
Object Interconnections

Developing C++ Servant Classes
Using the Portable Object Adapter

(Column 13)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the June 1998 issue of the
SIGS C++ Report magazine.

1 Introduction

This is the third column in our series explaining the new
OMG Portable Object Adapter. An Object Adapter is the
CORBA component responsible for adapting CORBA’s con-
cept of objects to a programming language’s concept of
servants. As you’ll recall from previous columns [1, 2],
CORBA objects are “abstract” entities defined by IDL in-
terfaces. Likewise, servants are “concrete” implementations
of CORBA objects written in a particular programming lan-
guage, such as C++ or Java.

The Portable Object Adapter (POA) [3] is a replace-
ment for the Basic Object Adapter (BOA) defined in ear-
lier CORBA specifications. The newest version of CORBA,
CORBA 2.2, [4], contains both the POA specification and
the BOA specification. The BOA specification will be re-
moved in future versions of CORBA, however, because the
POA specification supersedes the BOA. As POA implemen-
tations are provided by vendors, therefore, C++ developers
creating new CORBA applications should use the POA to
satisfy the object adapter requirements of their servers.

The examples we showed in the previous column showed
how to obtain object references from servants, as well as how
to register servants with a POA instance. However, we did
not show the definitions of the C++ servant classes. In ad-
dition to addressing this omission, this column explains how
the new POA specification separates the client-side stub hi-
erarchy from the server-side skeleton hierarchy in order to
facilitate collocation and ensure source-level portability.

2 The PortableServer::Servant Type

CORBA interfaces are specified in OMG IDL to make them
independent of any particular programming language. An
OMG IDL compiler is responsible for translating IDL inter-
faces into a particular programming language. For instance,
a POA-compliant IDL-to-C++ compiler would map the fol-
lowing interface for the stock quoting service described in
[5]:

module Stock
{

interface Quoter
{

// Return the current value of <stock_name>.
long get_quote (in string stock_name);

};

// ...
}

into the C++ code shown below:

namespace POA_Stock
{

class Quoter
{
public:

virtual CORBA::Long
get_quote (const char *stock_name)

throw (CORBA::SystemException) = 0;

// ...
};

// ...
};

Naturally, a POA-compliant IDL compiler could also gener-
ate Ada, C, COBOL, Java, Smalltalk, or any other language
supported by CORBA. At the time of this writing (March
1998), however, only the C and C++ POA mappings have
been finalized by the OMG, and the Java mapping is nearly
complete.

Using an interface definition language like OMG IDL al-
lows developers to select the most suitable programming lan-
guage for different aspects of their systems,e.g., Java on the
client and C++ on the server. In addition, IDL simplifies
the integration of legacy components written in different pro-
gramming languages.

While the programming language independence of IDL
is well suited for application-defined interfaces, it is not en-
tirely appropriate for standard POA interfaces. As mentioned
in Section 1, the POA provides the “glue” that adapts the
abstract world of CORBA objects to the concrete world of
programming language servants. Therefore, to allow appli-
cations to register programming language entities to serve
CORBA objects, certain aspects of the standard POA inter-
face must be specified in a manner that can be mapped to
specific programming language features.

1



The POA specification introduces a new OMG IDL type
that allows programming language-specific entities, such as
Java objects or pointers to C++ instances, to be defined
as part of the language-independent POA IDL specifica-
tion. This new type is denoted by the newnative key-
word. Thenative keyword provides a language-specific
“escape” from IDL. In this respect, it is similar to the C++
keywordasm, which provides a CPU-specific “escape” to
allow embedded assembly language instructions in a C++
program. However, thenative keyword is only intended
for use by the OMG to help specify core CORBA interfaces.
Thus, it is not meant for use by application developers.

The first and foremost use ofnative is to define
the Servant type, which is the basis for all skeletons.
Servant is defined in the POA’sPortableServer
module as follows:

module PortableServer
{

native Servant;
// ...

