Object I nterconnections

Comparing Alternative Server Programming Techniques (Column 4)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science

Washington University, St. Louis, MO 63130

An earlier version of this column appeared in the October
1995 issue of the SIGS C++ Report magazine.

1 Introduction

This column examines and evaluates severa techniques for
developing client/server applicationsin order toillustratekey
aspects of distributed programming. The application we're
examining enables investment brokers to query the price of
astock from a distributed quote database. Our two previous
columns outlined the distributed computing requirements of
thisapplication and examined several waysto implement the
client-side functionality. Below, we compare several ways
to program the server-side of this application.

The solutionswe examinein this column rangefrom using
C, sel ect, and the sockets network programming inter-
face; to using C++ wrappers for sel ect and sockets; to
using a distributed object computing (DOC) solution based
on the OMG’s Common Object Request Broker Architecture
(CORBA). Along the way, we'll examine various tradeoffs
between extensibility, robustness, portability, and efficiency
for each of thethree solutions.

2 Server Programming

Devel opers who write the server-side of an application must
address certai n topicsthat client-side developers may beable
to ignore. One such topicis demultiplexing of requests from
multiple clients. For example, our stock quote server can
be accessed simultaneoudly by multiple clients connected
via communication protocols such as TCP/IP or IPX/SPX.
Therefore, the server must be capable of receiving client
requests over multiple connections without blocking indefi-
nitely on any single connection.

A related topic that server programmers must address is
concurrency. The two primary types of server concurrency
strategies[1, 2] are distinguished as follows:

o |terative servers —which handle each client request be-
fore servicing subsequent requests. While processing
the current request, an iterative server typically queues

Steve Vinoski

vinoski @ch.hp.com
Hewlett-Packard Company
Chdmsford, MA 01824

new client requests. An iterative design is most suit-
able for short-duration services that exhibit relatively
littlevariation in their execution time. Internet services
likeecho and dayt i ne are commonly implemented
asiterative servers.

e Concurrent servers — which handle multiple client re-
guests simultaneously. Concurrent servers help im-
prove responsiveness and reduce latency when the rate
at which requests are processed is less than the rate
at which requests arrive at the server. A concurrent
server design may aso increase throughput for 1/O-
bound and/or long-duration services that require a vari-
able amount of time to execute. Internet services like
t el net andft p are commonly implemented as con-
current servers.

Concurrent servers generaly require more sophisticated
synchronization and scheduling strategies than iterative
servers. For the example application in this column, we'll
assume that each stock quote request in the server executes
quickly. Therefore, we'll use avariant of theiterative server
that meets our response and throughput requirements. More-
over, as shown below, our synchronization and scheduling
strategies are simplified by using an iterative server.

WE'll use the UNIX sel ect event demultiplexing sys-
tem call to provide a simple round-robin scheduler. The
sel ect cal detects and reports the occurrence of one or
more connection events or data events that occur simulta
neously on multiple communication endpoints (e.g., socket
handles). Thesel ect call providescoarse-grained concur-
rency control that serializes event handling within a process
or thread. This eliminates the need for more complicated
threading, synchronization, or locking within our server.

In-depth coverage of socketsand sel ect appearsin[2].
In future columns we' Il discuss how to extend our solutions
to incorporate more sophisticated concurrency and demulti-
plexing strategies.

3 The Socket Server Solution
3.1 Socket/C Code

Thefollowingcodeillustrateshow to program the server-side
of the stock quote program using sockets, sel ect , and C.
The following two C structures define the schema for quote
requests and quote responses:

#defi ne MAXSTOCKNAMELEN 100
struct Quote_Request

long len; /* Length of the request. */
char name[MAXSTOCKNAMVELEN]; /* Stock name. */

struct Quote_Response

long value; /* Current value of the stock. */
long errno; /* 0 if success, else errno value. */

These structures are exchanged between the client-side and
server-side of the stock quote programs.

Next, we' vewritten four C utility routines. These routines
shield the rest of the application from dedling with the low-
level socket interface. To save space, we' ve omitted most
of the error handling code. Naturally, a robust production
applicationwould carefully check thereturn valuesof system
cals, handle unexpected connection resets, and insure that
messages don't overflow array bounds.

The first routine receives a stock quote regquest from a
client:

/1 WN32 al ready defines this.
#i f defined (unix)

typedef int HANDLE;

#endif /* unix */

int recv_request (HANDLE h,
struct Quote_Request *req)

int r_bytes, n;
int len = sizeof *req;

/* Recv data fromclient, handle "short-reads". */
for (r_bytes = 0; r_bytes < len; r_bytes +=n) {
n =recv (h, ((char *) req) + r_bytes,
len - r_bytes, 0);
if (n<=0) return n;

/* Decode len to host byte order. */
reg->len = ntohl (reg->len);
return r_bytes;

}

Thelengthfield of aQuot e _Request isrepresented asabi-
nary number that the client’'ssend_r equest encoded into
network byteorder. Therefore, theserver’sr ecv_r equest
routine must decode the message length back into host byte
order usingnt ohl . Inaddition, since we usethebytestream-
oriented TCP protocol, the server code must explicitly loop
to handle “short-reads’ that occur due to buffer constraints
in the OS and transport protocols.

