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Background

� Object-oriented programming is often de-

�ned as the combination of Abstract Data

Types (ADTs) with Inheritance and Dy-

namic Binding

� Each concept addresses a di�erent aspect
of system decomposition:

1. ADTs decompose systems into two-dimensional

grids of modules

{ Each module has public and private inter-

faces

2. Inheritance decomposes systems into three-dimensional

hierarchies of modules

{ Inheritance relationships form a \lattice"

3. Dynamic binding enhances inheritance

{ e.g., defer implementation decisions until late

in the design phase or even until run-time!
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Data Abstraction vs. Inheritance

DATA  ABSTRACTION

(2 DIMENTIONAL)
DATA  ABSTRACTION

(2 DIMENTIONAL)

INHERITANCE

(3 DIMENTIONAL)
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Motivation for Inheritance

� Inheritance allows you to write code to

handle certain cases and allows other de-

velopers to write code that handles more

specialized cases, while your code contin-

ues to work

� Inheritance partitions a system architec-

ture into semi-disjoint components that

are related hierarchically

� Therefore, we may be able to modify and/or
reuse sections of the inheritance hierarchy
without disturbing existing code, e.g.,

{ Change sibling subtree interfaces

� i.e., a consequence of inheritance

{ Change implementation of ancestors

� i.e., a consequence of data abstraction
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Inheritance Overview

� A type (called a subclass or derived type)
can inherit the characteristics of another
type(s) (called a superclass or base type)

{ The term subclass is equivalent to derived type

� A derived type acts just like the base type,
except for an explicit list of:

1. Specializations

{ Change implementations without changing

the base class interface

� Most useful when combined with dynamic

binding

2. Generalizations/Extensions

{ Add new operations or data to derived classes
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Visualizing Inheritance
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Types of Inheritance

� Inheritance comes in two forms, depend-
ing on number of parents a subclass has

1. Single Inheritance (SI)

{ Only one parent per derived class

{ Form an inheritance \tree"

{ SI requires a small amount of run-time over-

head when used with dynamic binding

{ e.g., Smalltalk, Simula, Object Pascal

2. Multiple Inheritance (MI)

{ More than one parent per derived class

{ Forms an inheritance \Directed Acyclic Graph"

(DAG)

{ Compared with SI, MI adds additional run-

time overhead (also involving dynamic bind-

ing)

{ e.g., C++, Ei�el, Flavors (a LISP dialect)
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Inheritance Trees vs. Inheritance
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Inheritance Bene�ts

1. Increase reuse and software quality

� Programmers reuse the base classes instead of

writing new classes

{ Integrates black-box and white-box reuse by

allowing extensibility and modi�cation with-

out changing existing code

� Using well-tested base classes helps reduce bugs

in applications that use them

� Reduce object code size

2. Enhance extensibility and comprehensibil-
ity

� Helps support more 
exible and extensible ar-

chitectures (along with dynamic binding)

{ i.e., supports the open/closed principle

� Often useful for modeling and classifying hierarchically-

related domains
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Inheritance Liabilities

1. May create deep and/or wide hierarchies

that are hard to understand and navigate

without class browser tools

2. May decrease performance slightly

� i.e., when combined with multiple inheritance

and dynamic binding

3. Without dynamic binding, inheritance has
only limited utility

� Likewise, dynamic binding is almost totally use-

less without inheritance

4. Brittle hierarchies, which may impose de-

pendencies upon ancestor names
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Inheritance in C++

� Deriving a class involves an extension to

the C++ class declaration syntax

� The class head is modi�ed to allow a deriva-

tion list consisting of base classes

� e.g.,

class Foo f /* : : : g;
class Bar : public Foo f /* : : : g;

class Foo : public Foo, public Bar f /* : : : g;
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Key Properties of C++

Inheritance

� The base/derived class relationship is ex-
plicitly recognized in C++ by prede�ned
standard conversions

{ i.e., a pointer to a derived class may always be

assigned to a pointer to a base class that was

inherited publically

� But not vice versa: : :

� When combined with dynamic binding, this
special relationship between inherited class
types promotes a type-secure, polymor-
phic style of programming