};

The native construct is similar to atypedef in that it
introduces a new typename. Unliketypedef , however,
native expresses the fact that the new type is definedout-
sideof OMG IDL for each programming language.

In the POA mapping of IDL-to-C++, theServant type
is defined as follows:

namespace PortableServer
{

class ServantBase
{
public:

// Virtual destructor ensures correct
// deletion semantics.
virtual ˜ServantBase (void);

// Returns the default POA for each Servant.
virtual POA_ptr _default_POA (void);

protected:
// Make ServantBase an ‘‘abstract class.’’
ServantBase (void);

};

typedef ServantBase *Servant;
// ...

}

In C++, the Servant type is defined as a pointer to a
ServantBase , which serves as the base class from which
all servant classes are (indirectly) derived. All C++ servant
classes implement IDL interfaces. Before we can show an
example of an application-defined C++ servant class defini-
tion, however, we need to supply an IDL interface to base it
on.

3 A User-Defined Servant Class

The IDL interface shown below was first shown in [5]. It
defines aQuoter Factory that creates instances of the
Quoter interface shown in Section 2.

// IDL
module Stock
{

// ...
interface Quoter_Factory
{

// Factory method that creates the
// <Quoter> specified by <name>.
Quoter create_quoter (in string name);

};
};

Thecreate quoter operation is a factory method [6] that
returns an object reference to aQuoter service specified
by its name. As usual, this interface has been simplified
to concentrate our focus on C++ servant class definitions.
Production quality IDL interfaces would define exceptions
that could be raised if run-time errors occurred.

3.1 Inheritance-Based Servant

An application might define a C++ servant class for the
Quoter Factory interface as follows:

class My_Quoter_Factory :
public POA_Stock::Quoter_Factory

{
public:

My_Quoter_Factory (void);
˜My_Quoter_Factory (void);

virtual Stock::Quoter_ptr create_quoter
(const char *name)

throw (CORBA::SystemException);
};

There are several interesting features to note about the
My Quoter Factory class:

1. Standardized naming for the base class: A signifi-
cant improvement of the POA specification over the BOA
is that the names of skeletons are finally standardized. In
general, the POA specification mandates that server-side
names are formed by prepending “POA” to the name of
the outermost scope. For example, the C++ namespace
generated by the IDL compiler for theStock module is
POAStock . Likewise, the name of the generated skele-
ton class corresponding to theQuoter Factory interface
must be “Quoter Factory ” since it’s already scoped by
thePOAStock namespace. If theQuoter Factory in-
terface were defined at global scope instead of within a mod-
ule, however, its corresponding C++ class would be named
“POAQuoter Factory .” Section 4 describes how these
naming rules facilitate pure clients and collocation optimiza-
tions.

2. Exception specifications: Each method explicitly de-
clares the CORBA exception types it is allowed to throw.
The operation declared in ourQuoter Factory interface
does not raise any user-defined exceptions. Therefore, our
C++ exception specifications only allow CORBA system ex-
ceptions to be raised since they can be thrown by all OMG
IDL operations.

2



The My Quoter Factory servant class uses the
inheritance-based approachto servant class definition,
which is an example of the “class form” of the Adapter
pattern[6]. As shown in Figure 1, the application derives
a concrete class from the abstract skeleton base class, in
this case namedQuoter Factory from thePOAStock
namespace, generated by the IDL compiler. Each pure vir-

client

Quoter
Factory

A

create_quoter() = 0
My

Quoter
Factory

create_quoter()

1: create_quoter ()

Servant
BaseA

Figure 1: The Class Form of the Adapter Pattern

tual method,i.e., create quoter , inherited from the base
class must be overridden and implemented by the application
servant class.