The following send._r esponse routine sends a stock
guote from the server back to the client. It encodes the
numeric vaue of the stock quote into network byte order
before returning the value to the client, as follows:

int send_response (HANDLE h, |ong val ue)
{

struct Quote_Response res;
size_t w_bytes;
size_t len = sizeof res;

/1 Set error value if failure occurred.
res.errno = value == -1 ? htonl (errno) : O;
res.value = htonl (value);

/* Respond to client, handle "short-wites". */
for (w.bytes = 0; wbytes < len; whbytes += n) {
n = send (h, ((const char *) &res) + w_bytes,

len - w_ bytes, 0);
if (n<=0) return n;

return w_bytes;

}

Aswithrecv_r equest , the server must explicitly handle
short-writesby looping until al the bytesin the response are
sent to the client.

Thehandl e_quot e routine uses the C functions shown
aboveto receive the stock quote request from the client, look
up the value of the stock in an online database, and returnthe
valuetothe client, asfollows:

extern Quote_Dat abase *quote_db;
I ong | ookup_stock_price(Quot e_Dat abase*,
Quot e_Request *);

voi d handl e_quot e(HANDLE h)
{

struct Quote_Request req;
| ong val ue;

if (recv_request(h, &eq) <= 0)
return O;

/* | ookup stock in database */
val ue = | ookup_stock_price(quote_db, &req);

return send_response(h, val ue);

}

The handl e_quot e function illustrates the synchronous,
request/response style of communication between clients
and the quote server.! Note that we only perform one re-
guest/response cycle for each client at a time since we've
designed the quot e server as an iterative server. This
design ensures that a highly active client doesn’t starve out
other clients by sending multiple requests back-to-back.

The next routine creates a socket server endpoint that lis-
tens for connections from stock quote clients. The caller
passes the port number to listen on as a parameter:

HANDLE create_server_endpoi nt (u_short port)

struct sockaddr _in addr;
HANDLE h;

/* Create a |l ocal endpoint of conmmunication. */
h = socket (PF_INET, SOCK_STREAM 0);

/* Setup the address of the server. */
menset ((void *) &addr, 0, sizeof addr);
addr.sin_famly = AF_| NET;

addr.sin_port = htons (port);

addr. si n_addr.s_addr = | NADDR_ANY;

1in afuture column we'll illustrate how to develop asynchronous* pub-
lish/subscribe” communication mechanismsthat notify consumersautomat-
ically when stock values change.

/* Bind server port. */

bind (h, (struct sockaddr *) &addr, sizeof addr);
/* Make server endpoint listen for connections. */
listen (h, 5);

return h;

The mai n function shown below uses the C utility rou-
tines defined above to create an iterative quote server. The
sel ect system call demultiplexes new connection events
and data events from clients. Connection events are handled
directly in the event loop, which adds the new HANDLE to
thef d_set used by sel ect . Dataevents are presumed to
be quote requests, which trigger the handl e_quot e func-
tionto return the latest stock quote from the online database.
Note that data events are demultiplexed using a round-robin
scheduling policy that dispatchesthehandl e_quot e func-
tion in order of ascending HANDLE val ues.

int main(int argc, char *argv[])
u_short port /* Port to listen for connections.
= argc > 1 ? atoi(argv[1]) : 10000;

/* Create a passive-node |istener endpoint. */
HANDLE | i stener = create_server_endpoi nt(port);
HANDLE maxhpl = |istener + 1;

/* fd_sets maintain a set of HANDLEs that
select() uses to wait for events. */

fd_set read_hs, tenp_hs;

FD_ZERQ(& ead_hs) ;

FD_ZERQ(& enp_hs) ;

FD SET(Ili stener, &read_hs);

for () {
HANDLE h;
/* Demul tiplex connection and data events */
sel ect (maxhpl, & enp_hs, 0, 0, 0);

/* Check for stock quote requests and
di spatch the quote handler in
round-robin order. */

for (h = listener + 1; h < maxhpl; h++)

if (FD_I SSET(h, &tenp_hs))
if (handl e_quote(h) == 0) {

/* dient’s shutdown. */
FD CLR(h, &read_hs);
close(h);

/* Check for new connections. */

if (FD_I SSET(listener, &enp_hs)) {

h = accept(li stener,

FD SET(h, &read_hs);

if (maxhpl <= h)
maxhpl = h + 1;

0, 0);

}
tenp_hs = read_hs;

}
I * NOTREACHED */

}

The main program iterates continuously accepting connec-
tions and returning quotes. Once a client establishes a con-
nection with the server it remains connected until the client
explicitly closes down the connection. Thisdesignamortizes
the cost of establishing connections since clients can request
multiple quote val ues without reconnecting. Aslong asthere
are sufficient OS resources (such as descriptors and memory)
available, keeping multiple clients connected hel psimprove
performance.

