
Object Interconnections

C++ Servant Managers for the Portable Object Adapter
(Column 14)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the September 1998 issue of
the SIGS C++ Report magazine.

1 Introduction

Welcome to the final installment of our series covering the
new CORBA Portable Object Adapter (POA) specification.
The POA allows servers to (1) generate and interpret object
references, (2) activate and deactivate servants, (3) demulti-
plex requests to map object references onto their correspond-
ing servants, and (4) collaborate with the automatically-
generated IDL skeletons to invoke operations on servants.
The POA is a component of CORBA visible solely to a
server,i.e., clients are not directly aware of the POA’s ex-
istence or structure.

The first column in this series [1] discussed the concepts
and terminology used in the POA specification. It described
how the lifetime of a CORBA object can be decoupled from
the lifetime of any C++ servant(s) that implement it. The
second column [2] expanded this discussion by exploring the
two lifespans that are possible for CORBA objects:transient
andpersistent. These lifespans differ entirely by how long
a CORBA object “lives.” Lifespan issues often arise when
discussing object adapters since that’s where the worlds of
CORBA objects and programming language servants inter-
sect. Our third column [3] of the series described how to
create C++ servants and register them in order to incarnate
CORBA objects.

For some applications, explicitly registering a servant for
each CORBA object is prohibitively expensive; for others,
it is virtually impossible. For instance, some applications
contain many thousands of objects, with the state of each
object kept separately in persistent storage. In such cases, it
can be costly, in terms of memory resources, persistent stor-
age access, and execution time, to create and register a ser-
vant for each CORBA object. There are also other types of
applications that serve as gateways to other distributed sys-
tems, such as DCOM. When a new object is added to the
DCOM system, the gateway needs to provide access to it dy-
namically, without needing to be shut down, recompiled, and
restarted.

Both types of applications described above must activate

objectson demandas requests are actually made on them,
rather than activating them all before the ORB starts listening
for requests. The POA specification provides several mecha-
nisms,i.e., servant managers and default servants, that allow
applications with many objects to scale gracefully.

Servant managers are responsible for managing the asso-
ciation of an object (as characterized by its Object Id value)
with a particular servant, and for determining whether an ob-
ject exists or not. Default servants can process requests for
an object if no other servant is available for it. In this col-
umn, we first describe servant managers and then we explain
default servants. As always, we provide C++ examples that
show the details of how each is used.

2 Overview of the POA Policy for Re-
quest Processing

The characteristics of each POA other than the Root
POA are controlled at POA creation time using different
policies.1 One policy a POA can be created with is the
RequestProcessingPolicy . This policy allows the
application to control how a POA associates a servant with
the target object for each request. As with all POA policy in-
terfaces, theRequestProcessingPolicy is defined in
thePortableServer module. For each POA, it has one
of the following three possible values:

USE ACTIVE OBJECT MAP ONLY: A POA created
with this policy is also required to have theRETAIN value
for the ServantRetentionPolicy , which instructs it
to maintain a table of associations between servants and
the CORBA objects they implement. The table, called the
Active Object Map, is indexed by the object identifier of
type ObjectId (a sequence of octet) that either the
application or the POA supplies when it creates an object
reference. In addition, each POA has another policy, the
IdAssignmentPolicy , that controls whether it creates
ObjectIds or whether it expects the application to supply
them.

1The policies of the Root POA are defined by the CORBA specification
and cannot be changed by applications.

1

When a request is sent, the object key of the target ob-
ject, of which theObjectId is part, is sent with it to
identify the target object. The receiving ORB uses the ob-
ject key to identify the target POA. The POA then uses the
ObjectId in the object key to index into the Active Ob-
ject Map, obtain the servant for the target object, and dis-
patch the request to that servant. If a POA created with
theUSEACTIVE OBJECTMAPONLYpolicy value cannot
locate the requested servant in its Active Object Map, it
raises the standardCORBA::OBJECTNOTEXIST system
exception. This exception indicates to the client that the tar-
get object no longer exists.

USE SERVANT MANAGER: A POA configured with
the USESERVANTMANAGERpolicy value relies on an
application-suppliedServantManager object to supply
object/servant associations. ThisServantManager is
used if (1) the POA does not find the appropriate servant
in its Active Object Map or (2) if theNONRETAIN value is
present for theServantRetentionPolicy .

