Object I nterconnections

Comparing Alternative Programming Techniques for Multi-threaded CORBA Servers (Column 7)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science

Washington University, St. Louis, MO 63130

Thiscolumn appeared in the July/August 1996 i ssue of the
SIGS C++ Report magazine.

1 Introduction

Developers of multi-threaded servers face many challenges.
One important challenge is selecting a suitable concurrency
model. There are several concurrency models to choose
from including thread-per-request, thread-pool, and thread-
per-session. Our last two columns discussed the thread-per-
request and thread-pool concurrency models, respectively.
We showed how each coul d beused to devel op multi-threaded
server programs for a distributed stock quote application.
This column discusses the thread-per-session model, in
which each new session created for a client is assigned a
thread that processes requests for that session. Followingthe
format of our recent columns, this column will illustrate the
thread-per-session model by devel oping new multi-threaded
stock quote servers using C, C++ wrappers, and CORBA.

2 The Thread-per-Session Concur-

rency Model

Figure 1 illustrates the main components in the thread-per-
session concurrency model. These components include a
main thread and aset of session threads. The main thread re-
ceives new session initiationrequests from clients. It creates
a new session thread to handle each client. Session threads
receive and service stock quote requests from the clients.

Under certain circumstances, thread-per-session performs
better than thethread-per-request and thread-pool models. Its
advantagesare (1) it amortizes connection setup costsand (2)
it supports efficient long-duration conversations with clients.
On the other hand, thread-per-session is less useful if cer-
tain sessions receive considerably more requests than others
sincethey will become a performance bottleneck. Moreover,
if each client makes only one request per session, the perfor-
mance of the thread-per-session mode is roughly the same
as the thread-per-request model.

Naturally, we strongly urge you to analyze, prototype, and
mesasure the performance of various concurrency models be-

Steve Vinoski
vinoski @ch.hp.com
Hewlett-Packard Company
Chelmsford, MA 01824

2: ACCEPT
3: SPAWN THREAD
session

session main

thread

thread thread

Figure 1: Thread-per-Session Architecture for the Stock
Quote Server

forecommitting to a particul ar approach. Aswe examinethe
C, C++ wrapper, and CORBA solutionsbel ow, keep in mind
theassumptionshbuilt into the thread-per-session model (such
as the typical number or size of client requests, the interar-
rival time between requests, and request duration). Note how
the strengths and weaknesses of the solution will change as
the assumptions change.

3 The C Thread-per-Session Solution

3.1 Implementing Thread-per-Sessionin C

The following example shows a thread-per-session solution
written using C, sockets, and Solaris threads [1].! Asin

IPorting our implementation to POSIX pthreads or Win32 threads is
straightforward.

previous columns, we use thefollowing set of C utility func-
tions:

/* WN32 al ready defines this. */
#i f defined (unix)

typedef int HANDLE;

#endif /* unix */

/1 Factory function that allocates a
/] passive-node |istener socket.
HANDLE create_server_endpoi nt (u_short port);

/1 Receive stock quote requests fromclients.
int recv_request (HANDLE h, Quote_Request *req);

/1 Return the quote to the client.
int send_response (HANDLE h, |ong val ue);

/1 Determine current stock price fromthe

/1 Quote Database.

I ong | ookup_stock_price (Quote_Database *,
Quot e_Request *);

/1 Calls recv_request(), |ookup_stock price(),
/1 and send_response().
int handl e_quote (HANDLE h);

The implementations of these functions were first shown in
the October 1995 issue of the C++ Report and were revised
to become thread-safe in the February 1996 issue.

311 Themain() Thread

Themain thread runsan event loop that continuously accepts
new connections from clients and spawns a thread to run
each client session. Our server mai n isamost identica to
the one we presented for the thread-per-request C solutionin
our February column:

const int DEFAULT_PORT = 12345;
int main (int argc, char *argv[])

/* Port to listen for connections. */
u_short port =

argc > 1 ? atoi (argv[1l]) : DEFAULT_PORT;

/* Create a passive-node |istener endpoint. */
HANDLE | i stener = create_server_endpoint (port);

/* The event |loop for the main server thread. */
svc_run (listener);
/* NOTREACHED */

}

The key difference is that unlike the thread-per-request
model, we don’t dynamicaly spawn a thread for each new
client quote request. Instead, we spawn a thread for each
client session, as shown in thefollowing svc_r un function
(to emphasize the differences we've prefixed the changes
with/* 111

void svc_run (HANDLE |i stener)
/* Main event |oop. */

for (;;) {
/* WAIt to accept a new connection. */
HANDLE handl e = accept (listener, 0, 0);

thr_create
(0, /* Use default thread stack. */
0, /* Use default thread stack size. */
[* V1l Thread entry point. */

&sessi on_t hread,

(void *) handle, /* Entry point arg. */
THR _DETACHED | THR NEW LW, /* Flags. */
0); /* Don't bother returning thread id. */

}
/* NOTREACHED */
}

3.1.2 Thesession_thread() Function
A session thread runs the the following function:

voi d *session_thread (void *arg)
HANDLE handl e = (HANDLE) arg;

/* Process all stock quote requests from
a client until it closes down. */

whi | e (handl e_quote (handle) > 0)
continue;

/* Shutdown the handle to reclaimQOS resources. */
cl ose (handl e);

/* Exit the thread. */
thr_exit (0);

/* NOTREACHED */
return O;

}

Each session thread runs for the duration of the client’s con-
versation. Thesessi on_t hr ead function repeatedly calls
handl e_quot e. This function extracts stock quote re-
guests from the database, looks up the results, and returns
each result to the client. Since multiple session threads
can access the quote database simultaneously, we'll reuse
thethread-safeimplementation of handl e_quot e from our
February C++ Report column. This function returns 0 when
aclient closes down the session, at which point the session
thread exits.