3.2 Tie-Based Servant

Another way to define a C++ servant is to use delegation,i.e.,
the “object form” of the Adapter pattern[6], instead of inher-
itance. The POA specification calls this the “tie” approach1

because the C++ instance being delegated to is “tied” into
the servant. As shown in Figure 2, the servant class is actu-
ally a C++ parameterized type that itself derives from the ab-
stract skeleton base class,e.g., Quoter Factory from the
POAStock namespace. This tie class overrides all skeleton
pure virtual methods so they delegate to another C++ object,
called the “tied object,” which is supplied by the application.

The following illustrates code that might be generated by
an IDL compiler using the tie approach2:

namespace POA_Stock
{

// ...

template <class T>
class Quoter_Factory_tie : public Quoter_Factory

1The term “tie” comes from Orbix, the first ORB to promote this style
of servant implementation.

2Jon Biggar originally pointed out that if the C++ compiler doesn’t sup-
port namespaces, thePOAStock module will be mapped to a C++ class
instead of a namespace, and this code won’t work. The OMG C++ Revision
Task Force, of which Steve is the chair, needs to fix this portability issue.

clientclient

QuoterQuoter
FactoryFactory

A
create_quoter() = 0

QuoterQuoter
Factory_tieFactory_tie

create_quoter()

MyMy
QuoterQuoter
FactoryFactory

create_quoter()

2: create_quoter()

1: create_quoter ()

My_QuoterMy_Quoter

FactoryFactory

ServantServant
BaseBaseA

Figure 2: The Object Form of the Adapter Pattern

{
public:

// = Initialization/termination methods.
Quoter_Factory_tie (T &t);
Quoter_Factory_tie (T &t,

POA_ptr poa);
Quoter_Factory_tie (T *tp,

Boolean release = 1);
Quoter_Factory_tie (T *tp, POA_ptr poa,

Boolean release = 1);
˜Quoter_Factory_tie (void);

// = Tie-specific methods.
T *_tied_object (void);
void _tied_object (T &obj);
void _tied_object (T *obj,

Boolean release = 1);
Boolean _is_owner (void);
void _is_owner (Boolean b);

// = Delegated IDL operation.
virtual Stock::Quoter_ptr create_quoter

(const char *name)
throw (CORBA::SystemException)

{
return impl_->create_quoter (name);

}

// = Override ServantBase operation.
virtual POA_ptr _default_POA (void);

private:
T *impl_;
// other data members not shown.

// = Copying and assignment not allowed.
Quoter_Factory_tie(const Quoter_Factory_tie&);
void operator=(const Quoter_Factory_tie&);

};
}

The standard tie template class overrides the virtual
method it inherits fromServantBase and from the type-
specific POA skeleton base classes. In addition, it supplies a
number of other operations. These extra operations control
ownership of the tied object,e.g., letting the tie instance own
the tied object or just making it refer to it without owning
it. Operations for accessing and replacing the tied object are

3



also provided.
With respect to POA terminology, it’s the instance of the

tie template class that is the servant, not the tied object. This
is because it’s the tie template class instance that derives
from ServantBase , allowing it to be registered as a ser-
vant with the POA. Internally, POA implementations main-
tain a map of servants that are registered by applications. At
run-time this map is used by the POA to demultiplex incom-
ing client requests to the appropriate servant [7].

The main purpose of ties is to allow classes that aren’t
related to skeletons by inheritance,i.e., the tied objects, to
implement CORBA object operations. For each operation
they supply, they expect the tied object to have a method
with exactly the same signature. Thus, a common criticism
leveled against ties is that they’re not as flexible as they might
seem to be. In particular, it is unlikely that the signature of a
non-CORBA class will serendipitously match the signature
of the tie class.