ServantActivator andServantLocator are the
two
standard interfaces derived from theServantManager in-
terface. One or the other is used depending upon the POA’s
value for theServantRetentionPolicy . If the POA
has theRETAINvalue for servant retention, the POA expects
its servant manager to supply theServantActivator in-
terface. Otherwise, the POA has theNONRETAIN value,
and it expects theServantLocator interface. For either
interface, the POA passes theObjectId of the target object
to the servant manager object, expecting it to either return a
servant to incarnate the target object or raise an exception.

We’ll explain the details of theServantActivator
andServantLocator interfaces in Section 4.

USE DEFAULT SERVANT: With this policy value, if
the servant is not found in the Active Object Map, or if the
POA has theNONRETAIN policy value, the POA invokes a
single servant for all requests regardless of theObjectId
of the target object. This feature allows applications to
supply servants for use with the Dynamic Skeleton Inter-
face (DSI). DSI servants essentially provide a single generic
invoke function that can be used to dispatch any request.
A default servant based on static skeletons can also be used
for a POA whose objects all support the same interface.

Now that we’ve introduced the features supported by the
POA request processing mechanism, we’ll apply these to our
running stock quoter example in the next section.

3 Alternative Stock Quoter System

Our quoter system returns stock prices based on stock names
via itsget quote operation:

module Stock
{

interface Quoter
{

// Return the current value of <stock_name>.
long get_quote (in string stock_name);

};

// ...
}

An alternative to this interface is to allow stocks to be manip-
ulated via their own interface, rather than representing them
only as string names. The following interface lets us manip-
ulate stocks directly:

module StockTrading
{

interface Stock
{

// Return the name of the stock.
string name();

// Return the current value of the stock.
long value();

};
};

Note that we’ve introduced a new module called
StockTrading . This change allows us to useStock as
the name of our new interface, and to use our new solution
alongside our previous approach without invalidating exist-
ing code. By eliminating the need for theQuoter interface,
we can examine the state of a stock directly using theStock
interface, rather than asking aQuoter for information about
a stock.

This approach may seem to raise new problems related
to object discovery, however. Without something like a
Quoter object, how can we obtain object references for the
stocks we’re interested in? Fortunately, we already have a
solution that is far more flexible than theQuoter interface:
the OMG Trading Service [4].

A Trader allows objects to advertise themselves using
many more characteristics than just their names. For in-
stance, a stock object could advertise itself via price, number
of shares bought and sold, rating, or any other characteristic.
In addition, clients can use Traders to perform very efficient
lookups of groups of objects that all share similar character-
istics.

Building this level of flexibility into aQuoter is hard
and would just duplicate the functionality available from a
Trader. Therefore, we assume for the rest of our examples
that Trader functionality is available in our distributed sys-
tem. Due to space limitations we don’t show its usage, how-
ever.

One way for a server application to implement ourStock
interface solution is to create a separate servant for each
stock we supply information about. Here is our concrete ser-
vant class for theStock interface:

class MyStock :
public virtual POA_StockTrading::Stock

{
public:

MyStock (const char *stock_name)
: stock_name_ (stock_name) {}

char *name (void)
throw (CORBA::SystemException)

2

{
return CORBA::string_dup

(stock_name_.c_str ());
}

CORBA::Long value (void)
throw (CORBA::SystemException)

{
return stock_database_lookup (stock_name_);

}

private:
std::string stock_name_;

};

Our MyStock constructor takes the name of the stock
and stores it into an ANSI C++string . This name de-
termines the stock for which the servant instance will sup-
ply information to clients. Thename and value opera-
tions override the pure virtual methods inherited from the
POAStockTrading::Stock skeleton class. Thename
method returns the name of the stock that the servant was
constructed with. Thevalue operation performs a lookup
in an external database to find the current value of the stock
and return it.

Our servermain uses this class to create and register a
servant for each stock we expose to clients. Our server is
fairly typical; it initializes the ORB, sets up the POAs that it
needs, creates and registers its servants, and then starts lis-
tening for requests, as shown below:

int main (int argc, char **argv)
{

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Get our Root POA, create our persistent
// POA as a child of the Root POA, and
// activate the POA managers (not shown).

