonitor_realtime_feed ();
return O;

}

/1 Maps stock nanes to cal |l backs.
Cal | back_Map cb_map_;

/] Pointer to nonitoring thread.
MSD_Thread *thread_;

/1 Mutex for the Call back_Map.
MSD_Mut ex nutex_;

11
}s

Our Not i fyi ng_Quot er implementation requires some
means to store the association between the stocks it moni-
torsand CORBA object references it maintainsto distributed
callbacks. We use the STL multimap type Cal | back _Map
for this purpose, as follows:

/'l Use STL pair and nultimap containers.
typedef pair<Stock:: Call back:: Handl er_ptr,
CORBA: : Long> Cal | back_Val ue;
typedef multimap<string, Callback_Val ue>
Cal | back_Map;

A multimap is necessary because it dlows duplicate keys.
We need this feature because multiple callbacks from multi-
ple consumers could be registered for the same stock name.
For example, two separate quoter applications could each
register a callback for the stock of “ACME ORBs, Inc.” In
addition, we'll have to provide our own locking using the
mutex mechanisms in Hewlett-Packard’s ORB Plus product
since the STL implementation we use isn't thread-safe.

4.2 Registering Callbacks

Ther egi st er cal | back method can be written as fol-
lows:

voi d

My_Cal | back_Quot er: : regi ster_cal | back (
const char *stock,
CORBA: : Long t hreshol d,
St ock: : Cal | back: : Handl er _ptr handl er)

usi ng nanespace Stock:: Cal | back;

/'l Create Callback _Value structure to hold
/1 threshol d and Handl er object reference.
Cal | back_Val ue val ;

val .first = Handl er:: _duplicate (handler);
val . second = threshol d;

/] Create itemtype for nmultimp, consisting
/1 of the stock name and the Call back_Val ue.
pai r<const string, Callback_Value> item
itemfirst = string (stock);

itemsecond = val;

/1 Lock the callback map and insert the
/'l new registration item (The destructor
/1 of the lock object unlocks the nutex).
MSD _Lock lock (nutex_);

cb_map_.insert (item;

}

Most of ther egi st er cal | back method is straightfor-
ward. Whenaconsumer registersaCal | back: : Handl er
we store a “pai r of pai rs” in the cadlback map. The

noni tor _real ti ne_f eed method shown below illus-
trates how thisisused.

One tricky aspect of our design involves the use of
Handl er: : duplicate. Thisis required because the
object reference passed to r egi st er _cal | back isonly
valid for this method invocation. Once this invoca
tion of the regi st er cal | back method returns, the
object reference might be released. For example, if
regi ster_cal | back is upcaled from a skeleton, the
skeleton will probably rel ease the object reference before re-
sponding to the remote caller. Therefore, the _dupl i cat e
call ensuresthat the object reference weinsert into cb_map_
does not become a dangling object reference.

4.3 Monitoring the Quote Feed

The following is a simple implementation of a method that
monitorsthe realtime quote feed:

/1 Supplier application.

voi d
My_Cal | back_Quoter::nonitor_realtine_feed ()
{

usi ng namespace Stock;

for (55) {
/! Sleep for a period to avoid ‘‘busy waiting."’
sl eep (POLL_PERI OD);

/1 Lock the registration table and
/1 iterate through it (destructor
/'l rel eases the nutex).
MSD_Lock lock (rmutex_);

Cal | back_Map::iterator iter;

for (iter = cb_map_.begin ();
iter = cb_map_.end ();
iter++)
/'l Access Cal |l back_Val ue structure.
const string& stock = (*iter).first;
Cal | back_Val ue& cbv = (*iter).second;
CORBA: : Long threshol d = cbv. second;

/1 Query the real-tinme quote feed database
/!l to see if the threshold is reached.
if (reached_threshold (stock, threshold)) {
/Il Create Info structure to push
/1 to the call back consuner.
Cal | back: : I nfo info;
info.stock_nanme =
CORBA: : string_dup (stock.c_str ());
info.threshol d_val ue = threshol d;