*/

The sel ect -based iterative server we' ve show aboveis
actualy “pseudo-concurrent” with respect to connection ac-
ceptance since multi pleconnectionscan be active at the same
time. However, it isiterativewith respect to request process-
ing sinceonly onehandl e_quot e functionisactively pro-
cessing client requests at a time. Moreover, no single client
can block other clients for more than one request/response
cycle since the sel ect -based iterative server uses round-
robindemultiplexing and dispatching of client requests. Nat-
urally, this works since the handl e_quot e function only
processes with asingle request at atime.?

There are other variants of iterative servers[3]. For exam-
ple, one common variant lookslike this:

int nain(int argc, char *argv[])
u_short port /* Port to listen for connections.
= argc > 1 ? atoi(argv[1]) : 10000;

/* Create a passive-node |istener endpoint. */
HANDLE |i stener = create_server_endpoint(port);

for (55) {
HANDLE h = accept(listener, O,
handl e_quot e(h);
close(h);

0);

}
/* NOTREACHED */

}

In thisvariant, the server isiterative with respect to both ac-
cepting connections and request processing. However, this
may cause unacceptably high overhead for “conversation-
oriented” applicationssince anew connection must be estab-
lished for each request.

Regardless of which variant is used, a key characteristic
of an iterative server is that request processing is seriaized
at the event demultiplexing layer. Thus, no additiona syn-
chronizationis necessary within the server application code.

3.2 Evaluating the Socket Solution

Programming with C, sockets, and sel ect asshown above
yields relatively efficient sequential programs. However,
sockets and sel ect are low-level interfaces. Our previ-
ous column described the many communication-related ac-
tivities that must be performed by programs written at this
level. Briefly, these activities include initializing the socket
endpoints, establishing connections, marshalling and unmar-
shalling of stock quote requests and responses, sending and
receiving messages, detecting and recovering from errors,
and providing security.

In addition to these activities, the server must aso per-
form demultiplexing and concurrency. Directly program-
ming sel ect to demultiplex events is particularly prob-
lematic [4]. The sel ect call requires programmers to ex-
plicitly handle many low-level details involving bitmasks,
descriptor counts, time-outs, and signals. In addition to be-
ing tedious and error-prone, sel ect is not portable across
OS platforms.

20ur subsequent column will illustrate how to remove this limitation.

*/

Another drawback with the current structure of the quote
server is that it hard-codes the application-specific service
behavior directly into the program. This makes it hard to
extend the current solution (e.g., changing from an iterative
to a concurrent server) without modifying existing source
code. Likewise, itishard to reuse any pieces of thissolution
in other servers that implement similar, but not identical,
Services.

4 The C++ Wrappers Solution

Using C++ wrappers is one way to simplify the complexity
of programming network servers. C++ wrappers encapsul ate
lower-level network programming interfaces such as sockets
and sel ect withtype-safe, object-oriented interfaces. The
| PC_SAP [5], React or [4, 6], and Accept or [7] C++
wrappers shown below are part of the ACE object-oriented
network programming toolkit. | PC_SAP encapsulates sock-
etsand TLI network programming interfaces, the React or

encapsulates the sel ect and pol | event demultiplexing
system calls; and the Accept or combines | PC_SAP and
theReact or toimplement areusable strategy for establish-
ing connections passively.

41 C++ Wrapper Code

This section illustrates how the use of C++ wrappers im-
proves the reuse, portability, and extensibility of the quote
server. Figure 1 depicts the following three components in
the quote server architecture;

e React or — defines a mechanism for registering, re-
moving, and dispatching Event Handl er s (such
as the Quot e_Accept or and Quot e_Handl er de-
scribed below). The React or encapsulates the
sel ect and pol | event demultiplexing system calls
with an extensible and portabl e callback-driven object-
oriented interface.

e Quot e_ Accept or — a factory that implements the
strategy for accepting connections from clients, fol-
lowed by creating and activating Quot e_Handl er s.

e Quot e_Handl er —interactswith clients by receiving
guote requests, looking up quotes in the database, and
returning responses. Quot e_Handl er s can beimple-
mented as either passive or active objects, dependingon
how they are configured.

Boththe Quot e_Accept or and Quot e_Handl er inherit
from the React or 's Event _Handl er base class. This
enables the React or to calback to their handl e_i nput
methods when connection events and data events arrive, re-
spectively.

3Communication softwareistypified by asymmetric connection behavior
between clients and servers. In general, servers listen passively for clients
to initiate connectionsactively.