The problem with signature mismatches can be alleviated
somewhat for the IDL-to-C++ mapping using the Adapter
pattern [6]. One application of the Adapter pattern uses
C++ template specializations. For example, if we had
an existing class calledStock Factory , with a method
calledcreate instead ofcreate quoter , we could spe-
cialize theQuoter Factory tie implementation of the
create quoter operation, as follows:

Stock::Quoter_ptr
Quoter_Factory_tie<Stock_Factory>::create_quoter

(const char *name)
{

return impl_->create (name);
}

Though it requires manual intervention, C++ template
specialization allows application developers to adapt the tie
parameterized type to conform with interfaces of myriad
tied object implementations. Of course, if the application
requires specializing each and every tie operation to cor-
rectly adapt to the class of the tied object, other variants of
the Adapter pattern can be applied to integrate legacy C++
classes with generated POA tie templates. For instance, it
may be easier to just use the inheritance-based approach and
write a custom tie using the class form of the Adapter pat-
tern.

3.3 Implementing the Server Program

Regardless of whether we use the inheritance or the
tie approach for integrating automatically-generated skele-
tons with servant classes, the servant methods can be
written generically. For instance, a C++ program-
mer could define thecreate quoter method for the
My Quoter Factory class as follows:

Stock::Quoter_ptr
My_Quoter_Factory::create_quoter (const char *name)
{

POA_Stock::Quoter *quoter;

// Select the desired subclass of Quoter.

if (strcmp (name, "Dow Jones") == 0)
quoter = new Dow_Jones_Quoter;

else if (strcmp (name, "Reuters") == 0)
// Dynamically allocate a new object.
quoter = new Reuters_Quoter;

else // ...

// This call will create a Stock::Quoter_ptr
// object reference and register the servant
// with its default_POA.
return quoter->_this ();

};

The main program for our stock quote server could be de-
fined as follows, assuming we use the tie approach:

typedef POA_Stock::Quoter_Factory_tie
<My_Quoter_Factory>

MY_QUOTER_FACTORY;

void main (int argc, char *argv[])
{

ORB_Manager orb_manager (argc, argv);

// Dynamically create the "tied object."
My_Quoter_Factory *qf = new My_Quoter_Factory;

// Create the "tie servant."
MY_QUOTER_FACTORY factory (qf);

// Explicitly register the servant with the POA.
orb_manager.activate (&factory);

// Block indefinitely waiting for incoming
// invocations and dispatching method callbacks.
orb_manager.run ();
// After run() returns, the ORB has shutdown.

}

Note how our server is simplified with the help of the fol-
lowing ORBManager class:

class ORB_Manager
// = TITLE
// Helper class for simple ORB/POA
// initialization and registering servants
// with the POA. Works with standard OMG
// POA interface.

{
public:

// Initialize the ORB manager.
ORB_Manager (int argc, char *argv[]) {

orb_ = CORBA::ORB_init (argc, argv);

CORBA::Object_var obj =
orb->resolve_initial_references ("RootPOA");

poa_ = PortableServer::POA::_narrow (obj.in ());
poa_manager_ = this->poa_->the_POAManager ();

}

// Register <servant> with the <poa_>.
void activate (PortableServer::Servant servant) {

PortableServer::ObjectId_var id =
poa_->activate_object (servant);

}

// Run the main ORB event loop.
void run (void) {

poa_manager_->activate ();
orb_->run ();

}

private:
CORBA::ORB_var orb_;
PortableServer::POA_var poa_;
PortableServer::POA_Manager_var poa_manager_;

};

4



Not only does this class simplify common use-cases of the
POA, but it also can be used to alleviate portability issues
while ORB vendors transition from the BOA to the POA. For
example, the following implementation ofORBManager
works with Orbix, which currently supports the BOA rather
than the POA specification:

class ORB_Manager
// = TITLE
// Helper class for simple ORB/POA
// initialization and registering
// servants with the POA. Works
// with Orbix BOA interface.

{
public:

// Initialize the ORB manager.
ORB_Manager (int argc, char *argv[]) {

// First argument is assumed to be
// server name.
svr_name_ = argv[1];

}

void activate (void *servant) {
// Nothing to do, since servant base
// class constructor performs activation
// when the servant is created.

