
Object Interconnections

Collocation Optimizations for CORBA (Column 18)

Douglas C. Schmidt and Nanbor Wang Steve Vinoski
fschmidt,nanborg@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 Cambridge, MA 02138

This column will appear in the September 1999 issue of the
SIGS C++ Report magazine.

1 Introduction

In this column, we take break from our ongoing discussion
of the CORBA Messaging specification to covercollocation,
which is an important topic for component-based application
developers. Collocation is a technique for transparently op-
timizing communication overhead when clients and servants
are configured into the same address space. For instance, Mi-
crosoft COM [1] applications frequently use collocation to ac-
cess so-called “in-proc” components.

Unlike COM, which evolved from its original collo-
cated component model into a networked component model,
CORBA is often considered to be adistributedobject comput-
ing model. However, there are situations where clients and
servants must be configured in the same address space [2].
For example, user-suppliedServantManagers are ordi-
nary CORBA objects that are invoked by POAs to help in-
carnate servants [3]. In such cases, CORBA ORBs can trans-
parently employcollocation optimizationsto ensure there’s no
unnecessary overhead of (de)marshaling data or transmitting
requests/replies through a “loopback” communication device.

In this column, we describe and evaluate several colloca-
tion techniques. To make the discussion concrete, we describe
how collocation is supported in TAO [4], which is an ORB
developed at Washington University, St. Louis. Finally, we
present benchmarking results that compare the relative perfor-
mance gains from various types of collocation strategies and
optimizations.

2 Motivating Example

To make our discussion more concrete, consider the following
client that uses the standard OMG Naming service to locate
and invoke an operation on a StockQuoter object:

int main (int argc, char *argv[])
{

// Initialize the ORB.
CORBA::ORB_var orb =

CORBA::ORB_init (argc, argv);
// Get reference to name service.
CORBA::Object_var obj =

orb->resolve_initial_references ("NameService");

// 1. Opportunity for collocation.
CosNaming::NamingContext_var name_context =

CosNaming::NamingContext::_narrow (obj);

// Create desired service name.
const char *name = "Quoter";
CosNaming::Name service_name;
service_name.length(1);
service_name[0].id = name;

// Find object reference in Naming Service.
Object_var obj =

name_context->resolve (name);

// 2. Opportunity for collocation.
Quoter_var q = Quoter::_narrow (obj);

const char *stock_name = "ACME ORB Inc.";

// Invoke call, which may be collocated.
long value = q->get_quote (stock_name);
cout << "value of " << stock_name

<< " = $"
<< value << endl;

}

As shown above, the client gets an object reference to the stock
quote service, asks it for the value of the “ACME ORBs, Inc.”
stock, and prints out the value if everything works correctly.

What’s important to note in this example is that both the
Naming Service and the Quoter Service may be collocated in
the same address space as the client. When this is case, we’d
like the ORB to invoke theresolve andget quote opera-
tions as directly as possible, rather than incurring all the over-
head of (de)marshaling data and transmitting requests/replies
through a “loopback” communication device. Moreover, the
ORB should be able to determine automatically if the servant
is configured into the same address space as the client and per-
form the collocation optimization transparently.

1

3 Overview of Alternative Collocation
Techniques

In this section we evaluate two general techniques for imple-
mentation collocation, which we term thestandardtechnique
and thedirect technique.

3.1 Standard Collocation

This strategy uses a so-called “collocation-safe” stub to han-
dle operation invocations on a collocated object. Invoking
an operation via a collocation-safe stub ensures the following
checks are performed:

1. Applicable client policies are used.

2. The server ORB (which may or may not be the ORB used
by the invoking client) has not been shutdown.

3. Interceptors are invoked at the proper interception points.

4. The thread-safety of all ORB and POA operations.

5. The POA managing the servant still exists.

6. The POA Manager [5] of this POA is queried to make
sure invocations are allowed on the POA’s servants.

7. The servant for the collocated object is still active.

8. ThePOA::Current ’s context is set up for this upcall.

9. The POA’s policies, e.g., the
ThreadPolicy , LifespanPolicy , and
ServantRetentionPolicy , are respected.

If after all these checks it is safe to invoke the operation,
one implementation technique is to have the stub use the
ServantBase exported from the server’s POA, downcast it
to the appropriate concrete servant type, and forward the oper-
ation directly to the servant operation. Collocation-safe stubs
ensure that thePOA::Current is restored to its context be-
fore the current invocation began, various locks in POA and
ORB are released, and the internal states of POA are restored
after either a successful or unsuccessful operation invocation.

