
Object Interconnections

Comparing Alternative Programming Techniques for Multi-threaded Servers (Column 5)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column will appear in the February 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

This column examines and evaluates several techniques for
developing multi-threaded servers. The server we’re examin-
ing mediates access to a stock quote database. Desktop client
applications operated by investment brokers interact with our
server to query stock prices. As with our previous columns,
we’ll compare several ways to program multi-threaded quote
servers using C, C++ wrappers, and CORBA.

1.1 Background

A process is a collection of resources that enable a program
to execute. In modern operating systems like Windows NT,
UNIX, and OS/2, process resources include virtual mem-
ory, handles to I/O devices, a run-time stack, and access
control information. On earlier-generation operating sys-
tems (such as BSD UNIX and Windows), processes were
single-threaded. However, many applications (particularly
networking servers) are hard to develop using single-threaded
processes. For example, the single-threaded, iterative stock
quote server we presented in our last column cannot block for
extended periods of time handling one client request since
the quality of service for other clients would suffer. The
following are several common ways to avoid blocking in
single-threaded servers:

� Reactive event dispatchers: one approach is to de-
velop an event dispatcher (such as the object-oriented Re-
actor framework described in [1]). Reactive dispatching is
commonly used to manage multiple input devices in single-
threaded user-interface frameworks. In these frameworks,
the main event dispatcher detects an incoming event, de-
multiplexes the event to the appropriate handler object, and
dispatches an application-specific callback method to handle
the event.

The primary drawback with this approach is that long du-
ration operations (such as transferring a large file or per-
forming a complex database query) must be developed using

non-blocking I/O and explicit finite state machines. This ap-
proach becomes unwieldy as the number of states increase.
In addition, only non-blocking operations are used. This
makes it hard to improve performance via techniques such as
“I/O streaming” or schemes that exploit locality of reference
in data and instruction caches on multi-processors.

�Cooperative tasking: another approach is to use a coop-
erative task library. A process can have multiple tasks, each
containing a separate run-time stack, instruction pointer, and
registers. Therefore, each task is a separate unit of execution,
which executes within the context of a process. Cooperative
tasking is non-preemptive, which means task context infor-
mation will only be stored and retrieved at certain preemption
points.1 This enables the library to suspend a task’s execution
until another task resumes it. The multi-tasking mechanisms
on Windows 3.1, Mac System 7 OS, and the original task
library bundled with cfront are examples of cooperative task-
ing.

Cooperative task libraries can be hard to program correctly
since developers must modify their programming style to
avoid certain OS features (such as asynchronous signals).
Another limitation with cooperative tasking is that the OS
will block all tasks in a process whenever one task incurs
a page fault. Likewise, the failure of a single task (e.g.,
mistakenly spinning in an infinite loop) will hang the entire
process.

� Multi-processing: another way to alleviate the com-
plexity of single-threaded processes is to use coarse-grained
multi-processing capabilities provided by system calls like
fork on UNIX and CreateProcess on Windows NT.
These calls create a separate child process that executes a
task concurrently with its parent. Separate processes can
collaborate directly (by using mechanisms such as shared
memory and memory-mapped files) or indirectly (by using
pipes or sockets).

However, the overhead and inflexibility of creating and
using processes may be prohibitively expensive and overly
complicated for many applications. For example, process
creation overhead can be excessive for short-duration ser-
vices (such as resolving the Ethernet number of an IP address,

1Preemption points commonly occur when a task acquires or releases a
lock, invokes an I/O operation, or explicitly “yields”.

1

retrieving a disk block from a network file server, or setting an
attribute in an SNMP MIB). Moreover, it may not be possible
to exert fine-grain control over the scheduling behavior and
priority of processes. In addition, processes that share C++
objects in shared memory segments must make non-portable
assumptions about the placement of virtual table pointers [2].

� Preemptive multi-threading: When used correctly, pre-
emptive multi-threading provides a more elegant, and po-
tentially more efficient, means to overcome the limitations
with the other concurrent processing techniques described
above. A thread is a single sequence of execution steps per-
formed in the context of a process. In addition to its own
instruction pointer, a thread contains other resources such
as a run-time stack of function activation records, a set of
general-purpose registers, and thread-specific data. A pre-
emptive multi-threading operating system (such as Solaris
2.x [3] and Windows NT [4]) or library (such as the POSIX
pthreads library [5] available with DCE) uses a clock-driven
scheduler to ensure that each thread of control executes for
a particular period of time. When a thread’s time period has
elapsed it is preempted to allow other threads to run.

Conventional operating systems (such as variants of
UNIX, Windows NT, and OS/2) support the concurrent ex-
ecution of multiple processes, each containing one or more
threads. A process serves as the unit of protection and re-
source allocation within a separate hardware protected ad-
dress space. A thread serves as the unit of execution that runs
within a process address space that is shared with zero or more
threads. The remainder of this column focuses on techniques
for programming preemptive multi-threaded servers.

1.2 Multi-threaded Server Programming

Multi-threaded servers are designed to handle multiple client
requests simultaneously. The following are common moti-
vations for multi-threading a server:

� Simplify program design: by allowing multiple server
tasks to proceed independently using conventional program-
ming abstractions (such as synchronous CORBA remote
method requests and replies);

� Improve throughput performance: by using the paral-
lel processing capabilities of multi-processor hardware plat-
forms and overlapping computation with communication;

� Improve perceived response time: for interactive client
applications (such as user interfaces or network management
tools) by associating separate threads with different server
tasks so clients don’t block for long.

