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1 Introduction

In this column we begin our coverage of asynchronous mes-
saging and the new CORBA Messaging specification [1].
This specification introduces a number of long-awaited fea-
tures into CORBA, including asynchronous method invoca-
tion (AMI), time-independent invocation (TII), and general
messaging quality of service (QoS) policies. These new fea-
tures greatly enhance the standard set of request/response
communication models that CORBA provides.

This column briefly describes the existing CORBA com-
munication models and illustrates their limitations. We then
present an overview of the CORBA Messaging specifica-
tion and outline how it alleviates limitations with the current
CORBA specification.

2 An Overview of CORBA Communi-
cation Models

Prior to the Messaging specification, CORBA provided three
communication models:

Synchronous twoway: In this model, a client sends a
twoway request to a target object and waits for the object
to return the response. While it is waiting, the client thread
that invoked the request is blocked and can’t perform any
other processing. Thus, a single-threaded client can be com-
pletely blocked while waiting for a response, which may be
unsatisfactory for certain types of performance-constrainted
applications [2].

Oneway: A oneway invocation is composed of only a re-
quest, with no response. The creators of the first version of
CORBA intended ORBs to deliver oneways over unreliable
transports and protocols such as the User Datagram Protocol
(UDP). However, most ORBs implement oneways over TCP,
as required by the standard IIOP protocol.

Deferred synchronous: In this model, a client sends a re-
quest to a target object and then continues its own process-
ing. Unlike the way synchronous twoway requests are han-

dled, the client ORB does not explicitly block the calling
thread until the response arrives. Instead, the client can later
either poll to see if the target object has returned a response,
or it can perform a separate blocking call to wait for the
response.1 You can only use the deferred synchronous re-
quest model if you invoke your requests using the Dynamic
Invocation Interface (DII), however.

CORBA specifies that oneway invocations have “best ef-
fort” semantics. Thus, the ORB need not raise an error if it is
unable to deliver the oneway. In contrast, CORBA guaran-
teesexactly-oncedelivery of synchronous twoway requests
if the ORB does not experience errors or exceptions dur-
ing delivery, andat-most-oncedelivery if errors occur or
if exceptions are raised. The guarantees for deferred syn-
chronous twoway requests are identical to those for syn-
chronous twoway requests.

While the synchronous request model is pretty straight-
forward, both the deferred synchronous and oneway models
suffer from drawbacks, which we describe in the following
section.

3 Limitations with DII and Oneway
Operations

3.1 The Tedium of the DII

As we stated above, the deferred synchronous model is avail-
able only through the DII. In a statically-typed, compiled
language like C++, however, the DII is tedious to use, as
we show below.

DII example: To illustrate the tedium of the DII, let’s look
at theQuoter interface we’ve used as a running example in
many previous columns [3, 4, 5]:

module Stock
{

// Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
long get_quote (in string stock_name)

1It is also possible to send oneway requests using the deferred syn-
chronous model.
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raises (Invalid_Stock);
};

// ...
}

Assuming we have an object reference of typeQuoter ,
invoking theget quote operation using the static invoca-
tion interface (SII) is trivial:

Stock::Quoter_var quoter_ref = // get Quoter reference

CORBA::Long value =
quoter_ref->get_quote("IONAY");

cout << "Current value of IONA stock: "
<< value << endl;

This code is obvious and natural to most C++ programmers.
Now, instead of using SII, let’s invokeget quote using

the DII:

Stock::Quoter_var quoter_ref = // get Quoter reference

CORBA::Request_var request =
quoter_ref->_request ("get_quote");

request->add_in_arg () <<= "IONAY";
request->set_return_type (CORBA::_tc_long);
request->invoke ();
CORBA::Long value;
if (request->return_value () >>= value)

cout << "Current value of IONA stock: "
<< value << endl;

We first obtain aQuoter object reference, just as in the
SII case. Because all objects support the ability to cre-
ateCORBA::Request instances, we use this reference to
create aCORBA::Request object. We pass the name of
the operation we want to invoke,i.e., get quote , to the
Request creation operation, and it returns an object refer-
ence for the newRequest .

After creating theRequest , we fill in the operation argu-
ments. We add an input argument to theRequest object by
first invokingRequest::add in arg() , which returns a
reference to theCORBA::Any that will hold the value of the
new argument. We then use the overloadedoperator<<=
to insert the string “IONAY” (the NASDAQ stock symbol
for IONA Technologies) into theAny as the value of the ar-
gument. Next, we set the return type using aTypeCode
constant for the IDLlong type.

After all the operation arguments are initialized we in-
voke the operation.2 When theinvoke call returns, we ac-
cess the return valueAny owned by theRequest object,
and then use the overloadedoperator>>= to extract our
CORBA::Long return value. Finally, we print the return
value to the standard output.