2: HANDLE INPUT
3: CREATE HANDLER

4: ACCEPT CONNECTION
5: ACTIVATE HANDLER

QUOTE SERVER

|
|
|
|
|
+H

6: HANDLE QUOTE REQUEST
1

/

Figure 1: The C++ Wrapper Architecture for the Stock
Quoter Server

WE'll start by showing the Quot e_Handl er. This
template class inherits from the reusable Svc_Handl er
base class in the ACE toolkit. A Svc_Handl er defines
a generic interface for a communication service that ex-
changes data with peers over network connections. For the
stock quote application, Svc_Handl er isinstantiated with
a communication interface that receives quote regquests and
returns quote values to clients. As shown below, it uses
the | PC_SAP SOCK_St r eamC++ wrapper for TCP stream
sockets. | PC_SAP shields applications from low-level de-
tails of network programming interfaces like sockets or TLI.

tenpl ate <class STREAM> // I PC interface
cl ass Quote_Handl er
publ i ¢ Svc_Handl er <STREAM>
/'l ACE base cl ass defines "STREAM peer _;"

{
public:
Quot e_Handl er (Quote_Dat abase *db,
Reactor *r)
: db_ (db), reactor_ (r) {}

/1 This nethod is called by the Quote_Acceptor
/!l toinitialize a newy connected Quote_Handl er,
/1 which sinply registers itself with the Reactor.
virtual int open (void) {

reactor_->regi ster_handl er (this, READ_MASK);

/1 This nethod is invoked as a cal |l back by
/] the Reactor when data arrives froma client.
virtual int handle_input (HANDLE) {

handl e_quote ();

peer _.close();

virtual int handle_quote (void) {

Quot e_Request req;

if (recv_request (req) <= 0)
return -1;

I ong val ue = db_->l ookup_stock_price (req);
return send_response (val ue);

vi rtual
/1

int recv_request (Quote_Request & eq) {
recv_n handl es "short-reads"

int n = peer_.recv_n (&eq, sizeof req);
if (n>0)
/* Decode len to host byte order. */

req. |l en (ntohl
return n;

(reg.len ()));

virtual int send_response (long value) {
/'l The constructor perforns the error checking
/1 and network byte-ordering conversions.
Quot e_Response res (val ue);

/1 send_n handles "short-wites".

return peer_.send_n (&es, sizeof res);

private:
Quot e_Dat abase *db_; // Database reference.
Reactor *reactor_; // Event dispatcher.

h

The next class is the Quot e_Accept or . This inherits
from the following reusable Accept or connection factory
in the ACE toolkit:

tenpl ate <class SVC HANDLER, // Service handl er

cl ass PEER_ACCEPTOR> // Passive connection fact gty g

cl ass Acceptor

{
publi c:
/1 Initialize a passive-node connection factory.
Acceptor (const PEER_ACCEPTOR: : ADDR &addr)
. peer_acceptor_ (addr) {}

/1
/1 clients, and creating and activating SVC HANDLERs
/1 to process data exchanged over the connections.
int handl e_i nput (void) {

/'l Create a new service handler.

SVC HANDLER *svc_handl er = nake_svc_handl er ();

/1 Accept connection into the service handler.
peer _acceptor_. accept (*svc_handl er);

/1 Delegate control to the service handler.
svc_handl er - >open ();

}
/1 Pure virtual Factory nethod to nake a svc handl er.
virtual SVC _HANDLER *nmake_svc_handl er (void) = O;

/1 Returns the underlying passive-nobde HANDLE.
virtual HANDLE get _handl e (void) {
return peer_acceptor_.get_handle ();

private:
PEER_ACCEPTOR peer _acceptor _;
/] Factory that establishes connections passively.

h

The Quot e_Acceptor subclass is defined by pa
rameterizing the Acceptor template with concrete
types that (1) accept connections (SOCK_Accept or or
TLI _Accept or) and (2) reactively perform the quote ser-
vice (Quot e_Handl er): Note that using C++ classes and

templates makes it efficient and convenient to conditionaly
choose between sockets and TLI, as shown bel ow:

/1 Conditionally choose network programm ng interface.
#if defined (USE_SOCKETS)

typedef SOCK Acceptor PEER _ACCEPTOR;

typedef SOCK _Stream PEER STREAM

#elif defined (USE_TLI)

typedef TLI_Acceptor PEER ACCEPTOR;

typedef TLI_Stream PEER _STREAM

#endi f /* USE_SOCKET */

typedef Quote_Handl er <PEER STREAM> QUOTE_HANDLER;

/1 Make a specialized version of the Acceptor
/] factory to create QUOTE _HANDLERs t hat
/] process quote requests fromclients.
cl ass Quote_Acceptor :
public Acceptor <QUOTE _HANDLER, PEER ACCEPTOR>

{
public:
typedef Acceptor <QUOTE_HANDLER, PEER ACCEPTOR>
i nherited;

Quot e_Acceptor (const PEER ACCEPTOR : ADDR &ad,
Quot e_Dat abase *db,
Reactor *r)
inherited (ad), db_ (db), reactor_ (r) {
/'l Register acceptor with the reactor, which
Il calls the get_handl e() nmethod) to obtain
/'l the passive-npde peer_acceptor_ HANDLE.
reactor.register_handl er (this, READ_MASK);

This nmethod overrides the base class to

}

| Factory nmethod to create a service handl er.
/

| pass in the database and Reactor pointers.

