Object I nterconnections

Overcoming Drawbacksin the OMG Events Service (Column 10)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis, MO 63130

Thiscolumnwill appear inthe June 1997 issue of the SIGS
C++ Report magazine.

1 Introduction

Our last two columns have explored various techniques for
using distributed callbacks to decouple clients and servers
and create peer-to-peer rel ationships between the objectsina
distributed system. We've shown various ways to eliminate
the polling required by a stock application client. All these
approaches center around direct or indirect callbacksfromthe
Stock Quote Server. Like all engineering solutions, the de-
signs and implementationswe’ ve shown have their strengths
and weaknesses.

Our last column investigated how to use the OMG Events
Servicetoimplement astock quote callback mechanism. The
OMG Events Service is defined in Volume 1 of the OMG
Common Object Services (COS) Specification [1]. The fol-
lowing event delivery models are supported by Event Chan-
nels:

e Canonical Push model: The active event Supplier (in
our case, the Stock Quote Server) pushes events to the Event
Channel, which in turn pushes them to passive event Con-
sumers (in our case, interested stock quote client applica
tions).

e Canonical Pull modd: The activeevent Consumers pull
eventsfromthe Event Channel, whichinturnpullsthemfrom
the passive event Supplier.

e Hybrid Push/Pull model: The active event Supplier
pushes events to the Event Channel, while the active event
Consumers pull events from the Event Channel.

e Hybrid Pull/Push modd: The Event Channe pulls
events from the passive event Supplier and pushes them to
passive event Consumers.

As explained in our last column, Event Channels support
all these model sbecause the OM G Events Serviceisintended
asaspecification for genera -purposeevent delivery systems.

Steve Vinoski
vinoski @iona.com
IONA Technologies, Inc.
60 Aberdeen Ave., Cambridge, MA 02138

2 Problems Galorel

Our original goa was to simplify the Stock Quote Server
by making the Event Channel responsible for delivering
stock value notifications to interested Consumers. While
we achieved that particular goal, our plan backfired on us
somewhat since the overall integrity and performance of our
system were reduced. Thisturn of events (no pun intended)
stemmed from the following problemswith Event Channels:

¢ Over-generalization: Event Channels support different
event delivery models that are useful for awide range of ap-
plications. One consequence is that Supplier and Consumer
registrationismorecomplicated than isnecessary for applica-
tionsusing just onedelivery model. For instance, Consumers
must know all the details of how to register themselves with
an Event Channd.

o Lack of persistence: The COS Events Service standard
doesn’t require Event Channels to provide persistence. For
instance, conforming Event Channel implementations need
not store connectivity information and undelivered events
when they shut down. Thislack of persistence can signifi-
cantly reduce the robustness of Event Channels, and in turn
reduce their utility for distributed applications.

e Lack of filtering: The standard semantics of the COS
Event Channel specifies that all events are delivered to dl
push Consumers. Therefore, each Consumer must filter the
events to find the ones it’'s interested in. In contrast, the
Not i fyi ng_Quot er implementation we described in pre-
vious columns only delivered events to Consumers that had
explicitly subscribed for them.

e Lack of correlation: Some Consumers can execute
whenever an event arrives from any Supplier. Other Con-
sumers can execute only when an event arrives from a spe-
cific Supplier. Still other Consumers must postpone their
execution until multiple events have arrived from a partic-
ular set of Suppliers (i.e, they depend on a correlation of
events). The standard COS Events Service does not address
the event correlation needs of Consumers that can’t execute
until multiple events occur. As before, Consumers are re-
sponsible for performing correlations, which is very costly,
as described in the following bullet.

e Increased endsystem network load and Consumer |oad:
One consequence of ddivering al events to al Consumers
isthat the network load may be higher than with designsthat
performsomeor all of theevent filtering and correlationin the
Event Channel. Moreover, the workload on the Consumers
will aso increase since they must perform the filtering and
correlation at thedestination. Thisincreased workload can be
particularly problematicif Consumers run on low-end PCs.

e Multiplesuppliers: AnEvent Channel can havemultiple
suppliers attached to it, thereby increasing the potentia for
more events in the system. As a result, this may further
increase network load and require Consumers to perform
even more filtering.

e Lack of type-safety: Untyped Event Channels deliver
event data using the OMG IDL any type. Thisforces Con-
sumers to perform additional work converting the any to a
specific type so they can examine and manipul ate the data.

