
The C++ Programming

Language

Single and Multiple Inheritance in

C++

Douglas C. Schmidt

www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

1

Background

� Object-oriented programming is often de-

�ned as the combination of Abstract Data

Types (ADTs) with Inheritance and Dy-

namic Binding

� Each concept addresses a di�erent aspect
of system decomposition:

1. ADTs decompose systems into two-dimensional

grids of modules

{ Each module has public and private inter-

faces

2. Inheritance decomposes systems into three-dimensional

hierarchies of modules

{ Inheritance relationships form a \lattice"

3. Dynamic binding enhances inheritance

{ e.g., defer implementation decisions until late

in the design phase or even until run-time!

2

Data Abstraction vs. Inheritance

DATA ABSTRACTION

(2 DIMENTIONAL)
DATA ABSTRACTION

(2 DIMENTIONAL)

INHERITANCE

(3 DIMENTIONAL)

3

Motivation for Inheritance

� Inheritance allows you to write code to

handle certain cases and allows other de-

velopers to write code that handles more

specialized cases, while your code contin-

ues to work

� Inheritance partitions a system architec-

ture into semi-disjoint components that

are related hierarchically

� Therefore, we may be able to modify and/or
reuse sections of the inheritance hierarchy
without disturbing existing code, e.g.,

{ Change sibling subtree interfaces

� i.e., a consequence of inheritance

{ Change implementation of ancestors

� i.e., a consequence of data abstraction

4

Inheritance Overview

� A type (called a subclass or derived type)
can inherit the characteristics of another
type(s) (called a superclass or base type)

{ The term subclass is equivalent to derived type

� A derived type acts just like the base type,
except for an explicit list of:

1. Specializations

{ Change implementations without changing

the base class interface

� Most useful when combined with dynamic

binding

2. Generalizations/Extensions

{ Add new operations or data to derived classes

5

Visualizing Inheritance

BaseBase

DerivedDerived
11

DerivedDerived
33

DerivedDerived
44

DerivedDerived
22

DerivedDerived
55

DerivedDerived
66

6

Types of Inheritance

� Inheritance comes in two forms, depend-
ing on number of parents a subclass has

1. Single Inheritance (SI)

{ Only one parent per derived class

{ Form an inheritance \tree"

{ SI requires a small amount of run-time over-

head when used with dynamic binding

{ e.g., Smalltalk, Simula, Object Pascal

2. Multiple Inheritance (MI)

{ More than one parent per derived class

{ Forms an inheritance \Directed Acyclic Graph"

(DAG)

{ Compared with SI, MI adds additional run-

time overhead (also involving dynamic bind-

ing)

{ e.g., C++, Ei�el, Flavors (a LISP dialect)

7

Inheritance Trees vs. Inheritance

DAGs

DerivedDerived
33

DerivedDerived
11

BaseBase

DerivedDerived
44

INHERITANCEINHERITANCE

TREETREE

DerivedDerived
22

DerivedDerived
33

BaseBase
11

DerivedDerived
11

DerivedDerived
44

INHERITANCEINHERITANCE

DAGDAG

BaseBase
22

8

Inheritance Bene�ts

1. Increase reuse and software quality

� Programmers reuse the base classes instead of

writing new classes

{ Integrates black-box and white-box reuse by

allowing extensibility and modi�cation with-

out changing existing code

� Using well-tested base classes helps reduce bugs

in applications that use them

� Reduce object code size

2. Enhance extensibility and comprehensibil-
ity

� Helps support more
exible and extensible ar-

chitectures (along with dynamic binding)