Because the collocated stubs must access the client ORB
(e.g., to determine which client policies are enabled) and the
server ORB (e.g., to access the object adapter for myriad
of CORBA-compliant operations) the collocation-safe stubs
must be able to communicate with both ORBs efficiently.
Therein lies the rub,i.e., going through all these steps can in-
cur a non-trivial amount of overhead.

One potential drawback of using standard collocation strat-
egy is that it requires the collocation-safe stubs to maintain
knowledge about POA skeleton class names and hierarchies.
Thus, if an ORB supports both a BOA and a POA, the IDL
compiler must generate different stubs depending on which

Object Adapter the application uses. Fortunately, the BOA is
now obsolete in the current and future CORBA specifications.
Therefore, users should be able to select what type of collo-
cated stubs are generated by their IDL compiler.

3.2 Direct Collocation

To minimize the overhead of the standard collocation strategy
outlined above, it is possible to implement collocation to for-
ward all requests directly to the servant class. Thus, the POA
is not involved at all. When implemented correctly, the perfor-
mance of direct collocation should be competitive to that of a
virtual method call on the servant operation.

However, although the direct strategy provides the maxi-
mum performance for collocated operation invocations, the
following problems arise:

ORB lifetime: The ORB servicing the object can be shut
down at any point. Invoking the collocated servant’s operation
directly will still succeed, even if the ORB has been shut down.
This behavior is incorrect, however, since client’s should re-
ceive exceptions if they invoke operations after ORBs have
shut down.

Object availability: Depending on the policies used by the
POA, an object can be activated and then later deactivated or
removed from the POA completely. Since direct invocation
does not check for the availability of an object, operation in-
vocations can still “succeed” even after an object has been de-
activated or removed from the POA. As with ORB lifetime,
allowing this behavior violates the object management model
provided by CORBA. Moreover, the results will be nonpre-
dictable, at best, and disastrous, at worst, if an operation is
invoked directly after a servant has been unregistered from the
POA and deleted.

POA Managers: A POA Manager encapsulates the process-
ing state of the POAs it is associated with. Using operations
on the POA Manager, an application can cause requests for
those POAs to be queued or discarded. Likewise, a POA can
be put in the holding, discarding, or inactive state by its POA
Manager. Making operation invocations directly on the ser-
vant implementations circumvents these mechanisms and pre-
vents applications from controlling the rate at which incoming
requests are dispatched by POA Managers and POAs.

POA’s threading policy: To integrate non-thread-safe
legacy software into newly developed systems, the POA spec-
ification defines aSINGLE THREADEDpolicy. POAs using
the SINGLE THREADEDpolicy serialize the dispatching of
incoming requests. Implementing collocated object optimiza-
tion by directly invoking servant operations defeats this policy,
which may cause race conditions if more than one thread dis-
patches upcalls simultaneously.

2

Interceptors: Interceptors [6] allow application developers
to specify additional code that is executed before or after nor-
mal operation code. These programmable interception points
enable applications to perform security checks, provide de-
bugging traps, maintain audit trails, etc. It is necessary that
the ORB run these interceptors regardless of the collocation of
the client and the server. Direct collocated calls bypass inter-
ceptor invocations, which can break local/remote transparency
and cause security violations.

Upcall contexts: The CORBA specification mandates that
certain pseudo-objects, such asPOA::Current , service-
specific contexts,RequestID , and otherCurrent -derived
objects be available during an upcall. These pseudo-objects
provide the context for the request that’s currently being ser-
viced. If a request is invoked directly on a servant, these
pseudo-objects will either not exist or will return incorrect in-
formation for the current request context.

Location transparency: An object can migrate among
ORBs. Remote operation invocations can receive a
LOCATEFORWARDreply to any request invocation. When
forwarding occurs, the client ORB is responsible for transpar-
ently delivering the current request and subsequent requests to
the location denoted by the new object reference returned in
the LOCATEFORWARDreply. An operation invocation to a
collocated object may be forwarded to a remote object. Like-
wise, a remote operation invocation can be forwarded back to
a collocated object. For collocation to work transparently, lo-
cation forwarding must be supported by the ORB’s collocation
mechanism.