/
/
/

QUOTE_HANDLER *nake_svc_handl er (void) {
return new QUOTE _HANDLER (db_, reactor_);
}

private:
Quot e_Dat abase *db_;
Reactor *reactor_;

I npl ements the strategy to accept connections from}

A more dynamicaly extensible method of selecting be-
tween sockets or TLI can be achieved via inheritance and
dynamic binding by using the Abstract Factory or Factory
Method patterns described in [8]. An advantage of using
parameterized types, however, isthat they improve run-time
efficiency. For example, parameterized typesavoid the over-
head of virtual method dispatching and allow compilerstoin-
line frequently accessed methods. The downside, of course,
is that template parameters are locked in a compile time,
templates can be slower to link, and they usually require
more space.

The mai n function uses the components defined above to
implement the quote server:

int nmain (int argc, char *argv[])

u_short port = argc > 1 ? atoi (argv[1]) 10000;
/1 Event denulti pl exer.

React or reactor;

/] Factory that produces Quote_Handl ers.
Quot e_Acceptor acceptor (port, quote_db,
&reactor);

Si ngl e-threaded event | oop that dispatches
all events as callbacks to the appropriate

/1
/1
/1 Event _Handl er subcl ass obj ect (such as

/1 the Quote_Acceptor or Quote_Handlers).
for (;;)
reactor. handl e_events ();

/* NOTREACHED */
return O;

After the Quot e_Accept or factory has been registered
with the React or the application goesinto an event loop.
This loop runs continuously handling client connections,
guote requests, and quote responses, dl of which are driven
by callbacks fromthe React or . Sincethisapplication runs
as an iterative server in a single thread there is no need for
additional locking mechanisms. The React or implicitly
seridlizesEvent _Handl er s at the event dispatching level.

4.2 Evaluatingthe C++ Wrappers Solution

Using C++ wrappers to implement the quote server is an
improvement over the use of sockets, sel ect ,and Cfor the
following reasons:

o Smplify programming — low-level details of program-
ming sockets (such as initiaization, addressing, and
handling short-writesand short-reads) can be performed
automatically by thel PC_SAP wrappers. Moreover, we
eliminate several common programming errors by not
usingsel ect directly [4].

e Improve portability — by shielding applications from
platform-specific network programming interfaces.
Wrapping sockets with C++ classes (rather than stand-
alone C functions) makesit easy to switchwholesalebe-
tween different network programming interfacessimply
by changing the parameterized typesto the Accept or
template. Moreover, the code is more portable since
the server no longer accesses sel ect directly. For
example, the React or can be implemented with
other event demultiplexing system calls (such as SVR4
UNIX pol | ,WIN32Wai t For Mul ti pl eObj ect s,
or even separate threads) [9].

¢ Increase reusability and extensibility — the React or,
Quot e_Accept or, and Quot e_Handl er compo-
nents are not as tightly coupled as the version in Sec-
tion 3.1. Therefore, it is easier to extend the C++ so-
lution to include new services, as well as to enhance
existing services. For example, to modify or extend the
functionality of the quote server (e.g., to adding stock
trading functionality), only the implementation of the
Quot e_Handl er class must change.

In addition, C++ features like templates and inlining ensure
that these improvements do not penalize performance.
However, even though the C++ wrapper solutionisadis-
tinct improvement over the C solution it till has the same
drawbacks asthe C++ wrapper client solution wepresentedin
our last column: too much of the code required for the appli-
cation is not directly related to the stock market. Moreover,

op(args)

OBJECT
IMPL

IDL
SKELETON
\

CLIENT

\ 4

ORB
INTERFACE

OBJECT
ADAPTER

DYNAMIC
INVOCATION
INTERRFACE

OBJECT
REQUEST BROKER

Figure2: Key Componentsin the CORBA Architecture

the use of C++ wrappers does not address higher-level com-
munication topics such as object location, object activation,
complex marshaling and demarshaling, security, availability
and fault tolerance, transactions, and object migration and
copying (most of these topics are beyond the scope of this
article). To address these issues requires a more sophisti-
cated distributed computing infrastructure. In the following
section, we describe and eval uate such a sol ution based upon
CORBA.

5 The CORBA Solution

Before describing the CORBA-based stock quoter imple-
mentation we'll take a look at the key components in the
CORBA architecture. In a CORBA environment, a number
of componentscollaborateto allow aclient toinvokean oper-
ation op withargumentsar gs on an object implementation.
Figure 2 illustrates the primary components in the CORBA
architecture. These components are described bel ow:

o Object Implementation — defines operations that imple-
ment an OMG-IDL interface. We implement our ex-
amples using C++. However, object implementations
can be written in other languages such as C, Smalltalk,
Adads, Eiffel, etc.

¢ Client—thisisthe program entity that invokesan opera-
tion on an object implementation. Ideally, accessing the
servicesof aremoteobject shouldbeassimpleascalling
a method on that object, i.e, obj - >op(args) . The
remai ning componentsin Figure2 support thisbehavior.

¢ Object Request Broker (ORB) —whenaclientinvokesan
operation the ORB is responsible for finding the object
implementation, transparently activating it if necessary,
delivering the request to the object, and returning any
response to the caller.