There are a number of different models for designing con-
current servers. The following outlines several concurrency
models programmers can choose from when multi-threading
their servers:

� Thread-per-request: this model handles each request
from a client in a separate thread of control. This model is
useful for servers that handle long-duration requests (such as

database queries) from multiple clients. It is less useful for
short-duration requests due to the overhead of creating a new
thread for each request. It can also consume a large number of
OS resources if many clients make requests simultaneously.

� Thread-per-session: this model is a variation of thread-
per-request that amortizes the cost of spawning the thread
across multiple requests. This model handles each client that
connects with a server in a separate thread for the duration of
the session. It is useful for servers that carry on long-duration
conversations with multiple clients. It is not useful for clients
that make only a single request since this is essentially a
thread-per-request model.

� Thread pool: this model is another variation of thread-
per-request that also amortizes thread creation costs by pre-
spawning a pool of threads. It is useful for servers that want
to bound the number of OS resources they consume. Client
requests can be executed concurrently until the number of
simultaneous requests exceeds the number of threads in the
pool. At this point, additional requests must be queued until
a thread becomes available.

� Thread-per-object: this model associates a thread for
each logical object (i.e., service) in the server. It is useful
when programmers want to minimize the amount of rework
required to multi-thread an existing server. It is less useful
if certain objects receive considerably more requests than
others since they will become a performance bottleneck.

In general, multi-threaded servers require more sophisti-
cated synchronization strategies than single-threaded servers.
To illustrate how to alleviate unnecessary complexity, we
present and evaluate a number of strategies and tactics nec-
essary to build robust and efficient thread-per-request servers.
We first examine a simple solution using C and Solaris threads
[3]. We then describe how using C++ wrappers for threads
helps reduce the complexity and improves the portabilityand
robustness of the C solution. Finally, we present a solution
that illustrates the thread-per-request concurrency model im-
plemented using two multi-threaded versions of CORBA (HP
ORB Plus and MT-Orbix [6]). Our next column will show
examples of the other concurrency models.

A word of caution: the multi-threading techniques we
discuss in this column aren’t standardized throughout the in-
dustry. Therefore, some of the code we show is not directly
reusable across all OS platforms. However, the key con-
currency techniques and patterns we illustrate are reusable
across different platforms.

2 The Multi-threaded C Server Solu-
tion

2.1 Socket/C Code

The followingcode illustrateshow to program the server-side
of our stock quote program using sockets, Solaris threads,

2

and C. Our previous column presented a set of utility rou-
tines written in C used below to receive stock quote requests
from clients (recv request), lookup quote information
(lookup stock price), and return the quote to the client
(send response).

/* WIN32 already defines this. */
#if defined (unix)
typedef int HANDLE;
#endif /* unix */

/* These implementations were in our last column. */
HANDLE create_server_endpoint (u_short port);
int recv_request (HANDLE h, struct Quote_Request *req);
int send_response (HANDLE h, long value);
int handle_quote (HANDLE);

2.1.1 Spawning Threads

Themain function shown below uses these C utility routines
to create a concurrent quote server. This server uses a thread-
per-request concurrency model. The main program creates
a “passive-mode” listener socket (which accepts connections
from clients) and then calls svc run to perform the main
quote server’s event loop:

int main(int argc, char *argv[])
{
u_short port /* Port to listen for connections. */

= argc > 1 ? atoi(argv[1]) : 10000;

/* Create a passive-mode listener endpoint. */
HANDLE listener = create_server_endpoint(port);

/* The event loop for the main thread. */
svc_run (listener);
/* NOTREACHED */

}

The svc run function waits in an event loop for connec-
tion requests to arrive from clients. When a request arrives,
the Solaris thr create function spawns off a new thread
to perform the handle quote query in parallel with other
client requests:2

void svc_run (HANDLE listener)
{
for (;;) {
HANDLE handle = accept(listener, 0, 0);

/* Spawn off separate thread for each client. */
thr_create

(0, /* Use default thread stack */
0, /* Use default thread stack size */
/* Thread entry point */
(void *(*)(void *)) &handle_quote,
(void *) handle, /* Entry point arg */
THR_DETACHED | THR_NEW_LWP, /* Flags */
0); /* Don’t bother returning thread id */

}

Each thread that runs thehandle quote function blocks
awaiting the connected client to send a stock request on the
socket handle. The handle quote function can block
since it runs in its own thread of control. Once this function
receives a client request it processes this request, returns the
appropriate stock quote, and exits the thread.

2THR DETACHED and THR NEW LWP are flags to the Solaris
thr create function that tell it (1) the handle quote function will
exit silently when it’s complete and (2) a new concurrent execution context
should be created, respectively.

2.1.2 Synchronizing Threads

The handle quote function looks up stock prices in the
quote database via a global variable and an accessor function:

extern Quote_Database *quote_db;
long lookup_stock_price(Quote_Database*,

Quote_Request*);

The single-threaded implementation of handle quote
from our last column did not contain any locks to explic-
itly synchronize access to this database. Synchronization
was unnecessary in the single-threaded implementation since
only one client could access the database in the server at any
time. With our new thread-per-request server implementa-
tion this assumption no longer holds. If the database main-
tains its own internal locks our existing code may still work.
In this example we’ll assume the database does not main-
tain internal locks. This is often the case when integrating
multi-threading with legacy libraries (such as the UNIX dbm
database libraries and X windows). Many of these libraries
were developed before multi-threading became popular, so
they don’t use internal locks.