3 Avoiding Common Trapsand Pitfalls

We originally chose to use an Event Channel to separate the
concerns of monitoring stock valuesfrom those of delivering
notifications about changes in those values. In this column,
we'll address each of the problems listed in the previous
section to see what changes are needed so that we can use an
Event Channel to simplify our Stock Quote Server. Along
the way, we' |l distinguish between solutionsthat require the
following:

e Changes to the COS Events Service specification:
For example, the current COS Events Service specifica-
tion doesn’t support event filtering or correlation. Although
adding these features can significantly improve performance,
it can be difficult to accomplish this in practice due to the
long lead times required by the OMG standardization pro-
cess. Fortunately, the OMG is already working on a new
Notification Service [2] that will augment the existing Events
Service to help address these concerns.

e Changes to implementations of the COS Events Ser-
vice specification: The COS Events Service is intention-
aly vague, to avoid over-constraining the innovation and
opportunity for optimization of implementors. Thus, there
are anumber of different waysto implement the COS Events
Service. Certain implementation decisions make it essier to
address the drawbacks we discussin thisarticle.

¢ Changesto applicationsthat use a COS Events Service
implementation: Thissolutionisnot always the most aes-
thetic or efficient. However, it's often the quickest and most
pragmatic way to overcome common drawbacks with the
existing COS Events Service specification and implementa-
tions.

The remainder of this section explains techniques for avoid-
ing the common traps and pitfallsdescribed in Section 1.

N
CONSUMER CHANNEL
.
OBTAIN A for_consumers()
Z CONSUMERADMIN — -
S “ FACTORY
=~
Qe OBTAIN A obtain_push_supplier()
=2 £ PROXY SUPPLIER
Q
C CONNECT TO (|connect_push_consumer(this)
THE CHANNEL = >
=g RECEIVE push(event) [
S T NOTIFICATIONS |«
-
. J

Figure 1. Connecting a Consumer to an Event Channel

3.1 Alleviating Over-generalization

Problem — complex registration process. The COS
Events Serviceisvery genera, to the point whereitishard to
apply for many common use-cases. Thisis particularly evi-
dent when trying to connect a Supplier or Consumer with an
Event Channel. Aswe showed in our last column, registra:
tion with an Event Channel requires a “double dispatching”
handshake between the Consumer and Supplier proxies. The
Channel uses this bi-directiona exchange of object refer-
ences to keep track of its Consumers and Supplierssoit can
disconnect them gracefully.

Both Consumers and Suppliers must make three sepa
rate operation invocations to register with a Channel. As
shown in Figure 1, Consumers that want to register as a
push consumer must first call the f or .consuner s oper-
ation on the Event Channel to obtain a Consumer Admi n
object reference. Thisobject reference isthen used toinvoke
the obt ai n_push_suppl i er operation to get a proxy
from the Event Channel with which to register. Finaly, the
Pr oxyPushSuppl i er returned from the previous step is
used to invoke the connect _push_consuner operation,
passing it a reference to its PushConsumer object to re-
ceivethe events.

Unfortunately, this handshake is more complicated than
necessary for most applications.

Solution: The solution is obvious: to simplify the Event
Channel registration protocol, we must hideit behind asim-
pler interface. For example, the registration interface we
showed several columns ago for our Not i fyi ng_Quot er
was much smpler:

/1 1DL

modul e Stock {
/'l Requested stock does not exist.
exception Invalid_Stock {};

/1 Distributed callback infornmation.
nodul e Cal | back {
interface Handl er {
...
3

o
}s

interface Notifying_Quoter {
/] Register a distributed call back handl er
/1 that is invoked when the given stock
/1 reaches the desired threshold val ue.
voi d register_call back
(in string stock_nane,
in long threshol d_val ue,
in Callback:: Handl er handl er)
rai ses (Invalid_Stock);

/1 Renove the handl er.
voi d unregi ster_call back
(in Callback:: Handl er handler);
b

b

To register using this Not i fyi ng_Quot er interface, a
client smply calls the r egi st er _cal | back operation,
passingaCal | back: : Handl er object referencetobein-
voked when the named stock reaches the indicated value.
This solution doesn’t require any changes to the Events Ser-
vice specification or vendor implementations. Itjust provides
awrapper around the Event Channel registration protocol that
makes it much easier to use.

The Consumer registration protocol supported by our
Not i f yi ng_Quot er is simpler than the one used by the
Event Channel because it only supports the Canonical Push
Model of event ddivery. In particular, the Event Channel
registration handshake required to select the delivery model
isn't necessary for theNot i f yi ng_Quot er .