/1 Retrieve Handl er from Cal | back_Val ue.
Cal | back: : Handl er _ptr handl er = cbv.first;

/1 Dissenminate info the consuner (s).
handl er - >push (i nfo);

/1 Rel ease the handl er object reference
/1 and destroy the callback info.
CORBA: : rel ease (handler);
cb_map_.erase (iter);
}
}

}
/* NOTREACHED */
}

As shown in Section 4.3, thenoni t or real ti me_f eed

method is spawned by the My_Cal | back_Quot er con-
structor. This method run continuoudly in its own thread.
The main portion of the method iterates over al the en-
tries in the callback registration map. As explained above,
the callback map must be locked to prevent simultaneous
access by this method and the r egi st er _handl er and
unr egi st er _handl er methods.

For each entry, the stock name and the threshold value are
passed tother eached_t hr eshol d method. This method
queriesthe real-time quotefeed database to seeif that stock’s
value matches the desired threshold. If a match occurs, a
Cal | back: : I nf o struct iscreated and initialized with the
stock name and value, the callback handler object reference
is retrieved from the callback map, and the | nf o struct is
“pushed” to the callback handler. Finally, the registration for
the callback that wasjust pushed by the supplier isdestroyed.

The decision to destroy the callback handler after each
successful pushisdesignedto prevent suppliersfromflooding
consumers with multiple callbacks if the stock data remains
a the designated threshold. This implies that the quoter
application consumer must re-register the My_Cal | back
handler if it wants to receive subsequent notificationsfor the
stock. There are obvioudy other protocols that we could
have used here, as well. The “best” approach will most
likely be revealed through prototyping and benchmarking
experiments.

4.4 Unregistering Callbacks

In addition to having successful “pushes’ automaticaly re-
move handlers from the supplier, consumers can also unilat-
eraly decide to remove callback handlers by invoking the
supplier’'sunr egi st er cal | back method. In this case,
the implementation of the unr egi st er _cal | back must
removethegiven callback object referencefromthechb _map_
multimap. Thisisaccomplished using STL iterators, as fol-
lows:

usi ng nanmespace Stock:: Cal | back;

voi d
My_Cal | back_Quot er: : unregi ster_cal |l back
(Stock:: Cal |l back:: Handl er _ptr handl er)

/] Destructor rel eases | ock.
MSD_Lock | ock (rmutex_);
Cal | back_Map::iterator iter;

for (iter = cb_map_.begin ();
iter '= cb_map_.end ();
iter++) {
/'l Access Cal |l back_Val ue structure.
Cal | back_Val ue& cbv = (*iter).second;

/'l Retrieve Handl er from Cal | back_Val ue.
Handl er _ptr h = cbv.first;

/1 Check handl er equival ence.

if (h->_is_equivalent (handler)) {
CORBA: : rel ease (h);
cb_nmap_.erase (iter);
br eak;

}

}
}

This method simply iterates over the cb_map_ multimap,
comparing each stored callback handler object reference to
theonepassed in asan argument. When amatchisfound, the
object reference stored in the multimap is released, and then
theentry is erased, which frees up the dynamically alocated
memory.

5 Evaluation of the Distributed Call-
back Solution

One benefit of using CORBA is that the distributed call-
back architecture enables the consumer application to avoid
polling the stock quote supplier. Instead, the consumer is
notified when quotesreach their threshold, which may result
in amore efficient overall solution. However, this approach
hasits own set of problems:

¢ Object reference ambiguity: For example, athough
our unr egi st er _handl er implementation appears to
be straightforward and portable, it contains a subtle prob-
lem. The means by which the object reference passed to
unr egi st er _handl er is compared to those stored in
cb_map_ (the _i s_equi val ent function) may not actu-
aly work the way we need it to!