{ i.e., supports the open/closed principle

� Often useful for modeling and classifying hierarchically-

related domains

9

Inheritance Liabilities

1. May create deep and/or wide hierarchies

that are hard to understand and navigate

without class browser tools

2. May decrease performance slightly

� i.e., when combined with multiple inheritance

and dynamic binding

3. Without dynamic binding, inheritance has
only limited utility

� Likewise, dynamic binding is almost totally use-

less without inheritance

4. Brittle hierarchies, which may impose de-

pendencies upon ancestor names

10

Inheritance in C++

� Deriving a class involves an extension to

the C++ class declaration syntax

� The class head is modi�ed to allow a deriva-

tion list consisting of base classes

� e.g.,

class Foo f /* : : : g;
class Bar : public Foo f /* : : : g;

class Foo : public Foo, public Bar f /* : : : g;

11

Key Properties of C++

Inheritance

� The base/derived class relationship is ex-
plicitly recognized in C++ by prede�ned
standard conversions

{ i.e., a pointer to a derived class may always be

assigned to a pointer to a base class that was

inherited publically

� But not vice versa: : :

� When combined with dynamic binding, this
special relationship between inherited class
types promotes a type-secure, polymor-
phic style of programming

{ i.e., the programmer need not know the actual

type of a class at compile-time

{ Note, C++ is not truly polymorphic

� i.e., operations are not applicable to objects

that don't contain de�nitions of these op-

erations at some point in their inheritance

hierarchy

12

Simple Screen Class

� The following code is used as the base
class:

class Screen f

public:

Screen (int = 8, int = 40, char = ' ');

~Screen (void);

short height (void) const f return this->height ; g

short width (void) const f return this->width ; g

void height (short h) f this->height = h; g

void width (short w) f this->width = w; g

Screen &forward (void);

Screen &up (void);

Screen &down (void);

Screen &home (void);

Screen &bottom (void);

Screen &display (void);

Screen © (const Screen &);

// : : :

private:

short height , width ;

char *screen , *cur pos ;

g;

13

Subclassing from Screen

� class Screen can be a public base class of

class Window

� e.g.,

class Window : public Screen f

public:

Window (const Point &, int rows = 24,

int columns = 80,

char default char = ' ');

void set foreground color (Color &);

void set background color (Color &);

void resize (int height, int width);

// : : :

private:

Point center ;

Color foreground ;

Color background ;

// : : :

g;

14

Multiple Levels of Derivation

� A derived class can itself form the basis
for further derivation, e.g.,

class Menu : public Window f

public:

void set label (const char *l);

Menu (const Point &, int rows = 24,

int columns = 80,

char default char = ' ');

// : : :

private:

char *label ;

// : : :

g;

� class Menu inherits data and methods from
both Window and Screen

{ i.e., sizeof (Menu) >= sizeof (Window) >= sizeof

(Screen)

15

The Screen Inheritance Hierarchy

WindowWindow

ScreenScreen

MenuMenu

PointPoint

ColorColor

� Screen/Window/Menu hierarchy

16

Variations on a Screen: : :

w :w :
WindowWindow

ps1 :ps1 :
ScreenScreen

ps2 :ps2 :
ScreenScreen

MenuMenu

� A pointer to a derived class can be as-
signed to a pointer to any of its public
base classes without requiring an explicit
cast:

Menu m; Window &w = m; Screen *ps1 = &w;

Screen *ps2 = &m;

17

Using the Screen Hierarchy

� e.g.,

class Screen f public: virtual void dump (ostream &); = 0 g

class Window : public Screen f

public: virtual void dump (ostream &);

g;

class Menu : public Window f

public: virtual void dump (ostream &);

g;

// stand-alone function

void dump image (Screen *s, ostream &o) f

// Some processing omitted

s->dump (o);

// (*s->vptr[1]) (s, o));

g

Screen s; Window w; Menu m;

Bit Vector bv;

// OK: Window is a kind of Screen

dump image (&w, cout);

// OK: Menu is a kind of Screen

dump image (&m, cout);

// OK: argument types match exactly

dump image (&s, cout);

// Error: Bit Vector is not a kind of Screen!

dump image (&bv, cout);
18

Using Inheritance for

Specialization

� A derived class specializes a base class by
adding new, more speci�c state variables
and methods