Keep in mind, however, that
theNot i fyi ng_Quot er: : unregi st er _handl er op-
eration can have problems of its own. Specificaly, it relies
onthe CORBA: : (bj ect : : i s_equi val ent operationto
compare object references and ensure that theright oneisun-
registered. However, the semantics of this operation are too
weak to alow it to be used for this purpose. The problemis
thati s_equi val ent may return falseeven thoughthetwo
object references identify the same remote object.*

3.2 Resolving Persistence I ssues

Problem —loss of non-persistent data and connection in-
formation: Any timethe Event Channe isshut down, or if
it fails unexpectedly, non-persistent information can be lost.
For instance, the Event Channel could loseinformati on about
the Consumers and Suppliers connected to it. Moreover, it
could lose undelivered event data.

Theitalicized 1abelsin Figure 2 depict potential sources of
lost data and connection information in an Event Channel.

Solution: Saving and restoring Consumer and Supplier
registration information isn't hard, assuming that the rate of
connections and disconnectionsis not too high. Since object
references can be changed into string form by the ORB, the
Event Channel only needsto utilizeasuitable persistent store
inwhich to write stringified object references for Consumers
and Suppliersasthey register.

10ur September 1996 column [3] discusses the reason for these non-
intuitive semanticsin more detail.

Event
Channel

Supplier

Consumer
Proxy

Proxy
Supplier Consumer
Proxy Proxy

NON-PERSISTENT
EVENT DATA

Supplier
Proxy

Consumer
Proxy

CONNECTIONS
TO SUPPLIERS
.

CONNECTIONS
TO CONSUMERS)

Figure 2: Failure Pointsin an Event Channel

Storing undelivered event datais more difficult, however.
Typicaly the rate of event delivery is much higher than the
rate of connections and disconnections. To be completely
reliable, an Event Channel must store a copy of each event
it receives until it successfully deliversit to all Consumers.
In most network environments, this requires end-to-end ac-
knowledgements between the Channel and al of its Con-
sumers.

There are many protocolsfor ensuring reliable group com-
munication. However, these protocols are non-trivia to
implement. Moreover, they can reduce performance sig-
nificantly compared with non-reliable group communication
protocols (such as |P multicast).

Note that the functionality for ensuring Event Channel
reliability must be provided by implementors. It’soutsidethe
scope of what end-users and Consumer/Supplier applications
can accomplish since they don’t program the internal details
of an Event Channdl.

Problem —storing CORBA anys. A related problemwith
the storage of event data is the fact that the data arrives at
the Event Channdl in the form of a CORBA any. CORBA
any sare sdlf-describing types capabl e of storing any built-in
or user-defined OMG IDL type. Storing such typesisn’t too
difficult if one can extract the compiled C++ form from the
CORBA: : Any type. It'snot practical, however, to recompile
the Event Channel every time a new user-defined event type
is added to the distributed system.

Solution: What's required is a way to store instances of
theany type regardless of whether thetype iscompiled into
the Event Channel or not. Currently, the ability to store
instances of the any type depends upon which ORB you
use. Unfortunately, there is no standard way to decompose
an instance of an any for storageto disk, though some ORB
productssupport proprietary extensionsto solvethisproblem.

Fortunately, this particular portability problem has aready
been recognized by the submitters to the OMG Portability
Enhancement RFP. The solution will be included in their
joint submission that should be completed by the time you
read thiscolumn. A new IDL interface named Dy nAny will
allow anys to be created dynamically. It will aso alow

\. J
Figure 3: Multiple Suppliers Generating Multiple Types of
Events

an instance of an any to be decomposed into its constituent
built-inIDL types.

Once adopted asa standard, the DynAny interfacewill al-
low aportable program (such as an Event Channdl and event
filters) to manipulate instances of the any type regardless
of what programming language it’swritten in. More impor-
tantly, DynAny will work regardless of whether the actua
type stored inthe any is statically known to the program or
not.

3.3 Eliminating Multiple Suppliers

Problem —multiple supplierswith multipletype systems:
Security implications aside, there's nothing to stop an appli-
cation from acquiring an obj ect referenceto an Event Channel
and connecting itself as a Supplier. Thisis problematic for
the following reasons:

¢ Increased Channel workload — As more Suppliers con-
nect to a Channel, there is a greater potentia for the
Channdl to become a bottleneck as Suppliers push more
events to the Channdl.

e Increased Consumer workload — As more Suppliers
push events through a Channel, the more events must
be propagated to Consumers. Moreover, it'slikely that
new Suppliers will generate different types of events
(as shown in Figure 3). It'spossible that many of these
typeswon'’t beof interest toall the Consumers, however.

