
Object Interconnections

Time-Independent Invocation and Interoperable Routing
(Column 17)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the April 1999 issue of the
SIGS C++ Report magazine.

1 Introduction

This column focuses on a new feature defined in the CORBA
Messaging Specification [1] calledtime-independent in-
vocation (TII), which adds store-and-forward features to
CORBA. Prior to the Messaging spec, CORBA requests
were sent by a client and handled immediately by the server,
with the server returning any response as soon as it finished
processing the request, as shown in Figure 1. As shown in

operation(args)

response

requestCLIENT

TARGET

OBJECT
4

Figure 1: Synchronous CORBA Twoway Request/Response

Figure 2, in contrast, CORBA TII allows applications to(1)
issue requests and then shut down or disconnect from the
network. These requests can be(2) queued by any interme-
diateclient routersalong the way until they reach thetarget
router. This router makes a synchronous call to the server
ORB (3), which then dispatches(4) the upcall on the tar-
get object and sends the response back(5) to the appropriate
reply destination(6). Later, the same application can recon-
nect or restart to receive the response. Likewise, an entirely
different application can receive the response(7).

This is the third column of our series covering the new
CORBA Messaging Specification. The first column of the
series outlined the capabilities of the new messaging features
and described how they greatly improve the status quo for
invoking nonsynchronous CORBA requests [2]. The sec-
ond column showed examples of how to write applications
that use CORBAasynchronous method invocation(AMI)
features. AMI uses the static invocation interface (SII) to
send requests asynchronously and receive responses either
by polling viaPoller s or throughReplyHandler call-
backs [3], which we review briefly below. In this column,

33

55

44

66

77

11

ORIGINATINGORIGINATING

CLIENTCLIENT

TARGETTARGET

OBJECTOBJECT

REPLYREPLY

DESTINATIONDESTINATION

TARGETTARGET

ROUTERROUTER

CLIENTCLIENT

ROUTERROUTER

22

INTERNETINTERNET

Figure 2: Store-and-Forward CORBA Twoway Re-
quest/Response via TII

we illustrate how TII essentially extends AMI withpersis-
tentReplyHandler s,Poller s, andRequest s.

1.1 AMI Review

CORBA Messaging supports the following two models of
asynchronous method invocation:

Polling model: In this model, each asynchronous two-way
invocation returns aPoller valuetype. The client can use
thePoller methods to check the status of the request and
to obtain the value of the reply from the server. If the server
hasn’t returned the reply yet, the client can elect to block
awaiting its arrival. Alternatively, the client can return to the
calling thread immediately and check on thePoller later
when convenient. Figure 3 illustrates the polling model for
asynchronous CORBA twoway operations.

1



POLLINGPOLLING

CLIENTCLIENT

PP
OO
LL
LL
EE
RR

operation(args)operation(args)

1: request

3: response

2: poller

4: get

TARGETTARGET

OBJECTOBJECT
44

Figure 3: Polling Model for CORBA Asynchronous Twoway
Operations

Callback model: In this model, the client passes an ob-
ject reference for aReplyHandler object as a parame-
ter when it invokes a two-way asynchronous operation on
a server. When the server responds, the client ORB turns
the response into a request on the client’sReplyHandler .
Figure 4 illustrates the callback model for asynchronous
CORBA twoway operations.

CALLBACKCALLBACK

CLIENTCLIENT

1: request

2: response

TARGETTARGET

OBJECTOBJECT
44

3: upcall

operation(callback, args)operation(callback, args)

Figure 4: Callback Model for CORBA Asynchronous
Twoway Operations

In general, the callback model is more efficient than the
polling model because the client need not poll for results.
However, it forces clients to behave as servers, which in-
creases the complexity of certain applications, particularly
“pure” clients.

1.2 Motivation for Time-Independent Invoca-
tion (TII)

To motivate the new CORBA TII feature, imagine that you’re
sitting on a plane late at night returning home from a busi-
ness trip. You’re tired, but you’ve been waiting all day to
look into a hot stock tip you received earlier from a friend.
You start up your CORBA-based stock application on your
laptop, and start reviewing information that you downloaded
over the phone just before boarding the plane.

After investigating the tip, you decide your friend was
right, and you issue a buy order. Your stock application in-
forms you that your buy request has been queued and that
it will be issued the next time you connect your laptop to a
network. Satisfied, you put away your laptop and drift off to
sleep.

Because CORBA has traditionally been associated only
with synchronous RPC-style requests, you might think this
scenario is far-fetched or even impossible. It isn’t. TII allows
you to develop applications that rely on store-and-forward
messaging, just like the stock buying example we describe
above.