{ Method use the same interface, even though

they are implemented di�erently

� i.e., \overridden"

{ Note, there is an important distinction between

overriding, hiding, and overloading: : :

� A variant of this is used in the template
method pattern

{ i.e., behavior of the base class relies on func-

tionality supplied by the derived class

{ This is directly supported in C++ via abstract

base classes and pure virtual functions

19

Specialization Example

� Inheritance may be used to obtain the fea-

tures of one data type in another closely

related data type

� For example, class Date represents an ar-
bitrary Date:

class Date f

public:
Date (int m, int d, int y);
virtual void print (ostream &s) const;
// : : :

private:
int month , day , year ;

g;

� Class Birthday derives from Date, adding
a name �eld representing the person's birth-
day, e.g.,

class Birthday : public Date f

public:
Birthday (const char *n, int m, int d, int y)

: Date (m, d, y), person (strdup (n)) fg

~Birthday (void) f free (person); g
virtual void print (ostream &s) const;
// : : :

private:
const char *person ;

g;
20

Implementation and Use-case

� Birthday::print could print the person's name
as well as the date, e.g.,

void Birthday::print (ostream &s) const f

s << this->person << " was born on ";

Date::print (s);

s << "\n";

g

� e.g.,

const Date july 4th (7, 4, 1993);

Birthday my birthday ("Douglas C. Schmidt", 7, 18, 1962);

july 4th.print (cerr);

// july 4th, 1993

my birthday.print (cout);

// Douglas C. Schmidt was born on july 18th, 1962

Date *dp = &my birthday;

dp->print (cerr);

// ??? what gets printed ???

// (*dp->vptr[1])(dp, cerr);

21

Alternatives to Specialization

� Note that we could also use object com-
position instead of inheritance for this ex-
ample, e.g.,

class Birthday f

public

Birthday (char *n, int m, int d, int y):

date (m, d, y), person (n) fg

// same as before

private:

Date date ;

char *person ;

g;

� However, in this case we would not be able
to utilize the dynamic binding facilities for
base classes and derived classes

{ e.g.,

Date *dp = &my birthday;

// ERROR, Birthday is not a subclass of date!

{ While this does not necessarily a�ect reusabil-

ity, it does a�ect extensibility: : :

22

Using Inheritance for

Extension/Generalization

� Derived classes add state variables and/or
operations to the properties and opera-
tions associated with the base class

{ Note, the interface is generally widened!

{ Data member and method access privileges may

also be modi�ed

� Extension/generalization is often used to
faciliate reuse of implementations, rather
than interface

{ However, it is not always necessary or correct

to export interfaces from a base class to de-

rived classes

23

Extension/Generalization

Example

� Using class Vector as a private base class
for derived class Stack

class Stack : private Vector f /* : : :*/ g;

� In this case, Vector's operator[] may be
reused as an implementation for the Stack
push and pop methods

{ Note that using private inheritance ensures that

operator[] does not show up in the interface

for class Stack!

� Often, a better approach in this case is

to use a composition/Has-A rather than

a descendant/Is-A relationship: : :

24

Vector Interface

� Using class Vector as a base class for a
derived class such as class Checked Vector
or class Ada Vector

{ One can de�ne a Vector class that implements

an unchecked, uninitialized array of elements

of type T

� e.g., /* File Vector.h (incomplete wrt ini-
tialization and assignment) */

// Bare-bones implementation, fast but not safe

template <class T>

class Vector f

public:

Vector (size t s);

~Vector (void);

size t size (void) const;

T &operator[] (size t index);

private:

T *buf ;

size t size ;

g;

25

Vector Implementation

� e.g.,

template <class T>

Vector<T>::Vector (size t s): size (s), buf (new T[s]) fg

template <class T>

Vector<T>::~Vector (void) f delete [] this->buf ; g

template <class T> size t

Vector<T>::size (void) const f return this->size ; g

template <class T> T &

Vector<T>::operator[] (size t i) f return this->buf [i]; g

int main (void) f

Vector<int> v (10);

v[6] = v[5] + 4; // oops, no initial values

int i = v[v.size ()]; // oops, out of range!