Solution: One way to eiminate the problem of multiple
Suppliersisto have an application createitsown Event Chan-
nel and keep it hidden by not advertising itsobject reference.
This prevents any other applications from connecting to it
as a Supplier. For example, in our Quote Server example,
we can employ the specia registration interfaces described
in Section 3.1 to ensure that unwanted Supplierscan’t access
the Event Channel directly.

. J

Figure4: Co-locating Filters with an Event Channel

Note that this solution only requires changes to applica-
tions and doesn’t require any changes to the Event Channel
specification or implementations.

3.4 Performing Filtering and Correlation in
Event Channels

Problem —filtering at the consumers: Inastandard COS
Events Service, each Consumer typically perform its own
filtering. COS Event Channels can be chained to create an
event filtering graph that allows Consumers to register for
a subset of the totd events in the system. However, this
filter graph increases the number of hops that a message
must take between Suppliersand Consumers. Thisincreased
overhead may be unacceptable for applications with low la
tency requirements. In addition, a general-purpose filtering
mechanism that interprets CORBA: : Any types may be too
inefficient for high-performance applications.

Solution 1: One solution is to attach co-located filters di-
rectly to the Event Channel so that Consumers only receive
events they're actudly interested in. For instance, we've
made the Event Channel private with respect to our Quote
Server. Therefore, we can ensure that it only receives events
that are relevant for it. Moreover, since the Event Channel is
private, we statically know the IDL typesflowing throughit,
so filtering is much easier and more efficient.

Note that this solution doesn’t require any changes to the
Event Channel specification, but it does require extra in-
terfaces on the Event Channel implementation that allows
filtersto be installed directly within the Event Channel pro-
cess. Thefollowing sketches how thisfunctionality could be
implemented by an Event Channel provider:

1. Filter interposition—Each Consumer registration causes
the creation of a co-located filtering Consumer object
that is interposed locally between the Event Channel
and the actual Consumer (shown in Figure 4). The fact
that thefilter islocated within the Event Channel server
means that events are not needlessly transmitted over

the network? only to be thrown away, thus helping to
decrease the network load.

2. Event interception — As events are pushed to the Event
Channel from Suppliersthey are intercepted and com-
pared against the filtering object. If they match the
filtering criteria they are forwarded to the Consumer.
If not, they are discarded. Therefore, this mechanism
ensuresthat only those of eventsinterest tothereal Con-
sumer actually reaching that Consumer. For instance,
Figure4 illustratesa scenario where an event pushed by
a Supplier to the Event Channel only passes the filter
installed by Consumer C'y.

There are two drawbacks to this solution:

1. Filter registration — This solution requires Event Chan-
nel implementationsto support specia filter registration
interfaces. Such interfaces are not yet standardized, so
their signatures and their semanticswould vary between
Event Channel implementations.

2. Filter implementation — This solution begs the question
of how filters could possibly be implemented. An obvi-
ous solution isto pass an object reference reference for
each filter, which the Event Channel can invoke before
pushing an event to a Consumer. The problem with
this approach is that thefilter object can’t be passed by
value to the Event Channel, and thus could not be lo-
cated directly with the Channel. Therefore, the benefits
of co-located filters could not be redlized. Other possi-
bleimplementationsfor filtersare mentioned in Solution
2 below.

Solution 2: A potentially more efficient and scalable so-
[ution is to extend the COS Events Service specification to
explicitly support event filtering. There are a number of
techniques for accomplishing this, such as parald process-
ing of composite filters, trie-based filter composition, and
context-free grammar-based filter composition using “skip-
ahead parsing” [4]. It is very likely that the submissions
to the OMG Notification Service RFP mentioned above will
standardize one or more filtering solutions.

[5] describes a filtering mechanism for a real-time imple-
mentation of the COS Events Service. Thisimplementation
providesfiltering and correl ation mechanisms that allow con-
sumers to specify logical OR and AND event dependencies.
When those dependencies are met, the real-time Event Ser-
vice dispatches all eventsthat satisfy the Consumers depen-
dencies and timing requirements. The Appendix describes
additiona information on event filtering architectures.