}

// Run the main ORB event loop.
void run (void) {

CORBA::Orbix.impl_is_ready (svr_name_);
}

private:
char *svr_name_;

};

4 Collocation Issues

One of the most significant benefits of the POA specifica-
tion is that it defines standard names for stubs, skeletons,
and servant classes. It also defines how these entities are re-
lated and how to integrate them with application code. The
earlier BOA specification did not define these names and re-
lationships explicitly, which made it hard to write portable
CORBA server applications.

This section outlines the improvements provided by the
POA and illustrates how they can be applied to enable ef-
ficient collocationof clients and servants. Collocation op-
timizes away network transport overhead when clients and
servants are configured into the same address space.

If you look carefully at theMy Quoter Factory you’ll
notice some interesting naming conventions for theStock
module namespace:

class My_Quoter_Factory :
public POA_Stock::Quoter_Factory

{
public:

// ...
virtual Stock::Quoter_ptr create_quoter

(const char *name)
throw (CORBA::SystemException);

// ...
};

In particular, note how theQuoter Factory class is qual-
ified by aPOAStock prefix, whereas theQuoter ptr is

simply qualified by aStock prefix. There two general rea-
sons for these seemingly curious naming conventions:

1. Pure clients: One benefit of the use of separate names-
paces for client-side and server-side definitions is the ability
to definepure clients. Pure client applications contain no
CORBA objects and perform no server functions. There-
fore, they need not include definitions for unused server-side
classes and data types. This results in pure client applications
with smaller memory footprints.

2. Collocation support: Contemporary ORBs often uti-
lize direct pointers to servants when the target object is lo-
cated in the same process as the invoking client. This opti-
mization uses a very efficient virtual method dispatch to in-
voke the operation on the collocated target object. The POA
naming conventions allow servants to be separated com-
pletely from the object reference class hierarchy, thereby fa-
cilitating collocation. Figure 3 illustrates the distinction be-
tween these two hierarchies.

MyMy
QuoterQuoter
FactoryFactory

create_quoter()

ServantServant
BaseBaseA

POA_Stock::POA_Stock::
Quoter_FactoryQuoter_Factory

A

create_quoter() = 0

CORBA::CORBA::
ObjectObject

A

Stock::Stock::
QuoterQuoter
FactoryFactory

create_quoter()

CLIENT-SIDE
MAPPING

SERVER-SIDE
MAPPING

Figure 3: Client-side and Server-side POA Mappings

The left half Figure 3 shows the object reference C++ class
hierarchy. This hierarchy has as its root the C++ class rep-
resentingCORBA::Object , which is the base of all OMG
IDL interfaces. Most ORB implementations implement ob-
ject references as pointers to these class types. The right half
of the figure shows the corresponding skeleton C++ class
hierarchy. Note that all by theMy Quoter Factory are
generated by the IDL compiler.

ORB implementations are allowed, but not required, to
have their skeletons derive fromCORBA::Object . There-

5



fore, portable applications must assume that no such deriva-
tion exists,i.e., that skeletons are not part of the object refer-
ence C++ class hierarchy. In particular, taking the address of
a servant and using it as a collocated object reference is not
portable.

This restriction may seem unusual because existing BOA
implementations of popular contemporary ORBs like Or-
bix and VisiBrokerdo derive their skeleton classes from
the corresponding object reference classes. Thus, applica-
tion developers often wonder why the OMG chose a dif-
ferent model for POA skeletons. The remainder of this
section explains why POA skeletons are separate from the
CORBA::Object class hierarchy.

4.1 Multi-object Servants

With the POA, a single servant may incarnate multiple
CORBA objects. Therefore, taking the address of a servant
derived from such a skeleton, or otherwise using implicit
C++ conversion mechanisms to convert it to an object ref-
erence, results in an ambiguity problem: it is impossible to
know which CORBA object incarnated by the servant is re-
ferred to by such an object reference. Furthermore, there
is no way to prevent this error, because it relies solely on
the C++ conversion of a pointer to derived servant class to a
pointer to a base object reference class. C++ (correctly) pro-
vides no hooks to allow a user to prevent or verify that such
conversions should be allowed to take place.