// Create and register all of our servants.
MyStock stock1 ("IONAY");

PortableServer::ObjectId_var id1 =
PortableServer::string_to_ObjectId ("IONAY");

persistent_poa->activate_object_with_id
(&stock1, id1);

MyStock stock2 ("ACME");

PortableServer::ObjectId_var id2 =
PortableServer::string_to_ObjectId ("ACME");

persistent_poa->activate_object_with_id
(&stock2, id2);

// Continue creating servants and activating
// objects for each and every stock object. We
// presume there are many thousands of stock
// objects, so all the required code is omitted!

// Export the object references for stock1,
// stock2, etc. to a Naming Service or Trading
// Service, etc.

// Let the ORB listen for requests.
orb->run ();

return 0;
}

Note how our servermain creates a servant for each of the
stocks,IONAYandACME. It then creates an object identifier

for each servant and explicitly activates the objects using the
POA::activate object with id operation. Though
we only show the creation, registration, and activation step
for two objects due to space limitations, the intent is that
many more stock objects need to be set up in the same fash-
ion.

The statically configured approach shown above works
reasonably well for a small number of servants whose im-
plementations change infrequently. In reality, however, our
stock server probably supplies information about many thou-
sands of different stocks. Moreover, these implementations
may change over time as new requirements or optimizations
are incorporated. Thus, the statically configured approach
shown above scales poorly as the number of stocks and num-
ber of servant implementations increases, for the following
reasons:

Unnecessary code duplication: Our servant creation and
object activation code fragment will be repeated for each
stock. This type of duplication is tedious to write and error-
prone to maintain manually.

Inefficient initialization overhead: The code required to
create and activate the servants could literally take minutes
to execute, meaning that the server could take quite awhile
before it reaches the point where it can start listening for
requests. With all those lines of servant initialization code,
the executable program itself could be extremely large, as
well.

Inefficient space utilization: A large amount of memory
resources may be required to store all the statically config-
ured servants. Moreover, we might use excessive machine
resources for no reason since it is unlikely that all of our
clients combined are actually accessing all the objects in our
stock server.

Inflexible behavior: Changing the implementation of our
servants in a statically configured CORBA server is hard.
It requires modifying, recompiling, and relinking the exist-
ing server software, as well as terminating and restarting any
running server processes.

To some extent, the code duplication and space utilization
issues mentioned above could be addressed using loops and
subroutines, of course, but the other issues remain. In order
to alleviate these drawbacks in our stock server, we’ll employ
POA servant managers, as described in the next section.

4 Servant Managers

4.1 Overview

The POA specification allows server applications to register
servant manager objects that activate servants on demand.
This allows a server to avoid creating all of its servants be-
fore listening for requests. When combined with patterns
like Service Configurator [5] and OS features like explicit

3

dynamic linking [6], the POA servant managers make it pos-
sible to dynamically configure servants into CORBA servers.

Existing ORBs support dynamic configuration of servants.
For instance, OrbixLoadersessentially allow objects to be
loaded into a server on demand when requests arrive for
them. In fact, Orbix loaders were one of the primary in-
fluences that led to servant managers being supported as part
of the POA specification.

The lifecycle of a request is shown in Figure 1. As shown

Root POARoot POA

ACTIVEACTIVE OBJECTOBJECT

MAPMAP

SERVANTSERVANT

SERVANTSERVANT

OOBJECTBJECT IDID

OOBJECTBJECT IDID
SERVANTSERVANT

MANAGERMANAGER

1: 1: CREATECREATE

 SERVANTSERVANT

2: 2: DISPATCHDISPATCH

 REQUESTREQUEST

Figure 1: Lifecycle of a CORBA Request Through a POA

in this figure, when a request is sent to a CORBA object, the
POA containing the target object invokes the servant man-
ager to obtain a servant, then dispatches the request to that
servant.

The servant manager object is supplied by the application.
Therefore, the application can determine the strategy for cre-
ating and registering servants just for those objects that are
actually the targets of requests. Moreover, servant managers
are objects, which means that they themselves are also incar-
nated by servants. This is a result of servant managers being
specified in IDL – they’re handled and implemented just like
regular CORBA objects, with the single restriction that they
arelocality constrained.