2 Overview of TII Basics

TII is essentially a specialization of CORBA AMI. The dif-
ference between the two lies in the length of request and re-
ply lifetimes. With regular AMI, the client request lives only
until it reaches the target object. Likewise, the reply lives
until the client application obtains it, either by polling or
through a callback. With TII, however, requests and replies
can be stored persistently inrouters until their targets be-
come available.

In general, TII is useful for applications that require guar-
anteed delivery of requests to target objects that may not be
connected to a network at the time a message is sent. Email is
a good analogy to understand the CORBA TII model. When
you send an email message, the email program on your lap-
top might queue it until you plug into the network. At that
point, your laptop mailer sends the message to a local Simple
Mail Transfer Protocol (SMTP) server. In turn, this server
routes your message to the next SMTP server, which stores
and forwards it to other SMTP servers until your message
reaches its intended recipient.

Just as an SMTP server accepts email messages and stores
them persistently until it can forward them to the next hop,
a TII router accepts CORBA requests and replies and stores
them persistently until it can forward them to the next router.
Because CORBA routers can store TII requests and replies
persistently, they can outlive the clients and servers that send
and receive them. Therefore, TII is useful for applications
running on “occasionally-connected”clients, such as the lap-
top computer described in our stock buying application ex-
ample above. By using TII, requests and replies can be de-
livered to their targets when network connections, routing
agents, and QoS properties permit.

3 Illustrating TII Features with the
Stock Buying Application

To illustrate TII features in more detail, let’s examine the
workings, step-by-step, of the stock buying application ex-
ample described in Section 1.2. Below, we’ll explain how
(1) the request was initially created, (2) the first router was
identified, (3) the request was sent, (4) the request is invoked
by the target router, and (5) the reply is handled.

1. Initial request: When you click the button on your
stock application’s GUI to commit your buy order, your ap-
plication’s ORB first attempts to issue your request directly
to the target using normal AMI semantics. If your laptop

2



were hooked into a network and connectivity to the target
stock broker object could be established, the ORB would
send the request, receive the reply, and the twoway operation
would be complete. In our use-case, however, the ORB’s at-
tempt to deliver the request fails because your laptop is not
plugged into a network.

It’s important to note that most of the actual work involved
in sending the request via the TII is done by the ORBs and
intermediate CORBA routers. For instance, the fact that the
ORB fails to deliver the request might not be revealed to the
application,e.g., the ORB might catch the failure and decide
to send the request to a router instead. Thus, all you need to
worry about is writing the client and server code, as usual.

2. Router identification: Because the attempt to deliver
the AMI request failed, the client ORB looks for a router
to handle the request instead. Exactly how the ORB finds
a router is implementation-specific. For example, the ORB
might look in the target object’s Interoperable Object Ref-
erence (IOR) for routing information, or it might just use
its own local CORBA router. A CORBA router implements
standard CORBA Messaging IDL interfaces. Therefore, it’s
identified by a normal CORBA object reference.

3. Sending the request: Once the client ORB identifies
the initial router, it must send the request to it. How it sends
the request depends on whether the client application uses
the callback or polling AMI model, both of which we exam-
ine below.

� Callbacks: If the client application uses a callback
ReplyHandler , the client ORB uses theRouter inter-
face of theMessageRouting module , shown below:

module MessageRouting
{

struct RequestInfo { /* described below */ };
typedef sequence<RequestInfo> RequestInfoSeq;

interface Router
{

// Send one request to a server.
void send_request (in RequestInfo req);

// Send multiple requests to a server.
void send_multiple_requests

(in RequestInfoSeq req_seq);
};

};

TheRequestInfo struct contains enough informa-
tion for a router to either locate the request target object or to
find the next router it should pass the request to. Therefore,
the client ORB can supply a list of routers, the object can
supply a list of routers in its IOR, or a router can use its own
list.

module MessageRouter
{

interface Router; // Defined above
typedef sequence<Router> RouterList;

struct RequestInfo
{

// List of routers visited thus far.
RouterList visited;

// List of routers remaining to visit.
RouterList to_visit;

// Object we’re invoking our request upon.
Object target;

// Index of IOR profile being used to send
// this request.
unsigned short profile_index;

// Location where the reply should return to.
ReplyDestination reply_destination;

// Quality of service parameters.
Messaging::PolicyValueSeq selected_qos;

// Contents of the message.
RequestMessage payload;

};

A RequestInfo contains thepayload field, which is the
contents of theRequestMessage itself. In addition, it
contains the target object reference, along with the series of
routers that have been visited and that remain to be visited
in the visited and to visit fields respectively. The
selected qos field contains quality of service (QoS) pa-
rameters that can be used by routers to decide how to store
and forward this request relative to other requests.

