Object I nterconnections

Comparing Alternative Programming Techniques for Multi-threaded Servers (Column 5)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science

Washington University, St. Louis, MO 63130

This column will appear in the February 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

This column examines and evaluates severa techniques for
devel oping multi-threaded servers. The server we' reexamin-
ing mediates access to astock quotedatabase. Desktop client
applicationsoperated by investment brokersinteract with our
server to query stock prices. Aswith our previous columns,
we'll compare several waysto program multi-threaded quote
servers using C, C++ wrappers, and CORBA.

1.1 Background

A process is a collection of resources that enable a program
to execute. In modern operating systems like Windows NT,
UNIX, and OS/2, process resources include virtua mem-
ory, handles to 1/O devices, a run-time stack, and access
control information. On earlier-generation operating sys-
tems (such as BSD UNIX and Windows), processes were
single-threaded. However, many applications (particularly
networking servers) are hard to devel op using single-threaded
processes. For example, the single-threaded, iterative stock
guoteserver we presentedin our last column cannot block for
extended periods of time handling one client request since
the quality of service for other clients would suffer. The
following are severa common ways to avoid blocking in
single-threaded servers:

¢ Reactive event dispatchers: one approach is to de-
velop an event dispatcher (such as the object-oriented Re-
actor framework described in [1]). Reactive dispatching is
commonly used to manage multipleinput devices in single-
threaded user-interface frameworks. In these frameworks,
the main event dispatcher detects an incoming event, de-
multiplexes the event to the appropriate handler object, and
dispatches an application-specific callback method to handle
the event.

The primary drawback with thisapproach is that long du-
ration operations (such as transferring a large file or per-
forming a complex database query) must be developed using

Steve Vinoski

vinoski @ch.hp.com
Hewlett-Packard Company
Chdmsford, MA 01824

non-blocking I/0 and explicit finite state machines. This ap-
proach becomes unwieldy as the number of states increase.
In addition, only non-blocking operations are used. This
makesit hard to improve performance viatechniques such as
“1/0 streaming” or schemes that exploit locality of reference
in data and instruction caches on multi-processors.

o Cooperativetasking: another approach isto use acoop-
erativetask library. A process can have multiple tasks, each
contai ning a separate run-time stack, instruction pointer, and
registers. Therefore, each task isaseparate unit of execution,
which executes within the context of aprocess. Cooperative
tasking is non-preemptive, which means task context infor-
mationwill only bestored and retrieved at certain preemption
points.t Thisenablesthelibrary to suspend atask’sexecution
until another task resumesit. The multi-tasking mechanisms
on Windows 3.1, Mac System 7 OS, and the original task
library bundled with cfront are examples of cooperativetask-
ing.

Cooperativetask librariescan be hard to program correctly
since developers must modify their programming style to
avoid certain OS festures (such as asynchronous signals).
Another limitation with cooperative tasking is that the OS
will block all tasks in a process whenever one task incurs
a page fault. Likewise, the failure of a single task (e.g.,
mistakenly spinning in an infinite loop) will hang the entire
process.

e Multi-processing: another way to aleviate the com-
plexity of single-threaded processes is to use coarse-grained
multi-processing capabilities provided by system calls like
fork on UNIX and Cr eat eProcess on Windows NT.
These calls create a separate child process that executes a
task concurrently with its parent. Separate processes can
collaborate directly (by using mechanisms such as shared
memory and memory-mapped files) or indirectly (by using
pipes or sockets).

However, the overhead and inflexibility of creating and
using processes may be prohibitively expensive and overly
complicated for many applications. For example, process
creation overhead can be excessive for short-duration ser-
vices (such asresolving the Ethernet number of an |Paddress,

IPreemption points commonly occur when a task acquires or releases a
lock, invokesan 1/0 operation, or explicitly “yields’.

retrieving adisk block fromanetwork file server, or setting an
attributein an SNMPMIB). Moreover, it may not be possible
to exert fine-grain control over the scheduling behavior and
priority of processes. In addition, processes that share C++
objectsin shared memory segments must make non-portable
assumptionsabout the placement of virtual table pointers[2].

o Preemptive multi-threading: When used correctly, pre-
emptive multi-threading provides a more elegant, and po-
tentially more efficient, means to overcome the limitations
with the other concurrent processing techniques described
above. A thread isa single sequence of execution steps per-
formed in the context of a process. In addition to its own
instruction pointer, a thread contains other resources such
as a run-time stack of function activation records, a set of
genera-purpose registers, and thread-specific data. A pre-
emptive multi-threading operating system (such as Solaris
2.x [3] and Windows NT [4]) or library (such as the POSIX
pthreadslibrary [5] available with DCE) uses a clock-driven
scheduler to ensure that each thread of control executes for
aparticular period of time. When athread’'s time period has
elapsed it is preempted to allow other threadsto run.

Conventional operating systems (such as variants of
UNIX, Windows NT, and OS/2) support the concurrent ex-
ecution of multiple processes, each containing one or more
threads. A process serves as the unit of protection and re-
source alocation within a separate hardware protected ad-
dressspace. A thread serves astheunit of execution that runs
within aprocessaddressspacethat isshared with zero or more
threads. The remainder of thiscolumn focuses on techniques
for programming preemptive multi-threaded servers.

1.2 Multi-threaded Server Programming

Multi-threaded servers are designed to handle multipleclient
requests simultaneously. The following are common moti-
vations for multi-threading a server:

e Simplify program design: by alowing multiple server
tasks to proceed independently using conventiona program-
ming abstractions (such as synchronous CORBA remote
method requests and replies);

e Improvethroughput performance: by using the paral-
lel processing capabilities of multi-processor hardware plat-
forms and overlapping computation with communication;

e Improve perceived responsetime: for interactiveclient
applications (such as user interfaces or network management
tools) by associating separate threads with different server
tasks so clientsdon’t block for long.