// destructor automatically called

g

26

Bene�ts of Inheritance

� Inheritance enables modi�cation and/or ex-
tension of ADTs without changing the orig-
inal source code

{ e.g., someone may want a variation on the ba-

sic Vector abstraction:

1. A vector whose bounds are checked on every

reference

2. Allow vectors to have lower bounds other

than 0

3. Other vector variants are possible too: : :

� e.g., automatically-resizing vectors, initial-

ized vectors, etc.

� This is done by de�ning new derived classes
that inherit the characteristics of the Vector
base class

{ Note that inheritance also allows code to be

shared

27

Checked Vector Interface

� The following is a subclass of Vector that

allows run-time range checking:

� /* File Checked-Vector.h (incomplete wrt
initialization and assignment) */

struct RANGE ERROR f

"range error" (size t index);

// : : :

g;
template <class T>

class Checked Vector : public Vector<T> f

public:

Checked Vector (size t s);

T &operator[] (size t i) throw (RANGE ERROR);

// Vector::size () inherited from base class Vector.

protected:

bool in range (size t i) const;

private:

typedef Vector<T> inherited;

g;

28

Implementation of

Checked Vector

� e.g.,

template <class T> bool

Checked Vector<T>::in range (size t i) const f

return i < this->size ();

g

template <class T>

Checked Vector<T>::Checked Vector (size t s)

: inherited (s) fg

template <class T> T &

Checked Vector<T>::operator[] (size t i)

throw (RANGE ERROR)

f

if (this->in range (i))

return (*(inherited *) this)[i];

// return BASE::operator[](i);

else

throw RANGE ERROR (i);

g

29

Checked Vector Use-case

� e.g.,

#include "Checked Vector.h"

typedef Checked Vector<int> CV INT;

int foo (int size)

f

try

f

CV INT cv (size);

int i = cv[cv.size ()]; // Error detected!

// exception raised: : :

// Call base class destructor

g

catch (RANGE ERROR)

f /* : : :*/ g

g

30

Design Tip

� Note, dealing with parent and base classes

{ It is often useful to write derived classes that

do not encode the names of their direct parent

class or base class in any of the method bodies

{ Here's one way to do this systematically:

class Base f

public:

int foo (void);

g;

class Derived 1 : public Base f

typedef Base inherited;

public:

int foo (void) f inherited::foo (); g

g;

class Derived 2 : public Derived 1 f

typedef Derived 1 inherited;

public:

int foo (void) f

inherited::foo ();

g

g;

{ This scheme obviously doesn't work as trans-

parently for multiple inheritance: : :

31

Ada Vector Interface

� The following is an Ada Vector example,

where we can have array bounds start at

something other than zero

� /* File ada vector.h (still incomplete wrt
initialization and assignment: : : .) */

#include "vector.h"

// Ada Vectors are also range checked!

template <class T>

class Ada Vector : private Checked Vector<T> f

public:

Ada Vector (size t l, size t h);

T &operator ()(size t i) throw (RANGE ERROR)

inherited::size; // explicitly extend visibility

private:

typedef Checked Vector<T> inherited;

size t lo bnd ;

g;

32

Ada Vector Implementation

� e.g., class Ada Vector (cont'd)

template <class T>

Ada Vector<T>::Ada Vector (size t lo, size t hi)

: inherited (hi � lo + 1), lo bnd (lo) fg

template <class T> T &

Ada Vector<T>::operator ()(size t i)

throw (RANGE ERROR) f

if (this->in range (i � this->lo bnd))

return Vector<T>::operator[] (i � this->lo bnd);

// or Vector<T> &self = *(Vector<T> *) this;