The code shown below explicitly serializes all lookups
and updates to the database.3 Serialization prevents race
conditions that would otherwise occur when multiple threads
accessed and updated data simultaneously. The following
implementation of handle quote illustrates a simple way
to serialize database access:

/* Define a synchronization object that
is initially in the "unlocked" state. */

rwlock_t lock;

int handle_quote(HANDLE h)
{
struct Quote_Request req;
long value;

if (recv_request(h, &req) == 0)
return 0;

/* Block until read lock is available */
rw_rdlock(&lock);

/* lookup stock in database */
value = lookup_stock_price(quote_db, &req);

/* Must release lock or deadlock will result! */
rw_unlock(&lock);

return send_response(h, value);
}

The rwlock t is a Solaris synchronization variable used
to protect the integrity of a shared resource (like the quote
database) that is accessed concurrently by multiple threads
of control. A rwlock t implements a “readers/writer” lock
that serializes thread execution by defining a critical section
where multiple threads can read the data concurrently, but
only one thread at a time can write to the data. The imple-
mentation ofrwlock t ensures that acquiring and releasing
a lock is an atomic operation.

3The solution we’ve shown does not show how stock prices are updated
in the database. This is beyond the scope of this column and will be discussed
in a future column.

3

2.2 Evaluating the C Solution

Programming directly with C and Solaris threads as shown
above yields a correct program. However, developing con-
current applications at this level of detail has several draw-
backs:

� Lack of portability: The design and implementation of
the multi-threaded version of the quote server differs con-
siderably from the single-threaded version. It replaces the
reactive select-driven event loop with a master dispatcher
thread and a set of slave threads that perform database
lookups. Unfortunately, the use of Solaris threads is not
portable to other platforms (such as Windows NT, OS/2, or
other versions of UNIX).

�Lack of reusability: The use of global variables (like the
lock that protects the database from race conditions) intro-
duces unnecessary dependencies between different parts of
the code. These dependencies make it hard to reuse existing
code [7].

� Lack of robustness: in a large program, instrumenting
all the code with mutex locks can be tedious and error-prone.
In particular, failing to release a mutex can lead to deadlock
or resource failures.

The following section describes how we can use C++ wrap-
pers to alleviate the problems described above.

3 The Multi-threaded C++ Wrappers
Solution

Using C++ wrappers is one way to simplify the complexity
of programming concurrent network servers. C++ wrap-
pers encapsulate lower-level OS interfaces such as sockets,
multi-threading, and synchronization with type-safe, object-
oriented interfaces. The IPC SAP [8], Acceptor [9],
and Thread [10] C++ wrappers shown below are part of
the ACE object-oriented network programming toolkit [11].
IPC SAP encapsulates standard network programming inter-
faces (such as sockets and TLI); the Acceptor implements
a reusable design pattern for passively4 initializing network
services, and the Thread wrapper encapsulates standard
OS threading mechanisms (such as Solaris threads, POSIX
pthreads, and Windows NT threads).

3.1 C++ Wrapper Code

This section illustrates how the use of C++ wrappers im-
proves the reuse, portability, and extensibility of the quote
server. Figure 1 depicts the following components in the
quote server architecture:

4Communication software is typified by asymmetric connection behavior
between clients and servers. In general, servers listen passively for clients
to initiate connections actively.

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Reactor: Reactor

QUOTE SERVER

: Quote: Quote
AcceptorAcceptor

1:1: CONNECT CONNECT

2:2: HANDLE INPUT HANDLE INPUT

3:3: CREATE HANDLER CREATE HANDLER

4:4: ACCEPT CONNECTION ACCEPT CONNECTION

5:5: SPAWN THREAD SPAWN THREAD

: Quote: Quote
HandlerHandler

: Quote: Quote
HandlerHandler

: Quote: Quote
HandlerHandler

6:6: HANDLE QUOTE REQUEST HANDLE QUOTE REQUEST

Figure 1: Thread-per-Request C++ Wrapper Architecture for
the Stock Quote Server

Quote Handler: this class interacts with clients by receiv-
ing stock quote requests, finding quote values in the database,
and returning responses. Using the concurrency model in this
example, each Quote Handler runs in a separate thread
of control.

Quote Acceptor: this class is a factory [12] that
implements the strategy for passively initializing a
Quote Handler. This involves assembling the resources
necessary to create a new Quote Handler object, ac-
cepting the connection into this object, and activating the
Quote Handler by calling its open method.

The architecture of the multi-threaded C++ solution is
similar to the single-threaded C++ solution presented in
our last column. The primary difference is that the
Quote Handlers and Quote Acceptor all run in sep-
arate threads, rather than being driven by callbacks from the
Reactor within a single thread. Figure 1 illustrates how
the thread-per request concurrency model allows multiple re-
quests from the same client to be processed simultaneously
by different threads.

3.1.1 The Quote Handler Class

We’ll start by showing theQuote Handler. This template
class inherits from the reusable Svc Handler base class in
ACE. A Svc Handler defines a generic interface for a
communication service that exchanges data with peers over
network connections:

4

template <class STREAM> // IPC interface
class Quote_Handler
: public Svc_Handler<STREAM>
// This ACE base class defines "STREAM peer_;"

{
public:

Quote_Handler (Quote_Database &db,
RW_Mutex &lock)

: db_ (db), lock_ (lock) {}

// This method is called by the Quote_Acceptor
// to initialize a newly connected Quote_Handler
// (which spawns a new thread to handle client).
virtual int open (void) {
Thread::spawn
// Thread entry point.
(Quote_Handler<STREAM>::request_thread,
(void *) this, // Entry point arg.