There are anumber of different models for designing con-
current servers. The following outlines several concurrency
models programmers can choose from when multi-threading
their servers:

e Thread-per-request: this model handles each request
from aclient in a separate thread of control. This modd is
useful for serversthat handlelong-duration requests (such as

database queries) from multiple clients. It isless useful for
short-duration requests due to the overhead of creating anew
thread for each request. It can aso consumealarge number of
OS resources if many clients make requests simultaneoudly.

e Thread-per-session: thismodel isa variation of thread-
per-request that amortizes the cost of spawning the thread
across multiplerequests. Thismode handles each client that
connectswith aserver in aseparate thread for the duration of
thesession. Itisuseful for serversthat carry onlong-duration
conversationswithmultipleclients. Itisnot useful for clients
that make only a single request since this is essentiadly a
thread-per-request model.

e Thread pool: this modd is another variation of thread-
per-request that also amortizes thread creation costs by pre-
spawning a pool of threads. It isuseful for servers that want
to bound the number of OS resources they consume. Client
requests can be executed concurrently until the number of
simultaneous requests exceeds the number of threads in the
pool. At thispoint, additional requests must be queued until
athread becomes available.

e Thread-per-object: this model associates a thread for
each logical object (i.e, service) in the server. It is useful
when programmers want to minimize the amount of rework
required to multi-thread an existing server. It isless useful
if certain objects receive considerably more requests than
others since they will become a performance bottleneck.

In general, multi-threaded servers require more sophisti-
cated synchroni zati on strategi esthan single-threaded servers.
To illustrate how to dleviate unnecessary complexity, we
present and evaluate a number of strategies and tactics nec-
essary to build robust and efficient thread-per-request servers.
Wefirst examineasimplesolutionusing C and Solaristhreads
[3]. We then describe how using C++ wrappers for threads
hel psreduce the complexity and improvesthe portability and
robustness of the C solution. Finaly, we present a solution
that illustratesthe thread-per-request concurrency model im-
plemented using two multi-threaded versions of CORBA (HP
ORB Plus and MT-Orbix [6]). Our next column will show
examples of the other concurrency models.

A word of caution: the multi-threading techniques we
discussin this column aren’t standardized throughout the in-
dustry. Therefore, some of the code we show is not directly
reusable across all OS platforms. However, the key con-
currency techniques and patterns we illustrate are reusable
across different platforms.

2 The Multi-threaded C Server Solu-
tion

2.1 Socket/C Code

Thefollowing codeillustrateshow to program the server-side
of our stock quote program using sockets, Solaris threads,

and C. Our previous column presented a set of utility rou-
tineswrittenin C used below to receive stock quote requests
from clients (r ecv_r equest), lookup quote information
(I ookup_st ock_pri ce), and returnthe quotetotheclient
(send.r esponse).

/* WN32 al ready defines this. */

#i f defined (unix)

typedef int HANDLE;
#endif /* unix */

/* These inplenentations were in our last colum. */
HANDLE create_server_endpoint (u_short port);

int recv_request (HANDLE h, struct Quote_Request *req);

int send_response (HANDLE h, |ong value);
int handl e_quote (HANDLE);

211 Spawning Threads

Thenmai n functionshown below usesthese C utility routines
to create aconcurrent quote server. Thisserver usesathread-
per-request concurrency model. The main program creates
a“passive-mode” listener socket (which accepts connections
from clients) and then calls svc_r un to perform the main
quote server’s event loop:

int main(int argc, char *argv[])

u_short port /* Port to listen for connections. */
= argc > 1 ? atoi(argv[1]) : 10000;

/* Create a passive-node |istener endpoint. */
HANDLE | i stener = create_server_endpoi nt(port);

/* The event loop for the main thread. */
svc_run (listener);
/* NOTREACHED */

Thesvc_r un functionwaitsin an event loop for connec-
tion requests to arrive from clients. When a request arrives,
the Solarist hr _cr eat e function spawns off a new thread
to perform thehandl e_quot e query in parallel with other
client requests:?

void svc_run (HANDLE |i stener)

{
for (;5) {
HANDLE handl e = accept(listener, 0, 0);

/* Spawn off separate thread for each client. */
thr_create

(0, /* Use default thread stack */

0, /* Use default thread stack size */

/* Thread entry point */

(void *(*)(void *)) &handl e_quote,

(void *) handle, /* Entry point arg */

THR _DETACHED | THR NEW LW, /* Flags */

0); /* Don't bother returning thread id */

}

Each thread that runsthehand| e_quot e functionblocks
awaiting the connected client to send a stock request on the
socket handl e. The handl e_quot e function can block
sinceit runsin its own thread of control. Once thisfunction
receives aclient request it processes this request, returnsthe
appropriate stock quote, and exits the thread.

2THR.DETACHED and THRINEWLWP are flags to the Solaris
t hr _cr eat e function that tell it (1) the handl e_quot e function will
exit silently when it's complete and (2) a new concurrent execution context
should be created, respectively.

2.1.2 Synchronizing Threads

The handl e_quot e function looks up stock prices in the
guotedatabase viaaglobal variableand an accessor function:

extern Quote_Dat abase *quote_db;
I ong | ookup_stock_price(Quot e_Dat abase*,
Quot e_Request *);

The single-threaded implementation of handl e_quot e
from our last column did not contain any locks to explic-
itly synchronize access to this database. Synchronization
was unnecessary in the single-threaded i mplementation since
only one client could access the database in the server at any
time. With our new thread-per-request server implementa-
tion this assumption no longer holds. If the database main-
tainsits own internal locks our existing code may still work.
In this example we'll assume the database does not main-
tain internal locks. This is often the case when integrating
multi-threadingwith legacy libraries (such asthe UNIX dbm
database libraries and X windows). Many of these libraries
were developed before multi-threading became popular, so
they don't useinternal locks.