Servant management: The POA makes a clear distinction
between a CORBA object and its servant [5]. Specifically, a
single CORBA object may be incarnated by multiple servants
over its lifetime. Likewise, a single servant might incarnate
multiple CORBA objects simultaneously. Applications can
useServantManagers to cause the POA to incarnate ob-
jects on-demand when requests arrive for them. In many cases,
servants do not exist outside the context of a request invoca-
tion, e.g., they can be destroyed by theServantManager
as soon as they complete the request. Direct collocation as-
sumes that the lifetime of a servant is the same as the lifetime
of the object it incarnates, and further assumes that an object
reference to a collocated object can be implemented as a C++
pointer.1 Because these lifetimes are indeed separate, how-
ever, such object references can easily become dangling C++
pointers when the servant is destroyed.

Dynamic object management: Some clients use the Dy-
namic Invocation Interface (DII). The DII is essentially a
generic stub that allows clients to build requests at run-time,

1Most pre-POA ORBs make this assumption and implement object refer-
ences in this manner.

without requiring the client to have interface-specific stubs
compiled in. Similarly, some servers implement their CORBA
objects using the Dynamic Skeleton Interface (DSI). The DSI
allows objects to receive requests without requiring the server
to have interface-specific skeletons compiled in. Direct collo-
cation assumes that both clients and objects are implemented
using static stubs and skeletons, respectively, thus disallowing
collocation optimizations in the dynamic case and penalizing
DII- and DSI-based applications.

Priority inversion: Collocated operation invocations are
run in the client’s thread-of-control. Therefore, directly in-
voking an operation on a collocated object can causeprior-
ity inversions, which occurs when lower-priority threads block
higher-priority threads from executing [7]. Proper mecha-
nisms must be in place to set up and restore the running
thread’s priority based on both the client and server’s priority
policies.

Oneway semantics: Oneway calls are supposed to allow the
client to proceed without worrying whether the call was actu-
ally delivered to the target object and without waiting for the
object to carry out the request. Because collocated oneway
calls are invoked within the client’s thread of control, oneway
invocations turn into synchronous invocations, thus blocking
the client for the duration of the invocation.

As described above, the direct collocation strategy breaks
the CORBA object model in many ways. Fortunately, it is
possible to implement collocation in ORBs that can perform
relatively well, while still preserving all the semantics of the
CORBA object model. The following section discusses vari-
ous techniques for achieving these qualities.

4 Implementing Collocation – A Case
Study

To support collocation optimizations transparently, an ORB
must be able to identify an object’s location without explicit
application intervention. To complicate matters, however,
clients can obtain object references in several ways,e.g., from
a CORBA Naming Service, a Trading Service, or from a Life-
cycle Service generic factory operation. Likewise, clients can
usestring to object to convert a stringified interopera-
ble object reference (IOR) into an object reference.

Regardless of how an object reference is obtained, the ORB
must create a proxy or stub for the object in the caller’s address
space. To ensure locality transparency, therefore, an ORB’s
collocation optimization must automatically determine if an
object is collocated with the caller. If it is, the ORB returns a
collocated proxy/stub that implements collocation; if it is not,

3

the ORB returns a proxy/stub that handles remote calls to a
distributed object.

To concretely illustrate how collocation works, this section
describes how to optimize collocated client/servant configu-
rations using techniques in TAO [4], which is an open-source,
real-time ORB developed at Washington University, St. Louis.

4.1 Overview of TAO’s Collocation Optimiza-
tions

TAO supports bothstandard and direct collocation strate-
gies by creating different collocation stub implementations
when an object reference is demarshaled according to a
user-selectable flag. TAO uses the standard collocation
strategy by default. However, the actual collocation strat-
egy used by the TAO ORB can be set by passing the
correct argument intoCORBA::ORBinit via TAO’s
-ORBCollocationStrategy Direct/Thru POAop-
tion.

TAO’s two strategies are outlined below:

Thru POA: In TAO, the standard collocation strategy is
called “Thru POA” to reflect the fact that operation invo-
cations using this strategy always go through the POA. The
Thru POAstrategy is the default collocation strategy in TAO.
In this strategy, a collocation-safe stub is used to handle opera-
tion invocations on a collocated object. Invoking an operation
on this type of collocated stub ensures:

1. The server ORB (which may or may not be the same ORB
as the clients’) has not been shut down, by querying the
servant’s ORB which the stub refers to.