¢ ORB Interface — an ORB is alogica entity that may
be implemented in various ways (such as one or more
processes or aset of libraries). To decoupleapplications
from implementation detail s, the CORBA specification
defines an abstract interface for an ORB. Thisinterface

provides various helper functions such as converting
object references to strings and back, and creating ar-
gument lists for requests made through the dynamic
invocation interface described bel ow.

e OMG-IDL stubs and skeletons — OMG-IDL stubs and
skeletons serve as the “glue’ between the client and
server applications, respectively, and the ORB. The
OMG-IDL — programming language transformationis
automated. Therefore, the potential for inconsistencies
between client stubs and server skeletonsis greatly re-
duced.

¢ Dynamic Invocation Interface (DII) — alows a client
to directly access the underlying request mechanisms
provided by an ORB. Applications use the DIl to dy-
namically issue requests to objects without requiring
IDL interface-specific stubs to be linked in. Unlike
IDL stubs (which only alow RPC-style requests) the
DIl aso alows clients to make non-blocking deferred
synchronous (separate send and receive operations) and
oneway (send-only) cdls.

o Object Adapter — assists the ORB with delivering re-
gueststo the object and with activating the object. More
importantly, an object adapter associates object imple-
mentations with the ORB. Object adapters can be spe-
cialized to provide support for certain object implemen-
tation styles, (e.g., OODB object adapters, library object
adapters for non-remote (same-process) objects, etc).

Below, we outline how an ORB supports diverse and flex-
ible object implementations via object adapters and object
activation. We'll cover the remainder of the components
mentioned above in future columns.

51 Object Adapters

A fundamental goa of CORBA is to support implementa
tion diversity. In particular, the CORBA model allows for
diversity of programming languages, OS platforms, transport
protocols, and networks. Thisenables CORBA to encompass
awide-spectrum of environmentsand requirements.

To support implementation diversity, an ORB should be
ableto interact with varioustypes and styles of object imple-
mentations. Itishard to achieve thisgoa by allowing object
implementationsto interact directly with the ORB, however.
Thisapproach would requirethe ORB to provideavery “fat”
interface and implementation. For example, an ORB that
directly supported objects written in C, C++, and Smalltalk
could become very complicated. It would need to provide
separate foundationsfor each language or would need to uti-
lize a least-common-denominator binary object model that
made programming in some of the languages unnatural.

By having object implementations plug into object
adapters (OAs) instead of plugging directly into the ORB,
bloated ORBs can be avoided. Object adapters can be spe-
cialized to support certain object implementation styles. For
example, one object adapter could be devel oped specifically

4: get_quot

Figure 3: CORBA Request Flow Through the ORB

to support C++ objects. Another object adapter might be de-
signed for OO database objects. Still another object adapter
could be created to optimize access to objects located in the
same process address space as the client.

Conceptually, object adaptersfit between the ORB and the
object implementation (as shown in Figure 2). They assist
the ORB with delivering requests to the object and with acti-
vating the object. By specializing object adapters, ORBscan
remain lightweight, whilestill supporting different typesand
styles of objects. Likewise, object implementors can choose
the object adapter that best suitstheir devel opment environ-
ment and application requirements. Therefore, they incur
overhead only for what they use. As mentioned above, the
aternativeisto cram the ORB full of code to support differ-
ent object implementation styles. Thisisundesirable sinceit
leads to bloated and potentialy inefficient implementations.

Currently, CORBA specifies only one object adapter: the
Basic Object Adapter (BOA). According to the specification,
the BOA isintended to providereasonabl e support for awide
spectrum of object implementations. These range from one
or more objects per program to server-per-method objects,
where each method provided by the object is implemented
by adifferent program. Our stock quoter object implementa
tion below is written in a generic fashion — the actual object
implementationsand object adapter interfacesin your partic-
ular ORB may vary.

5.2 Object Activation

When a client sends a request to an object, the ORB first
delivers the request to the object adapter that the object’s
implementation was registered with. How an ORB locates
both the obj ect and the correct obj ect adapter and deliversthe
request toit depends on the ORB implementation. Moreover,
the interface between the ORB and the object adapter is
implementati on-dependent and is not specified by CORBA.

If the object implementation is not currently “active” the
ORB and object adapter activate it before the request is de-
livered to the object. As mentioned above, CORBA requires
that object activation be transparent to the client making the

request. A CORBA-conformant BOA must support four dif-
ferent activation styles:

o Shared server — Multiple objects are activated into a
single server process.

o Unshared server — Each object is activated into its own
Server process.

o Persistent server — The server process is activated by
something other than the BOA (e.g., a system boot-up
script) but till registerswith the BOA onceit’sready to
receive regquests.

o Server-per-method — Each operation of the object’sin-
terface isimplemented in a separate server process.

In practice, BOAs provided by commercially-available
ORBsdo not aways support al four activation modes. We'll
discussissuesrelated to the BOA specificationin Section 5.4.

Our example server described below isan unshared server
since it only supports a single object implementation. Once
the object implementation is activated, the object adapter
delivers the request to the object’s skeleton. Skeletons are
the server-side analog of client-side stubs* generated by an
OMG-IDL compiler. The skeleton selected by the BOA
performs the callback to the implementation of the object’s
method and returns any results to the client. Figure 3illus-
tratesthe request flow from client through ORB to the object
implementation for the stock quoter application presented
bel ow.