// self[i � this->lo bnd];

else

throw RANGE ERROR (i);

g

33

Ada Vector Use-case

� Example Ada Vector Usage (File main.C)

#include <iostream.h>

#include <stdlib.h>

#include "ada vector.h"

int main (int argc, char *argv[]) f

try f

size t lower = ::atoi (argv[1]);

size t upper = ::atoi (argv[2]);

Ada Vector<int> ada vec (lower, upper);

ada vec (lower) = 0;

for (size t i = lower + 1; i <= ada vec.size (); i++)

ada vec (i) = ada vec (i � 1) + 1;

// Run-time error, index out of range

ada vec (upper + 1) = 100;

// Vector destructor called when

// ada vec goes out of scope

g

catch (RANGE ERROR) f /* : : :*/ g

g

34

Memory Layout

� Memory layouts in derived classes are cre-
ated by concatenating memory from the
base class(es)

{ e.g., // from the cfront-generated .c �le

struct Vector f

T *buf 6Vector;

size t size 6Vector;

g;

struct Checked Vector f

T *buf 6Vector;

size t size 6Vector;

g;

struct Ada Vector f

T *buf 6Vector; // Vector

size t size 6Vector; // part

size t lo bnd 10Ada Vector; // Ada Vector

g;

� The derived class constructor calls the base
constructor in the \base initialization sec-
tion," i.e.,

Ada Vector<T>::Ada Vector (size t lo, size t hi)

: inherited (hi � lo + 1), lo bnd (lo) fg

35

Base Class Constructor

� Constructors are called from the \bottom

up"

� Destructors are called from the \top down"

� e.g.,

/* Vector constructor */

struct Vector *

ct 6VectorFi (struct Vector * 0this, size t 0s) f

if (0this jj (0this =

nw FUi (sizeof (struct Vector))))

((0this->size 6Vector = 0s),

(0this->buf 6Vector =

nw FUi ((sizeof (int)) * 0s)));

return 0this;

g

36

Derived Class Constructors

� e.g.,

/* Checked Vector constructor */

struct Checked Vector * ct 14Checked VectorFi (

struct Checked Vector * 0this, size t 0s) f

if (0this jj (0this =

nw FUi (sizeof (struct Checked Vector))))

0this = ct 6VectorFi (0this, 0s);

return 0this;

g

/* Ada Vector constructor */

struct Ada Vector * ct 10Ada VectorFiT1 (

struct Ada Vector * 0this, size t 0lo, size t 0hi) f

if (0this jj (0this =

nw FUi (sizeof (struct Ada Vector))))

if (((0this = ct 14Checked VectorFi (0this,

0hi � 0lo + 1))))

0this->lo bnd 10Ada Vector = 0lo;

return 0this;

g

37

Destructor

� Note, destructors, constructors, and as-

signment operators are not inherited

� However, they may be called automati-
cally were necessary, e.g.,

char dt 6VectorFv (

struct Vector * 0this, int 0 free) f

if (0this) f

dl FPv ((char *) 0this->buf 6Vector);

if (0this)

if (0 free & 1)

dl FPv ((char *) 0this);

g

g

38

Describing Relationships Between

Classes

� Consumer/Composition/Aggregation

{ A class is a consumer of another class when

it makes use of the other class's services, as

de�ned in its interface

� For example, a Stack implementation could

rely on an array for its implementation and

thus be a consumer of the Array class

{ Consumers are used to describe a Has-A rela-

tionship

� Descendant/Inheritance/Specialization

{ A class is a descendant of one or more other

classes when it is designed as an extension or

specialization of these classes. This is the no-

tion of inheritance

{ Descendants are used to describe an Is-A rela-

tionship

39

Has-A vs. Is-A Relationships

CONSUMER

RELATIONSHIP

DESCENDANT

RELATIONSHIP

Stack

Vector

Checked
Vector

Vector

Ada
Vector

40

Interface vs. Implementation

Inheritance

� Class inheritance can be used in two pri-
mary ways:

1. Interface inheritance: a method of creating a

subtype of an existing class for purposes of set-

ting up dynamic binding, e.g.,

{ Circle is a subclass of Shape (i.e., Is-A rela-

tion)

{ A Birthday is a subclass of Date

2. Implementation inheritance: a method of reusing

an implementation to create a new class type

{ e.g., a class Stack that inherits from class

Vector. A Stack is not really a subtype or

specialization of Vector

{ In this case, inheritance makes implementa-

tion easier, since there is no need to rewrite

and debug existing code.

� This is called \using inheritance for reuse"

� i.e., a pseudo-Has-A relation

41

The Dangers of Implementation

Inheritance

� Using inheritance for reuse may sometimes
be a dangerous misuse of the technique

{ Operations that are valid for the base type may

not apply to the derived type at all

� e.g., performing an subscript operation on a

stack is a meaningless and potentially harm-

ful operation

class Stack : public Vector f

// : : :

g;

Stack s;

s[10] = 20; // could be big trouble!

{ In C++, the use of a private base class mini-

mizes the dangers

� i.e., if a class is derived \private," it is illegal

to assign the address of a derived object to

a pointer to a base object

{ On the other hand, a consumer/Has-A relation

might be more appropriate: : :

42

Private vs Public vs Protected

Derivation

� Access control speci�ers (i.e., public, pri-

vate, protected) are also meaningful in

the context of inheritance

� In the following examples:

{ <: : : .> represents actual (omitted) code

{ [: : : .] is implicit

� Note, all the examples work for both data

members and methods

43

Public Derivation

� e.g.,

class A f

public:

<public A>

protected:

<protected A>

private:

<private A>

g;

class B : public A f

public:

[public A]

<public B>

protected:

[protected A]

<protected B>

private:

<private B>

g;

44

Private Derivation

� e.g.,

class A f

public:

<public A>

private:

<private A>

protected:

<protected A>

g;

class B : private A f // also class B : A

public:

<public B>

protected:

<protected B>

private:

[public A]

[protected A]

<private B>

g;

45

Protected Derivation

� e.g.,

class A f

public:

<public A>

protected:

<protected A>

private:

<private A>

g;

class B : protected A f

public:

<public B>

protected:

[protected A]

[public A]

<protected B>

private:

<private B>

g;

46

Summary of Access Rights

� The following table describes the access
rights of inherited methods

{ The vertical axis represents the access rights

of the methods of base class

{ The horizontal access represents the mode of

inheritance

INHERITANCE

ACCESS

+-----------+-----+-----+-----+

M A | public | pub | pro | pri |

E C +-----------+-----+-----+-----+

M C | protected | pro | pro | pri |

B E +-----------+-----+-----+-----+

E S | private | n/a | n/a | n/a |

R S +-----------+-----+-----+-----+

p p p

u r r

b o i

l t v

� Note that the resulting access is always

the most restrictive of the two

47

Other Uses of Access Control

Speci�ers

� Selectively rede�ne visibility of individual
methods from base classes that are de-
rived privately

class A f

public:

int f ();

int g ;

: : :

private:

int p ;

g;

class B : private A f

public:

A::f; // Make public

protected:

A::g ; // Make protected

g;

48

Common Errors with Access

Control Speci�ers

� It is an error to \increase" the access of
an inherited method in a derived class

{ e.g., you may not say:

class B : private A f

// nor protected nor public!

public:

A::p ; // ERROR!

g;

� It is also an error to derive publically and
then try to selectively decrease the visibil-
ity of base class methods in the derived
class

{ e.g., you may not say:

class B : public A f

private:

A::f; // ERROR!

g;

49

General Rules for Access Control

Speci�ers

� Private methods of the base class are not

accessible to a derived class (unless the

derived class is a friend of the base class)