{ i.e., the programmer need not know the actual

type of a class at compile-time

{ Note, C++ is not truly polymorphic

� i.e., operations are not applicable to objects

that don't contain de�nitions of these op-

erations at some point in their inheritance

hierarchy

12



Simple Screen Class

� The following code is used as the base
class:

class Screen f

public:

Screen (int = 8, int = 40, char = ' ');

~Screen (void);

short height (void) const f return this->height ; g

short width (void) const f return this->width ; g

void height (short h) f this->height = h; g

void width (short w) f this->width = w; g

Screen &forward (void);

Screen &up (void);

Screen &down (void);

Screen &home (void);

Screen &bottom (void);

Screen &display (void);

Screen &copy (const Screen &);

// : : :

private:

short height , width ;

char *screen , *cur pos ;

g;
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Subclassing from Screen

� class Screen can be a public base class of

class Window

� e.g.,

class Window : public Screen f

public:

Window (const Point &, int rows = 24,

int columns = 80,

char default char = ' ');

void set foreground color (Color &);

void set background color (Color &);

void resize (int height, int width);

// : : :

private:

Point center ;

Color foreground ;

Color background ;

// : : :

g;
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Multiple Levels of Derivation

� A derived class can itself form the basis
for further derivation, e.g.,

class Menu : public Window f

public:

void set label (const char *l);

Menu (const Point &, int rows = 24,

int columns = 80,

char default char = ' ');

// : : :

private:

char *label ;

// : : :

g;

� class Menu inherits data and methods from
both Window and Screen

{ i.e., sizeof (Menu) >= sizeof (Window) >= sizeof

(Screen)
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The Screen Inheritance Hierarchy

WindowWindow

ScreenScreen

MenuMenu

PointPoint

ColorColor

� Screen/Window/Menu hierarchy
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Variations on a Screen: : :

w :w :
WindowWindow

ps1 :ps1 :
ScreenScreen

ps2 :ps2 :
ScreenScreen

MenuMenu

� A pointer to a derived class can be as-
signed to a pointer to any of its public
base classes without requiring an explicit
cast:

Menu m; Window &w = m; Screen *ps1 = &w;

Screen *ps2 = &m;
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Using the Screen Hierarchy

� e.g.,

class Screen f public: virtual void dump (ostream &); = 0 g

class Window : public Screen f

public: virtual void dump (ostream &);

g;

class Menu : public Window f

public: virtual void dump (ostream &);

g;

// stand-alone function

void dump image (Screen *s, ostream &o) f

// Some processing omitted

s->dump (o);

// (*s->vptr[1]) (s, o));

g

Screen s; Window w; Menu m;

Bit Vector bv;

// OK: Window is a kind of Screen

dump image (&w, cout);

// OK: Menu is a kind of Screen

dump image (&m, cout);

// OK: argument types match exactly

dump image (&s, cout);

// Error: Bit Vector is not a kind of Screen!

dump image (&bv, cout);
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Using Inheritance for

Specialization

� A derived class specializes a base class by
adding new, more speci�c state variables
and methods

{ Method use the same interface, even though

they are implemented di�erently

� i.e., \overridden"

{ Note, there is an important distinction between

overriding, hiding, and overloading: : :

� A variant of this is used in the template
method pattern

{ i.e., behavior of the base class relies on func-

tionality supplied by the derived class

{ This is directly supported in C++ via abstract

base classes and pure virtual functions
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Specialization Example

� Inheritance may be used to obtain the fea-

tures of one data type in another closely

related data type

� For example, class Date represents an ar-
bitrary Date:

class Date f

public:
Date (int m, int d, int y);
virtual void print (ostream &s) const;
// : : :

private:
int month , day , year ;

g;

� Class Birthday derives from Date, adding
a name �eld representing the person's birth-
day, e.g.,

class Birthday : public Date f

public:
Birthday (const char *n, int m, int d, int y)

: Date (m, d, y), person (strdup (n)) fg

~Birthday (void) f free (person ); g
virtual void print (ostream &s) const;
// : : :

private:
const char *person ;

g;
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Implementation and Use-case

� Birthday::print could print the person's name
as well as the date, e.g.,

void Birthday::print (ostream &s) const f

s << this->person << " was born on ";

Date::print (s);

s << "\n";

g

� e.g.,

const Date july 4th (7, 4, 1993);

Birthday my birthday ("Douglas C. Schmidt", 7, 18, 1962);

july 4th.print (cerr);

// july 4th, 1993

my birthday.print (cout);

// Douglas C. Schmidt was born on july 18th, 1962

Date *dp = &my birthday;

dp->print (cerr);

// ??? what gets printed ???

