
Dynamic Binding C++

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.dre.vanderbilt.edu/�schmidt/ (615) 343-8197

Douglas C. Schmidt OO Programming with C++

Motivation

� When designing a system it is often the case that developers:

1. Know what class interfaces they want, without precisely knowing
the most suitable representation

2. Know what algorithms they want, without knowing how particular
operations should be implemented

� In both cases, it is often desirable to defer certain decisions as long
as possible

– Goal: reduce the effort required to change the implementation
once enough information is available to make an informed
decision

Copyright c
1997-2006 Vanderbilt University 1

Douglas C. Schmidt OO Programming with C++

Motivation (cont’d)

� Therefore, it is useful to have some form of abstract “place-holder”

– Information hiding & data abstraction provide compile-time &
link-time place-holders

� i.e., changes to representations require recompiling and/or
relinking...

– Dynamic binding provides a dynamic place-holder

� i.e., defer certain decisions until run-time without disrupting
existing code structure

� Note, dynamic binding is orthogonal to dynamic linking...

� Dynamic binding is less powerful than pointers-to-functions, but
more comprehensible & less error-prone

– i.e., since the compiler performs type checking at compile-time

Copyright c
1997-2006 Vanderbilt University 2

Douglas C. Schmidt OO Programming with C++

Motivation (cont’d)
� Dynamic binding allows applications to be written by invoking

general methods via a base class pointer, e.g.,

class Base { public: virtual int vf (void); };
Base *bp = /* pointer to a subclass */;
bp->vf ();

� However, at run-time this invocation actually invokes more
specialized methods implemented in a derived class, e.g.,

class Derived : public Base
{ public: virtual int vf (void); };
Derived d;
bp = &d;
bp->vf (); // invokes Derived::vf()

� In C++, this requires that both the general and specialized methods
are virtual methods

Copyright c
1997-2006 Vanderbilt University 3

Douglas C. Schmidt OO Programming with C++

Motivation (cont’d)

� Dynamic binding facilitates more flexible and extensible software
architectures, e.g.,

– Not all design decisions need to be known during the initial stages
of system development

� i.e., they may be postponed until run-time
– Complete source code is not required to extend the system

� i.e., only headers & object code

� This aids both flexibility & extensibility

– Flexibility = ‘easily recombine existing components into new
configurations’

– Extensibility = “easily add new components”

Copyright c
1997-2006 Vanderbilt University 4

Douglas C. Schmidt OO Programming with C++

Dynamic vs. Static Binding

� Inheritance review

– A pointer to a derived class can always be used as a pointer to a
base class that was inherited publicly

� Caveats:

� The inverse is not necessarily valid or safe

� Private base classes have different semantics...
– e.g.,

template <typename T>
class Checked_Vector : public Vector<T> { ... };
Checked_Vector<int> cv (20);
Vector<int> *vp = &cv;
int elem = (*vp)[0]; // calls operator[] (int)

– A question arises here as to which version of operator[] is called?

Copyright c
1997-2006 Vanderbilt University 5

Douglas C. Schmidt OO Programming with C++

Dynamic vs. Static Binding (cont’d)

� The answer depends on the type of binding used...

1. Static Binding: the compiler uses the type of the pointer to
perform the binding at compile time. Therefore,
Vector::operator[](vp, 0) will be called

2. Dynamic Binding: the decision is made at run-time based upon
the type of the actual object. Checked Vector::operator[]
will be called in this case as (*vp->vptr[1])(vp, 0)

� Quick quiz: how must class Vector be changed to switch from static
to dynamic binding?

Copyright c
1997-2006 Vanderbilt University 6

Douglas C. Schmidt OO Programming with C++

Dynamic vs. Static Binding (cont’d)
� When to chose use different bindings

– Static Binding

� Use when you are sure that any subsequent derived classes
will not want to override this operation dynamically (just
redefine/hide)

� Use mostly for reuse or to form “concrete data types”
– Dynamic Binding

� Use when the derived classes may be able to provide a different
(e.g., more functional, more efficient) implementation that
should be selected at run-time

� Used to build dynamic type hierarchies & to form “abstract data
types”

Copyright c
1997-2006 Vanderbilt University 7

Douglas C. Schmidt OO Programming with C++

Dynamic vs. Static Binding (cont’d)

� Efficiency vs. flexibility are the primary tradeoffs between static &
dynamic binding

� Static binding is generally more efficient since

1. It has less time & space overhead
2. It also enables method inlining

� Dynamic binding is more flexible since it enables developers to
extend the behavior of a system transparently

– However, dynamically bound objects are difficult to store in
shared memory

Copyright c
1997-2006 Vanderbilt University 8

Douglas C. Schmidt OO Programming with C++

Dynamic Binding in C++

� In C++, dynamic binding is signaled by explicitly adding the keyword
virtual in a method declaration, e.g.,

struct Base {
virtual int vf1 (void) { cout << "hello\n"; }
int f1 (void);

};

– Note, virtual methods must be class methods, i.e., they cannot be:

� Ordinary “stand-alone” functions

� class data

� Static methods

� Other languages (e.g., Eiffel) make dynamic binding the default...