3.5 Minimizing Network and Consumer L oad

Problem —excessive load on thenetwork and Consumers:
If dl events are delivered to al push Consumers, both the

2This assumesthat the ORB performs* short-circuited” local dispatching
(such as direct or near-direct function calls) for messages to objectsin the
same address space.

network load and the workload on the Consumers may in-
crease. Theincrease in network load is obvioudy dueto the
need to deliver al eventsto all Consumers. Theincreasein
Consumer workload is due to each Consumer having to per-
form event filtering and correlation. Increasing theworkload
of Consumers can be particularly problematic if they run on
low-end machines.

Solution 1: Instead of just making the Event Channel pri-
vate, assuggested above, it can a so be created directly within
the Quote Server. This eliminates one of the network hops
(i.e, Supplier to Channel). However, the resulting decrease
in network traffic may be negligiblesince our Event Channel
is private and the Quote Server is the only Supplier attached
toit. Moreover, the additional workload of having the Event
Channel in the same process as the Quote Server may actu-
ally decrease the overall performance of our server, unless
careful multi-threading or asynchronous event processing is
utilized.

Despite these potential drawbacks, a co-located Event
Channel makesit much easier toimplement co-located event
filters. Asdescribed above, registering or creating co-located
filters for a stand-alone Event Channd requires that it sup-
ports extra proprietary interfaces that go beyond the OMG
Events Service Specification. If the Event Channdl islocal,
however, co-located filters can simply be implemented as
norma Consumer objects, and thus can registered with the
Event Channel using the regular Consumer registrationinter-
faces. Because such filtersreside in the same process as the
Event Channel, the benefits of co-located filtering are easily
achieved without requiring the Event Channel to support a
generd filter interpreter asdescribed above. Fromaprogram-
ming perspective, this solution is desirable since it doesn’t
requireany changesto the specification or implementation of
existing Event Channels.

A reasonable tradeoff might be to run the Event Chan-
nel on the same system but not in the same process as the
Quote Server, and use an ORB capabl e of communicating via
shared memory. Thiskeepsthe Supplier-to-Channel message
traffic off the network, but does not require an Event Chan-
nel implementation that can be linked into and run within
another program. With this solution, filters could still beim-
plemented as regular Consumer objects. Even though they
would no longer be co-located within the Event Channel pro-
cess, communication with thefilters from the Event Channel
viashared memory would till be quite efficient.

In any case, implementing a server with its own loca
Event Channel can be ssimplified greatly if shared library or
DLL-based Event Channel implementations are available.
Currently, only stand-al one server-based Event Channelsare
common.

Solution 2: Another solution is to use “batching.” This
approach isshown in Figure 5, where the Channel queuesup
groupsof events destined to the same Consumer and delivers
them en masse, rather than individually. Thisresultsinlower

push(E1,2’3)

"BATCHING"
QUEUE E3

push(E3)

Figure 5: Batching Requests to Consumers

network utilization sincethefixed costs (e.g., interrupts, con-
text switching, and protocol processing) of transmitting an
event are amortized over alarger payload. The main draw-
back is an increase in latency due to delay incurred while
batching up the events.

Batching can be implemented with minor changes to the
Event Channel implementation and specification. Because
the Event Channel for our Quote Server is private, we know
that al events flowing through the system are actualy the
same IDL type. Since events are delivered in the form of
a CORBA: : Any, our Event Channel can either put asingle
event into an any, which is the norm, or can bend the rules
dightly and actualy store a sequence of eventsin the any.
Pushing a sequence of events alows the Event Channel to
deliver multiple events to a given Consumer with a single
push operation. However, it requires that Consumers be
aware that the anys they receive can hold either a single
event or a sequence of events.

3.6 Improving Type Safety

Problem — CORBA: : Any can be error-prone: With an
untyped event channel, event datais delivered viathe OMG
IDL any type. Anany issimilartothe C/C++voi d pointer
inthat it can contain the state of any OMG IDL type. It also
shares some drawbacks with voi d pointersin that using an
any can be error-prone.

Fortunately, a CORBA: : Any keeps a TypeCode along
with the data so that it is possible to detect type errors at
run-time. However, applications written with any can be
complex since each Consumer must be prepared to actively
distinguish the eventsit understands from those it does not.

Solution: We can create our own event type system and
use it via our private interfaces. As shown in Figure 6,
this solution interposes a type-safe software layer that hides
the insertion and extraction of event data into and out of
CORBA: : Any. The benefit of thisapproach isthat the code

Figure6: InterposingaTyped Interface over Untyped Events

to handle the Anys can isolate the handling of Any values
from the rest of the application. In addition, this solution
doesn’t require any changes to the specification or imple-
mentation of the COS Events Service.