3.2 Evaluatingthe C Solution

The C solution presented above isvery straightforward. The
implementationismuch simpl er than thethread-pool solution
we presented in our last column. In particular, there's no
need to implement a thread-safe HANDLE queue because
each session can block in its own thread. In addition, we
can reuse most of the code from the thread-per-request C
solution.

The thread-per-request C implementation from our Febru-
ary C++ Report column closed down the connection after
every request. In contrast, our current C thread-per-session
implementation keeps the connection open until the client
explicitly closes it. Thisis beneficial if client applications
make many requests to the same quote server.

Despite these advantages, the C solution suffers from the
same problem described in previouscolumns, namely thatit’'s
writtenat avery low level. Thismakesit difficult to separate
the problem of providingstock quotesfrom the problems as-
sociated with writing distributed applications. For instance,
if we changed the format of stock quote requests and replies,
we' d have to reimplement most of the utility code that we
reused in thisexample.

QUOTE SERVER

2: CREATE, ACCEPT,
AND ACTIVATE
QUOTE_HANDLER

_,i

3: SPAWN THREAD

Figure2: ACE C++ Architecturefor the Thread-per-Session
Stock Quote Server

4 The C++ Thread-per-Session Solu-
tion

4.1 Implementing Thread-per-Session in C++

This section illustrates a C++ thread-per-session implemen-
tation based on ACE [2]. The C++ solution is structured
using the following three classes (shown in Figure 2):

e QuoteHandler: Thisclassimplementsan active object?
that interactswith clientsby receiving quote requests, looking
up quotesin the database, and returning responses.

e Quote_Acceptor: A factory that implementsthe strategy
for accepting connections from clients, followed by creating
and activating Quot e_Handl er s.

e Reactor: Encapsulates the sel ect and pol | event
demultiplexing system cals with an extensible and
portable callback-driven object-oriented interface. The
React or dispatches the handl e_i nput method of the
Quot e_Accept or when connection events arrive from
clients.

Variations of these components have been used in previous
implementationsof thequote server inour earlier C++ Report
columns. Below, we illustrate how these components can be
extended and reused to implement thread-per-session.

2An active object maintainsits own thread of control, which allows it to
block on 1/0 channels and process messages without directly impacting the
quality of service of other active objects.

41.1 TheQuote Handler Class

The Quot e_Handl er class is responsible for processing
client quote requests. Itsimplementation is very similar to
the one used for the thread-per-request concurrency model:

/1 Reuse the C handl e_quote() function.
extern "C' int handl e_quote (HANDLE);

tenpl ate <class STREAM> // I PC interface
cl ass Quote_Handl er
publ i ¢ Svc_Handl er <STREAM>
/1 This ACE base cl ass defines "STREAM peer_;"

{
publi c:
/1 '!l Assign a connected STREAMto this instance.
Quot e_Handl er (STREAM &peer _strean) {
Quot e_Handl er <STREAM: : peer _. set _handl e
(peer_stream get _handle ());

111 This nethod is called by the Quote_Acceptor
to initialize a newy connected Quote_Handl er,
which turns itself into an active object.
rtual int open (void) {
Thr ead: : spawn

/] Static entry point into the thread.

(&Quot e_Handl er <STREAM>: : sessi on_t hr ead,

(void *) this, /1 Entry point arg.
THR_DETACHED | THR NEW LWP); // Thread fl ags.
}

/] V!l Static thread entry point nethod.
static void *session_thread (void *args) {
Quot e_Handl er <STREAM> *client =
static_cast <Quote_Handl er <STREAM> *> (args);

/1 Extract out the client’s socket HANDLE.
HANDLE handl e = client->peer_.get_handle ();

/'l Process all stock quote requests from
/1 a client until it closes down. W
/1 reuse our C handle_quote () function
/1 we defined earlier.
while (::handle_quote (handle) > 0)

conti nue;

/1 Shut down the STREAMto avoid nmenory
/1 | eaks and HANDLE | eaks.
client->close ();

/1 Exit the thread.
thr_exit (0);
/* NOTREACHED */

}

/1 O ose down the handl er and rel ease resources.
voi d close (void) {
/1l Cose the connection to avoid HANDLE | eaks.
t hi s->peer_.close ();

/] Commit suicide to avoid nenory |eaks...
delete this;

11
}s

Each session thread executes the static member function
sessi on_t hread. This function is amost identical to
the C function of the same name defined in Section 3.1.2. In
fact, the C++ version even calstheC handl e_quot e util-
ity to performthe stock quotelookup. Asusual, C++'sability
to integrate existing C code pays off by reducing effort.
Whentheclient closesdown, theQuot e_Handl er cleans
up the connection. The only real difference between the
C and C++ sessi on_t hr ead functions is that the C++

version must deallocate itself before the thread exits since
the Quot er _Accept or factory dynamicaly allocated the
memory for the Quot e_Handl er .