// (*dp->vptr[1])(dp, cerr);
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Alternatives to Specialization

� Note that we could also use object com-
position instead of inheritance for this ex-
ample, e.g.,

class Birthday f

public

Birthday (char *n, int m, int d, int y):

date (m, d, y), person (n) fg

// same as before

private:

Date date ;

char *person ;

g;

� However, in this case we would not be able
to utilize the dynamic binding facilities for
base classes and derived classes

{ e.g.,

Date *dp = &my birthday;

// ERROR, Birthday is not a subclass of date!

{ While this does not necessarily a�ect reusabil-

ity, it does a�ect extensibility: : :
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Using Inheritance for

Extension/Generalization

� Derived classes add state variables and/or
operations to the properties and opera-
tions associated with the base class

{ Note, the interface is generally widened!

{ Data member and method access privileges may

also be modi�ed

� Extension/generalization is often used to
faciliate reuse of implementations, rather
than interface

{ However, it is not always necessary or correct

to export interfaces from a base class to de-

rived classes
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Extension/Generalization

Example

� Using class Vector as a private base class
for derived class Stack

class Stack : private Vector f /* : : :*/ g;

� In this case, Vector's operator[] may be
reused as an implementation for the Stack
push and pop methods

{ Note that using private inheritance ensures that

operator[] does not show up in the interface

for class Stack!

� Often, a better approach in this case is

to use a composition/Has-A rather than

a descendant/Is-A relationship: : :
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Vector Interface

� Using class Vector as a base class for a
derived class such as class Checked Vector
or class Ada Vector

{ One can de�ne a Vector class that implements

an unchecked, uninitialized array of elements

of type T

� e.g., /* File Vector.h (incomplete wrt ini-
tialization and assignment) */

// Bare-bones implementation, fast but not safe

template <class T>

class Vector f

public:

Vector (size t s);

~Vector (void);

size t size (void) const;

T &operator[] (size t index);

private:

T *buf ;

size t size ;

g;
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Vector Implementation

� e.g.,

template <class T>

Vector<T>::Vector (size t s): size (s), buf (new T[s]) fg

template <class T>

Vector<T>::~Vector (void) f delete [] this->buf ; g

template <class T> size t

Vector<T>::size (void) const f return this->size ; g

template <class T> T &

Vector<T>::operator[] (size t i) f return this->buf [i]; g

int main (void) f

Vector<int> v (10);

v[6] = v[5] + 4; // oops, no initial values

int i = v[v.size ()]; // oops, out of range!

// destructor automatically called

g
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Bene�ts of Inheritance

� Inheritance enables modi�cation and/or ex-
tension of ADTs without changing the orig-
inal source code

{ e.g., someone may want a variation on the ba-

sic Vector abstraction:

1. A vector whose bounds are checked on every

reference

2. Allow vectors to have lower bounds other

than 0

3. Other vector variants are possible too: : :

� e.g., automatically-resizing vectors, initial-

ized vectors, etc.

� This is done by de�ning new derived classes
that inherit the characteristics of the Vector
base class

{ Note that inheritance also allows code to be

shared
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Checked Vector Interface

� The following is a subclass of Vector that

allows run-time range checking:

� /* File Checked-Vector.h (incomplete wrt
initialization and assignment) */

struct RANGE ERROR f

"range error" (size t index);

// : : :

g;
template <class T>

class Checked Vector : public Vector<T> f

public:

Checked Vector (size t s);

T &operator[] (size t i) throw (RANGE ERROR);

// Vector::size () inherited from base class Vector.

protected:

bool in range (size t i) const;

private:

typedef Vector<T> inherited;

g;
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Implementation of

Checked Vector

� e.g.,

template <class T> bool

Checked Vector<T>::in range (size t i) const f

return i < this->size ();

g

template <class T>

Checked Vector<T>::Checked Vector (size t s)

: inherited (s) fg

template <class T> T &

Checked Vector<T>::operator[] (size t i)

throw (RANGE ERROR)

f

if (this->in range (i))

return (*(inherited *) this)[i];

// return BASE::operator[](i);

else

throw RANGE ERROR (i);

g
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Checked Vector Use-case

� e.g.,

#include "Checked Vector.h"

typedef Checked Vector<int> CV INT;

int foo (int size)

f

try

f

CV INT cv (size);

int i = cv[cv.size ()]; // Error detected!