Thusfar, we have focused solely on the untyped interfaces
of the OMG Events Service Specification. However, the
specification also describes how an Event Channel can sup-
port typed interfaces. Intheory, using atyped Event Channel
interface is essentially equivalent to a solution that involves
wrapping an untyped Event Channel with private typed inter-
faces. In practice, the specification for typed Event Channels
isvague and confusing.

To the best of our knowledge no ORB vendors support
typed Event Channels. Until support for typed Event Chan-
nels becomes available, it's best to encapsulate the Event
Channel with your own private C++ wrapper interfaces.

4 Conclusion

This column concludes our investigation of distributed call-
backs and event delivery services — we hope you’ ve found
our exploration of these issues and design tradeoffs useful.
Along the way, we' ve suggested various solutions to many
drawbacks with the COS Events Service via a combination
of application changes, Event Channel implementation en-
hancements, and proposed extensions to the COS Events
Service specification. Not surprisingly, there are still many
challenges awaiting those who use the COS Events Service
in practice.

I'n our next column, we'll start presenting i ssues surround-
ing CORBA Object Adapters, which is where programming
language object implementations meet the world of CORBA
objects. In particular, we'll describe the new Portable Ob-
ject Adapter currently being added to CORBA. The POA
solves many issues with existing non-portable object im-
plementations, which is the bane of cross-vendor CORBA
development today.

References

[1] Object Management Group, CORBAServices. Common Object
Services Specification, Revised Edition, 95-3-31 ed., Mar. 1995.

SUPPLIER

CONSUMER

Figure 7: Decentralized Event Filtering

[2] Object Management Group, Notification Service Request For
Proposal, OMG Document telecom/97-01-03 ed., January
1997.

[3] D.Schmidtand S. Vinoski, “ Distributed Callbacks and Decou-
pled Communicationin CORBA,” C++ Report, vol. 8, October
1996.

[4] D.C.Schmidt, “High-Performance Event Filtering for Dynamic
Multi-point Applications,” in 1°* Workshop on High Perfor-
mance Protocol Architectures(HIPPARCH), (SophiaAntipolis,
France), INRIA, December 1994,

[5] T. Harrison, D. Levine, and D. C. Schmidt, “The Design
and Performance of a Real-time Event Service,” in Submit-
ted to OOPSLA '97, (Atlanta, GA), ACM, October 1997.
http://www.cs.wustl.edu/~schmidt/oopsla.html.

A Event Filtering Architectures

There are several types of event filtering architectures illus-
trated in Figures 7, 8, and 9. This appendix outlines the
advantages and disadvantages of each architecture.

e Decentralized Event Filtering: In certain environments,
itisbeneficia to decentralize event filtering by performing it
on consumer hosts (shown in Figure 7). This configuration
is appropriate when the following conditions exist:

¢ The Consumer hosts are powerful computing platforms;

A high-speed network is available to connect the Sup-
pliersto the Consumer hosts;

o Consumers subscribe to most events;
o Event filtersare relatively complex.

When these conditionsexist it may become more efficient to
perform filtering in the Consumer endsystems.

SUPPLIER

CONSUMER

SERVER

SUPPLIER

CONSUMER

Figure 8: Centralized Event Filtering

e Centralized Event Filtering: Inother environments, itis
beneficial to centralize the event filtering in one Event Chan-
nel located on asingleevent server (showninFigure8). This
configuration is appropriate when the following conditions
exist:
e An Event Channel is ingtalled on a high-performance
event server platform (such as a multi-processor);

e The Consumer hosts are run on less powerful platforms
(such asinexpensive PCs);

o A reatively low-bandwidth (or highly congested) net-
work connects the event server to the Consumer hosts;

o Consumers subscribe to a relatively limited subset of
events;

e The complexity and number of event filters subscribed
to by Consumers does not produce a magjor processing
bottleneck at the event server.

When these conditions exist, the network and the Consumer
hosts at the edges of the network are typically the process-
ing bottleneck, rather than the Event Channel running on
the event server. Therefore, a centralized event filtering ar-
chitecture helps to off-load work from the network and the
Consumer hosts.

o Distributed Event Filtering: More complex event fil-
tering scenarios are also possible (shown in Figure 9). For
example, network topology in complex systems may inter-
connect Suppliers, Event Channels running on event servers,
and Consumers that span multiple computers across local-
area networks and wide-area networks.

SUPPLIER

SUPPLIER

EVENT
SERVER EVENT

Figure 9: Distributed Event Filtering