According to the CORBA specification, locality con-
strained objects must throwCORBA::MARSHALexceptions
if an application attempts to pass their object references out
of the context of the ORB in which they were created. Thus,
they cannot be passed as arguments to remote operations or
be converted into strings viaORB::object to string .

The remainder of this section describes the roles of the
two key IDL interfaces related to servant managers:servant
activatorsandservant locators.

4.2 Servant Activators

If our POA was created with theRETAIN value for
the ServantRetentionPolicy , our servant manager
must fulfill the ServantActivator interface. A
ServantActivator for our stock application can be de-
fined as follows:

class MyStockActivator : public virtual
POA_PortableServer::ServantActivator

{
public:

PortableServer::Servant incarnate
(const PortableServer::ObjectId &id,

PortableServer::POA_ptr poa)
throw(CORBA::SystemException,

PortableServer::ForwardRequest);

void etherealize
(const PortableServer::ObjectId &id,

PortableServer::POA_ptr poa,
PortableServer::Servant the_servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations)

throw(CORBA::SystemException);
};

The incarnate and etherealize methods are in-
herited from theServantActivator skeleton class in
the POAPortableServer namespace. When the POA
needs a servant to incarnate the target object, it invokes
the incarnate operation. Likewise, when it needs
to deactivate an object or destroy a servant, it invokes
etherealize . These methods are shown below.

4.2.1 Implementing the incarnate() Method

Our implementation ofincarnate supplies aMyStock
servant:

PortableServer::Servant
MyStockActivator::incarnate

(const PortableServer::ObjectId &id,
PortableServer::POA_ptr poa)

throw (CORBA::SystemException,
PortableServer::ForwardRequest)

{
CORBA::String_var str =

PortableServer::ObjectId_to_string (id);

CORBA::Long val =
stock_database_lookup (str);

if (val == -1)
throw CORBA::OBJECT_NOT_EXIST ();

return new MyStock (str);
}

Our implementation ofincarnate is straightforward. It
first uses theObjectId to string helper method sup-
plied in the PortableServer module to convert the
ObjectId of the target object to a string. It then uses
this string to look up the current stock price in its external
database. If no such stock is found, the stock lookup re-
turns�1 and theincarnate method throws a standard
CORBA::OBJECTNOTEXIST exception to indicate that
the target object does not exist. Otherwise,incarnate al-
locates aMyStock servant on the heap, passing the name of
the stock it is incarnating to its constructor, and returns it to
the POA.

Note that theincarnate method provides an ideal hook
where the implementation of aMyStock instance could
be brought into the address space of the server via dy-
namic linking. Also note that one of the exceptions that the

4

incarnate method can raise is theForwardRequest
exception, which is described in the sidebar.

Sidebar on ForwardRequest: The ForwardRequest
exception allows the servant manager to inform the client
ORB to redirect this request, and any future requests
for this object, to another object. The definition of
ForwardRequest is shown below.

module PortableServer
{

exception ForwardRequest
{

Object forward_reference;
};
// ...

};

A servant manager can assign a different target object to the
forward reference member ofForwardRequest ,
and raise the exception back to the POA. If the ORB
uses IIOP as its underlying transport, it will turn the
ForwardRequest exception into aLOCATE FORWARDre-
sponse. This response causes the client ORB to transparently
attempt to bind to theforward reference object and
reissue the request to it. This scheme is designed to work
even if the new object is in a different server than the origi-
nal target object.

Though our examples do not make use of the
ForwardRequest feature, it is very useful for applica-
tions that want to perform their own server process activation
or load balancing.

4.2.2 Implementing the etherealize() Method

The etherealize method is invoked when the object is
deactivated or when the entire POA is deactivated or de-
stroyed. Object deactivation typically occurs when an ob-
ject is destroyed via one of its operations. For example,
if the object’s interface is derived from the standard OMG
LifeCycleObject interface supplied by the Lifecycle
Object Service, it inherits aremove operation that can be
invoked to destroy the target object.