// exception raised: : :

// Call base class destructor

g

catch (RANGE ERROR)

f /* : : :*/ g

g
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Design Tip

� Note, dealing with parent and base classes

{ It is often useful to write derived classes that

do not encode the names of their direct parent

class or base class in any of the method bodies

{ Here's one way to do this systematically:

class Base f

public:

int foo (void);

g;

class Derived 1 : public Base f

typedef Base inherited;

public:

int foo (void) f inherited::foo (); g

g;

class Derived 2 : public Derived 1 f

typedef Derived 1 inherited;

public:

int foo (void) f

inherited::foo ();

g

g;

{ This scheme obviously doesn't work as trans-

parently for multiple inheritance: : :
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Ada Vector Interface

� The following is an Ada Vector example,

where we can have array bounds start at

something other than zero

� /* File ada vector.h (still incomplete wrt
initialization and assignment: : : .) */

#include "vector.h"

// Ada Vectors are also range checked!

template <class T>

class Ada Vector : private Checked Vector<T> f

public:

Ada Vector (size t l, size t h);

T &operator ()(size t i) throw (RANGE ERROR)

inherited::size; // explicitly extend visibility

private:

typedef Checked Vector<T> inherited;

size t lo bnd ;

g;
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Ada Vector Implementation

� e.g., class Ada Vector (cont'd)

template <class T>

Ada Vector<T>::Ada Vector (size t lo, size t hi)

: inherited (hi � lo + 1), lo bnd (lo) fg

template <class T> T &

Ada Vector<T>::operator ()(size t i)

throw (RANGE ERROR) f

if (this->in range (i � this->lo bnd ))

return Vector<T>::operator[] (i � this->lo bnd );

// or Vector<T> &self = *(Vector<T> *) this;

// self[i � this->lo bnd ];

else

throw RANGE ERROR (i);

g
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Ada Vector Use-case

� Example Ada Vector Usage (File main.C)

#include <iostream.h>

#include <stdlib.h>

#include "ada vector.h"

int main (int argc, char *argv[]) f

try f

size t lower = ::atoi (argv[1]);

size t upper = ::atoi (argv[2]);

Ada Vector<int> ada vec (lower, upper);

ada vec (lower) = 0;

for (size t i = lower + 1; i <= ada vec.size (); i++)

ada vec (i) = ada vec (i � 1) + 1;

// Run-time error, index out of range

ada vec (upper + 1) = 100;

// Vector destructor called when

// ada vec goes out of scope

g

catch (RANGE ERROR) f /* : : :*/ g

g
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Memory Layout

� Memory layouts in derived classes are cre-
ated by concatenating memory from the
base class(es)

{ e.g., // from the cfront-generated .c �le

struct Vector f

T *buf 6Vector;

size t size 6Vector;

g;

struct Checked Vector f

T *buf 6Vector;

size t size 6Vector;

g;

struct Ada Vector f

T *buf 6Vector; // Vector

size t size 6Vector; // part

size t lo bnd 10Ada Vector; // Ada Vector

g;

� The derived class constructor calls the base
constructor in the \base initialization sec-
tion," i.e.,

Ada Vector<T>::Ada Vector (size t lo, size t hi)

: inherited (hi � lo + 1), lo bnd (lo) fg
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Base Class Constructor

� Constructors are called from the \bottom

up"

� Destructors are called from the \top down"

� e.g.,

/* Vector constructor */

struct Vector *

ct 6VectorFi (struct Vector * 0this, size t 0s) f

if ( 0this jj ( 0this =

nw FUi (sizeof (struct Vector))))

(( 0this->size 6Vector = 0s),

( 0this->buf 6Vector =

nw FUi ((sizeof (int)) * 0s)));

return 0this;

g
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Derived Class Constructors

� e.g.,

/* Checked Vector constructor */

struct Checked Vector * ct 14Checked VectorFi (

struct Checked Vector * 0this, size t 0s) f

if ( 0this jj ( 0this =

nw FUi (sizeof (struct Checked Vector))))