The scalability afforded by allowing a single servant to
incarnate multiple CORBA objects was deemed by the POA
designers3 to be far more important than allowing implicit
conversions of servants to object references.

4.2 Collocation Transparency

Although collocation bypasses the relatively slow delivery of
the request via the network protocol stack, it can cause sub-
tle problems related to the transparency of collocation op-
timizations. For instance, a collocated client may be left
holding a dangling pointer when a CORBA object is de-
stroyed. Likewise, a servant can be deleted out from under
a request while an invocation is in progress. Moreover, cer-
tain POA features may not function correctly. In particular,
thePOACurrent interface (which allows servant to deter-
mine which POA and ObjectId it was invoked for) and the
POAManager (which allows servers to hold or discard in-
coming requests for servants) will not behave properly if a
client holds a direct pointer to its collocated servant.

Recent changes to CORBA and its services also affect
collocation transparency. For instance, the OMG Security
Service[8] officially introduced to the CORBA specification
the notion ofinterceptors, which are examples of the Chain
of Responsibility pattern [6]. Interceptors greatly enhance
ORB flexibility by separating request processing from the

3Steve is one of those designers, so we’re not just guessing here!

traditional ORB networking mechanisms required to send
and receive requests and replies.

The CORBA interceptor concepts are based on Marc
Shapiro’s work on flexible bindings[9], and on Orbix fil-
ters, which were the first application of Shapiro’s work to
CORBA-based systems. Other ORB vendors such as Sun
and Borland/Visigenic now support interceptors as well.

Interceptors are intimately tied into the connection be-
tween the client and server. Therefore, they can affect
the contents of CORBA requests and replies as they’re ex-
changed. For example, a client-sidesecurity interceptor
might transparently add authorization information to a re-
quest before it leaves the client process. The matching
server-side security interceptor in the receiving server would
verify that the client is authorized to invoke requests on the
target object before the request is dispatched. If authoriza-
tion fails, the request should be rejected.

Another example of an interceptor is atransaction inter-
ceptor. This interceptor adds a transaction ID to a request
before it leaves the client. The corresponding server-side
transaction interceptor then ensures that the request is dis-
patched to the target object within the context of that partic-
ular transaction.

Interceptors work because they are (transparently) inter-
posed between the client and the target object. Therefore,
for collocated client and target servant to work properly, in-
terceptors must still perform their duties. For example, an
application should not have to perform extra work to ensure
that invocations on local objects were correctly included as
part of a distributed transaction.

Clearly, if object references to collocated objects were di-
rect pointers to servants, no interceptors could be invoked
by the ORB for operations on local objects. Such a design
would result in a loss of local/remote transparency.

4.3 Object-oriented Typesystem
Conformance

In the object-oriented programming paradigm, inheritance
signifies that a derived type can be used where a base type
is expected. In other words, aDerived class “IS-A”Base
class,i.e., a derived type completely fulfills the interface of
each of its base types.

Our last two columns have focused on the significant
differences between a CORBA object and a program-
ming language servant. For instance, one difference is
that a single servant can incarnate multiple CORBA ob-
jects. Such differences make it clear that a subclass
of Servant does not have an IS-A relationship with
CORBA::Object . Therefore, inheritance of POA skele-
tons from theCORBA::Object class hierarchy does not
follow widely-accepted OOP principles with respect to in-
heritance.

6



4.4 CORBA Object Destruction

Consider a server application that invokes requests on its own
collocated objects, and also allows remote clients to do the
same. Both remote clients and different threads within the
application itself are allowed to destroy any of these CORBA
objects at any time. The following problems arise if a remote
client destroys a CORBA object incarnated by a particular
servant, and the local application holds a collocated object
reference (a C++ pointer directly to the servant) to the same
object:

Wrongly-extended lifetime: The collocated client might
still be able to use the direct pointer to invoke operations
on a CORBA object that has already been destroyed, when
in fact it should receive aCORBA::OBJECTNOTEXIST
exception instead.