2. The thread-safety of all ORB and POA operations by
grabbing the necessary locks.

3. The POA managing the servant still exists by look-
ing up the servant through the POA; this operation
also ensures that the properServantLocator or the
ServantActivator is called if the POA is using such
policies.

4. The POA Manager of this POA is queried to make sure
upcalls are allowed to be performed on the POA’s ser-
vants.

5. The servant for the collocated object is still active.

6. ThePOA::Current ’s context is setup for this upcall.

7. The POA’s threading policy is respected by querying the
POA’s threading policy.

If it is safe to invoke the operation, the stub uses the
ServantBase exported from the server’s POA, downcasts
it to the appropriate concrete servant type, and forwards the
operation directly to the servant operation. Collocation-safe

stubs ensure that thePOA::Current is restored to its pre-
vious context before the current invocation, and various locks
in POA and ORB are released, either after a successful or an
unsuccessful operation invocation.

Direct: In this TAO-specific extension, the collocation class
forwards all requests directly to the servant class,i.e., the
POA is not involved at all. However, this implementation
does not support the following standard POA features: (1) the
POA::Current is not setup, (2) interceptors are bypassed,
(3) POA Manager state is ignored, (4) Servant Managers are
not consulted, (5) etherealized servants can cause problems,
(6) location forwarding is not supported, and (7) the POA’s
Thread Policy is circumvented. As shown in Figure 4,
supporting all these standard features decreases collocation
performance. Therefore, TAO provides theDirect strategy
that is optimized for real-time applications with very stringent
latency requirements.

4.2 Implementing TAO’s Collocation Opti-
mizations

Figure 1 shows the classes used in TAO to support bothstan-
dard anddirect collocation strategies. The stub and skeleton

CORBA::Object

Stub

Interface

Collocated Proxy

Servant Base

Skeleton

Servant Implementation

<<forwards>>

CLIENT-SIDE
MAPPING

SERVER-SIDE
MAPPING

Figure 1: TAO’s POA Mapping and Collocation Class

classes shown in Figure 1 are required by the POA specifica-
tion, though the collocation class is specific to TAO’s colloca-
tion implementation. Collocation is transparent to the client
because the client only knows about the abstract interface and
never uses the collocation class directly. As with remote op-
eration invocations, the ORB Core is responsible for locating
servants and ensuring that the collocated stub class, rather than

4

the remote stub class, is used by a client when the servant re-
sides in the same address space.

The specific steps used by TAO’s collocation optimizations
are described below:

Step 1 – Determining collocation: To determine if an ob-
ject reference is collocated, TAO’s ORB Core maintains acol-
location table. Figure 2 shows the internal structure for collo-
cation table management in TAO. Each collocation table maps

TAO_ORB_Core

Table Collection

CORBA::ORB

1..*

1

1..*

1

Collocation Table

1
1..*

1
1..*

Addr

1..*1..*

endpoint

PortableServer::POA
0..1

0..*
0..1

0..*RootPOA

Table Entry
endpoint : Addr
poa : PortableServer::POA1..*1..*

Figure 2: Class Relationship of TAO’s Collocation Tables

an ORB’s transport endpoints to its RootPOA. In the case of
IIOP, for example, endpoints are specified using TCP/IPfport
number, host nameg tuples.

Multiple ORBs can reside in a single CORBA application
process. Each ORB can support multiple transport protocols
and accept requests from multiple transport endpoints. There-
fore, TAO maintains multiple collocation tables to handle all
transport protocols used by ORBs within a single process. Be-
cause different protocols have different addressing formats,
maintaining protocol-specific collocation tables allows TAO
to strategize and optimize the lookup mechanism for each pro-
tocol.

Step 2 – Obtaining a reference to a collocated object: A
client acquires an object reference either by resolving an im-
ported IOR usingstring to object or by demarshaling
an incoming object reference. In either case, TAO examines
the corresponding collocation tables according to the profiles
carried by the object to determine if the object is collocated or
not. If the object is collocated, TAO performs the steps shown
in Figure 3 to obtain a reference to the collocated object.