THR_DETACHED | THR_NEW_LWP); // Thread flags.
}

// Static thread entry point method.

static void *request_thread (void *) {
Quote_Handler<STREAM> *client =
static_cast <Quote_Handler<STREAM> *> args;

// Handle one request.
int result = client->handle_quote ();

// Shut down the STREAM to avoid HANDLE leaks.
client->close ();

// Exit the thread.
thr_exit ((void *) result);
/* NOTREACHED */

}

// Handles the quote request/response. This
// can block since it runs in its own thread.
virtual int handle_quote (void) {
Quote_Request req;
int value;

if (recv_request (req) <= 0) return -1;
else {
// Constructor of m acquires lock_.
Read_Guard<RW_Mutex> m (lock_);

value = this_ptr->db_.lookup_stock_price (req);

// Destructor of m releases lock_.
}
return send_response (value);

}

// Close down the handler and release resources.
void close (void) {
// Close down the connection.
this->peer_.close ();

// Commit suicide to avoid memory leaks...
delete this;

}

private:
Quote_Database &db_; // Reference to quote database.
RW_Mutex &lock_; // Serialize access to database.

};

The C++ implementation of handle quote ensures the
lock will be released regardless of whether the method
throws an exception or returns normally. To ensure this
behavior the following Read Guard class is used:

template <class LOCK>
class Read_Guard
{
public:

Read_Guard (LOCK &m): lock (m) {

lock.acquire_read ();
}
˜Read_Guard (void) {
lock.release ();

}
private:
LOCK &lock;

}

TheRead Guard class defines a block of code where a lock
is acquired when the block is entered and released automat-
ically when the block is exited. Read Guard employs a
C++ idiom (first described in [13]) that uses the constructor
to acquire a resource automatically when an object of the
class is created and uses the destructor to release the resource
automatically when it goes out of scope. In this case, the
resource is an RW Mutex, which is a C++ wrapper for the
Solaris rwlock t readers/writer lock. Since the LOCK type
of Read Guard is parameterized, this class can be used
with a family of synchronization wrappers that conform to
the acquire read/release interface.

In the stock quote server, the Quote Handler template
is instantiated with the SOCK Stream wrapper for TCP
stream sockets available in the SOCK SAP class category
from the ACE IPC SAP class library:

typedef Quote_Handler <SOCK_Stream> QUOTE_HANDLER;

SOCK SAP contains a set of C++ classes that shields appli-
cations from tedious and error-prone details of programming
at the socket level [8].

3.1.2 The Quote Acceptor Class

Next we’ll show the Quote Acceptor class. This class is
a factory that implements the strategy for passively initializ-
ing a Quote Handler. The Quote Acceptor supplies
concrete template arguments for the following implementa-
tion of the Acceptor pattern [9]:

template <class SVC_HANDLER, // Service handler
class PEER_ACCEPTOR> // Passive conn. mech.

class Acceptor
{
public:
// Initialize a passive-mode connection factory.
Acceptor (const PEER_ACCEPTOR::ADDR &addr)
: peer_acceptor_ (addr) {}

// Implements the strategy to accept connections
// from clients, and create and activate
// SVC_HANDLERs to exchange data with peers.

int handle_input (void) {
// Create a new SVC_HANDLER.
SVC_HANDLER *svc_handler = make_svc_handler ();

// Accept connection into the SVC_HANDLER.
peer_acceptor_.accept (*svc_handler);

// Delegate control to the SVC_HANDLER.
svc_handler->open ();

}

// Virtual Factory Method to make a SVC HANDLER.
virtual SVC_HANDLER *make_svc_handler (void) = 0;

private:

5

PEER_ACCEPTOR peer_acceptor_;
// Factory that establishes connections passively.

};

The Quote Acceptor subclass is defined by param-
eterizing the Acceptor template with concrete types
that (1) accept connections (e.g., SOCK Acceptor or
TLI Acceptor) and (2) concurrently perform the quote
service (Quote Handler):

// Make a specialized version of the Acceptor
// factory to create QUOTE_HANDLERs that
// process quote requests from clients.
class Quote_Acceptor :
public Acceptor <QUOTE_HANDLER, // Quote service.

SOCK_Acceptor> // Passive conn. mech.
{
public:
typedef Acceptor <QUOTE_HANDLER, SOCK_Acceptor>

inherited;

Quote_Acceptor (const SOCK_Acceptor::ADDR &addr,
Quote_Database &db)

: inherited (addr), db_ (db) {}

// Factory method to create a service handler.
// This method overrides the base class to
// pass pointers to the Quote_Database and
// the RW_Mutex lock.

virtual QUOTE_HANDLER *make_svc_handler (void) {
return new QUOTE_HANDLER (db_, lock_);

}

private:
Quote_Database &db_; // Reference to database
RW_Mutex lock_; // Serialize access to database.

}

The main function uses the components defined above to
implement the quote server:

int main (int argc, char *argv[])
{
u_short port = argc > 1 ? atoi (argv[1]) : 10000;

// Factory that produces Quote_Handlers.
Quote_Acceptor acceptor (port, quote_db);

// Single-threaded event loop that dispatches all
// events in the Quote_Acceptor::handle_input()
// method.

for (;;)
acceptor.handle_input ();

/* NOTREACHED */
}

After the Quote Acceptor factory has been cre-
ated the application goes into an event loop. This
loop runs continuously accepting client connections
and creating Quote Handlers. Each newly-created
Quote Handler spawns a separate thread in which it han-
dles the client quote request and response.

3.2 Evaluating the C++ Wrappers Solution

Implementing the quote server with C++ wrappers is an im-
provement over the direct use of sockets, Solaris threads, and
C for the following reasons:

� Simplified programming and increased robustness:
Tedious and error prone low-level details of concurrent pro-
gramming are encapsulated by Thread wrappers. For ex-
ample, the Read Guard idiom automatically acquires and
releases mutex locks in critical sections.