4.1.2 TheQuote Acceptor Class

The Quot e_Accept or class is an implementation of the
Acceptor pattern [3] that creates Quot e_Handl er s to pro-
cess quote requests from clients. Itsimplementation isiden-
tical to the one shown in our previous column:

typedef Acceptor <
Quot e_Handl er <SOCK_St r ean®,
SOCK_Acceptor> // Passive conn.
Quot e_Acceptor;

mech.

When a client connects with the server, the
React or invokes the handl e_.i nput method of the
Quot e_Accept or automatically. This method initializes
a client’s Quot e_Handl er by performing the following
three-step Quot e_Accept or strategy:

1. Handler creation — which dynamicaly creates a
Quot e_Handl er.

2. Handler connection acceptance — which accepts the
connectioninto the handler usingthe SOCK_ Accept or
(this is a C++ wrapper for passive-mode sockets that
creates connected SOCK_St r eans [4]).

3. Handler activation - which in-
vokes the Quot e_Handl er: : open method. In the
thread-per-session implementation, this open method
spawns a new thread to handle client requests, as we
showed in Section 4.1.1 above.

4.1.3 Themain() Server Function

The C++ server nmai n is responsible for initiaizing the
Quot e_Accept or and running the main event loop, as
follows:

/1 Default constants.
const int DEFAULT_PORT = 12345;
int main (int argc, char *argv[])

u_short port =

argc > 1 ? atoi (argv[1l]) : DEFAULT_PORT;

/1 Server address.
| NET_Addr server_addr (port);

/] Factory that produces connected Quote_Handl ers.
Quot e_Accept or acceptor (server_addr);

/1 The event loop for the main server thread.
svc_run (acceptor);
/* NOTREACHED */

}

The svc_r un function shown below is identical to the one
used by the thread-pool:

voi d svc_run (Quote_Acceptor &acceptor)

/1 Install Quote_Acceptor with Reactor.
REACTOR: : i nstance ()->regi ster_handl er (&acceptor);

/1 Quote service.

/1 Event |oop that dispatches all events as
/'l cal |l backs to appropriate Event_Handl er subcl ass
/1 (such as the Quote_Acceptor).
for (;;)
REACTOR: : i nstance ()->handl e_events ();
/* NOTREACHED */

}

The main thread’s event loop runs continuously within
the REACTOR Singleton, which cals back to the
Quot e_Accept or 'shandl e_i nput method when con-
nections arrive from clients. This method implements the
Acceptor pattern strategy shown in Section 4.1.1 to cre-
ate, accept, and activate a new Quot e_Handl er. Unlike
our thread-pool implementation, however, al subsequent the
stock quote request dispatching and processing takes place
inthe session threads.

4.2 Evaluating the C++ Solution

The thread-per-session C++ solution is an improvement
over the thread-pool and thread-per-request C++ imple-
mentations in previous columns. Like the C version, the
Quot e_Handl er thread keeps running until the client dis-
connects and doesn’t need a Request _Queue since each
session thread blocksindependently. The followingare some
other advantages of our C++ solution.

e Simpler connection management: Our C++ implemen-
tationof thread-pool from our last column maintained acache
of client connections. However, our thread-per-session C++
connection management ismuch simpler than the thread-pool
model. For instance, there's no need for complex reference
counting to ensure that a Quot e_Handl er is not deleted
until all Quot e_Request s storedintheRequest _Queue
are removed.

e More flexible design: The C++ version of thread-per-
sessionismoreflexiblethanthe C versionlargely becauseitis
based on componentsinthe ACE framework. The ACE com-
ponents providea generic software architecture consisting of
aReact or ,Accept or ,and Svc_Handl er s,aswell asa
set of standard default behavior (such as event demultiplex-
ing and factories). In addition, the ACE components help to
decouple the concurrency model of the Quot e_Handl er’s
from the rest of the quote server architecture. For instance,
the decision to become an active object islocalized withinthe
open method of the Quot e_Handl er , rather than with the
main svc_r un method, asit iswith the C implementation.
This makes it possible to switch concurrency schemes very
easily without affecting existing code. If you examine the
C++ solutionsin our recent columns, you' |l see that they all
have a common software architecture that can be customized
easily to support different concurrency models.

As usual, the C++ solutionis an improvement over the C
version, but it still doesn’t adequately automate some com-
mon tasks (such as marshaling and object activation) neces-
sary to build distributed applications. Therefore, we'll take

alook at a CORBA solution that does address more of these
i Ssues.

5 The CORBA Thread-per-Session So-
lution

The thread-per-session concurrency model is supported by
a number of CORBA implementations including M T-Orbix
and ORBeline. This section illustrates how to program the
client and server sides of our thread-per-session stock quote
implementation using the concurrency features of MT-Orbix.
We'll first examine the changes we had to make to the IDL
St ock module and the client-side application and then ex-
plore the thread-per-session server implementation in detail.