This example performs a synchronous twoway invocation.
To perform a deferred synchronous invocation, which cannot
be done with the SII, we need to replace theinvoke call, as
follows:

2To keep the example from being even more cluttered than it already is,
we omitted the exception initialization and don’t explicitly test whether the
invocation worked.

// Create the request and initialize it as before.

// Send the request.
request->send_deferred ();

// ... continue processing, and then sometime later,
// get the response...
request->get_response ();

// Handle response as before.

Note that our call toget response will block if the re-
sponse is not available immediately. If we want to avoid
blocking altogether, we can usepoll response instead:

// Create the request, then initialize and send
// it as before.
request->send_deferred ();

// Now see if the response has come back.
while (!request->poll_response ()) {

// ... continue processing ...
}

// When the while loop exits, we are
// guaranteed that the response is available.
// Thus, the following call will not block.
request->get_response ();
// Handle response as before.

The poll response is a local invocation on the
Request that checks to see if the local ORB has received
the response from the target object. Once it returns true, we
useget response to collect the response. This call is
guaranteed not to block oncepoll response returns true.

Evaluating the DII: As you saw in the example above,
the DII requires programmers to write much more code than
the SII. In particular, the DII-based application must build
the request incrementally and then explicitly ask the ORB to
send it to the target object. In contrast, all of the code needed
to build and invoke requests with the SII is hidden from the
application in the generated stubs.

The increased amount of code required to invoke an oper-
ation via the DII yields larger programs that are hard to write
and hard to maintain. Moreover, the SII is type-safe because
the C++ compiler ensures the correct arguments are passed
to the static stubs. Conversely, the DII is not type-safe. Thus,
you must make sure to insert the right types into eachAny
or the operation invocation will not succeed.3

Of course, if you can’t afford to block waiting for re-
sponses on twoway calls, you need to decouple the send and
receive operations. Historically, this meant you were stuck
using the DII. A key benefit of the new CORBA Messag-
ing specification is that it effectively allows deferred syn-
chronous calls using static stubs, which alleviates much of
the tedium associated with using the DII.

3.2 Oneway Woes

Oneways are used to achieve “fire and forget” semantics
while taking advantage of CORBA’s typechecking, marshal-

3The DII also allows applications to handle types that were not known
to them at compile time, but in this column we are using the DII only for its
deferred synchronous invocation capabilities, not to handle unknown object
types.
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ing/demarshaling, and operation demultiplexing features.
They can be problematic, however, since application devel-
opers are responsible for ensuring end-to-end reliability.

Oneway example: To illustrate the challenge of using
oneway operations reliably, let’s reconsider the IDL interface
for the callback handler we defined in [6]:

module Stock {
// Requested stock does not exist.
exception Invalid_Stock {};

// Distributed callback information.
module Callback {

struct Info {
string stock_name;
long value;

};

// Distributed callback interface
// (invoked by the Supplier).
interface Handler {

void push (in Info data);
};

interface HandlerRegistration {
void unregister ();

};
};

// This is the same as shown above.
interface Quoter {

long get_quote (in string stock_name)
raises (Invalid_Stock);

};

interface Notifying_Quoter : Quoter {
// Register a distributed callback
// handler that is invoked when the
// given stock reaches the desired
// threshold value.
CallBack::HandlerRegistration

register_callback
(in string stock_name,

in long threshold_value,
in Callback::Handler handler)

raises (Invalid_Stock);
};

};

Note that our originalQuoter interface polled servers for
stock values. In contrast, theCallback::Handler and
Notifying Quoter interfaces allow us to receive call-
backs when a stock reaches a target threshold value. We cre-
ate an object of typeCallback::Handler and pass it
to Notifying Quoter::register callback , pass-
ing along with it the name of the stock and its target value.
Theregister callback operation returns an object ref-
erence of typeCallback::HandlerRegistration ,
which allows us to unregister ourHandler at any time.

When theNotifying Quoter detects that the stock
has reached the target value, it invokes the twowaypush
operation on ourCallback::Handler . While this ap-
proach seems simple, it is fraught with subtle and perni-
cious problems. For example, if ourHandler is slow
to respond, theNotifying Quoter thread that invoked
push will be blocked. Likewise, if ourHandler is
unreachable due to network congestion or partitioning,
the Notifying Quoter thread could be blocked for a
lengthy period of time waiting to contact it.

The problems described above may seem minor, but if our
Notifying Quoter is busy with thousands of callbacks
that are all this problematic, its scalability will be tremen-
dously limited. In fact, even oneHandler could cause a
single-threadedNotifying Quoter to hang if its TCP
connection becomes flow-controlled.