The code shown below explicitly serializes al lookups
and updates to the database® Serialization prevents race
conditionsthat would otherwise occur when multiplethreads
accessed and updated data simultaneously. The following
implementation of handl e_quot e illustratesasimpleway
to seridize database access:

/* Define a synchronization object that

isinitially in the "unl ocked" state. */
rw ock_t 1 ock;

i nt handl e_quot e(HANDLE h)

struct Quote_Request req;
| ong val ue;

if (recv_request(h, &eq) == 0)
return O;

/* Block until read lock is available */
rw_rdl ock(& ock);

/* 1 ookup stock in database */
val ue = | ookup_stock_price(quote_db, &req);

/* Must rel ease | ock or deadlock will result! */

rw_unl ock(& ock);

return send_response(h, value);

Therw ock_t isaSolarissynchronization variable used
to protect the integrity of a shared resource (like the quote
database) that is accessed concurrently by multiple threads
of control. Arw ock_t implementsa“readers/writer” lock
that serializes thread execution by defining a critical section
where multiple threads can read the data concurrently, but
only one thread at a time can write to the data. The imple-
mentationof r W ock_t ensuresthat acquiring and rel easing
alock isan atomic operation.

3The solution we' ve shown does not show how stock prices are updated
inthedatabase. Thisisbeyond the scopeof thiscolumn andwill be discussed
in afuture column.

2.2 Evaluatingthe C Solution

Programming directly with C and Solaris threads as shown
above yields a correct program. However, devel oping con-
current applications at thislevel of detail has several draw-
backs:

o Lack of portability: The design and implementation of
the multi-threaded version of the quote server differs con-
siderably from the single-threaded version. It replaces the
reactivesel ect -driven event loop with amaster dispatcher
thread and a set of dave threads that perform database
lookups. Unfortunately, the use of Solaris threads is not
portable to other platforms (such as Windows NT, OS/2, or
other versions of UNIX).

e Lack of reusability: Theuseof global variables(likethe
| ock that protects the database from race conditions) intro-
duces unnecessary dependencies between different parts of
the code. These dependencies make it hard to reuse existing
code[7].

e Lack of robustness: in alarge program, instrumenting
all the code with mutex locks can be tedious and error-prone.
In particular, failing to release a mutex can lead to deadlock
or resource failures.

Thefollowing section describeshow wecan use C++wrap-
pers to alleviate the problems described above.

3 The Multi-threaded C++ Wrappers
Solution

Using C++ wrappers is one way to simplify the complexity
of programming concurrent network servers. C++ wrap-
pers encapsulate lower-level OS interfaces such as sockets,
multi-threading, and synchronization with type-safe, object-
oriented interfaces. The | PC_SAP [8], Accept or [9],
and Thr ead [10] C++ wrappers shown below are part of
the ACE object-oriented network programming toolkit [11].
| PC_SAP encapsul ates standard network programming inter-
faces (such as socketsand TLI1); the Accept or implements
a reusable design pattern for passively* initializing network
services, and the Thr ead wrapper encapsulates standard
OS threading mechanisms (such as Solaris threads, POSIX
pthreads, and Windows NT threads).

3.1 C++ Wrapper Code

This section illustrates how the use of C++ wrappers im-
proves the reuse, portability, and extensibility of the quote
server. Figure 1 depicts the following components in the
guote server architecture:

4Communication softwareistypified by asymmetric connection behavior
between clients and servers. In general, servers listen passively for clients
to initiate connectionsactively.

2: HANDLE INPUT

3: CREATE HANDLER

4: ACCEPT CONNECTION
5: SPAWN THREAD

6: HANDLE QUOTE REQUEST
1

l
! |

Figure1: Thread-per-Request C++ Wrapper Architecturefor
the Stock Quote Server

Quote Handler: thisclassinteractswith clientsby receiv-
ing stock quoterequests, finding quoteval uesin the database,
and returning responses. Using theconcurrency model inthis
example, each Quot e_Handl er runsin a separate thread
of control.

Quote_Acceptor: this class is a factory [12] that
implements the strategy for passively initializing a
Quot e_Handl er . Thisinvolves assembling the resources
necessary to create a new Quot e_Handl er object, ac-
cepting the connection into this object, and activating the
Quot e_Handl er by calingitsopen method.

The architecture of the multi-threaded C++ solution is
similar to the single-threaded C++ solution presented in
our last column. The primary difference is that the
Quot e Handl er s and Quot e_Accept or al runinsep-
arate threads, rather than being driven by callbacks from the
React or within a single thread. Figure 1 illustrates how
thethread-per request concurrency model allowsmultiplere-
guests from the same client to be processed simultaneously
by different threads.

3.1.1 TheQuote Handler Class

We' |l start by showingthe Quot e_Handl er . Thistemplate
classinheritsfrom the reusable Svc _Handl er baseclassin
ACE. A Svc_Handl er defines a generic interface for a
communication service that exchanges data with peers over
network connections:

tenpl ate <class STREAM> // |IPC interface
cl ass Quot e_Handl er
publ i ¢ Svc_Handl er <STREAM>
/1 This ACE base cl ass defines "STREAM peer_;"

{
publi c:
Quot e_Handl er (Quote_Dat abase &db,
RW Mut ex & ock)
db_ (db), lock_ (lock) {}

/1 This nethod is called by the Quote_Acceptor
// toinitialize a newy connected Quote_Handl er
/1 (which spawns a new thread to handle client).
virtual int open (void) {
Thr ead: : spawn
/1 Thread entry point.
(Quot e_Handl er <STREAM>: : r equest _t hr ead,
(void *) this, /1 Entry point arg.
THR_DETACHED | THR NEW LWP); // Thread fl ags.
}