5.1 IDL Changes

To accommodate the thread-per-session concurrency model,
we modified the IDL St ock module as shown below:

/1 Define the interface for a stock quote server.
nodul e St ock

exception Invalid_Stock {};
exception Invalid Quoter {};

interface Quoter {
/! Returns the current stock val ue or
/1 throws an exception.
long get_quote (in string stock_nane)
rai ses (Invalid_Stock, Invalid_Quoter);

/1 Destroy a Quoter session and
/] rel ease resources.
voi d destroy ();

}

/1 Manage the lifecycle of a Quoter object.
interface Quoter_Factory {
/1 Returns a new Quoter selected by nane
/! e.g., "Dow Jones," "Reuters,", etc.
Quoter create_quoter (in string nane)
rai ses (lnvalid_Quoter);

b

The new IDL interface adds a Quot er _Fact or y that cre-
atesQuot er s. Thereareseveral benefits of the Object-style
approach vs. the RPC-style approach:

e Customized quality of servicee Clients can use a
Quot er _Fact ory to create different types of Quot er s
that support a range of functionality or performance char-
acteristics tailored to their individual needs. For instance,
the Quot er _Fact or y can return a new Quot er selected
by a stock quoting service name such as “Dow Jones’ or
“Reuters.” Likewise, the factory operation provided by the
Quot er _Fact ory might take parameters that determine
the implementation and behavior of the created Quot er .
One such parameter might control how recent the stock value
guotes handed out by the Quot er must be. In addition, on
publicaccess ATM networksthat support variabl e bandwidth
alocation, aQuot er _Fact or y might create Quot er ob-
jectswhosequality of servicedependsonratespaid by clients.

value

=

]

e name

= o—»

(f get_quote()

E} TTe—o T T T 77

destroy()

: Reuters
Quoter

-
name
'S o—
; create_quoter()
= +—0
&) Quoter
: DowJi
E : DowJones name (;:;tgr ®
=) Quoter O—
Proxy get_quote() A'i

Figure 3: RPC-stylevs. Object-style Communication

o Efficient load balancing: A Quot er _Fact ory canen-
surenew Quot er objects are created in particular locations
to ssimplify administration or reduce overhead. Section 5.3
illustrates one approach, where the Quot er _Fact ory
always creates Quot er objects within its own pro-
cess. Directing al Quot er creation requests to only one
Quot er _Fact ory can create a performance bottleneck,
however. Therefore, if multiple host machines are avail-
able, several Quot er _Fact or y objectscan be created, one
on each machine. A factory finder service could be used
to select the Quot er _Fact ory that can create Quot er
objects on the host machine with the lightest load.

e Flexible lifecycle control: Our Quot er _Factory
gives clients more flexibility to control the lifecycle of
stock quoter implementations than our previous design. For
instance, we've also added a dest r oy operation to the
Quot er interface. Thisalows clients to release server re-
sources (such as threads or client-specific state) when a ses-
sion terminates. Without the dest r oy interface, the server
must implement amore compl ex distributed reference count-
ing schemes to determine when to release client resources.

5.2 Client Changes

In addition to modifying the server implementation, our
use of aQuot er _Fact ory affects theway that clientsin-
teract with the server. The client-side approach in our May
1995 column used the following “RPC-styl€” interface to
invoke remote operations:

/] Create desired service nane.
const char *nane = "Quoter";
Name servi ce_nane;

servi ce_nane. |l ength (1);
service_nanme[0].id = nane;

/1 Initialize and | ocate the Quote service.
Obj ect _var obj =

bi nd_service (argc, argv, service_nane);
int result = -1;

try {
/1 Narrow to Quoter interface and away we go!
Quoter_var q = Quoter::_narrow (obj);

const char *stock_name = "ACME ORB Inc.";
CORBA: : Long val ue = g->get_quote (stock_nane);
cout << "value of " << stock_nane
<" = $"
<< val ue << endl;
result = 0;
} catch (CORBA:: BAD PARAM {
cerr << " _narrow() failed: "
<< servi ce_nane
<< " is not a Quoter!";
} catch (Invalid_Stock & {
cerr << stock_nane
<< " is not a valid stock nane!\n";

}
return result;
/1 Destructor of g rel eases object reference.

This code isn't much different from programming with
DCE or Sun RPC. As shown in the top part of Figure 3, a
client uses the bi nd_ser vi ce utility function® to acquire
a “binding handle’ to the remote service. It then uses this
handle to invoke a method call on that service. The primary
differencebetween an RPC sol ution and our CORBA solution
is that we encapsulate the binding handle within an object
reference. This reference refers to an individual CORBA
object instead of referring to an RPC server port.

Asdiscussed in Section 5.1, using an RPC-style interface
toimplement thread-per-sessionislessflexiblethan using the
interface provided by theQuot er _Fact or y. Asillustrated
inthe bottom part of Figure 3, the Quot er _Fact ory inter-
face allowsclientsto talk to objectsviaobject references that
serve as proxiesto individual sessions. In this*® object-style”
interface, sessions can use utilize a different quoter service
(such as Dow Jones, Reuters, etc.) and can each runin their
own thread of control.

Adding aQuot er _Fact ory resultsin the the following
changesto the client (as before, we' ve marked them with / /
'l to emphasize the difference):

/1 11l Create desired service nane.
const char *name = "Quoter_Factory";
Name servi ce_nane;

servi ce_nane. |l ength (1);
service_nanme[0].id = nang;

/1 '!'!l Initialize and | ocate Quoter_Factory
/'l service.
Obj ect _var obj =

bi nd_service (argc, argv, service_nane);

int result = -1;

try {

/1 1! Narrow to Quoter_Factory

/1 interface and away we go!