For our MyStockActivator implementation, the
etherealize method is very simple:

void
MyStockActivator::etherealize

(const PortableServer::ObjectId &id,
PortableServer::POA_ptr poa,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations)

throw (CORBA::SystemException)
{

if (remaining_activations == 0)
delete servant;

}

This method just ensures that the servant is not still in use
for other request invocations by checking the value of the
remaining activations flag,2 and if false, we delete

2A servant might still be in use if it is registered multiple times under
different object identifiers in a POA created with theMULTIPLE ID value
for the IdUniquenessPolicy .

the servant. If thecleanup in progress parameter
(which we do not use here) is true, it indicates that the
etherealize call was initiated by an invocation of the
POA’s deactivate or destroy operation. Applications
might perform different etherealization actions for POA de-
activation or destruction than they would for normal servant
etherealization, such as releasing additional resources used
by all servants in that POA.

4.2.3 Associating a Servant Manager With a POA

The POA supplies an operation that allows you to associate
a servant manager with it:

module PortableServer
{

exception WrongPolicy {};

interface ServantManager {};

interface POA
{

void set_servant_manager
(in ServantManager mgr)

raises (WrongPolicy);
// ...

};
};

The ServantActivator interface is derived from the
ServantManager interface, which allows instances of
it to be passed to the POA’sset servant manager
operation. To obtain an object reference for our
ServantActivator , we need to create a servant for it
and register it with a POA, just like any other object. The
easiest way to do this is to implicitly create the object using
the Root POA. Using the Root POA means that our stock ac-
tivator object is a transient object, which is just fine because
it is locality-constrained anyway.

MyStockActivator servant;

// Obtain an object reference for
// our stock servant activator.
PortableServer::ServantActivator_var

activator = servant._this ();

// Associate the activator with this POA.
poa->set_servant_manager (activator);

This code uses thethis method to implicitly create a new
CORBA object under the Root POA, register the servant for
it, and obtain the new object reference. This object refer-
ence is then registered as the servant manager for the per-
sistent POA containing theStock objects. Note that even
though the servant activator object itself resides in the Root
POA, our stock servants are still registered with the persis-
tent POA, which is a child of the Root POA.

4.3 Servant Locators

Because our POA has theRETAINpolicy value, each servant
returned by ourServantActivator is associated with its
target object in the POA’s Active Object Map. Thus, if the

5

server runs for a long time and many of our stock objects are
the targets of invocations, our resource consumption could
eventually become higher than we’d like. Specifically, the
POA’s Active Object Map could grow quite large, and all of
our servants would be allocated on the heap.

To prevent the memory consumption problem described
above, we can create the POA with theNONRETAIN pol-
icy value for servant retention. In this case, the POA
will not maintain object/servant associations in the Ac-
tive Object Map. This type of POA expects our servant
manager to inherit fromServantLocator , rather than
ServantActivator .

ServantLocator s have different semantics than
ServantActivator s since they are invoked for ev-
ery request on an object. Like aServantActivator ,
the ServantLocator returns the servant and the POA
dispatches the request to it. Once the request com-
pletes, however, the POA returns the servant to the
ServantLocator . Depending on the design of the appli-
cation, theServantLocator can then destroy it immedi-
ately or store it into an application-defined pool of servants
to be reused for another request.

A ServantLocator for our MyStock servants might
be defined as follows:

class MyStockLocator : public virtual
POA_PortableServer::ServantLocator

{
public:

PortableServer::Servant preinvoke
(const PortableServer::ObjectId &id,

PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie)

throw (CORBA::SystemException,
PortableServer::ForwardRequest);

void postinvoke
(const PortableServer::ObjectId &id,

PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie cookie,
PortableServer::Servant servant)

throw (CORBA::SystemException);
};

Thepreinvoke andpostinvoke methods are inherited
from the POAPortableServer::ServantLocator
skeleton class. The POA invokespreinvoke before
dispatching a request to obtain a servant, and invokes
postinvoke after the servant completes the handling of
the request.

Notice that the signatures for thepreinvoke and
postinvoke methods differ slightly from those for
incarnate andetherealize . This is because the POA
knows that the servant returned by aServantLocator is
used to process only a single request at a time, so it can pass
additional information to it. This extra information consists
of the following parameters:

Operation name: The preinvoke and postinvoke
methods are given the name of the operation that is be-
ing invoked on the target CORBA object. This allows the

ServantLocator to return a different servant depending
on which operation is being invoked.