� If the subclass is derived publically then:

1. Public methods of the base class are accessible

to the derived class

2. Protected methods of the base class are acces-

sible to derived classes and friends only

50

Caveats

� Using protected methods weakens the data
hiding mechanism since changes to the
base class implementation might a�ect all
derived classes. e.g.,

class Vector f
public:

//: : :

protected:
// allow derived classes direct access

T *buf ;
size t size ;

g;
class Ada Vector : public Vector f
public:

T &operator() (size t i) f

return this->buf [i];
g

// Note the strong dependency on the name buf
g;

� However, performance and design reasons
may dictate use of the protected access
control speci�er

{ Note, inline functions often reduces the need

for these e�ciency hacks: : :

51

Overview of Multiple Inheritance

in C++

� C++ allows multiple inheritance

{ i.e., a class can be simultaneously derived from

two or more base classes

{ e.g.,

class X f /* : : : . */ g;

class Y : public X f /* : : : . */ g;

class Z : public X f /* : : : . */ g;

class YZ : public Y, public Z f /* : : : . */ g;

{ Derived classes Y, Z, and YZ inherit the data

members and methods from their respective

base classes

52

Multiple Inheritance Illustrated

BaseBase

DerivedDerived
11

DerivedDerived
1212

BaseBase

DerivedDerived
22

NONNON--VIRTUALVIRTUAL

INHERITANCEINHERITANCE

Base

DerivedDerived
11 DerivedDerived

1212

VIRTUALVIRTUAL

INHERITANCEINHERITANCE

vv vv

DerivedDerived
22

53

Liabilities of Multiple Inheritance

� A base class may legally appear only once
in a derivation list, e.g.,

{ class Two Vector : public Vector, public Vec-

tor // ERROR!

� However, a base class may appear multiple
times within a derivation hierarchy

{ e.g., class YZ contains two instances of class
X

� This leads to two problems with multiple
inheritance:

1. It gives rise to a form of method and data

member ambiguity

{ Explicitly quali�ed names and additional meth-

ods are used to resolve this

2. It also may cause unnecessary duplication of

storage

{ \Virtual base classes" are used to resolve

this

54

Motivation for Virtual Base

Classes

� Consider a user who wants an Init Checked Vector:

class Checked Vector : public virtual Vector

f /* : : : . */ g;

class Init Vector : public virtual Vector

f /* : : : . */ g;

class Init Checked Vector :

public Checked Vector, public Init Vector

f /* : : : . */ g;

� In this example, the virtual keyword, when

applied to a base class, causes Init Checked Vector

to get one Vector base class instead of two

55

Overview of Virtual Base Classes

� Virtual base classes allow class designers
to specify that a base class will be shared
among derived classes

{ No matter how often a virtual base class may

occur in a derivation hierarchy, only \one" shared

instance is generated when an object is instan-

tiated

� Under the hood, pointers are used in derived

classes that contain virtual base classes

� Understanding and using virtual base classes
correctly is a non-trivial task since you
must plan in advance

{ Also, you must be aware when initializing sub-

classes objects: : :

� However, virtual base classes are used to

implement the client and server side of

many implementations of CORBA distributed

objects

56

Virtual Base Classes Illustrated

VectorVector

CheckedChecked
VectorVector

InitInit
CheckedChecked
VectorVector

VectorVector

CheckedChecked
VectorVector

NONNON--VIRTUALVIRTUAL

INHERITANCEINHERITANCE

VectorVector

CheckedChecked
VectorVector

InitInit
CheckedChecked
VectorVector

VIRTUALVIRTUAL

INHERITANCEINHERITANCE

vv vv

CheckedChecked
VectorVector

57

Initializing Virtual Base Classes

� With C++ you must chose one of two
methods to make constructors work cor-
rectly for virtual base classes:

1. You need to either supply a constructor in a

virtual base class that takes no arguments (or

has default arguments), e.g.,

Vector::Vector (size t size = 100); // has problems: : :