� Improved portability: C++ wrappers shield applications
from platform-specific details of multi-threaded program-
ming interfaces. Encapsulating threads with C++ classes
(rather than stand-alone C functions) improves application
portability. For instance, the server no longer accesses So-
laris thread functions directly. Therefore, the implementation
shown above can be ported easily to other OS platforms with-
out changing theQuote Handler andQuote Acceptor
classes.

� Increased reusability and extensibility of components:
The Quote Acceptor and Quote Handler compo-
nents are not as tightly coupled as the C version shown in
Section 2.1. This makes it easier to extend the C++ solu-
tion to include new services, as well as to enhance existing
services. For example, to modify or extend the functionality
of the quote server (e.g., to add stock trading functional-
ity), only the implementation of the Quote Handler class
must change. Likewise, the readers/writer lock that protects
the Quote Database is no longer a global variable. It’s
now localized within the scope of Quote Handler and
Quote Acceptor.

Note that the use of C++ features like templates and inlin-
ing ensures that the improvements described above do not
penalize performance.

The C++ wrapper solution is a significant improvement
over the C solution for the reasons we mentioned above.
However, it still has all the drawbacks we’ve discussed in pre-
vious columns such as not addressing higher-level commu-
nication topics like object location, object activation, com-
plex marshalling and demarshalling, security, availability
and fault tolerance, transactions, and object migration and
copying. A distributed object computing (DOC) framework
like CORBA or Network OLE is designed to address these
issues. DOC frameworks allow application developers to
focus on solving their domain problems, rather than worry-
ing about network programming details. In the following
section we describe several ways to implement thread-per-
request servers using CORBA.

4 The Multi-threaded CORBA Solu-
tion

The CORBA 2.0 specification [14] does not prescribe a con-
currency model. Therefore, a CORBA-conformant ORB
need not provide multi-threading capabilities. However,
commercially-available ORBs are increasingly providing
support for multi-threading. The following section out-
lines several concurrency mechanisms available in two such
ORBs: HP ORB Plus and MT-Orbix.

6

As in previous columns, the server-side CORBA imple-
mentation of our stock quote example is based on the follow-
ing OMG-IDL specification:

module Stock {
// Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
// Returns the current stock value or
// throw an Invalid_Stock exception.
long get_quote (in string stock_name)
raises (Invalid_Stock);

};
};

In the following section we’ll illustrate how a server program-
mer can implement multi-threaded versions of this OMG-IDL
interface using HP ORB Plus and MT-Orbix.

4.1 Overview of Multi-threaded ORBs

A multithreaded ORB enables many simultaneous requests
to be serviced by one or more CORBA object implementa-
tions. In addition, objects need not be concerned with the
duration of each request. Without multiple threads, each re-
quest must execute quickly so that incoming requests aren’t
starved. Likewise, server applications must somehow ensure
that long-duration requests do not block other requests from
being serviced in a timely manner.

To understand multi-threaded CORBA implementations,
let’s first review how a conventional reactive implementation
of CORBA is structured. Here’s the main event loop for a
typical single-threaded Orbix server:

int main (void)
{
// ...
// Create an object implementation.
My_Quoter my_quoter(db);

// Listen for requests and dispatch object methods.
CORBA::Orbix.impl_is_ready("My_Quoter");
// ...

}

Likewise, the main event loop for an equivalent single-
threaded HP ORB Plus server might appear as follows:

int main (void)
{
// ...
// Create an object implementation.
My_Quoter my_quoter(db);

// Generate an object reference for quoter object.
Stock::Quoter_var qvar = quoter._this();

// Listen for requests and dispatch object methods.
// (hpsoa stands for "HP Simplified Object Adapter").
hpsoa->run();
// ...

}

The impl is ready and run methods are public inter-
faces to the CORBA event loop. In a single-threaded ORB,
these methods typically use the Reactor pattern [1] to wait
for CORBA method requests to arrive from multiple clients.
The processing of these requests within the server is driven

by upcalls dispatched by impl is ready or run. These
upcalls invoke the get quote method of the My Quoter
object implementation supplied by the server programmer.
The upcall borrows the thread of control from the ORB to
execute get quote. This makes serialization trivial since
there can only be one upcall in progress at a time in a single-
threaded ORB.

In a multi-threaded ORB like MT-Orbix or HP ORB
Plus, however, there can be multiple threads of control
executing CORBA upcalls concurrently. Although the
impl is ready and run interfaces don’t change, the in-
ternal behavior of the respective ORBs do change. In partic-
ular, they must perform additional locking of ORB internal
data structures to prevent race conditions from corrupting the
private state of their implementation.

4.1.1 Implementing Thread-per-Request in HP ORB
Plus

An implementation of the My Quoter class for HP ORB
Plus is shown below:

// Implementation class for IDL interface.

class My_Quoter
// Inherits from an automatically-generated
// CORBA skeleton class.

: virtual public HPSOA_Stock::Quoter
{
public:
My_Quoter (Quote_Database &db): db_ (db) {}

// Callback invoked by the CORBA skeleton.
virtual long get_quote (const char *stock_name,

CORBA::Environment &ev) {
// assume no exceptions
ev.clear();
long value;
{

// Constructor of m acquires lock_.
MSD_Lock m(lock_);

value = db_.lookup_stock_price (stock_name);
// Destructor of m releases the lock_.

}
if (value == -1)

ev.exception(new Stock::Invalid_Stock);
return value;

}

private:
Quote_Database &db_; // Reference to quote database.
MSD_Mutex lock_; // Serialize access to database.