/] Static thread entry point nethod.

static void *request_thread (void *) {
Quot e_Handl er <STREAM> *client =
static_cast <Quote_Handl er <STREAM> *> args;

/1 Handl e one request.
int result = client->handle_quote ();

/1 Shut down the STREAM to avoid HANDLE | eaks.
client->close ();

/1 Exit the thread.
thr_exit ((void *) result);
/* NOTREACHED */

}

/1 Handl es the quote request/response. This
/1 can block since it runs in its own thread.
virtual int handle_quote (void) {

Quot e_Request req;

int val ue;

if (recv_request (req) <= 0) return -1;
el se {
/1 Constructor of macquires |ock_.
Read_CGuar d<RW Mut ex> m (| ock_);

value = this_ptr->db_.| ookup_stock_price (req);
/1 Destructor of mreleases |ock_.

return send_response (val ue);

}

/1 O ose down the handler and rel ease resources.
voi d close (void) {

/1 O ose down the connection.

t hi s->peer_.close ();

/1 Commit suicide to avoid nenory |eaks...
delete this;

private:

Quot e_Dat abase &db_; // Reference to quote database.

RW Mitex & ock_; // Serialize access to database.

h

The C++ implementation of handl e_quot e ensuresthe
| ock_ will be released regardless of whether the method
throws an exception or returns normally. To ensure this
behavior the following Read_Guar d classis used:

tenpl ate <class LOCK>
cl ass Read_CQuard

{
publi c:
Read_Quard (LOCK &m): lock (m) {

| ock. acquire_read ();

}
“Read_Quard (void) {
| ock.rel ease ();

}

private:
LOCK &l ock;
}

TheRead_Guar d class defines ablock of code where alock
is acquired when the block is entered and released automat-
icaly when the block is exited. Read_Guar d employs a
C++ idiom (first described in [13]) that uses the constructor
to acquire a resource automatically when an object of the
classiscreated and uses the destructor to rel ease the resource
automatically when it goes out of scope. In this case, the
resource is an RWMut ex, which is a C++ wrapper for the
Solarisr W ock_t readers/writer lock. Sincethe LOCK type
of Read_Guar d is parameterized, this class can be used
with a family of synchronization wrappers that conform to
theacqui r e_r ead/r el ease interface.

In the stock quote server, the Quot e_Handl er template
is instantiated with the SOCK_St r eam wrapper for TCP
stream sockets available in the SOCK_SAP class category
from the ACE | PC_SAP class library:

typedef Quote_Handl er <SOCK_Strean> QUOTE HANDLER;

SOCK_SAP contains a set of C++ classes that shields appli-
cationsfrom tedious and error-prone detail s of programming
at the socket level [8].

3.1.2 The Quote Acceptor Class

Next we'll show the Quot e_Accept or class. Thisclassis
afactory that implements the strategy for passively initializ-
ingaQuot e_Handl er. The Quot e_Accept or supplies
concrete template arguments for the following implementa:
tion of the Acceptor pattern [9]:

tenpl ate <class SVC HANDLER, // Service handl er
cl ass PEER _ACCEPTOR> // Passive conn. mech.
cl ass Acceptor

{
public:
/1 Initialize a passive-node connection factory.
Acceptor (const PEER_ACCEPTOR: : ADDR &addr)
. peer_acceptor_ (addr) {}

/1 Implenents the strategy to accept connections
/1 fromclients, and create and activate
/1 SVC_HANDLERs to exchange data w th peers.

int handl e_i nput (void) {
/] Create a new SVC_HANDLER.
SVC HANDLER *svc_handl er = nake_svc_handler ();

/1 Accept connection into the SVC HANDLER
peer _acceptor_.accept (*svc_handler);

/1 Delegate control to the SVC HANDLER
svc_handl er - >open ();

}

/1 Virtual Factory Method to nake a SVC HANDLER
virtual SVC HANDLER *rmake_svc_handl er (void) = O;

private:

PEER_ACCEPTOR peer _acceptor_;
H

The Quot e_Accept or subclass is defined by param-
eterizing the Acceptor template with concrete types
that (1) accept connections (eg., SOCK_Acceptor or
TLI _Accept or) and (2) concurrently perform the quote
service (Quot e_Handl er):

/1 Make a specialized version of the Acceptor
/] factory to create QUOTE _HANDLERs t hat
/] process quote requests fromclients.
cl ass Quote_Acceptor :
public Acceptor <QUOTE _HANDLER, // Quote service.
SOCK_Acceptor> // Passive conn.

{
publi c:
typedef Acceptor <QUOTE_HANDLER, SOCK_Accept or>
i nherited;

Quot e_Acceptor (const SOCK_Acceptor:: ADDR &addr,
Quot e_Dat abase &db)
inherited (addr), db_ (db) {}

/1 Factory nmethod to create a service handl er.
/1 This nethod overrides the base class to

/1 pass pointers to the Quote_Database and

/1 the RW Mitex |ock.

virtual QUOTE_HANDLER *nake_svc_handl er (void) {
return new QUOTE_HANDLER (db_, Iock_);
}

private:
Quot e_Dat abase &db_; // Reference to database
RW Mitex lock_; // Serialize access to database.

}

Themai n function uses the components defined aboveto
implement the quote server:

int main (int argc, char *argv[])

u_short port = argc > 1 ? atoi (argv[1l]) : 10000;

/] Factory that produces Quote_Handl ers.
Quot e_Acceptor acceptor (port, quote_db);

/'l Single-threaded event |oop that dispatches all
/1 events in the Quote_Acceptor::handl e_input()
/1 nethod.
for (;;)

acceptor. handl e_i nput ();

/* NOTREACHED */

After the Quot e Acceptor factory has been cre
ated the agpplication goes into an event loop. This
loop runs continuously accepting client connections
and creating Quot e_Handl ers. Each newly-created
Quot e_Handl er spawns aseparate thread inwhich it han-
diesthe client quote request and response.