When the standard collocation strategy is enabled, the ORB
only checks if the imported object reference is collocated or
not when it resolves the object reference. To determine this,
TAO examines the endpoint information in the collocation ta-
ble maintained by TAO’s ORB Core. If the imported object
reference refers to a collocated object, an object reference with

: CORBA::ORB

: Clients

: TAO_
ORB_Core

RootPOA : Portable
Server::POA

New Object Reference :
CORBA::Object

Collocated Servant :
CORBA::Object

Servant Implementation :
CORBA::ServantBase

2: get_collocated_poa()

3: find_servant()

4: instantiates

1: resolve object reference

5: _narrow ()

8: invokes operations 6: _narrow ()

7: instantiates

Figure 3: Finding a Collocated Object in TAO

the collocation-safe stub is generated. This stub contains in-
formation about the Object Adapter and server ORB associ-
ated with the object.

When TAO is configured to use the direct collocation strat-
egy, the ORB resolves an imported object reference using the
steps shown in Figure 3. To resolve an object reference(1),
the ORB checks(2) the collocation table maintained by TAO’s
ORB Core to determine if any object endpoints are collocated.
If a collocated endpoint is found the RootPOA corresponding
to the endpoint is returned. Next, the matching Object Adapter
is queried for the servant, starting at its RootPOA(3). The
ORB then instantiates a genericCORBA::Object (4) and
invokes thenarrow operation on it. If a servant is found, the
ORB’s narrow operation(5) invokes the servant’snarrow
operation(6) and a collocated stub is instantiated and returned
to the client(7). Finally, clients invoke operations(8) on the
collocated stub, which forwards the operation to the local ser-
vant via a direct virtual method call.

If the imported object reference is not collocated either op-
eration(2) or (3) will fail. In this case, the ORB invokes the
is a operation to verify that the remote object matches the

target type. If the test succeeds, a remote stub is created and
returned to the client and all subsequent operations are dis-
tributed. Thus, the process of selecting collocated stubs or
non-collocated stubs is completely transparent to clients and
is performed only when the object reference is created.

Step 3 – Performing collocated object invocations: Collo-
cated operation invocations in TAO borrow the client’s thread
to execute the servant’s operation. Therefore, they are exe-
cuted within the client thread at its thread priority. Although

5

executing an operation in the client’s thread is very efficient,
it is undesirable for certain types of real-time applications [8].
For instance, priority inversion can occur when a client in a
lower priority thread invokes operations on a collocated object
that would otherwise be serviced by a higher priority thread.

Therefore, to provide greater access control over the scope
of TAO’s collocation optimizations applications can associate
different access policies to endpoints so they only appear col-
located to certain priority groups. Since endpoints and prior-
ity groups in many real-time applications are statically config-
ured, this access control lookup imposes no additional over-
head.

5 Performance Results

To measure the performance gain from TAO’s collocation op-
timizations, we ran server and client threads in the same pro-
cess. The platforms used to benchmark the test program were
a quad-CPU 300 Mhz UltraSparc-II running SunOS 5.7 and
a dual-CPU 333 Mhz Pentium-II running Microsoft Windows
NT 4.0 with SP5. To compare performance systematically, the
test program was run with the standard collocation strategy,
the direct collocation strategy, as well as with neither collo-
cation optimization,i.e., using remote stubs via the loopback
network interface. To compare the performance gain of collo-
cation optimizations to the optimal performance, we also mea-
sured the time to perform the exact same task by making direct
virtual function calls on the skeleton class.

Figure 4 shows the performance improvement, measured in
calls-per-second, using TAO’s collocation optimizations. Each
operation cubed a variable-length sequence oflong s that con-
tained 4 and 1,024 elements, respectively. The performance

27
88

14
12

11
63

42

99
77

4

23
12

90

24
27

83

21
58

14
52

62
06

7

57
68

7

10
95

83

10
45

58

11
48

43

10
91

35

26
79

44

27
82

06

0

50000

100000

150000

200000

250000

300000

small seq of long large seq of long

Operations

ca
lls

 p
er

 s
ec

o
n

d

NT w/ loopback NT w/ thru_poa NT w/ direct
NT w/ virtual calls Solaris w/ loopback Solaris w/ thru_poa
Solaris w/ direct Solaris w/ virtual calls

Figure 4: Results of TAO’s Collocation Optimizations

of operation invocations improves dramatically when servants
are collocated with clients. With the standard optimization,
we obtain a performance improvement of 3,000% to 6,000%
comparing to the case when the calls are made thru the local
loopback device.