Quoter_Factory_var gf =
Quoter_Factory:: _narrow (obj);

/1 !l Select name of desired quoter.
const char *quoter_name = "My Quoter";

3Thebi nd_ser vi ce function hidesthe details of initializing the ORB
and locating object references with the CORBA Naming service[5].

/1 "'l Ask factory to produce a new Quoter.
Quoter_var q = gf->create_quoter (quoter_nane);

const char *stock_name = "ACME ORB Inc.";

CORBA: : Long val ue = g->get _quote (stock_nane);
cout << "value of " << stock_nane

<" = $"

<< val ue << endl;
/1 V!l Explicitly destroy the Quoter.
q->destroy ();

/1 "'l Destructor of q rel eases object reference.
result = 0;
} catch (CORBA: : BAD PARAM {
cerr << " _narrow() failed: "
<< servi ce_nane
<< " is not a Quoter_Factory!";
} catch (Invalid_Stock & {
cerr << stock_nane
<< " is not a valid stock nane!\n";
}
return result;
/1 "1l Destructor of qf rel eases object reference.

Incidentally, the notion of customized object creation is
supported by the OMG Lifecycle Service Specification [5].
It specifies a Gener i cFact ory interface intended to a-
low clients to create a wide variety of objects. One of the
argumentsto the Generi cFact ory: : cr eat e_obj ect
operation is a sequence of named any vaues. Different
Generi cFact ory implementations can use these values
to help decide what object to create, or might pass the val-
ues on to the newly-created object, or might even do both.
Although we' ve omitted the COSS Lifecycle servicesin our
exampleto save space, future columnswill addressthistopic
in depth.

5.3 Implementing Thread-per-Session in MT-
Orbix

TheMT-Orbix implementation of thread-per-sessionisaclas-
sic example of the Active Object pattern [6]. Each active
object is responsible for servicing a different client session.
Our thread-per-session implementation uses the thread-safe
Message_Queue class defined in the thread-pool imple-
mentation from our previous column. Rather than main-
taining one queue of incoming requests per server, however,
each session hasitsown thread and itsown queue. MT-Orbix
needs this queue to provideits multiple concurrency models
inareatively uniformway.

There are severa differences from the thread-per-request
and thread-pool implementations shown in our previoustwo
columns. First, the thread-per-session concurrency model
does not pre-spawn any threads in advance. In addition,
we' veadded adest r oy operation, which hel ps manage the
lifecycle of client sessions.

53.1 TheMy_Quoter Class

The My _Quot er class shown below implementsthe bulk of
thethread-per-session stock quoter behavior using MT-Orbix
and ACE components:

}

/'l ACE thread-saf e message queue containing
/1 CORBA Request pointers for this session.
Message_Queue<CORBA: : Request *> nsg_queue_;

/1

4: DEMULTIPLEX
5: ENQUEUE REQUEST

b
DEF_TI E_Quoter (M/_Quoter)

My_QUOTER
FACTORY

Asin our previous column, the My _Quot er classiscon-
nected into the Orbix Object Adapter by using the Orbix
“TIE" approach instead of inheriting from a skeleton class
generated from the Quot er IDL. In particular, note that
the My_Quot er class doesn’t inherit from any base class.
Instead, it use the Orbix “TIE" approach to associate the
CORBA interfaces with our implementation. The“TIE" ap-

:My_Quoter

I 2: RECEIVE
3: INVOKE

6: RETURN QUOTE VALUR < proach is used for both our My_Quot er class and for our
| 1 \ " Quot er _Fact or y implementation, shown bel ow.
............ v |‘ \ 1: Request
‘ QUOTE 5.3.2 TheMy_Quoter Factory Class

Factory objects provide construction operations that can
take different numbers and types of arguments. The
My_Quot er _Fact ory classisaCORBA “constructor” that
creates a suitable Quot er implementation in response to a
client request, asfollows:

Figure4: MT-Orbix Architecture for the Thread-per-Session class W_Quoter_Factory

Stock Quote Server Quoter _ptr create_quoter (const char *nane,
CORBA: : Envi ronnent &env) {

Quoter_ptr quoter;

/1 Perform Factory Method sel ection of
class M_Quoter /1 the subcl ass of Quoter.
pu;:)I/| &)nstructor if (strcmp (nane, "Dow Jones") == 0)
* . quoter = new Tl E_Quoter (Dow_Jones_Quoter)
W_Quoter (const char *name);) (new Dow_Jones_Quoter (nane);
Il A thread executes this per-active object. else if (stremp (name, "Reuters®) == 0)
static void *session threag (void *);) quoter = new TIE_Quoter (Reuters_Quoter)
- ') (new Reuters_Quoter (nane);
/1 Returns the current stock value (this is else if (s_trclrrlp (”Ialmav M Quoter®) ==0)
/1 the same inplenentation as the thread-pool). /1 Dynamcally allocate a new M/_Quoter obj ect.
virtual long get_quote (const char *stock_nane, quoter = new TIE_Quoter (M/_Quoter)

CORBA: : Envi ronnent &) ; el se { (new My_Quoter (nane);
/1 Raise exception.
env. exception (new Stock::lnvalid_Quoter);

return;

/1 Thread filter uses this nmethod to queue
/1 the Request to the thread than handles the
/1 client session.

virtual void insert_at_tail (CORBA :Request *req) }
/1 Insert Request into queue, blocking if full. /1 Increment reference count.
meg_queue_.insert (req); quoter->_duplicate ();
/] Attach a new thread to the Quoter object.
/1 Destruction operation Thread: : spawn (&W_Quoter:: session_thread,
virtual void destroy (CORBA::Environment & { [/ Get the Quoter instance.