};

My Quoter is our object implementation class. It in-
herits from the HPSOA Stock::Quoter skeleton class.
This class is generated automatically from the original
IDL Quoter specification. The Quoter interface sup-
ports a single operation: get quote. Our implementa-
tion of get quote relies on an external database object
that maintains the current stock price. If the lookup of
the desired stock price is successful the value of the stock
is returned to the caller. If the stock is not found, the
database lookup stock price function returns a value
of �1. This value triggers our implementation to return a
Stock::Invalid Stock exception.

7

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

QUOTE SERVER

OBJECTOBJECT

ADAPTERADAPTER

1:1: BIND BIND

2:2: ACCEPT ACCEPT

3:3: SPAWN THREAD SPAWN THREAD

4:4: UPCALL UPCALL: My_Quoter: My_Quoter
ImplImpl

: My_Quoter: My_Quoter
ImplImpl

: My_Quoter: My_Quoter
ImplImpl

5:5: HANDLE QUOTE REQUEST HANDLE QUOTE REQUEST

Figure 2: HP ORB Plus Architecture for the Thread-per-
Request Stock Quote Server

Since this code is multi-threaded, the object implemen-
tation must acquire a lock before accessing the state of the
db object, just like the C and C++ solutions presented ear-
lier. The code uses the MSD Threads Abstraction Library5

provided by HP ORB Plus. The MSD Lock class is similar
to the Read Guard shown in Section 3.1. By using the
MSD Lock, we ensure that the lock is released, even if an
exception is thrown.

By default, the ORB Plus HP Simplified Object Adapter
(HPSOA) provides a thread-per-request concurrency model.
It spawns a separate thread for each incoming request if
a server is configured to use multi-threading. Therefore,
applications need not explicitly create threads unless they
require a greater degree of control than that provided by
the HPSOA. Note, however, that the main function need
not change at all, regardless of whether a single-threaded or
multi-threaded configuration is used.

Figure 2 illustrates the HP ORB Plus architecture for the
thread-per-request stock quote server. The HP Simplified
Object Adapter (HPSOA) and the HP ORB are responsible
for spawning a new thread for each incoming request and
dispatching theMy Quoter::get quote implementation
to execute each stock request in a separate thread.

5MSD stands for “MeasurementSystems Department,” the HP laboratory
where the threads abstraction library was developed.

4.1.2 Implementing Thread-per-Request in MT-Orbix

The My Quoter implementation class shown below illus-
trates how the thread-per-request concurrency model can be
implemented in MT-Orbix:
// Implementation class for IDL interface.

class My_Quoter
// Inherits from an automatically-generated
// CORBA skeleton class.

: virtual public Stock::QuoterBOAImpl
{
public:
My_Quoter (Quote_Database &db): db_ (db) {}

// Callback invoked by the CORBA skeleton.
virtual long get_quote (const char *stock_name,

CORBA::Environment &ev) {
// Constructor of m acquires lock.
Read_Guard<RW_Mutex> m (lock_);

long value =
db_.lookup_stock_price (stock_name);

if (value == -1)
ev.exception(new Stock::Invalid_Stock);

return value;

// Destructor of m releases lock.
}

private:
Quote_Database &db_; // Reference to quote database.
RW_Mutex lock_; // Serialize access to database.

};

This version of the My Quoter object implementation
class is similar to the one shown for HP ORB Plus
in Section 4.1.1. One minor difference is that the
My Quoter class inherits from a different skeleton class:
Stock::QuoterBOAImpl. This class is generated auto-
matically from the original IDL Quoter specification, just
like the HP ORB PlusHPSOA Stock::Quoterbase class,

The main program for the MT-Orbix quote server is iden-
tical to the one single-threaded version shown in Section 4.1.
The only extra C++ code we have to write is called a
ThreadFilter. Each incoming CORBA request is passed
through the chain of filters before being dispatched to its tar-
get object implementation.

Filters are an MT-Orbix extension to CORBA that imple-
ment the “Chain of Responsibility” pattern [12]. Orbix uses
this pattern to decouple (1) the demultiplexingof CORBA re-
quests (e.g., generated by the client-sideget quote proxy)
to their associated target object (e.g., my quoter) from (2)
the eventual dispatching of the upcall method implementa-
tion (e.g., My Quoter::get quote). This decoupling
enables applications to transparently extend the behavior of
Orbix without modifying the ORB itself.

Figure 3 illustrates the role of the ThreadFilter in the
MT Orbix architecture for the thread-per-request stock quote
server. Note how the TPR ThreadFilter is responsible
for spawning a thread that dispatches theget quote upcall.
Thus, the ORB and MT Orbix Object Adapter are unaffected
by this threading architecture.

To enable a new thread to be spawned for an incoming
request, a subclass of ThreadFilter must be defined to
override theinRequestPreMarshalmethod,as follows:

8

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

QUOTE SERVER

OBJECTOBJECT

ADAPTERADAPTER

: My_Quoter: My_Quoter
ImplImpl

: My_Quoter: My_Quoter
ImplImpl

1:1: BIND BIND

2:2: ACCEPT ACCEPT

3:3: INVOKE INVOKE

 FILTERS FILTERS((SS))

: TPR: TPR
ThreadThread
FilterFilter

4:4: SPAWN THREAD SPAWN THREAD

5:5: UPCALL UPCALL

: My_Quoter: My_Quoter
ImplImpl

6:6: HANDLE QUOTE REQUEST HANDLE QUOTE REQUEST

Figure 3: MT Orbix Architecture for the Thread-per-Request
Stock Quote Server

// Create a filter that spawns a "thread-per-request"
// to dispatch object implementation upcalls.
class TPR_ThreadFilter : public CORBA::ThreadFilter
{
// Intercept request and spawn thread
virtual int inRequestPreMarshal (CORBA::Request &,

CORBA::Environment&);
// ...