0this = ct 6VectorFi ( 0this, 0s);

return 0this;

g

/* Ada Vector constructor */

struct Ada Vector * ct 10Ada VectorFiT1 (

struct Ada Vector * 0this, size t 0lo, size t 0hi) f

if ( 0this jj ( 0this =

nw FUi (sizeof (struct Ada Vector))))

if ((( 0this = ct 14Checked VectorFi ( 0this,

0hi � 0lo + 1))))

0this->lo bnd 10Ada Vector = 0lo;

return 0this;

g
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Destructor

� Note, destructors, constructors, and as-

signment operators are not inherited

� However, they may be called automati-
cally were necessary, e.g.,

char dt 6VectorFv (

struct Vector * 0this, int 0 free) f

if ( 0this) f

dl FPv ((char *) 0this->buf 6Vector);

if ( 0this)

if ( 0 free & 1)

dl FPv ((char *) 0this);

g

g
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Describing Relationships Between

Classes

� Consumer/Composition/Aggregation

{ A class is a consumer of another class when

it makes use of the other class's services, as

de�ned in its interface

� For example, a Stack implementation could

rely on an array for its implementation and

thus be a consumer of the Array class

{ Consumers are used to describe a Has-A rela-

tionship

� Descendant/Inheritance/Specialization

{ A class is a descendant of one or more other

classes when it is designed as an extension or

specialization of these classes. This is the no-

tion of inheritance

{ Descendants are used to describe an Is-A rela-

tionship
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Has-A vs. Is-A Relationships

CONSUMER

RELATIONSHIP

DESCENDANT

RELATIONSHIP

Stack

Vector

Checked
Vector

Vector

Ada
Vector
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Interface vs. Implementation

Inheritance

� Class inheritance can be used in two pri-
mary ways:

1. Interface inheritance: a method of creating a

subtype of an existing class for purposes of set-

ting up dynamic binding, e.g.,

{ Circle is a subclass of Shape (i.e., Is-A rela-

tion)

{ A Birthday is a subclass of Date

2. Implementation inheritance: a method of reusing

an implementation to create a new class type

{ e.g., a class Stack that inherits from class

Vector. A Stack is not really a subtype or

specialization of Vector

{ In this case, inheritance makes implementa-

tion easier, since there is no need to rewrite

and debug existing code.

� This is called \using inheritance for reuse"

� i.e., a pseudo-Has-A relation
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The Dangers of Implementation

Inheritance

� Using inheritance for reuse may sometimes
be a dangerous misuse of the technique

{ Operations that are valid for the base type may

not apply to the derived type at all

� e.g., performing an subscript operation on a

stack is a meaningless and potentially harm-

ful operation

class Stack : public Vector f

// : : :

g;

Stack s;

s[10] = 20; // could be big trouble!

{ In C++, the use of a private base class mini-

mizes the dangers

� i.e., if a class is derived \private," it is illegal

to assign the address of a derived object to

a pointer to a base object

{ On the other hand, a consumer/Has-A relation

might be more appropriate: : :
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Private vs Public vs Protected

Derivation

� Access control speci�ers (i.e., public, pri-

vate, protected) are also meaningful in

the context of inheritance

� In the following examples:

{ <: : : .> represents actual (omitted) code

{ [: : : .] is implicit

� Note, all the examples work for both data

members and methods
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Public Derivation

� e.g.,

class A f

public:

<public A>

protected:

<protected A>

private:

<private A>

g;

class B : public A f

public:

[public A]

<public B>

protected:

[protected A]

<protected B>

private:

<private B>

g;
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Private Derivation

� e.g.,

class A f

public:

<public A>

private:

<private A>

protected:

<protected A>

g;

class B : private A f // also class B : A

public:

<public B>

protected:

<protected B>

private:

[public A]

[protected A]

<private B>

g;
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Protected Derivation

� e.g.,

class A f

public:

<public A>

protected:

<protected A>

private:

<private A>

g;

class B : protected A f

public:

<public B>

protected:

[protected A]

[public A]

<protected B>

private:

<private B>

g;
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Summary of Access Rights

� The following table describes the access
rights of inherited methods

{ The vertical axis represents the access rights

of the methods of base class

{ The horizontal access represents the mode of

inheritance

INHERITANCE

ACCESS

+-----------+-----+-----+-----+

M A | public | pub | pro | pri |

E C +-----------+-----+-----+-----+

M C | protected | pro | pro | pri |

B E +-----------+-----+-----+-----+

E S | private | n/a | n/a | n/a |

R S +-----------+-----+-----+-----+

p p p

u r r

b o i

l t v

� Note that the resulting access is always

the most restrictive of the two
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Other Uses of Access Control

Speci�ers

� Selectively rede�ne visibility of individual
methods from base classes that are de-
rived privately

class A f

public:

int f ();

int g ;

: : :

private:

int p ;

g;

class B : private A f

public:

A::f; // Make public

protected:

A::g ; // Make protected

g;
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Common Errors with Access

Control Speci�ers

� It is an error to \increase" the access of
an inherited method in a derived class

{ e.g., you may not say:

class B : private A f

// nor protected nor public!

public:

A::p ; // ERROR!

g;

� It is also an error to derive publically and
then try to selectively decrease the visibil-
ity of base class methods in the derived
class

{ e.g., you may not say:

class B : public A f

private:

A::f; // ERROR!

g;
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General Rules for Access Control

Speci�ers

� Private methods of the base class are not

accessible to a derived class (unless the

derived class is a friend of the base class)

� If the subclass is derived publically then:

1. Public methods of the base class are accessible

to the derived class

2. Protected methods of the base class are acces-

sible to derived classes and friends only
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Caveats

� Using protected methods weakens the data
hiding mechanism since changes to the
base class implementation might a�ect all
derived classes. e.g.,

class Vector f
public:

//: : :

protected:
// allow derived classes direct access

T *buf ;
size t size ;

g;
class Ada Vector : public Vector f
public:

T &operator() (size t i) f

return this->buf [i];
g

// Note the strong dependency on the name buf
g;

� However, performance and design reasons
may dictate use of the protected access
control speci�er

{ Note, inline functions often reduces the need

for these e�ciency hacks: : :
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Overview of Multiple Inheritance

in C++

� C++ allows multiple inheritance

{ i.e., a class can be simultaneously derived from

two or more base classes

{ e.g.,

class X f /* : : : . */ g;

class Y : public X f /* : : : . */ g;

class Z : public X f /* : : : . */ g;

class YZ : public Y, public Z f /* : : : . */ g;

{ Derived classes Y, Z, and YZ inherit the data

members and methods from their respective

base classes
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Multiple Inheritance Illustrated

BaseBase

DerivedDerived
11

DerivedDerived
1212

BaseBase

DerivedDerived
22

NONNON--VIRTUALVIRTUAL

INHERITANCEINHERITANCE

Base

DerivedDerived
11 DerivedDerived

1212

VIRTUALVIRTUAL

INHERITANCEINHERITANCE

vv vv

DerivedDerived
22
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Liabilities of Multiple Inheritance

� A base class may legally appear only once
in a derivation list, e.g.,

{ class Two Vector : public Vector, public Vec-

tor // ERROR!

� However, a base class may appear multiple
times within a derivation hierarchy

{ e.g., class YZ contains two instances of class
X

� This leads to two problems with multiple
inheritance:

1. It gives rise to a form of method and data

member ambiguity

{ Explicitly quali�ed names and additional meth-

ods are used to resolve this

2. It also may cause unnecessary duplication of

storage

{ \Virtual base classes" are used to resolve

this
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Motivation for Virtual Base

Classes

� Consider a user who wants an Init Checked Vector:

class Checked Vector : public virtual Vector

f /* : : : . */ g;

class Init Vector : public virtual Vector

f /* : : : . */ g;

class Init Checked Vector :

public Checked Vector, public Init Vector

f /* : : : . */ g;

� In this example, the virtual keyword, when

applied to a base class, causes Init Checked Vector

to get one Vector base class instead of two
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Overview of Virtual Base Classes

� Virtual base classes allow class designers
to specify that a base class will be shared
among derived classes

{ No matter how often a virtual base class may

occur in a derivation hierarchy, only \one" shared

instance is generated when an object is instan-

tiated

� Under the hood, pointers are used in derived

classes that contain virtual base classes

� Understanding and using virtual base classes
correctly is a non-trivial task since you
must plan in advance