Cookie: An implementation of thepreinvoke method
is allowed to return a value to the POA, which will sub-
sequently pass it back to thepostinvoke method. This
allows theServantLocator to attach any kind of state
it would like to each pair ofpreinvoke /postinvoke
invocations. ThePortableServer::Cookie type is
simply avoid * , allowing the application to use whatever
it would like for a cookie.3 The POA accepts the cookie
from preinvoke and passes it unchanged to the matching
postinvoke , i.e., it doesn’t try to access or otherwise in-
terpret the cookie value.

4.3.1 Implementing the preinvoke() Method

Our implementation ofpreinvoke returns aMyStock
servant:

PortableServer::Servant
MyStockActivator::preinvoke

(const PortableServer::ObjectId &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie)

throw (CORBA::SystemException,
PortableServer::ForwardRequest)

{
CORBA::String_var str =

PortableServer::ObjectId_to_string (id);

CORBA::Long val =
stock_database_lookup (str);

if (val == -1)
throw CORBA::OBJECT_NOT_EXIST ();

return new MyStock (str);
}

This method is identical to the implementation of the
MyStockActivator::incarnate method we showed
in Section 4.3. In this simple example, we don’t use thepoa ,
operation , or cookie parameters.

4.3.2 Implementing the postinvoke() Method

Our implementation ofpostinvoke is also almost exactly
like its ServantActivator::etherealize counter-
part:

void MyStockActivator::postinvoke
(const PortableServer::ObjectId &id,

PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie cookie,
PortableServer::Servant servant)

throw (CORBA::SystemException)
{

delete servant;
}

3This cookie is an example of the Asynchronous Completion Token pat-
tern [7].

6

Just like preinvoke , we don’t make use of thepoa ,
operation , or cookie parameters. We simply delete the
servant and return.

Finally, we create ourServantLocator object just like
we created ourServantActivator :

MyStockLocator servant;

PortableServer::ServantLocator_var
locator = servant._this ();

poa->set_servant_manager (locator);

The fact thatServantLocator s allow developers to
create servants on a per-request basis is useful for cer-
tain types of transactional applications. For instance, the
preinvoke and postinvoke hooks allow persistent
state to be loaded before an operation call on the servant and
written back to the persistent store after the operation com-
pletes [8].

5 Default Servants

5.1 Overview

When all objects in a POA support the same interface, it is
sometimes possible to support them all using only a single
servant. This situation typically arises when the application
uses the Dynamic Skeleton Interface (DSI). The DSI enables
servants to supply a genericinvoke function that allows
any operation on any object to be invoked, regardless of its
IDL interface. Using a default servant is also possible if
static skeletons are used, as well, as long as all the objects
incarnated by the default servant have the same interface.

5.2 Applying Default Servants to the Stock
Quoter

All of our stock objects in our quote server support the
Stock interface. Therefore, we can reduce memory con-
sumption by using a single servant to support them all if
we change ourMyStock servant class slightly. Specifically,
our constructor takes a parameter indicating the name of the
stock serviced by the servant; thenameoperation simply re-
turns that name. This implementation does not work for a
default servant because it incarnates multiple objects simul-
taneously. Thus, for each request, the default servant must
use theObjectId of the target object to determine which
object it is servicing the request for.

The PortableServer::Current interface enables
servants to determine information concerning the identity of
the target object. This interface is defined as follows:

module PortableServer
{

interface Current : CORBA::Current
{

exception NoContext {};
POA get_POA () raises (NoContext);
ObjectId get_object_id () raises (NoContext);

};
// ...

};

Within the context of a request invocation, theget POAop-
eration returns a reference to the POA that is dispatching the
request. Likewise, theget object id operation returns
the ObjectId of the target object. Invoking these opera-
tions outside the context of a request invocation raises the
NoContext exception.