Dangling Pointers: A more serious problem is that such
invocations would most likely be performed using a dan-
gling pointer to the already-deleted servant, and the appli-
cation would probably crash.

For these reasons, the POA was designed to avoid
requiring that POA skeletons must derive from the
CORBA::Object C++ object reference class hierarchy. To
do otherwise would have been too restrictive, and would
have decreased the utility of collocated objects.

4.5 Evaluating the POA Hierarchies

The separation of POA skeleton classes from object refer-
ence classes avoids the problems described above because
the lifetimes of servants are decoupled from the lifetimes of
object references. The downside of adding these semantics
to the POA and to the ORB Core, however, is that colloca-
tion may not be implemented as efficiently as it can with a
direct pointer to the servant.

Collocation overhead can arise in a number of places.
For instance, there is overhead associated with setting up a
POACurrent object, checking the state of the POAMan-
ager, and possibly transferring the request to be dispatched
on the POA’s thread. For these reasons, most responses to
the recent OMG Real-Time Special Interest Group (SIG) re-
quest for proposals (RFP)[10] called for omitting many of
the more complex POA features for the forthcoming version
of real-time CORBA.

5 Concluding Remarks

This column addressed the structure of POA skeleton classes
and the servant classes that derive from them. Both
inheritance-based and tie-based servants were described. In
keeping with our tradition of showing working C++ code,
examples of each were shown. We then provided an in-
depth look into collocation of clients and target objects, and

described the benefits of separating client-side object refer-
ence class hierarchies from server-side skeleton class hier-
archies. Though the POA approach differs from most (but
not all) contemporary ORB implementations, it provides bet-
ter consistency, safety, and scalability. We expect that most
CORBA vendors will enhance their ORBs to conform to the
POA specification shortly.

Our next column will be the last in our POA series. It will
cover on-demand servant activation viaservant managers,
which are extremely useful for creating highly-scalable
server applications. After that, we’ll begin covering the new
Objects By Valuespecification[11] and its ramifications on
CORBA applications. At the time of this writing (March
1998), this specification is in the process of OMG adoption.

As always, if you have any questions about the material
we covered in this column or in any previous ones, please
email us atobject_connect@cs.wustl.edu .

References
[1] D. C. Schmidt and S. Vinoski, “Object Adapters: Con-

cepts and Terminology,”C++ Report, vol. 11, Novem-
ber/December 1997.

[2] D. C. Schmidt and S. Vinoski, “Using the Portable Object
Adapter for Transient and Persistent CORBA Objects,”C++
Report, vol. 12, April 1998.

[3] Object Management Group,Specification of the Portable Ob-
ject Adapter (POA), OMG Document orbos/97-05-15 ed.,
June 1997.

[4] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.2 ed., Mar. 1998.

[5] D. Schmidt and S. Vinoski, “Comparing Alternative Pro-
gramming Techniques for Multi-threaded CORBA Servers:
Thread-per-Object,”C++ Report, vol. 8, July 1996.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[7] A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” inPro-
ceedings of GLOBECOM ’97, (Phoenix, AZ), IEEE, Novem-
ber 1997.

[8] Object Management Group,OMG Security Service, OMG
Document ptc/98-01-02, revision 1.2 ed., January 1998.

[9] M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed
Objects,” Tech. Rep. Rapport de recherche INRIA 2007, IN-
RIA, Aug. 1993.

[10] Object Management Group,OMG Real-time Request for Pro-
posal, OMG Document ptc/97-06-20 ed., June 1997.

[11] Object Management Group,Objects-by-Value, OMG Docu-
ment orbos/98-01-18 ed., January 1998.

7