DEREF (quoter),
THR_DETACHED | THR_NEW LWP) ;
return quoter;

}

/1 Insert a NULL pointer, which notifies
/'l the session thread to shutdown.
nmsg_queue_.insert (NULL);

H
protect ed:

/1 Queue of pending requests handl ed by our thread. DEF_TIE Quoter_Factory (My/_Quoter_Factory)

CORBA: : Request *renpve_head (void) { . .
CORBA: : Request *req; The cr eat e_quot er operation is a Factory Method [7]
/1 Called by the session thread to dequeue that"scalled by the Object Adapter when aphent |n|t|gtesa
/1 the next message fromits client. WII block session. It usesthename of the quoter service passed in by
/1 if queue is enpty. the client to help select an appropriate Quot er implemen-

nmsg_queue_. dequeue (req); -
return req; tation.

Our client in Section 5.2 specified the My _Quot er im-
plementation. Therefore, the factory will create a new
My_Quot er, duplicate its object reference, spawn a thread
for the new client session, and return the object reference of
the newly-created Quot er object.

Note how the Orbix-specific DEREF macro is used to ac-
cess the actua implementation object of My_Quot er . This
implementation object is encapsulated withinthe “TIE” that
associates the automatically generated IDL skeleton with the
My _Quot er implementation.

5.3.3 Thesession_thread Method

The sessi on_t hr ead method shown below is a static
C++ member function used as the entry point into the thread
maintained for each client session:

void *My_Quoter::session_thread (void *arg)
My_Quoter *quoter = static_cast<My_Quoter *> (arg);

/1 Loop forever, receiving new Requests,
/1 and dispatching them...
for (53) {

CORBA: : Request *request = quoter->renove_head ();

if (request != NULL)
/1 This call will performthe upcall,
/1 send the reply (if any) and
/1 delete the Request for us...
CORBA: : Or bi x. conti nueThr eadDi spatch (*request);
el se {
/1 A NULL pointer signifies that the client
/1 has shutdown via the destroy() operation.
CORBA: : rel ease (quoter);
}
}

return O;

Note how similar this event loop is to the pool _t hr ead
method in our previous column. The primary difference is
that in the thread-pool implementation, there were a fixed
number of threads running the same event loop (i.e., one
for each thread in the pool). In contrast, there is a separate
thread running the event loop shown insessi on_t hr ead
for each active client.

One advantage of the thread-per-session model isthat the
same connection can be maintained aslong as the association
between the client and its Quot er object ismaintained. In
contrast, the thread-pool moddl doesn’t necessarily maintain
this association (though we implemented it both ways in our
previous column).

An interesting part of the sessi on_t hr ead function
is its handling of the destr oy operation. As shown
above, the implementation of destroy puts a NULL
Request pointer onto the object’s message queue. When
sessi on_t hr ead removesaNULL pointer fromitsqueue,
it calls CORBA: : r el ease to release the object reference
and destroy the CORBA object. Some ramifications of this
approach are discussed below in Section 5.4.

534 TheTPS Thread_Filter Class

Now we need a way to bring all the pieces together. In
MT-Orbix, thisisaccomplished viaa Thr eadFi | t er. As
we've shown in previous columns, Orbix alows applica
tions to interpose C++ “filter” objects into the request dis-
patch path. Filters can perform a number of tasks such as
intercepting, modifying, or examining each request sent to
and from the system.* To dispatch an incoming CORBA
request to its intended session thread, we've crested a sub-
class of the Orbix Thr eadFi | t er class that overridesthe
i nRequest Pr eMar shal method asfollows:

class TPS Thread_Filter : public ThreadFilter
{
int i nRequest PreMarshal (CORBA:: Request &req,
CORBA: : Envi ronnent &env) {
/Il Get the target of the request.
CORBA: : Ohj ect _ptr obj = req.target ();

/! Ensure it’s a Quoter object (it could
/1 be a Quoter_Factory).
Quoter_ptr quoter =
Quoter::_narrow (obj, env);
if (env)
/1 Must be the Quoter_Factory..
/1 continue the work in the main thread by
/1 telling Obix to dispatch as nornmal.
return 1;

/1l Get the My_Quoter object.
if (M_Quoter *nmy_quoter =
dynam c_cast <My_Quot er *> DEREF (quoter)) {
/1 Pass the request to the per-session thread.
nmy_quoter->insert_at _tail (&eq);
else if (/* Check for Dow Jones */)
...
else if (/* Check for Reuters */)
I/ .

el se {
/1 Not supported, suppress further
/1 dispatching and rai se an exception.
env. exception (new Stock::lnvalid_Quoter);
return O;

}

/1 1f success, tell Obix we'll
/1 the request later...
return -1;

di spat ch

Our TPS_Thread_Filter acts only on incoming
guote requests. When this filter is invoked, Orbix
has aready demultiplexed the incoming CORBA re-
guest to the implementation object identified by the
CORBA: : Request : : t ar get method. For each request,
our filter first tries to obtain a reference to target object rep-
resenting the client’s session. We attempt to narrow thisto
a Quot er object reference. This example illustrates how
to check for _nar r ow failures using Envi r onnment vari-
ables rather than C++ exceptions. |If the narrow fails (i.e.,
if env is“true’) it means the request is targeted to another
object (specifically, aQuot er _Fact ory). Inthiscase, al
is returned to tell Orbix to continue dispatching the request
normaly in the main thread. This causes Orbix to invoke

4Orbix filters are an implementation of Shapiro’s Sub-Scion Pair (SSP)
Chains; see[8] for more details.

thecr eat e_quot er upcal ontheMy_Quot er _Fact ory
implementation.