The i s_equi val ent function is available for all ob-
ject references because it is part of the CORBA: : Ohj ect
interface, which is the base interface for al OMG IDL
interfaces. According to the CORBA 2.0 specification,
Jd s_equi val ent returns true if its object reference ar-
gument and the target object reference both refer to the
same object. Unfortunately, the converse is not true: if
_i s_equi val ent returnsfase, it may just mean that the
ORB was unable to determine whether or not the two object
references refer to the same object. In fact, a conforming
ORB could implement the _i s_equi val ent operation to
just always return false. In CORBA, there is no guaranteed
way to determine object reference “equality” from the object
references aone.

The main reason i s_equi val ent has these some-
what odd semantics is to alow greater freedom for ORB
implementors. The OMG members in favor of these
semantics were concerned that stronger guarantees for
4 s_equi val ent would be difficult to implement in some
CORBA environments. For more information, see [5] and
[6], which discuss the pros and cons of this issue, respec-
tively.

Since we can’'t count on . s_equi val ent in our
implementation of the unregi st er _handl er opera
tion, our implementation must be redesigned. One way
to solve the handler identification problem is to change
regi st er _handl er to return a token that can later be
passed to unr egi st er _handl er. Depending upon the
quality of service offered by our Not i f yi ng_Quot er im-
plementation, this token could be an integer counter, a Uni-
versal Unique Identifier (UUID), or even another object ref-
erence. Each of these token types providedifferent tradeoffs

in terms of scalability, robustness, and performance.

e Supplier-side polling: With the addition of the dis-
tributed callback capability, our stock quoter went from sim-
ply having to look up stock values from an external source
to having to continually monitor those stock values that its
consumers have subscribed for. Achieving thisrequired non-
trivial changes in our stock quoter implementation. For in-
stance, in our implementation shown above, the data arrives
viaareal-time quote feed. In thiscase, we'll have anumber
of design choicesto avoid swamping the consumers, such as:

¢ We could use an active database that usestriggering and
filtering on the supplier’sside;

¢ Wecould spawn oneor morethreadson thesupplier-side
(as we did above) to poll the quote feed continuously
looking for threshold matches.

o Callback persistence: A robust implementation of the
distributed callback service must be able to store certain in-
formation persistently. This information might include the
information in the STL multimap (such as the distributed
callback object references, their associated callback object
references, and their threshold data). Adding persistence to
our supplier will require some major modifications from our
original polling quoter. Becausethe previousimplementation
of our stock quoter merely had to look stock values up from
an externa source, it had no persistent storage requirements
(other than the quote database itself).

¢ Notification scalability and delivery timeliness: The
stock quoter must beableto deliver notificationsquickly after
it detectsthat astock valueit monitorshasreached thedesired
value. Thismay be hard if thousands of distributed callback
objects have registered with it. Performance may suffer if
a Supplier blocks while notifying a Consumer that is slow
to accept the push when the Supplier has other consumers
to serve. Moreover, what “quick delivery” means to each
distributed callback object can differ greatly, depending on
itsquality of service requirements.

There are severa ways to handle these problems such as
using oneway calls, timeouts, or additional threadsto imple-
ment some form of asychronous “future.” Another way to
improve the scalability of distributed callback notifications
isto utilize an ORB that supports reliable multicast seman-
tics. The CORBA 2.0 specification deals mainly with point-
to-point communication and offers no standard support for
reliablemulticast. However, there are ORB implementations
(such as Electra[7] or Orbix+ISIS[8]) that extend CORBA
to provide reliable multicast and fault-tolerant group com-
munication.

. Poten-
tial for deadlock: Since unr egi st er cal | back isa
twoway CORBA cal, our distributed callback design can
deadlock if the Supplier tries to push to a Consumer that
simultaneously tries to unregister. Thiswill aimost certain
happen if the ORB doesn’t support “nested dispatching” of

twoway calls. Nested dispatching enablesan ORB to perform
upcallsfrom incoming requestseven whileitis“blocked” on
therequest portion of atwoway request/responseinvocation.
There are various ways to implement nested dispatching,
such as spawning off a separate thread to handle each in-
coming request or using a non-blocking event loop within
the ORB. If an ORB doesn’'t support nesting dispatching,
it may be necessary to restructure the Handl er: : push,
Noti fyi ng_-Quot er: :register_call back,

and Notifying_-Quoter::unregister_call back
to use oneway semantics. Oneway calls can be problematic,
however, since application devel opers then become respon-
siblefor ensuring end-to-end reliability.