The ORB’s resolve initial references “boot-
strapping” factory operation can be used by applications to
obtain a reference to thePortableServer::Current .
Thus, we can reimplement ourMyStock servant as follows:

class MyStock :
public virtual POA_StockTrading::Stock

{
public:

MyStock (CORBA::ORB_ptr orb)
: orb_ (CORBA::ORB::_duplicate (orb)) {}

char *name (void)
throw (CORBA::SystemException)

{
CORBA::String_var nm = get_target_name ();
return nm._retn ();

}

CORBA::Long value (void)
throw (CORBA::SystemException)

{
CORBA::String_var nm = get_target_name ();
CORBA::Long val = stock_database_lookup (nm);
if (val == -1)

throw CORBA::OBJECT_NOT_EXIST ();
return val;

}

private:
char *get_target_name (void)
{

CORBA::Object_var obj =
orb_->resolve_initial_references

("POACurrent");
PortableServer::Current_var cur =

PortableServer::Current::_narrow (obj);

PortableServer::ObjectId_var id =
cur->get_object_id ();

return PortableServer::ObjectId_to_string (id);
}

CORBA::ORB_var orb_;
};

We’ve changed our constructor to take a reference to the
ORB as a parameter. We use this ORB reference in our pri-
vateget target name method. This method returns the
name of the stock that is the target of the current request.

Note that ourget target name helper function as-
sumes that the name of the stock is being used as the
ObjectId for each object. Therefore, it can get the
name of the target stock by getting a reference to the
PortableServer::Current from the ORB, invoking
its get object id method to get theObjectId of the
target object, and then using theObjectId to string
helper conversion method to convert the ID back into a
string. The resulting string name is returned to the caller.

Our name and value methods use the
get target name function to get the name of the target
stock. Thenamemethod merely returns this name by invok-
ing theString var:: retn method to “steal” the string

7

away from theString var and return it to the caller.4 The
value operation uses the target name as the argument to the
externalstock database lookup method. If it returns
�1, our servant throws theCORBA::OBJECTNOTEXIST
exception to indicate that the stock no longer exists. Other-
wise, it returns the value read from the external database.

To set up the default servant, we create aMyStock ser-
vant and pass it to thePOA::set servant operation, as
follows:

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Create our default servant.
MyStock servant (orb);

// Set the default servant on our POA.
poa->set_servant (&servant);

The POA will dispatch all incoming requests for our stock
objects to our single default servant. This means that re-
gardless of how many different stocks our application sup-
ports, all of them are implemented using only a single ser-
vant. An application using a default servant thus trades off
the time required to look up the target object identity in the
PortableServer::Current object against the space
required for using multiple servants.

5.3 Object Creation Without Servants

Applications that use servant managers and default servants
typically create their objects without actually incarnating
them with servants. We can accomplish this using the
POA::create reference with id operation:

module PortableServer
{

interface POA
{

Object create_reference_with_id
(in ObjectId id, in CORBA::RepositoryId intf)

raises (WrongPolicy);
// ...

};
};

The arguments tocreate reference with id are the
ObjectId for the new object, and therepository ID
of the most-derived interface that our object will sup-
port. For POAs created with theSYSTEMID value for the
IdAssignmentPolicy , you can alternatively invoke the
create reference operation to create an object refer-
ence with a POA-suppliedObjectId .

We can usecreate reference with id to create all
of our stock objects as follows:

int main (int argc, char **argv)
{

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Get our Root POA and create our persistent
// POA as a child of the Root POA (not shown).
// Activate the POA managers.

4This is a new feature of the CORBA 2.2 C++ mapping, so your ORB
vendor may not yet support it.

// Set up our Stock interface repository ID.
const char *rep_id = "IDL:StockTrading/Stock:1.0";

// Create all of our stock objects.
PortableServer::ObjectId_var obj_id =

PortableServer::string_to_ObjectId ("IONAY");
CORBA::Object_var obj =

persistent_poa->create_reference_with_id
(obj_id, rep_id);

// Export the new object reference to a Naming
// Service or Trading Service, etc.

obj_id =
PortableServer::string_to_ObjectId ("ACME");

CORBA::Object_var obj =
persistent_poa->create_reference_with_id

(obj_id, rep_id);

// Export the new object reference to a Naming
// Service or Trading Service, etc.

// Continue creating stock objects. We
// presume there are many thousands of stock
// objects.