The reply destination field stores the destination
of the reply, which is of typeReplyDestination :

module MessageRouting
{

enum ReplyDisposition {
TYPED, UNTYPED

};

struct ReplyDestination {
ReplyDisposition handler_type;
Messaging::ReplyHandler handler;
sequence<string> typed_excep_holder_repids;

};
};

To use an application-specificReplyHandler , the client
ORB – not the client application, but the ORB on
which it runs – sets thehandler type field of the
ReplyDestination to theTYPEDenum value. In this
case, thehandler field contains the object reference for
the client application’sReplyHandler that will receive
the AMI reply callback. Note thatUNTYPEDhandlers are
used between routers because a router can’t possibly imple-
ment all typed operations, so it must use untyped handlers.

To implement TII using the callback model, the client
ORB invokes thesend request method, passing in a
RequestInfo structure.

� Polling: If the application uses aPoller in-
stead of theReplyHandler , the client ORB uses the
PersistentRequestRouter interface of the router to
invoke thecreate persistent request operation:

module MessageRouting
{

// ... RequestInfo and Router
// declarations from above.

// Forward declaration.

3



interface PersistentRequest;

interface PersistentRequestRouter
{

PersistentRequest
create_persistent_request

(in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
in RequestMessage payload);

};
};

Note how most fields included in theRequestInfo are
included
as parameters increate persistent request . The
PersistentRequest object reference returned by the
router provides operations and attributes that allow the client
ORB to determine whether a reply is available for the re-
quest:

module MessageRouting
{

// ...

interface PersistentRequest
{

readonly attribute boolean
reply_available;

GIOP::ReplyStatus get_reply
(in boolean blocking,

in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler
associated_handler;

};
};

The PersistentRequest object reference that the
router returns fromcreate persistent request is
implemented by the router itself. The client ORB uses this
object reference to (1) check for reply availability, via the
reply available attribute and (2) obtain the reply itself,
via theget reply operation.

TheMessageBody is the marshaled contents of the re-
quest itself. Theassociated handler attribute is nil
for a polling client. However, it can be used if a client
switches from the polling model to the callback model by as-
sociating aReplyHandler with its Poller . A client can
make this switch by setting theassociated handler at-
tribute of itsPoller valuetype.

If the client uses the polling model, the router es-
tablishes itself as the reply target by implementing the
UntypedReplyHandler interface:

module MessageRouting
{

interface UntypedReplyHandler
: Messaging::ReplyHandler {
void reply

(in string operation_name,
in GIOP::ReplyStatus reply_type,
in MessageBody reply_body);

};
};

To implement TII using the polling model, the client
ORB obtains aPersistentRequest object reference
via create persistent request and then uses it to
poll for the reply.

4. Invoking the target router: The request passes through
one or more routers until it reaches a router that can in-
voke the operation on the target object. This router is called
the target router. The target router acts as a “remote client
proxy” that dispatches the request on behalf of the client ap-
plication and subsequently receives the reply.

Recall from our previous column that AMI, and thus TII,
does not affect the target object implementation. This means
that the target router invokes the request on the target object
synchronously. Thus, the target carries out the request and
returns a reply just as it does for any normal synchronous
request.

5. Reply handling: When the target object replies, the
reply returns to the target router. The target router turns
the reply into a request, invoking either another router’s
send request operation, or targeting the original reply
destination. Thehandler type disposition of the reply
destination indicates whether the reply handler is typed or
untyped. In turn, this indicates whether the original applica-
tion used the callback or polling reply model, allowing the
reply to be delivered properly.

The reason a router would invoke another router rather
than invoking the target directly is that it might not have di-
rect connectivity to the target. For example, the router in
the client enterprise might route the request through a fire-
wall, onto the Internet, and onward to the router in the server
enterprise. The server-side router, which lives in the same
network as the target object, then routes the request to the
target.

4 Concluding Remarks

This concludes the penultimate column in our series on the
CORBA Messaging specification. In this column, we moti-
vated the need for the new time-independent invocation (TII)
feature in CORBA. The TII is a specialization of AMI that
supports “store-and-forward” semantics. Time-independent
requests may actually outlive the requesting client process,
meaning that the response may be processed by a completely
different application than the originating client.

As always, if you have any questions about the material
we covered in this column or in any previous ones, please
email us atobject_connect@cs.wustl.edu .

References

[1] Object Management Group,CORBA Messaging Speci-
fication, OMG Document orbos/98-05-05yes ed., May
1998.

4



[2] D. C. Schmidt and S. Vinoski, “Introduction to CORBA
Messaging,”C++ Report, vol. 10, November/December
1998.

[3] D. C. Schmidt and S. Vinoski, “Programming Asyn-
chronous Method Invocations with CORBA Messag-
ing,” C++ Report, vol. 11, February 1999.

5