3.2 Evaluating the C++ Wrappers Solution

Implementing the quote server with C++ wrappersisan im-
provement over thedirect use of sockets, Solaristhreads, and
C for the following reasons:

/1 Factory that establishes connections passively.

e Simplified programming and increased robustness:
Tedious and error prone low-level details of concurrent pro-
gramming are encapsulated by Thr ead wrappers. For ex-
ample, the Read_Guar d idiom automatically acquires and
releases mutex locksin critical sections.

e Improved portability: C++wrappersshield applications
from platform-specific details of multi-threaded program-
ming interfaces. Encapsulating threads with C++ classes
(rather than stand-alone C functions) improves application
portability. For instance, the server no longer accesses So-
laristhread functionsdirectly. Therefore, theimplementation
shown above can be ported easily to other OS platformswith-

mechOut changingtheQuot e Handl er andQuot e_Accept or

classes.

¢ Increased reusability and extensibility of components:
The Quot e_Accept or and Quot e_Handl er compo-
nents are not as tightly coupled as the C version shown in
Section 2.1. This makes it easier to extend the C++ solu-
tion to include new services, as well as to enhance existing
services. For example, to modify or extend the functionality
of the quote server (eg., to add stock trading functional-
ity), only the implementation of the Quot e _Handl er class
must change. Likewise, the readers/writer lock that protects
the Quot e_Dat abase is no longer agloba variable. It's
now locdized within the scope of Quot e_Handl er and
Quot e_Acceptor.

Note that the use of C++ features like templates and inlin-
ing ensures that the improvements described above do not
penalize performance.

The C++ wrapper solution is a significant improvement
over the C solution for the reasons we mentioned above.
However, it till hasall thedrawbackswe' vediscussed in pre-
vious columns such as not addressing higher-level commu-
nication topics like object location, object activation, com-
plex marshalling and demarshalling, security, availability
and fault tolerance, transactions, and object migration and
copying. A distributed object computing (DOC) framework
like CORBA or Network OLE is designed to address these
issues. DOC frameworks alow application developers to
focus on solving their domain problems, rather than worry-
ing about network programming details. In the following
section we describe several ways to implement thread-per-
request servers using CORBA.

4 The Multi-threaded CORBA Solu-
tion

The CORBA 2.0 specification [14] does not prescribe a con-
currency model. Therefore, a CORBA-conformant ORB
need not provide multi-threading capabilities. However,
commercialy-available ORBs are increasingly providing
support for multi-threading. The following section out-
lines several concurrency mechanisms available in two such
ORBs. HP ORB Plus and MT-Orbix.

As in previous columns, the server-side CORBA imple-
mentation of our stock quote exampleisbased on thefollow-
ing OMG-IDL specification:
nodul e Stock {

/'l Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
/1 Returns the current stock val ue or
/1 throw an Invalid_Stock exception.
long get_quote (in string stock_nane)
rai ses (Ilnvalid_Stock);

}
b

Inthefollowing sectionwe' Il illustratehow aserver program-
mer canimplement multi-threaded versionsof thisOMG-1DL
interface using HP ORB Plus and MT-Orbix.

41 Overview of Multi-threaded ORBs

A multithreaded ORB enables many simultaneous regquests
to be serviced by one or more CORBA object implementa
tions. In addition, objects need not be concerned with the
duration of each request. Without multiple threads, each re-
guest must execute quickly so that incoming requests aren’t
starved. Likewise, server applicationsmust somehow ensure
that long-duration requests do not block other requests from
being serviced in atimely manner.

To understand multi-threaded CORBA implementations,
let’sfirst review how a conventional reactive implementation
of CORBA is structured. Here's the main event loop for a
typica single-threaded Orbix server:

int main (void)
...
/1 Create an object inplenentation.
My_Quot er ny_quot er (db);

/1 Listen for requests and di spatch object methods.

CORBA: : Or bi x. i npl _i s_ready("M/_Quoter");
...
}

Likewise, the main event loop for an equivalent single-
threaded HP ORB Plus server might appear as follows:

int main (void)

...
/1 Create an object inplenentation.
My_Quot er ny_quot er (db);

/] Generate an object reference for quoter object.
St ock: : Quoter_var qvar = quoter._this();

/1 Listen for requests and di spatch object methods.
/1 (hpsoa stands for "HP Sinplified Cbject Adapter").

hpsoa->run();
...

Thei npl _i s_ready and r un methodsare publicinter-
faces to the CORBA event loop. In asingle-threaded ORB,
these methods typically use the Reactor pattern [1] to wait
for CORBA method regueststo arrive from multiple clients.
The processing of these requests within the server is driven

by upcalls dispatched by i npl _i s_r eady or run. These
upcallsinvokethe get _quot e method of the My _Quot er

object implementation supplied by the server programmer.
The upcall borrows the thread of control from the ORB to
execute get _quot e. This makes seridization trivia since
there can only be one upcall in progressat atimeinasingle-
threaded ORB.

In a multi-threaded ORB like MT-Orbix or HP ORB
Plus, however, there can be multiple threads of control
executing CORBA upcalls concurrently. Although the
i mpl i s_ready and r un interfaces don’t change, thein-
ternal behavior of the respective ORBs do change. In partic-
ular, they must perform additional locking of ORB interna
datastructuresto prevent race conditionsfrom corruptingthe
private state of their implementation.