// Let the ORB listen for requests.
orb->run ();

return 0;
}

Our applicationmain first creates all of our stock objects in
our persistent POA without incarnating them, exports each to
the Naming or Trading Service (not shown), and then listens
for requests. As requests arrive, they are either processed by
our servant manager or by our default servant, depending on
which approach we’re actually using.

Our example here is a bit misleading in that object creation
would typically be a one-time event, rather than occuring
each time we run this server. It might be best to use the
approach of creating a servermain that can either serve as
a factory to initially create our objects or as a regular server,
as we showed in [2]. We leave the creation of such a server
main as an exercise for the reader.5

6 Conclusion

This column addressed yet another aspect of the creation
and management of C++ servants using the POA. We in-
troduced the POA concept of servant managers, which are
objects that are used to activate objects and create and de-
stroy servants on demand. In addition, we discussed de-
fault servants, which can process requests for an object if
no other servant is available for it. An implementation
of the POA specification that contains the types of ser-
vant managers described in this paper is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html .

Choosing whether to use a servant manager or a default
servant for your application depends mainly on the number
of objects your POA manages. The following are some gen-
eral guidelines we recommend:

5In other words, we’re running over our page limits!

8

� If few objects are needed, use theactivate object
or activate object with id methods to explic-
itly activate them all. Though we did not discuss it
here, it’s even possible to explicitly activate a number
of objects all with the same servant if the POA has
a IdUniquenessPolicy value ofMULTIPLE ID ,
thus gaining some of the same benefits provided by de-
fault servants. This policy is yet another example of the
POA’s flexibility.

� If you have many objects, but expect few of them to
be invoked in any given execution of the server pro-
cess, consider using aServantActivator with a
RETAIN POA. This policy will maximize dispatching
efficiency for each second and subsequent invocation
on each object and minimize servant manager over-
head. Alternatively,ServantLocator s are useful
when (1) the operation name can be used as a key to
select a servant to dispatch to, (2) when theCookie pa-
rameter is needed for post-request cleanup, or (3) when
an application would rather manage its own pool of ser-
vants instead of using the POA Active Object Map.

� Default servants are the best way to use the DSI. More-
over, as ourStock application explained here shows,
they minimize servant creation overhead and memory
usage if all the objects contained by a POA implement
the same IDL interface, even if you’re using static skele-
tons.

This column concludes our series presenting the new
Portable Object Adapter. We covered the basics of writing
servants, and creating and activating CORBA objects. In ad-
dition, we described various ways for applications to supply
object/servant associations, such as explicit registration and
using servant managers.

The POA supplies a very rich set of features. There-
fore, we couldn’t cover them all. For instance, we hardly
described thePOAManager interface, which lets applica-
tions control the flow of requests into individual POAs or
groups of POAs. Likewise, we didn’t cover adapter acti-
vators, which let applications activate POAs themselves on
demand. There are also details related to multi-threaded ap-
plications and POA/application interactions that any serious
POA user needs to understand. You may want to get the POA
specification for yourself fromwww.omg.org to read about
these and other features we did not have the opportunity to
explain.

In our next column, we’ll start explaining some of the new
asynchronous messagingfeatures recently added to CORBA.
As always, if you have any questions about the material we
covered in this column or in any previous ones, please email
us atobject_connect@cs.wustl.edu .

Thanks to Ron Witham and Irfan Pyarali for comments on
this column.

References
[1] D. C. Schmidt and S. Vinoski, “Object Adapters: Concepts

and Terminology,”C++ Report, vol. 11, November/December
1997.

[2] D. C. Schmidt and S. Vinoski, “Using the Portable Object
Adapter for Transient and Persistent CORBA Objects,”C++
Report, vol. 12, April 1998.

[3] D. C. Schmidt and S. Vinoski, “Developing C++ Servant
Classes Using the Portable Object Adapter,”C++ Report,
vol. 12, June 1998.

[4] Object Management Group,Trading ObjectService Specifica-
tion, 1.0 ed., Mar. 1997.

[5] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” inProceedings of the
3
rd Conference on Object-Oriented Technologies and Systems,

USENIX, June 1997.

[6] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[7] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” inPattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

[8] S. Vinoski and M. Henning,Advanced CORBA Programming
With C++. Addison-Wesley Longman, 1998.

9