};

Orbix will call inRequestPreMarshal method before
the incoming request is processed. This method must return
�1 to indicate that it has spawned a thread to deal with the
request. Threads can be spawned according to whatever con-
currency model is appropriate for the application. In this ex-
ample, we’re using the thread-per-request model. Therefore,
the implementation of inRequestPreMarshal could be
written as follows:

// Implementation of inRequestPreMarshal

int
TPR_ThreadFilter::inRequestPreMarshal
(CORBA::Request &req, // Incoming CORBA Request.
CORBA::Environment&)

{
Thread::spawn
(continueDispatching, // Entry point.
(void *) &req, // Entry point arg.
THR_DETACHED | THR_NEW_LWP); // Thread flags.

// Tell Orbix we will dispatch request later.
return -1;

}

The continueDispatching function is the entry point
where the new thread begins executing:

void *continueDispatching (void *vp)
{
CORBA::Request *req = (CORBA::Request *) vp;
CORBA::Orbix.continueThreadDispatch (*req);
return 0;

}

The MT-Orbix methodcontinueThreadDispatchwill
continue processing the request until it sends a reply to the
client. At this point, the thread will exit.

Our quote server must explicitly create an instance of
TPR ThreadFilter to get it installed into the filter chain:

TPR_ThreadFilter tpr_filter;

The constructor of this object automatically inserts the filter
at the end of the filter chain.

4.2 Evaluating the CORBA Solutions

The multi-threaded CORBA solutions presented above are
similar to the C++ wrapper solution shown in Section 3. All
the solutions contain a master thread that is responsible for
accepting connections from clients. The master thread then
explicitly or implicitly spawns slave threads to execute client
requests concurrently. All the solutions require application
code to explicitly lock any data structures (such as the quote
database) shared with other threads. This design provides
developers with greater control over applicationconcurrency,
at the expense of additional programming effort.

As we pointed out in our previous column, server-side
portability is currently a problem area for CORBA. In par-
ticular, the MT-Orbix and HP ORB Plus examples illustrate
the following trouble spots:

� Non-
standard Object Adapter Mappings: In the MT-Orbix
code, the skeleton base class for the My Quoter object im-
plementation class is named Stock::QuoterBOAImpl,
while in the HP ORB Plus code the skeleton base class is
named HPSOA Stock::Quoter. This is because Orbix
provides an implementation of the CORBA Basic Object
Adapter (BOA), while HP ORB Plus provides another object
adapter called the HP Simplified Object Adapter (HPSOA).
The differences in object adapters between these products is
due to portability problems with the BOA that are currently
being addressed by the OMG ORB Task Force.

� Non-Standard Concurrency Models: Another differ-
ence between the MT-Orbix and HP ORB Plus Quoter im-
plementations involves threading. Both HP ORB Plus and
MT-Orbix allow the choice of whether an application is multi-
threaded or single-threaded to occur at link time.

In HP ORB Plus, linking an application against the
null threads library makes it single-threaded, while linking
against a multiple threads library makes it multi-threaded. If
a server application is linked against the HP ORB Plus multi-
ple threads library, each request is handled using the thread-
per-request concurrency model. MT-Orbix also support this
model, but contains hooks that allow programmers to imple-
ment other concurrency models. The choice of concurrency

9

model in MT-Orbix depends on the type of ThreadFilter
configured into the filter chain.

Despite their differences, the HP ORB Plus and MT-Orbix
examples show that programming concurrent CORBA appli-
cations is straightforward.

� Non-Standard Synchronization Mechanisms: HP
ORB Plus provides the MSD Threads Abstraction Library for
threads portability. The MSD library implements a common
interface for the null threads and multiple threads libraries.
In addition, this library shields applications from incompat-
ibilities across HP-UX, Solaris, and Windows NT thread li-
braries. MT-Orbix applications, in contrast, use whatever
threads package is provided by the underlying platform. This
flexibility can be both an advantage and a disadvantage. Al-
though it may require programmers to develop or reuse C++
threads wrappers, it allows servers to take advantage of more
efficient mechanisms provided by an OS or threads package.
For instance, the MT-Orbix implementation in Section 4.1.2
uses readers/writer locks. Often, these can be more efficient
than the regular mutexes provided by the HP ORB Plus MSD
library shown in Section 4.1.1.

Since CORBA makes no mention of threads, it remains to
be seen whether the OMG ORB Task Force will take it upon
itself to address this issue as a CORBA portability problem.
Clearly, in the short term we could use techniques like the
Adapter pattern [12] and reusable C++ toolkits like ACE to
make our object implementations relatively portable across
different OS platforms and different ORBs.

� Non-C++ Exception Handling: Both the HP ORB
Plus and MT-Orbix implementations currently use
Environment parameters to convey exception informa-
tion rather than C++ exceptions. Both ORBs will support
C++ exceptions in the near future. When exception handling
is supported the get quote implementation would look
like this:

virtual long get_quote (const char *stock_name,
CORBA::Environment& ev) {

// ...
// Constructor of m acquires lock_.
Read_Guard<RW_Mutex> m (lock_);

if (value == -1)
throw Stock::Invalid_Stock();

// ...

Coding defensively with idioms like the Read Guard is
essential to protect programs from hazardous side-effects of
C++ exceptions [15].