As shown in Figure 4, the larger the size of arguments
passed by the operations, the bigger the performance gain
achieved by using collocation. Comparing the benchmark-
ing results, note that there is 130%�180% performance gain
when switching from the standard strategy to the direct strat-
egy. This performance boost is achieved by skipping the var-
ious ORB and POA operations discussed earlier. The size of
the arguments does not have a significant effect on the perfor-
mance. Finally, if the operations are made directly by calling
the skeleton methods, less than 5% of performance gain is in-
curred by avoiding an extra virtual method call.

These results illustrate that by using direct collocation op-
timizations, invocations on collocated CORBA objects are al-
most comparable to invocations on virtual methods of ordinary
C++ objects.

6 Concluding Remarks

One of CORBA’s early influences was Spring [9], which was
designed from the ground up as an OO OS by Sun in the late
’80s and early ’90s. CORBA 1.x [10] borrowed heavily from
Spring concepts and features, including its IDL syntax and se-
mantics, its use of object references [11], and its strict sep-
aration of interface from implementation. Ironically, it took
several years for CORBA implementations to adopt another
key Spring feature,collocation, which can be used to transpar-
ently decouple the overhead of communicating with an object
from how and when an object’s servant(s) are configured into
a server process.

In an earlier column [3], we illustrated how advanced POA
features like Servant Managers can be used to configure and
instantiate servants into server processes very late in the design
lifecycle, i.e., dynamically at run-time. The use of colloca-
tion makes these advanced POA features even more powerful
since they allow the ORB to determine an optimal configura-
tion transparently to applications.

The standard collocation strategy described in this column
is completely CORBA compliant. It respects the availability of
targeting objects and the threading policy that manages the tar-
geting object. The direct collocation policy optimization is not
entirely compliant with the CORBA standard, though it pro-
vides more efficient collocated operation invocations. How-
ever, both collocation strategies are much more efficient than
using remote stubs that transmit data via the loopback network
interface.

While collocation optimizations apply to normal object im-

6

plementations, there is another class of object implementa-
tions that requires direct invocation only. Theselocality-
constrainedobjects, such asPolicy objects and interceptors,
are often part of the ORB implementation itself. The Hewlett-
Packard/IONA submission[12] to the OMG Portable Intercep-
tor RFP[13], for example, definesCORBA::LocalObject
as anative IDL type to be used as a language-mapping-
specific implementation base class for servants for locality-
constrained objects. Application-defined interceptors use
LocalObject as a servant base class that provides local im-
plementations for allCORBA::Object operations. Object
references for these objects are simply direct C++ pointers to
the servants. Such objects are referenced directly because they
typically exist at levels below the POA,e.g., within the request
invocation path, and thus can’t be implemented as POA-based
servants.

As always, if you have any questions about the material we
covered in this column or in any previous ones, please email
us atobject_connect@cs.wustl.edu .

References
[1] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[2] D. C. Schmidt and S. Vinoski, “Developing C++ Servant
Classes Using the Portable Object Adapter,”C++ Report,
vol. 10, June 1998.

[3] D. C. Schmidt and S. Vinoski, “C++ Servant Managers for the
Portable Object Adapter,”C++ Report, vol. 10, Sept. 1998.

[4] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[5] M. Henning and S. Vinoski,Advanced CORBA Programming
With C++. Addison-Wesley Longman, 1999.

[6] Object Management Group,OMG Security Service, OMG Doc-
ument ptc/98-01-02, revision 1.2 ed., January 1998.

[7] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Jour-
nal of Real-time Systems, To appear 1999.

[8] D. L. Levine, C. D. Gill, and D. C. Schmidt, “Dynamic Schedul-
ing Strategies for Avionics Mission Computing,” inProceed-
ings of the 17th IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC), Nov. 1998.

[9] S. Radia, G. Hamilton, P. Kessler, and M. Powell, “The Spring
Object Model,” inProceedings of the Conference on Object-
Oriented Technologies, (Monterey, CA), USENIX, June 1995.

[10] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 1.2 ed., 1993.

[11] M. L. Powell, Objects, References, Identifiers, and Equality
White Paper. SunSoft, Inc., OMG Document 93-07-05 ed., July
1993.

[12] H.-P. Company and I. T. PLC,Portable Interceptor RFP Ini-
tial Submission. Object Management Group, OMG Document
orbos/99-04-08 ed., April 1999.

[13] Object Management Group,Portable Interceptor RFP, OMG
Document orbos/98-09-11 ed., September 1998.

7