Given the severity of these problems, it appears that our
guest to avoid polling our stock quoters has reveaed even
more design challenges! Unfortunately, that’stheway things
often evolve when developing and deploying practical dis-
tributed computing systems. Such problems are very com-
mon, and often don’t manifest themselves until late in a
project lifecycle. This is yet one more reason why it's so
important to build prototypesand conduct experiments using
realistic use-cases and distributed environments [9], before
adopting a particular communication architecture wholesale.

Luckily, the flexibility and higher levels of abstraction in
CORBA help to dleviate unnecessary complexity and cou-
pling. Aswe' ve seen repeatedly, CORBA featureslike* sep-
arating interface from implementation” and “making it pos-
sible to reconfigure the objects flexibly” alow us to defer
some (but not all) of these decisions until we understand the
system better.

The problems with our notifying stock quoter described
above can be eased somewhat if we separate concerns even
further. In particular, our quoter implementation has enough
to worry about as it monitors and reports changing stock
values. Therefore, we should avoid also making it respon-
siblefor delivery of multiple notifications and maintaining a
persistent table of callbacks.

One way to relieve some of the burden we' ve placed on
the stock quoter is to utilize the OMG Events Service for
notification delivery. The Events Serviceis part of the OMG
Common Object Services Specification (COSS) Volume 1
[1]. Itspurposeisto provideddivery of event datafrom event
suppliersto event consumers without requiring the suppliers
and consumers to know about each other. An implementa
tion of the Events Service acts as a“mediator” that provides
for decoupled communications between objects. Our next
column will focus on the COSS Events Service in detail.

6 Concluding Remarks

In this column, we've stepped away from the strict re-
guest/response model we've used for al of our examples to
date, and described one way to decouple communication be-
tween suppliersand consumers. We' ve examined acompl ete

design and implementation for distributed callbacks using
CORBA.

Unlike our last few columns, this column focuses only
on a solution based on the Object Management Architecture
(OMA) and CORBA. The main reason for thisisthat even if
wejust showed the most important portionsof the C and C++
code required for a solution, it would require far too much
space. Thisis a consequence of al the C/C++ bookkeeping
information that must be maintai ned for each callback, which
makes the code too complex to explain succinctly. The fact
that CORBA applications can pass object references helps
hideall the bookkeepinginformationand allowsusto present
afairly complete solution, without filling up the entire issue
of C++ Report!

Asaways, if thereareany topicsthat you' dlikeusto cover,
please send us email a obj ect _connect @h. hp. com
Thanks to John Isner for his comments on the deadlock as-
pects of the distributed callback architecture.

References

[1] Object Management Group, CORBAServices: Common Object
Services Specification, Revised Edition, 95-3-31 ed., Mar. 1995.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[4] R. G.Lavender and D. C. Schmidt, “ Active Object: an Object
Behaviora Pattern for Concurrent Programming,” in Pattern
Languagesof ProgramDesign (J. O. Coplien, J. Vlissides, and
N. Kerth, eds.), (Reading, MA), Addison-Wesley, 1996.

[5] M. L. Powell, Objects, References, Identifiers, and Equality
White Paper. SunSoft, Inc., OMG Document 93-07-05 ed.,
July 1993.

[6] W. Harrison, The Importance of Using Object References as
Identifiers of Objects: Comparison of CORBA Object. I1BM,
OMG Document 94-06-12 ed., June 1994.

[7] S. Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA,” in Proceedings of the Conference on
Object-Oriented Technologies, (Monterey, CA), USENIX, June
19095.

[8] C.Horn,“TheOrbix Architecture,” tech. rep., IONA Technolo-
gies, August 1993.

[9] I. Pyardi, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings of
the 2"¢ Conference on Object-Oriented Technologiesand Sys-
tems, (Toronto, Canada), USENIX, June 1996.