5 Evaluating the Thread-per-Request
Concurrency Model

All the servers shown above were designed using a thread-
per-request concurrency model. This is a fairly straightfor-
ward model to design and implement. However, it is probably
the wrong concurrency model for the task of retrieving stock
quotes. There are two primary problems:

�Thread creation overhead: The time required to lookup
a stock quote may be low relative to the time required to create
the thread. In addition, even if the thread ran for a longer
amount of time, the performance of the thread-per-request
may not scale. For example, it may lead to unacceptably
high resource utilization if there are hundreds or thousands
of simultaneously active clients.

� Connection creation overhead: The thread-per-request
model sets up a new connection for each request. Therefore,
the overhead of establishing the connection is not amortized
if clients send multiple requests to the server. The single-
threaded solution we showed in our previous column kept
the connection open until it was explicitly shut down by the
client. Although our new solution might not affect how the
client was programmed, the difference in connection strate-
gies would likely show up in performance measurements.

The actual performance of a particular concurrency model
depends to a large extent on the following factors:

� The types of requests received from clients: e.g., short
vs. long duration;

� How threads are implemented: e.g., in the OS kernel,
in a user-space library, or some combination of both;

�Operating system and networking overhead: e.g., how
much other overhead results from setting up and tearing down
connections repeatedly;

� Higher-level system configuration factors: such as
whether replication and/or dynamic load balancing are used,
also ultimately affect performance.

We’ll discuss these performance issues in future columns.
Another drawback with our solution is that the

handle quote function above serializes access to the
Quote Database at a very coarse-grained level, i.e., at
the database level. The scope of the mutex ensures that the
whole database is locked. This is fine if most operations are
lookups and a readers/writer lock is used. However, it may
lead to performance bottlenecks if stock prices are frequently
updated, or if regular mutexes must be used. A more effi-
cient solution would push the locking into the database itself,
where record or table locking could be performed.

One important conclusion from this evaluation is the im-
portance of distinguishingbetween concurrency tactics (such
as threading and synchronization mechanisms provided by
an OS threads library) and concurrency strategies (such
as thread-per-request, thread-per-session, thread-per-object,
etc.). Threading libraries provide low-level mechanisms for
creating different concurrency models. However, develop-
ers are ultimately responsible for knowing how to use these
mechanisms successfully. Design patterns are a particularly
effective way to help application developers master subtle
differences between different strategies and firmly under-
stand the applicability and consequences of different con-
currency models. We’ll explicitly cover key patterns for
concurrent distributed object computing in future articles.

10

6 Concluding Remarks

In this column, we examined several different programming
techniques for developing multi-threaded servers for a dis-
tributed stock quote application. Our examples illustrated
how object-oriented techniques, C++, and higher-level ab-
stractions help to simplify programming and improve exten-
sibility.

Programming distributed applications without multiple
threads is hard, especially for server applications. With-
out multi-threading capabilities, the server developer must
either ensure that requests can be handled so quickly that
new requests aren’t “starved” or they must use heavyweight
mechanisms like fork or CreateProcess to create a
new process to service each request. In practice, though,
most non-trivial requests can’t be serviced quickly enough
to avoid starving clients. Likewise, creating entire new pro-
cesses to service requests is time consuming, requires too
many system resources, and can be hard to program.

With multiple threads, each request can be serviced in its
own thread, independent of other requests. This way, clients
aren’t starved by waiting for their requests to be serviced.
Likewise, system resources are conserved since creating a
thread is often less expensive than creating a whole new
process.

In general, multithreaded systems can be difficult to de-
velop due to subtle synchronization issues. Moreover, not
all platforms provide good support for threads or thread-
aware debuggers yet. Often, however, the benefits of threads
outweigh the disadvantages. When used properly, multi-
threaded programming can enable simpler designs and im-
plementations than single-threaded programming. Much of
this simplicity derives from the fact that scheduling issues
are handled by the threads package, not the application.

The benefits of CORBA and C++ become more evident
when we extend the quote server to support different concur-
rency models. In particular, the effort required to transform
the CORBA solution from the existing thread-per-request
server to other forms of concurrency models is minimal.
The exact details will vary depending on the ORB imple-
mentation and the desired concurrency strategy. However,
multi-threaded versions of CORBA typically require only a
few extra lines of code. Our next column will illustrate how
to implement the other concurrency models (such as thread-
per-session and thread-pool). Future columns will address
other topics related to multi-threaded ORBs, such as the per-
formance impacts of using different concurrency models. As
always, if there are any topics that you’d like us to cover,
please send us email at object_connect@ch.hp.com.

Thanks to Andy Gokhale, Prashant Jain, and Ron Resnick
for comments on this column.

References
[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for

Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.

Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[2] A. Banerji and D. L. Cohn, “Shared Objects and Vtbl Place-
ment for C++ ,” Journal of C Language and Translation,
vol. 6, pp. 44–60, Sept. 1994.

[3] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[4] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[5] IEEE, Threads Extension for Portable Operating Systems
(Draft 10), February 1996.

[6] C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

[7] R. C. Martin, “The Open-Closed Principle,” C++ Report,
vol. 8, Jan. 1996.

[8] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[9] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

[10] D. C. Schmidt, “An OO Encapsulation of Lightweight OS
Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
1995.

[11] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[13] Bjarne Stroustrup, The C++ Programming Language, 2nd

Edition. Addison-Wesley, 1991.

[14] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.0 ed., July 1995.

[15] H. Mueller, “Patterns for Handling Exception Handling Suc-
cessfully,” C++ Report, vol. 8, Jan. 1996.

11