5.3 CORBA Code

The server-side CORBA implementation of our stock quote
exampleis based on the following OMG-IDL specification:

/1 OMG I DL nodul es are used to avoid polluting
/1 the application nanespace.

nodul e Stock {
/'l Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
/1 Returns the current stock val ue or
/1 throw an Invalid_Stock exception.
long get_quote (in string stock_nane)
rai ses (lnvalid_Stock);

b

Inthissectionwe' ll illustrate how aserver programmer might
implement this OMG-IDL interface and make the object
availableto client applications.

Our last column illustrated how client programmers obtain
and use object references supporting the Quot er interface
to determine the current value of aparticular st ock _nare.
Object references are opague, immutable “handles’ that
uniquely identify objects. A client application must some-
how obtain an object reference to an object implementation

4Stubs are also commonly referred to as“proxies’ or “surrogates.”

before it can invoke that object’s operations. An object im-
plementation is typically assigned an object reference when
it registerswith its object adapter.

ORBs supporting C++ object implementations typically
provide a compiler that automatically generates server-side
skeleton C++ classes from IDL specifications (eg., the
Quoter interface). Programmers then integrate their imple-
mentation code with this skel eton using inheritance or object
composition. The My_Quot er implementation class shown
below is an example of inheritance-based skeleton integra
tion:

/1 Inplenentation class for IDL interface.

class My_Quoter
/'l Inherits froman automatically-generated
/] CORBA skel eton cl ass.
: virtual public Stock:: Quoter BOAI npl

publi c:
M/_Quot er (Quote_Database *db): db_ (db) {}

/1 Call back invoked by the CORBA skel eton.
virtual |ong get_quote (const char *stock_nane)
throw (Stock::Invalid_Stock) {

long val ue =
db_- >l ookup_stock_price (stock_nane);
if (value == -1)

throw Stock::Invalid_Stock();
return val ue;

}

private:
/1l Keep a pointer to a quote database.
Quot e_Dat abase *db_;

My _Quot er isour object implementation class. It inher-
its from the St ock: : Quot er BOAI npl skeleton class.
This class is generated automatically from the original IDL
Quot er specification. The Quot er interface supports
a single operation: get _quot e. Our implementation of
get _quot e relieson an externa database object that main-
tains the current stock price. Since we are single-threaded
we don’t need to acquire any locksto access object state like
db_.

If the lookup of the desired stock price is successful the
value of the stock is returned to the caller. If the stock
isnot found, thedatabase| ookup_st ock_pri ce function
returnsavalueof —1. Thisva uetriggersour implementation
tothrowaSt ock: : I nval i d_St ock exception.

The implementation of get _quot e shown above uses
C++ exception handling (EH). However, EH is dill
not implemented by al C++ compilers. Thus, many
commercial ORBs currently use special status param-
eters of type CORBA: : Envi ronment to convey ex-
ception information. An aternative implementation of
My _Quot er: : get _quot e could be written as follows us-
ing a CORBA: : Envi r onment parameter:

| ong
M/_Quoter::get_quote (const char *stock_nane,
CORBA: : Envi ronment &ev)

long value =
db_- >l ookup_stock_price (stock_nane);
if (value == -1)

ev. exception (new Stock::Invalid_Stock);
return val ue;

Thiscodefirst attemptsto look up the stock price. If that fails
it sets the exception field in the CORBA: : Envi r onment
toa Stock:: 1 nvalid_Stock exception. A client can
also use CORBA: : Envi ronnent parameters instead of
C++ EH. In this case the client is obligated to check the
Envi ronnent parameter after the cal returns before at-
tempting to use any values of out and i nout parameters
or the return value. These values may be meaningless if an
exception israised.

If theclient and object arein different address spaces, they
don’t need to use the same exception handling mechanism.
For example, a client on one machine using C++ EH can
access an object on another machine that was built to use
CORBA: : Envi r onnent parameters. The ORB will make
sure they interoperate correctly and transparently.

The main program for our quote server initializes the
ORB and the BOA, defines an instance of a My_Quot er,
and tells the BOA it is ready to receive requests by calling
CORBA: : BOA: : i npl J s_ready, asfollows:

/1 1nclude standard BQOA definitions.
#i ncl ude <corba/ orb. hh>

/1 Pointer to online stock quote database.
extern Quote_Dat abase *quote_db;

int main (int argc, char *argv[])

/1l Initialize the ORB and the BOA

CORBA: : ORB_var orb = CORBA:: ORB_init (argc, argv,
CORBA: : BOA_var boa = orb->boa_init (argc, argv,
/1 Create an object inplenentation.