411 Implementing Thread-per-Request in HP ORB

Plus

An implementation of the My_Quot er class for HP ORB
Plusis shown below:

/1 Inplenentation class for IDL interface.

class My_Quoter
/'l Inherits froman automatically-generated
/1 CORBA skel eton cl ass.
: virtual public HPSOA Stock:: Quoter

E)ubl ic:
M/_Quot er (Quote_Dat abase &db): db_ (db) {}

/] Call back invoked by the CORBA skel eton.
virtual |ong get_quote (const char *stock_nane,
CORBA: : Envi ronnent &ev) {
/] assune no exceptions
ev.clear();
I ong val ue;

/1 Constructor of macquires |ock_.
MSD_Lock n(lock_);

val ue = db_. | ookup_stock_price (stock_nane);
/1 Destructor of mreleases the |ock_.

if (value == -1)
ev. exception(new Stock:: | nvalid_Stock);
return val ue;

}

private:
Quot e_Dat abase &db_;
MSD_Mutex lock_; // Serialize access to database.

H

My_Quot er is our object implementation class. It in-
herits from the HPSQOA_St ock: : Quot er skeeton class.
This class is generated automatically from the origina
IDL Quot er specification. The Quot er interface sup-
ports a single operation: get _quot e. Our implementa
tion of get _quot e relies on an externa database object
that maintains the current stock price. If the lookup of
the desired stock price is successful the value of the stock
is returned to the caler. If the stock is not found, the
database | ookup_st ock_pri ce function returns a value
of —1. This value triggers our implementation to return a
St ock: : I nval i d_St ock exception.

/1 Reference to quote database.

QUOTE SERVER

2: ACCEPT
3: SPAWN THREAD
4: UPCALL

OBJECT
ADAPTER

Figure 22 HP ORB Plus Architecture for the Thread-per-
Request Stock Quote Server

Since this code is multi-threaded, the object implemen-
tation must acquire a lock before accessing the state of the
db_ object, just like the C and C++ solutions presented ear-
lier. The code uses the MSD Threads Abstraction Library®
provided by HP ORB Plus. The MSD_Lock classissimilar
to the Read_Guar d shown in Section 3.1. By using the
MBD_Lock, we ensure that the lock is released, even if an
exception isthrown.

By default, the ORB Plus HP Smplified Object Adapter
(HPSOA) provides a thread-per-request concurrency mode.
It spawns a separate thread for each incoming request if
a server is configured to use multi-threading. Therefore,
applications need not explicitly create threads unless they
require a greater degree of control than that provided by
the HPSOA. Note, however, that the mai n function need
not change at al, regardless of whether a single-threaded or
multi-threaded configuration is used.

Figure 2 illustrates the HP ORB Plus architecture for the
thread-per-request stock quote server. The HP Simplified
Object Adapter (HPSQOA) and the HP ORB are responsible
for spawning a new thread for each incoming request and
dispatchingtheMy _Quot er : : get _quot e implementation
to execute each stock request in a separate thread.

5MSD standsfor “ M easurement Systems Department,” the HP laboratory
where the threads abstraction library was developed.

4.1.2 Implementing Thread-per-Request in M T-Orbix

The My _Quot er implementation class shown below illus-
trates how the thread-per-request concurrency model can be
implemented in MT-Orbix:

/1 Inplenentation class for IDL interface.

class My_Quoter
/'l Inherits froman automatically-generated
/] CORBA skel eton cl ass.
: virtual public Stock:: Quoter BOAl npl

E)ubl ic:
M/_Quot er (Quote_Dat abase &db): db_ (db) {}

/1 Call back invoked by the CORBA skel eton.
virtual |long get_quote (const char *stock_nane,
CORBA: : Envi ronnent &ev) {
/1 Constructor of macquires | ock.
Read_CGuar d<RW Mut ex> m (1 ock_);

long value =
db_. 1 ookup_stock_price (stock_nane);

if (value == -1)
ev. exception(new Stock:: | nvalid_Stock);
return val ue;

/1 Destructor of mrel eases | ock.

}

private:

Quot e_Dat abase &Jb_; // Reference to quote database.

RW Mitex lock_; // Serialize access to database.

h

This version of the My_Quot er object implementation
class is similar to the one shown for HP ORB Plus
in Section 4.1.1. One minor difference is that the
My _Quot er class inherits from a different skeleton class:
St ock: : Quot er BQAI npl . Thisclassis generated auto-
maticaly from the origina IDL Quot er specification, just
liketheHP ORB PlusHPSOA_St ock: : Quot er baseclass,

The main program for the MT-Orbix quote server isiden-
tical to the one single-threaded version shown in Section 4.1.
The only extra C++ code we have to write is caled a
Thr eadFi | t er . Eachincoming CORBA requestispassed
through the chain of filters before being dispatched to itstar-
get object implementation.

Filtersare an MT-Orbix extension to CORBA that imple-
ment the “Chain of Responsibility” pattern [12]. Orbix uses
thispatternto decouple (1) thedemultiplexing of CORBA re-
guests(e.g., generated by the client-sideget _quot e proxy)
to their associated target object (e.g., my_quot er) from (2)
the eventual dispatching of the upcall method implementa-
tion (e.g., M/_Quot er: : get _quot e). This decoupling
enables applications to transparently extend the behavior of
Orbix without modifying the ORB itself.

Figure 3illustratestheroleof theThr eadFi | t er inthe
MT Orbix architecture for the thread-per-request stock quote
server. Note how the TPR_Thr eadFi | t er isresponsible
for spawning athread that dispatchestheget _quot e upcall.
Thus, the ORB and M T Orbix Object Adapter are unaffected
by this threading architecture.