To avoid these response-related issues for our call-
backs, we might be tempted to instead declare the
Handler::push operation using theoneway IDL key-
word, as follows:

module Stock {
// ...same as before...

module Callback {
// ...same as before...

interface Handler {
oneway void push (in Info data);

};
};

// ...
};

By declaringpush asoneway , we inform the ORB that the
Notifying Quoter should use “fire and forget” seman-
tics when delivering our stock value notifications.

Evaluating oneways: Unfortunately, usingoneway like
this may or may not have the desired effect, for the following
reasons:

� Transport dependencies: When a oneway is sent us-
ing IIOP, there is no response as far as the IIOP subsystem
of the requesting ORB is concerned. However, despite the
fact thatoneway is an IDL construct, its implementation de-
pends on the underlying transport used to deliver the request.
For instance, IIOP is implemented over TCP, which provides
reliable delivery and end-to-end flow control [7]. At the TCP
level, these features collaborate to suspend a client thread as
long as TCP buffers on its associated server are full. Thus,
oneways over IIOP are not guaranteed to be non-blocking.

The situation is even worse for the DCE Common Inter-
ORB Protocol (DCE-CIOP), which is the OMG standard
DCE-based protocol [8]. DCE-CIOP uses fully synchronous
DCE RPC calls to deliver oneway invocations because there
is no equivalent to oneway semantics in DCE.

� Best-effort semantics: CORBA states that oneway
operations have “best-effort” semantics, which means that
an ORB need not guarantee their delivery. For example, an
ORB that supports a proprietary UDP-based transport can
send oneway calls over UDP without bothering to check to
see that they arrive. Moreover, an ORB that conforms to the
CORBA specification could even toss all oneway requests
into the bit bucket and not attempt to deliver them at all!4.
Thus, if you need end-to-end delivery guarantees for your
oneway requests, you cannot portably rely on oneway se-
mantics.

4It is unlikely that such an ORB would be well-received in the market-
place, of course!

3



So, as you can see from the discussion above, oneway just
doesn’t cut it. It guarantees neither non-blocking semantics
nor reliable delivery. Thus, moving from ORB to ORB you
can never be sure of what semantics you’ll get.

Until recently, the CORBA communication model didn’t
provide a standard solution to the limitations described
above. Fortunately, the situation is now much improved with
the new CORBA Messaging specification [1]. In our next
column, we’ll show how this specification fixes the limita-
tions with the tedium of programming with deferred syn-
chronous operations via the DII and the weak semantics of
oneway operations. For now, however, we’ll introduce you
to the CORBA Messaging specification.

4 An Introduction to CORBA Mes-
saging

The new CORBA Messaging specification introduces sev-
eral important features to CORBA. This section presents
an overview of the three most important features: asyn-
chronous method invocation (AMI), time-independent invo-
cation (TII), and messaging QoS policies.

4.1 Asynchronous Method Invocation (AMI)

If you read Section 2 carefully, you’ll note that standard
CORBA doesn’t define a truly asynchronous method invo-
cation model using the SII. A common workaround for the
lack of asynchronous operations is to use separate threads
for each twoway operation. However, the complexity of
threads makes it hard to develop portable, efficient, and scal-
able multi-threaded distributed applications [9]. Moreover,
since support for multi-threading is inadequately defined in
the CORBA specification there is significant diversity among
ORB implementations [10].

Another common workaround to simulate asynchronous
behavior in CORBA is to use oneway operations. For in-
stance, a client can invoke a oneway operation to a target
object and pass along an object reference to itself. The tar-
get object on the server can then use this object reference to
invoke another oneway operation back on the original client.
However, this design incurs all the reliability problems with
oneway operations described in Section 3.2.

To address these issues, CORBA Messaging defines an
asynchronous method invocation (AMI) specification that
supports the following two models:

Polling model: In this model, the asynchronous twoway
invocation returns aPoller valuetype, which is a new
IDL type introduced by the newObjects-by-Valuespecifi-
cation [11]. Avaluetype is very much like a C++ or Java
class, in that it has both methods and data members.

The client can use thePoller methods (which are just
local C++ function calls, not distributed invocations) to ob-
tain the status of the request and the value of the reply from
the server. If the reply hasn’t returned from the server yet,

the client can elect to block awaiting its arrival, just like with
the deferred synchronous mode described in Section 2. Like-
wise, it can simply return to the calling thread immediately
and check back later on thePoller .

Callback model: In this model, an object reference to a
object called aReplyHandler is passed as a parameter
when a client invokes a twoway asynchronous operation on
a server. When the server responds, the client ORB receives
the response and invokes the appropriate C++ method on
the ReplyHandler callback object to handle the reply.
The callback model is particularly useful since it relieves the
client from having to poll for the result.