{ Also, you must be aware when initializing sub-

classes objects: : :

� However, virtual base classes are used to

implement the client and server side of

many implementations of CORBA distributed

objects
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Virtual Base Classes Illustrated
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Initializing Virtual Base Classes

� With C++ you must chose one of two
methods to make constructors work cor-
rectly for virtual base classes:

1. You need to either supply a constructor in a

virtual base class that takes no arguments (or

has default arguments), e.g.,

Vector::Vector (size t size = 100); // has problems: : :

2. Or, you must make sure the most derived class

calls the constructor for the virtual base class

in its base initialization section, e.g.,

Init Checked Vector (size t size, const T &init):

Vector (size), Check Vector (size),

Init Vector (size, init)
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Vector Interface Revised

� The following example illustrates templates,
multiple inheritance, and virtual base classes
in C++

#include <iostream.h>

#include <assert.h>

// A simple-minded Vector base class,

// no range checking, no initialization.

template <class T>

class Vector

f

public:

Vector (size t s): size (s), buf (new T[s]) fg

T &operator[] (size t i) f return this->buf [i]; g

size t size (void) const f return this->size ; g

private:

size t size ;

T *buf ;

g;
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Init Vector Interface

� A simple extension to the Vector base class,
that enables automagical vector initializa-
tion

template <class T>

class Init Vector : public virtual Vector<T>

f

public:

Init Vector (size t size, const T &init)

: Vector<T> (size)

f

for (size t i = 0; i < this->size (); i++)

(*this)[i] = init;

g

// Inherits subscripting operator and size().

g;
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Checked Vector Interface

� A simple extension to the Vector base class
that provides range checked subscripting

template <class T>

class Checked Vector : public virtual Vector<T>

f

public:

Checked Vector (size t size): Vector<T> (size) fg

T &operator[] (size t i) throw (RANGE ERROR) f

if (this->in range (i))

return (*(inherited *) this)[i];

else throw RANGE ERROR (i);

g

// Inherits inherited::size.

private:

typedef Vector<T> inherited;

bool in range (size t i) const f

return i < this->size ();

g

g;
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Init Checked Vector Interface and

Driver

� A simple multiple inheritance example that
provides for both an initialized and range
checked Vector

template <class T>
class Init Checked Vector :

public Checked Vector<T>, public Init Vector<T> f

public:
Init Checked Vector (size t size, const T &init):

Vector<T> (size),
Init Vector<T> (size, init),
Checked Vector<T> (size) fg

// Inherits Checked Vector::operator[]
g;

� Driver program

int main (int argc, char *argv[]) f

try f

size t size = ::atoi (argv[1]);
size t init = ::atoi (argv[2]);
Init Checked Vector<int> v (size, init);
cout << "vector size = " << v.size ()

<< ", vector contents = ";

for (size t i = 0; i < v.size (); i++)
cout << v[i];

cout << "\n" << ++v[v.size () � 1] << "\n";
g

catch (RANGE ERROR) f /* : : :*/ g

g
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Multiple Inheritance Ambiguity

� Consider the following:

struct Base 1 f int foo (void); /* : : : . */ g;

struct Base 2 f int foo (void); /* : : : . */ g;

struct Derived : Base 1, Base 2 f /* : : : . */ g;

int main (void) f

Derived d;

d.foo (); // Error, ambiguous call to foo ()

g

� There are two ways to �x this problem:

1. Explicitly qualify the call, by pre�xing it with

the name of the intended base class using the

scope resolution operator, e.g.,

d.Base 1::foo (); // or d.Base 2::foo ()

2. Add a new method foo to class Derived (similar

to Ei�el's renaming concept) e.g.,

struct Derived : Base 1, Base 2 f

int foo (void) f

Base 1::foo (); // either, both

Base 2::foo (); // or neither

g

g;
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Summary

� Inheritance supports evolutionary, incre-

mental development of reusable compo-

nents by specializing and/or extending a

general interface/implementation

� Inheritance adds a new dimension to data
abstraction, e.g.,

{ Classes (ADTs) support the expression of com-

monality where the general aspects of an ap-

plication are encapsulated in a few base classes

{ Inheritance supports the development of the

application by extension and specialization with-

out a�ecting existing code: : :

� Without browser support, navigating through

complex inheritance hierarchies is di�cult: : :
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