To enable a new thread to be spawned for an incoming
request, a subclass of Thr eadFi | t er must be defined to
overridethei nRequest Pr eMar shal method, asfollows:

UOTE SERVER 4: SPAWN THREAD

5: UPCALL

OBJECT
ADAPTER

|2: AcCEPT
| 3: INVOKE

FILTERS(

Figure3: MT Orbix Architecturefor the Thread-per-Request
Stock Quote Server

/]l Create a filter that spawns a "thread-per-request"”

/1 to dispatch object inplenentation upcalls.
class TPR_ThreadFilter : public CORBA: : ThreadFilter

Il Intercept request and spawn thread
virtual int inRequestPreMarshal (CORBA::Request &,

o
b

Orbix will cal i nRequest Pr eMar shal method before
the incoming request is processed. This method must return
—1 to indicate that it has spawned athread to deal with the
request. Threads can be spawned according to whatever con-
currency model isappropriate for the application. In thisex-
ample, we' re using the thread-per-request model. Therefore,
theimplementation of i nRequest Pr eMar shal could be
written as follows:

CORBA: : Envi ronnent &) ;

/1 1 nmplenentation of inRequestPreMarshal

int
TPR_ThreadFi |l ter::inRequest PreMarshal
(CORBA: : Request &req, // Incom ng CORBA Request.
CORBA: : Envi ronment &)

Thr ead: : spawn
(continueDi spatching, // Entry point.
(void *) &eq, // Entry point arg.
THR_DETACHED | THR NEW LWP); // Thread fl ags.

/1 Tell Obix we will dispatch request later.
return -1,

The cont i nueDi spat chi ng function is the entry point
where the new thread begins executing:

voi d *conti nueDi spatching (void *vp)

CORBA: : Request *req = (CORBA:: Request *) vp;
CORBA: : Or bi x. conti nueThr eadDi spatch (*req);
return O;

TheMT-Orbix methodcont i nueThr eadDi spat chwill
continue processing the request until it sends a reply to the
client. At thispoint, the thread will exit.

Our quote server must explicitly create an instance of
TPR.Thr eadFi | t er togetitinstalledintothefilter chain:

TPR ThreadFilter tpr_filter;

The constructor of this object automatically inserts the filter
at the end of thefilter chain.

4.2 Evaluatingthe CORBA Solutions

The multi-threeaded CORBA solutions presented above are
similar to the C++ wrapper solution shown in Section 3. All
the solutions contain a master thread that is responsible for
accepting connections from clients. The master thread then
explicitly or implicitly spawns slave threadsto execute client
requests concurrently. All the solutions require application
codeto explicitly lock any data structures (such as the quote
database) shared with other threads. This design provides
devel operswith greater control over application concurrency,
at the expense of additional programming effort.

As we pointed out in our previous column, server-side
portability is currently a problem area for CORBA. In par-
ticular, the MT-Orbix and HP ORB Plus examples illustrate
the following trouble spots:

o Non-
standard Object Adapter Mappings: In the MT-Orbix
code, the skeleton base class for the My _Quot er object im-
plementation class is named St ock: : Quot er BOAI npl ,
while in the HP ORB Plus code the skeleton base class is
named HPSQOA_St ock: : Quot er. This is because Orhix
provides an implementation of the CORBA Basic Object
Adapter (BOA), whileHP ORB Plus providesanother object
adapter called the HP Smplified Object Adapter (HPSOA).
The differences in object adapters between these productsis
due to portability problems with the BOA that are currently
being addressed by the OMG ORB Task Force.

¢ Non-Standard Concurrency Models: Another differ-
ence between the MT-Orbix and HP ORB Plus Quoter im-
plementations involves threading. Both HP ORB Plus and
MT-Orbix all ow the choi ce of whether an applicationismulti-
threaded or single-threaded to occur at link time.

In HP ORB Plus, linking an application against the
null threads library makes it single-threaded, while linking
against amultiplethreads library makes it multi-threaded. If
aserver applicationislinked against the HP ORB Plus multi-
plethreads library, each request is handled using the thread-
per-request concurrency model. MT-Orbix also support this
model, but contains hooksthat allow programmersto imple-
ment other concurrency models. The choice of concurrency

model in MT-Orbix dependson thetypeof Thr eadFi | t er
configured into thefilter chain.

Despitetheir differences, the HP ORB Plusand M T-Orbix
examples show that programming concurrent CORBA appli-
cations is straightforward.

e Non-Standard Synchronization Mechanisms: HP
ORB PlusprovidestheM SD Threads Abstraction Library for
threads portability. The MSD library implements a common
interface for the null threads and multiple threads libraries.
In addition, this library shields applications from incompat-
ibilities across HP-UX, Solaris, and Windows NT thread li-
braries. MT-Orbix applications, in contrast, use whatever
threads packageis provided by theunderlying platform. This
flexibility can be both an advantage and a disadvantage. Al-
though it may require programmers to develop or reuse C++
threadswrappers, it allows servers to take advantage of more
efficient mechanisms provided by an OS or threads package.
For instance, the MT-Orbix implementation in Section 4.1.2
uses readers/writer locks. Often, these can be more efficient
than theregular mutexes provided by the HP ORB PlusM SD
library shown in Section 4.1.1.

Since CORBA makes no mention of threads, it remainsto
be seen whether the OMG ORB Task Force will take it upon
itself to address thisissue as a CORBA portability problem.
Clearly, in the short term we could use techniques like the
Adapter pattern [12] and reusable C++ toolkitslike ACE to
make our object implementations relatively portable across
different OS platforms and different ORBs.

e Non-C++ Exception Handling: Both the HP ORB
Plus and MT-Orbix implementations currently use
Envi ronnent parameters to convey exception informa
tion rather than C++ exceptions. Both ORBs will support
C++ exceptionsin the near future. When exception handling
is supported the get _quot e implementation would ook
likethis:

virtual long get_quote (const char *stock_nane,
CORBA: : Envi ronnent & ev) {
1.

/1 Constructor of macquires |ock_.
Read_CGuar d<RW Mut ex> m (| ock_);

if (value == -1)
throw Stock::Invalid_Stock();
...

Coding defensively with idioms like the Read_Guar d is
essential to protect programs from hazardous side-effects of
C++ exceptions[15].