If the narrow succeeds, we use C++ RTTI to determinethe
actua type of thequot er object. If it'saMy_Quot er , the
request isinserted at the end of the per-session queue for the
target Quot er active object. The selected active object will
subsequently remove the request from its queue and perform
the appropriate session processing, as shown in Figure 4.

We' ve omitted the code for the Dow Jones and Reuter’s
implementations, which would be similar to My _Quot er .
Note that if quot er doesn’'t match any of the aternatives
we'll raise an | nval i d_Quot er exception and return O,
which tells Orbix not to continue dispatching the operation.
Otherwise, if we find a match —1 is returned, which tells
Orbix not to continue dispatching the request since it will be
handled in the specified session thread.

5.3.5 Themain() Function

The main server program implements the thread-per-session
concurrency model as follows:

int main (int argc, char *argv[])

/1 Initialize the factory inplenentation.
M/_Quot er _Factory_var quoter_factory =
new TI E_My_Quoter_Factory (M/_Quoter_Factory)
(new My_Quoter_Factory);

/1 Wait for work to do in the nain thread

/1 (which is also the thread that shepherds
/1 CORBA requests through TPS Thread_Filter).
tr

y {
CORBA: : Orbi x.inpl _is_ready ("Quoter_Factory");
} catch (...) {
...
}

return O;

When the Quot e server first starts up, it creates
a My_Quot er Factory object to service client ses
sion initiation requests. Then, the main server thread
cals Orbi x. i npl {i s_ready to notify Orbix that the
Quot er _Fact ory implementation is ready to service re-
guests. The man thread is responsible for shepherd-
ing CORBA requests through the filter chain to the
TPS_Thread_Fi | t er. The filter then demultiplexes the
requests to the appropriate sessi on_t hr ead active ob-
ject, which runsthem to completion.

5.4 Evaluating the M T-Orbix Solution

As we've seen in previous columns, the effort required to
transform the CORBA solution from the original thread-per-
request server to the thread-per-session concurrency model
was relatively minor, even though we also changed from us-
ing RPC-style communication to Object-style. This change
added aQuot er _Fact or y, which supportsthe creation of
customized Quot er objects. By having the server export
Quot er s created by Quot er _Fact ori es, servers can

transparently create different custom aternatives and pass
them back to clients.

There are somedrawbackstoimplementing thethread-per-
session concurrency model with CORBA, however. Some of
these drawbacks are related to M T-Orbix, whereas othersare
more subtle issues related to programming with CORBA.

¢ Performance: One potentia drawback to the MT-Orbix
solutionisitsuse of theMessage_Queue to buffer CORBA
requests to session threads. This is a consequence of the
use of thread filtersin MT-Orbix. Thread filters are a very
powerful way of decoupling the concurrency model used by
theserver from the Object Adapter and the ORB itself, which
enables M T-Orbix to support multiple concurrency model in
a convenient, uniform manner. By using the Orbix thread
filter, the CORBA solution required only a few changes to
the thread-per-request code.

However, theM T-Orbix thread filter architecture can cause
additional overhead due to the extra context switching and
synchronization necessary to queue requests on the thread-
safeMessage_Queue. Other ORBsthat support thethread-
per-session model, such as ORBeline, don’t have this partic-
ular restriction, though they typically don’t support as many
concurrency models either. Our future columnswill address
other topics related to the performance of aternative multi-
threaded ORB designs.

¢ Violatingthread-per-session semantics: Our MT-Orbix
solutionassumes the client that createsthe Quot er objectis
the only one who uses the object and isthe one who destroys
it. However, when using CORBA, a common practice isto
have the object reference obtained from a factory be made
available to multiple applications. For example, an applica
tion may invoke a factory operation to create a COSS Event
Channdl and advertise it in the COSS Naming Service [5].
Other applications can then obtain the event channel’s obj ect
reference from the Naming Service and attach themselves to
it as producers or consumers of events.

The solution we showed above will not be a thread-per-
session model if the client passes off the My _Quot er object
reference obtained from the factory to other applications. In
thiscase, multipleclients can have their requests serviced by
thesamethread. If thisoccurs, thesolution becomesathread-
per-object solution. As its name implies, the thread-per-
obj ect approach causes all requestsfor a specific object to be
handled onasinglethread dedicated only to that object. Both
thread-per-session and thread-per-object alow only one of
the object’s operations to be active at any time.> In contrast,
the thread-per-request and thread-pool models allow several
of an object’s operations to be invoked simultaneously on
multiplethreads.