My_Quot er quoter (quote_db);

/1 Single-threaded event |oop that handl es CORBA

0);

0);

/'l requests by naking call backs to the user-supplied

/1 object inplenmentation of My_Quoter.
boa->i npl _is_ready ();

/* NOTREACHED */

return O;

After the executable is produced by compiling and linking
this code it must be registered with the ORB. This is typi-
caly done by using a separate ORB-specific administrative
program. Normaly such programs let the ORB know how
to start up the server program (i.e., which activation mode
to use and the pathname to the executable image) when a
request arrives for the object. They might also create and
register an object reference for the object. Asillustrated in
our last column, and as mentioned above, clients use object
references to access object implementations.

5.4 Evaluatingthe CORBA Solution

The CORBA solution illustrated above is similar to the
C++ wrappers solution shown in Section 4. For instance,
both approaches use a callback-driven event-loop structure.
However, the amount of effort required to maintain, extend,
and port the CORBA version of the stock quoter applice-
tion should be less than the C sockets and C++ wrappers

versions. This reduction in effort occurs since CORBA
raises the level of abstraction at which our solutionis devel-
oped. For example, the ORB handles more of thelower-level
communication-rel ated tasks. Thesetasksinclude automated
stub and skeleton generation, marshalling and demarshalling,
object location, object activation, and remote method invo-
cation and retransmission. This allows the server-side of the
CORBA solution to focus primarily on application-related
issues of looking up stock quotesin adatabase.

The benefits of CORBA become more evident when we
extend the quote server to support concurrency. In partic-
ular, the effort required to transform the CORBA solution
from the existing iterative server to a concurrent server is
minimal. The exact detailswill vary depending on the ORB
implementation and the desired concurrency strategy (e.g.,
thread-per-object, thread-per-request, etc.). However, most
multi-threaded versions of CORBA (such asMT Orbix [10Q])
require only a few extra lines of code. In contrast, trans-
forming the C or C++ versions to concurrent servers will
require morework. A forthcoming column will illustratethe
different strategies required to multi-thread each version.

Our previous column also described the primary draw-
backsto using CORBA. Briefly, these drawbacksincludethe
high learning curve for devel oping and managing distributed
objects effectively, performance limitations[11], as well as
the lack of portability and security. One particularly prob-
lematic drawback for serversisthat the BOA isnot specified
very thoroughly by the CORBA 2.0 specification [12].

The BOA specification is probably the weakest area
of CORBA 2.0. For example, the body of the
My _Quot er: : get _quot e methodin Section5.3ismostly
portable. However, the name of the automatically-generated
skeleton base class and the implementation of mai n remain
very ORB-specific. Our implementation assumed that the
congtructor of the St ock: : Quot er BOAI npl base skele-
ton class registered the object with the BOA. Other ORBs
might require an explicit object registration call. These dif-
ferences between ORBs exist because registration of objects
with the BOA is not specified at all by CORBA 2.0.

The OMG ORB Task Forceiswell aware of this problem
and hasissued aRequest For Proposal s(RFP) asking for ways
to solve it. Until it's solved (probably mid-to-late 1996),
the portability of CORBA object implementations between
ORBswill remain problematic.

6 Concluding Remarks

In this column, we examined several different programming
techniques for developing the server-side of a distributed
stock quote application. Our examples illustrated how the
CORBA-based distributed object computing (DOC) solu-
tion simplifies programming and improves extensibility. It
achieves these benefits by relying on an ORB infrastructure
that supports communication between distributed objects.

A major objective of CORBA isto let application devel-
opers focus primarily on application requirements, without

devoting as much effort to the underlying communication
infrastructure. As applications become more sophisticated
and complex DOC frameworks like CORBA become essen-
tial to produce correct, portable, and maintai nable distributed
systems.

CORBA is one of severa technologies that are emerging
to support DOC. In future articles, we will discuss other OO
toolkitsand environments (such as OODCE and OLE/COM)
and compare them with CORBA in the same manner that we
compared sockets and C++ wrappersto CORBA. In addition,
wewill compare the various distributed object solutionswith
more conventional distributed programming toolkits(such as
Sun RPC and OSF DCE).

Asaways, if thereareany topicsthat you' dlikeusto cover,
please send usemail a obj ect _connect @h. hp. com

Thanksto Ron Resnick and Barry Keepence for comments
on thiscolumn.

References

[1] D. C. schmidt, “A Domain Analysis of Network Daemon
Design Dimensions,” C++ Report, vol. 6, March/April 1994,

[2] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[3] D.E.ComerandD. L. Stevens, Internetworking with TCP/IP
Vol [11: Client — Server Programming and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1992.

[4] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

[5] D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[6] D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX I/O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

[7] D. C. Schmidt, “Acceptor and Connector: Design Patterns
for Actively and Passively Initializing Network Services,” in
Workshop on Pattern Languages of Object-Oriented Programs
at ECOOP ' 95, (Aarhus, Denmark), August 1995.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[9] D. C. Schmidt and P. Stephenson, “Using Design Patterns to
Evolve System Software from UNIX to Windows NT,” C++
Report, vol. 7, March/April 1995.

[10] C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

[11] D. C. schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1°* Conference on Object-
Oriented Technologies, (Monterey, CA), USENIX, June1995.

[12] Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

10