5 Evaluating the Thread-per-Request
Concurrency M odel

All the servers shown above were designed using a thread-
per-request concurrency modedl. Thisis afairly straightfor-
ward model todesignandimplement. However, itisprobably
thewrong concurrency model for the task of retrieving stock
guotes. There are two primary problems:

10

e Thread creation overhead: Thetimerequired tolookup
astock quote may below relativeto thetimerequiredto create
the thread. In addition, even if the thread ran for a longer
amount of time, the performance of the thread-per-request
may not scae. For example, it may lead to unacceptably
high resource utilization if there are hundreds or thousands
of simultaneoudly active clients.

o Connection creation overhead: The thread-per-request
model sets up anew connection for each request. Therefore,
the overhead of establishing the connection is not amortized
if clients send multiple requests to the server. The single-
threaded solution we showed in our previous column kept
the connection open until it was explicitly shut down by the
client. Although our new solution might not affect how the
client was programmed, the difference in connection strate-
gieswould likely show up in performance measurements.

The actua performance of a particular concurrency model
dependsto alarge extent on the following factors:

e Thetypesof requests received from clients:
vs. long duration;

eg., short

e How threads areimplemented: e.g., in the OS kerndl,
in auser-space library, or some combination of both;

¢ Operating system and networkingoverhead: e.g., how
much other overhead resultsfrom setting up and tearing down
connections repeatedly;

e Higher-level system configuration factors: such as
whether replication and/or dynamic load balancing are used,
also ultimately affect performance.

WEe'll discuss these performance issues in future columns.

Another drawback with our solution is that the
handl e_quot e function above serializes access to the
Quot e_Dat abase at a very coarse-grained levd, i.e, a
the database level. The scope of the mutex ensures that the
whole database islocked. Thisisfineif most operationsare
lookups and a readers/writer lock is used. However, it may
lead to performance bottlenecksif stock pricesare frequently
updated, or if regular mutexes must be used. A more effi-
cient solutionwould push the locking into the database itself,
where record or table locking could be performed.

One important conclusion from this evaluation is the im-
portance of distinguishingbetween concurrency tactics(such
as threading and synchronization mechanisms provided by
an OS threads library) and concurrency strategies (such
as thread-per-request, thread-per-session, thread-per-object,
etc.). Threading libraries provide low-level mechanisms for
creating different concurrency models. However, develop-
ers are ultimately responsible for knowing how to use these
mechanisms successfully. Design patterns are a particularly
effective way to help application devel opers master subtle
differences between different strategies and firmly under-
stand the applicability and consequences of different con-
currency models. We'll explicitly cover key patterns for
concurrent distributed object computing in future articles.

6 Concluding Remarks

In this column, we examined severa different programming
techniques for developing multi-threaded servers for a dis-
tributed stock quote application. Our examples illustrated
how object-oriented techniques, C++, and higher-level ab-
stractions hel p to simplify programming and improve exten-
sibility.

Programming distributed applications without multiple
threads is hard, especialy for server applications. With-
out multi-threading capabilities, the server developer must
either ensure that requests can be handled so quickly that
new requests aren’t “starved” or they must use heavyweight
mechanisms like f or k or Cr eat eProcess to create a
new process to service each request. In practice, though,
most non-trivial requests can’t be serviced quickly enough
to avoid starving clients. Likewise, creating entire new pro-
cesses to service requests is time consuming, requires too
many system resources, and can be hard to program.

With multiple threads, each request can be serviced in its
own thread, independent of other requests. Thisway, clients
aren't starved by waiting for their requests to be serviced.
Likewise, system resources are conserved since creating a
thread is often less expensive than creating a whole new
process.

In general, multithreaded systems can be difficult to de-
velop due to subtle synchronization issues. Moreover, not
al platforms provide good support for threads or thread-
aware debuggersyet. Often, however, the benefits of threads
outweigh the disadvantages. When used properly, multi-
threaded programming can enable simpler designs and im-
plementations than single-threaded programming. Much of
this simplicity derives from the fact that scheduling issues
are handled by the threads package, not the application.

The benefits of CORBA and C++ become more evident
when we extend the quote server to support different concur-
rency models. In particular, the effort required to transform
the CORBA solution from the existing thread-per-request
server to other forms of concurrency models is minimal.
The exact details will vary depending on the ORB imple-
mentation and the desired concurrency strategy. However,
multi-threaded versions of CORBA typically require only a
few extralines of code. Our next column will illustrate how
to implement the other concurrency models (such as thread-
per-session and thread-pool). Future columns will address
other topics related to multi-threaded ORBS, such as the per-
formance impacts of using different concurrency models. As
always, if there are any topics that you'd like us to cover,
please send usemail a obj ect _connect @h. hp. com

Thanksto Andy Gokhale, Prashant Jain, and Ron Resnick
for comments on this column.

References

[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.

11

(2]

(3]

[4]
(5]
(6]
[7]
(8]

(9]

[10]

[11]

[12]

[13]
[14]

[19]

Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

A. Banerji and D. L. Cohn, “Shared Objects and Vtbl Place-
ment for C++ ,” Journal of C Language and Translation,
vol. 6, pp. 4460, Sept. 1994.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

IEEE, Threads Extension for Portable Operating Systems
(Draft 10), February 1996.

C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

R. C. Martin, “The Open-Closed Principle,” C++ Report,
vol. 8, Jan. 1996.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

D. C. Schmidt, “ Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, val. 7, November/December 1995.

D. C. Schmidt, “An OO Encapsulation of Lightweight OS
Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
19095.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

Bjarne Stroustrup, The C++ Programming Language, 2™¢
Edition. Addison-Wesley, 1991.

Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

H. Mueller, “Patterns for Handling Exception Handling Suc-
cessfully,” C++ Report, vol. 8, Jan. 1996.