An important consequence of both AMI models is that
no additional application threads are required in the client.
Thus, an application can manage multiple twoway operations
simultaneously by using the same thread of control to make
overlapping remote requests to one or more objects.

We can use either the polling or callback model to avoid
the problems with the DII and oneway approaches de-
scribed in Section 3. Remarkably, adding asynchrony to
the client generally does not require any modifications to
the server since the CORBA Messaging specification treats
asynchronous invocations as a client-side language mapping
issue.

4.2 Time-Independent Invocations (TII)

Time-independent invocations (TII) is a specialization of
AMI that supports “store-and-forward” semantics. Time-
independent requests may actually outlive the requesting
client process, meaning that the response may be gathered by
a completely different client. This is useful for applications
like email, which require guaranteed delivery of requests to
target objects that may not be connected to a network at the
time a message is sent. TII is also useful for applications run-
ning on “occasionally-connected” clients like laptop com-
puters. By using TII, requests and replies can be delivered to
their targets when network connections, routing agents, and
QoS properties permit.

To support TII, the CORBA Messaging specification de-
fines a standardInteroperable Routing Protocol(IRP) based
on the General Inter-ORB Protocol (GIOP).5 The IRP pro-
vides a standard way for time-independent requests to travel
between store-and-forward routers built by different vendors.
Many solid, stable, production-quality distributed systems
in use today are built using asynchronous messaging tech-
nology, often referred to asmessage-oriented middleware
(MOM) [12]. Thus, IRP also allows ORBs to use these ex-
isting MOM products to deliver messages with varying qual-
ities of service (see below), rather than trying to reinvent the
wheel.

5GIOP is the “abstract base” protocol for building inter-ORB communi-
cations, while the Internet Inter-ORB Protocol (IIOP) is simply GIOP im-
plemented over TCP.
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4.3 Messaging Quality of Service (QoS)

The CORBA 2.2 specification does not define key QoS fea-
tures associated with MOM products such as the TIBCO In-
formation Bus and IBM’s MQSeries. Common QoS features
include: delivery quality, queue management, and message
priority.

One of the strengths of the new CORBA Messaging spec-
ification is its uniform QoS framework that supports both
asynchronous and synchronous method invocations. In this
framework, all QoS properties are defined as interfaces de-
rived from CORBA::Policy , which we described in our
recent columns on the POA [13, 14, 4, 5]. This QoS frame-
work allows applications to define QoS properties at multiple
client-side levels:

1. ORB level: QoS policies for the ORB control QoS for
all requests made using that ORB.

2. Thread level: QoS policies may be set on a per-thread
basis to control all requests issued from a given thread. Each
thread-level policy setting overrides the corresponding set-
ting at the ORB level.

3. Object reference level: QoS policies may be set on
each object reference to control requests made using that ob-
ject reference. Each policy setting at the object reference
level overrides the corresponding setting at both the thread
level and the ORB level.

Client-side policies allow applications to control details
of request and reply delivery if they so choose. For exam-
ple, they provide control over request and reply timeouts,
priorities and ordering, rebinding to servers, and required
routing semantics,i.e., whether store-and-forward delivery
is needed. Existing CORBA applications that just use the
ORB “as-is” need not change, however – the defaults for
these request delivery issues provide behavior that is iden-
tical to existing CORBA request delivery semantics.

In addition, there are server-side policy management in-
terfaces that allow applications to set desired QoS levels for
their objects. These policies are set on a POA as it is cre-
ated, and any objects created under that POA have those poli-
cies embedded in their object references. For example, all
the objects created under a certain POA might require that
they only be invoked within the context of a transaction. By
setting the rightTransactionPolicy on the POA when
you create it, each object reference you create with that POA
will hold information about the transactional requirements of
the object it refers to. Client ORBs can use that information
to reject requests made outside of the appropriate transac-
tional context.

In general, applications can specify their QoS require-
ments to the ORB in a portable, protocol independent, and
convenient way. For instance, applications can use the Mes-
saging QoS framework to guide implicit protocol selection
by the ORB.

5 Conclusion

Asynchronous messaging is an extremely useful tool to have
in your distributed application development toolkit. How-
ever, until recently, the CORBA specification did not sup-
port this feature. This column illustrated the limitations with
common workarounds, such as oneway operations and using
DII for deferred synchronous operations, for CORBA’s cur-
rent lack of asynchronous messaging. We then outlined how
the new CORBA Messaging specification addresses these
limitations. Support for asynchronous messaging will allow
CORBA to support a much broader range of application do-
mains.

Our next column will explain in detail how to use the Call-
back and Polling asynchronous invocation models. In keep-
ing with tradition, we will show lots of C++ code examples
that illustrate these new features.

As always, if you have any questions about the material
we covered in this column or in any previous ones, please
email us atobject_connect@cs.wustl.edu .
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