2. Or, you must make sure the most derived class

calls the constructor for the virtual base class

in its base initialization section, e.g.,

Init Checked Vector (size t size, const T &init):

Vector (size), Check Vector (size),

Init Vector (size, init)

58

Vector Interface Revised

� The following example illustrates templates,
multiple inheritance, and virtual base classes
in C++

#include <iostream.h>

#include <assert.h>

// A simple-minded Vector base class,

// no range checking, no initialization.

template <class T>

class Vector

f

public:

Vector (size t s): size (s), buf (new T[s]) fg

T &operator[] (size t i) f return this->buf [i]; g

size t size (void) const f return this->size ; g

private:

size t size ;

T *buf ;

g;

59

Init Vector Interface

� A simple extension to the Vector base class,
that enables automagical vector initializa-
tion

template <class T>

class Init Vector : public virtual Vector<T>

f

public:

Init Vector (size t size, const T &init)

: Vector<T> (size)

f

for (size t i = 0; i < this->size (); i++)

(*this)[i] = init;

g

// Inherits subscripting operator and size().

g;

60

Checked Vector Interface

� A simple extension to the Vector base class
that provides range checked subscripting

template <class T>

class Checked Vector : public virtual Vector<T>

f

public:

Checked Vector (size t size): Vector<T> (size) fg

T &operator[] (size t i) throw (RANGE ERROR) f

if (this->in range (i))

return (*(inherited *) this)[i];

else throw RANGE ERROR (i);

g

// Inherits inherited::size.

private:

typedef Vector<T> inherited;

bool in range (size t i) const f

return i < this->size ();

g

g;

61

Init Checked Vector Interface and

Driver

� A simple multiple inheritance example that
provides for both an initialized and range
checked Vector

template <class T>
class Init Checked Vector :

public Checked Vector<T>, public Init Vector<T> f

public:
Init Checked Vector (size t size, const T &init):

Vector<T> (size),
Init Vector<T> (size, init),
Checked Vector<T> (size) fg

// Inherits Checked Vector::operator[]
g;

� Driver program

int main (int argc, char *argv[]) f

try f

size t size = ::atoi (argv[1]);
size t init = ::atoi (argv[2]);
Init Checked Vector<int> v (size, init);
cout << "vector size = " << v.size ()

<< ", vector contents = ";

for (size t i = 0; i < v.size (); i++)
cout << v[i];

cout << "\n" << ++v[v.size () � 1] << "\n";
g

catch (RANGE ERROR) f /* : : :*/ g

g

62

Multiple Inheritance Ambiguity

� Consider the following:

struct Base 1 f int foo (void); /* : : : . */ g;

struct Base 2 f int foo (void); /* : : : . */ g;

struct Derived : Base 1, Base 2 f /* : : : . */ g;

int main (void) f

Derived d;

d.foo (); // Error, ambiguous call to foo ()

g

� There are two ways to �x this problem:

1. Explicitly qualify the call, by pre�xing it with

the name of the intended base class using the

scope resolution operator, e.g.,

d.Base 1::foo (); // or d.Base 2::foo ()

2. Add a new method foo to class Derived (similar

to Ei�el's renaming concept) e.g.,

struct Derived : Base 1, Base 2 f

int foo (void) f

Base 1::foo (); // either, both

Base 2::foo (); // or neither

g

g;

63

Summary

� Inheritance supports evolutionary, incre-

mental development of reusable compo-

nents by specializing and/or extending a

general interface/implementation

� Inheritance adds a new dimension to data
abstraction, e.g.,

{ Classes (ADTs) support the expression of com-

monality where the general aspects of an ap-

plication are encapsulated in a few base classes

{ Inheritance supports the development of the

application by extension and specialization with-

out a�ecting existing code: : :

� Without browser support, navigating through

complex inheritance hierarchies is di�cult: : :

64