In thiscolumn, we' ve used thread-per-object to i mplement
thread-per-session by following a convention that assumes
only a single client uses each Quot er’s object reference.
To really implement thread-per-sessionin CORBA, the ORB

SIncidentally, this is the concurrency model supported by Network OLE,
whereit is called the “ apartment” model of threading.

would have to maintain aseparate thread for each client con-
nection. Our stock quoter applicationcan’t doit because M T-
Orbix does not expose the association between the client’s
connection and the request is not avail ableto our thread filter.
Thisisn't necessarily adrawback, however. If the ORB were
to alow access to such information, it might prevent itself
fromimplementing intelligent connection management (e.g.,
reusing connectionsin a least-recently-used fashion to avoid
running out of file descriptors).

e ManagingObject References: Thecr eat ef actory
methodinMy _Quot er _Fact or y inSection5.3.2 contained
acall to increment the dynamically alocated Quot er 's ob-
ject reference count before returning it from the function.
Forgetting to duplicate object references before passing them
asoperationresultsisavery common mistakewith beginning
CORBA programmers. The OMG C++ Mapping Specifica
tionrequiresthat the client of an operation returning an object
reference to assume ownership of that object reference and
r el ease itwhenit hasfinished usingit. However, thisgets
alittle tricky when the client and object are located on two
different machines. In that case, the ORB must marshal the
object referenceintoaformsuitablefor network transmission
in order to return it to the client.

To maintain loca/remote transparency, the server-side
ORB must cdl r el ease ater marshaing the object ref-
erence and sending it back to the client. Likewise, theclient-
side ORB must receive the returned object reference and
unmarsha it into a object reference variable that can later
be passed tor el ease by theclient. If the object’s method
does not first _dupl i cat e the object reference before re-
turning it, the newly-created object will be destroyed when
the server-side ORB cdllsr el ease, thusleaving the client
with a*dangling object reference,” which refersto an object
that has been destroyed.

Much of thisdiscussionis specific to Orbix, dueto thefact
that Orbix skeleton classes derive from CORBA: : (bj ect .
In other ORBs, such as HP ORB Plus, skeletons are kept
separate from the CORBA: : Obj ect inheritance hierarchy.
Therefore, calling r el ease on object references does not
result in the destruction of the C++ object that implements
the CORBA object being referenced. In fact, Orbix pro-
videsaCORBA extensioncdled pr opagat eTl Edel et e
that enables or disables propagation of delete calls on TIES
through to the implementation object.

It's hard to remember when to duplicate and release ob-
ject references and when to delete data received as the re-
sult of an operation. That’s why the OMG IDL C++ map-
ping provides the _var data types. These are similar in
function to the ANSI C++ aut o_ptr type since they are
destroyed they automaticaly free the resources they man-
age. Storing an object reference returned from an opera
tion (such asthefactory cr eat e_quot er operation) intoa
stack-allocated Quot er _var relievesusfrom having to call
CORBA: : r el ease onthat object referencewhenwe refin-
ished with it. As our CORBA C++ examples from the past
few columnshave shown, using var types can significantly

10

ease resource management issues associated with CORBA
programming.

o Lack of portability for concurrent servers: Theclient-
side interfaces we showed in Section 5.2 use standard
CORBA features and are implemented using the standard
OMG C++ language mapping. This is in contrast to the
concurrent CORBA server, which suffersfrom several porta-
bility problems in the current CORBA specification. These
problemsinclude (1) lack of asuitable Basic Object Adapter,
(2) lack of a well-specified means to map generated IDL
skeletons with IDL interface class implementations, and (3)
lack of a portableconcurrency model. Our previouscolumns
explored these issues and their potential resolutionsin more
detail.

6 Concluding Remarks

In thiscolumn, we examined thread- per-session concurrency
model and illustrated how to useit to devel op multi-threaded
servers for a distributed stock quote application. These
examples illustrated how object-oriented techniques, C++,
and higher-level abstractions help to simplify programming
and improve extensibility. Our goa isto help you navigate
through the design space of aternative concurrency models.

Using object-oriented design techniques and C++ pro-
gramming festures can help to abstract from low-level de-
tailsin order to make different models easier to use. Aswe
showed in this column, useful abstractions for the thread-
per-session concurrency model includethread filters, request
gueues, reactive dispatchers, acceptors, handlers, and ses-
sion threads.

Asadways, if thereareany topicsthat you' dlikeusto cover,
please send usemail a obj ect _connect @h. hp. com

References

[1] J.Eykholt, S.Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedingsof the Summer USENI X Conference, (San Antonio,
Texas), June 1992.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6'" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994,

D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,” C++
Report, vol. 7, November/December 1995.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

Object Management Group, CORBAServices: Common Object
Services Specification, Revised Edition, 95-3-31 ed., Mar. 1995.

R. G. Lavender and D. C. Schmidt, “ Active Object: an Object
Behaviora Pattern for Concurrent Programming,” in Pattern
Languagesof ProgramDesign (J. O. Coplien, J. Vlissides, and
N. Kerth, eds.), (Reading, MA), Addison-Wesley, 1996.

(2]

(3]

[4]

(5]
(6]

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[8] M. Shapiro, “Flexible Bindingsfor Fine-Grain, Distributed Ob-
jects,” Tech. Rep. Rapport de recherche INRIA 2007, INRIA,
Aug. 1993.

11