– This is more flexible, but may be less efficient

Copyright c
1997-2006 Vanderbilt University 9

Douglas C. Schmidt OO Programming with C++

C++ Virtual Methods

� Virtual methods have a fixed interface, but derived implementations
can change, e.g.,

struct Derived_1 : public Base
{ virtual int vf1 (void) { cout << "world\n"; } };

� Supplying virtual keyword is optional when overriding vf1() in
derived classes, e.g.,

struct Derived_2 : public Derived_1 {
int vf1 (void) { cout << "hello world\n"; } // Still virtual
int f1 (void); // not virtual

};

� You can declare a virtual method in any derived class, e.g.,

struct Derived_3 : public Derived_2 {
virtual int vf2 (int); // different from vf1!
virtual int vf1 (int); // Be careful!!!!

};

Copyright c
1997-2006 Vanderbilt University 10

Douglas C. Schmidt OO Programming with C++

C++ Virtual Methods (cont’d)
� Virtual method dispatching uses object’s “dynamic type” to select

the appropriate method that is invoked at run-time

– The selected method will depend on the class of the object being
pointed at & not on the pointer type

� e.g.,

void foo (Base *bp) { bp->vf1 (); /* virtual */ }
Base b;
Base *bp = &b;
bp->vf1 (); // prints "hello"
Derived_1 d;
bp = &d;
bp->vf1 (); // prints "world"
foo (&b); // prints "hello"
foo (&d); // prints "world"

Copyright c
1997-2006 Vanderbilt University 11

Douglas C. Schmidt OO Programming with C++

C++ Virtual Methods (cont’d)

� virtual methods are dynamically bound and dispatched at run-time,
using an index into an array of pointers to class methods

– Note, this requires only constant overhead, regardless of the
inheritance hierarchy depth...

– The virtual mechanism is set up by the constructor(s), which may
stack several levels deep...

� e.g.,

void foo (Base *bp) {
bp->vf1 ();
// Actual call
// (*bp->vptr[1])(bp);

}

� Using virtual methods adds a small amount of time & space
overhead to the class/object size and method invocation time

Copyright c
1997-2006 Vanderbilt University 12

Douglas C. Schmidt OO Programming with C++

Shape Example

� The canonical dynamic binding example:

– Describing a hierarchy of shapes in a graphical user interface
library

– e.g., Triangle, Square, Circle, Rectangle, Ellipse, etc.

� A conventional C solution would

1. Use a union or variant record to represent a Shape type
2. Have a type tag in every Shape object
3. Place special case checks in functions that operate on Shapes

– e.g., functions that implement operations like rotation & drawing

Copyright c
1997-2006 Vanderbilt University 13

Douglas C. Schmidt OO Programming with C++

C Shape Example Solution
typedef struct {

enum { CIRCLE, TRIANGLE, RECTANGLE, /* ... */
} type_;
union {

struct Circle { /* */ } c_;
struct Triangle { /* */ } t_;
struct Rectangle { /* */ } r_;
// ...

} u_;
} Shape;
void rotate_shape (Shape *sp, double degrees) {

switch (sp->type_) {
case CIRCLE: return;
case TRIANGLE: // Don’t forget to break!
// ...
}

}

Copyright c
1997-2006 Vanderbilt University 14

Douglas C. Schmidt OO Programming with C++

Problems with C Shape Example Solution
� It is difficult to extend code designed this way:

– e.g., changes are associated with functions and algorithms
– Which are often “unstable” elements in a software system design

& implementation
– Therefore, modifications will occur in portions of the code that

switch on the type tag

� Using a switch statement causes problems, e.g.,

� Setting & checking type tags

– Falling through to the next case, etc...

Copyright c
1997-2006 Vanderbilt University 15

Douglas C. Schmidt OO Programming with C++

Problems with C Shape Example Solution (cont’d)

� Data structures are “passive”

– i.e., functions do most of processing work on different kinds of
Shapes by explicitly accessing the appropriate fields in the object

– This lack of information hiding affects maintainability

� Solution wastes space by making worst-case assumptions wrt
structs & unions

� Must have source code to extend the system in a portable,
maintainable manner

Copyright c
1997-2006 Vanderbilt University 16

Douglas C. Schmidt OO Programming with C++

Object-Oriented Shape Example

� An object-oriented solution uses inheritance & dynamic binding to
derive specific shapes (e.g., Circle , Square , Rectangle , &
Triangle) from a general Abstract Base class (ABC) called Shape

� This approach facilities a number of software quality factors:

1. Reuse
2. Transparent extensibility
3. Delaying decisions until run-time
4. Architectural simplicity

Copyright c
1997-2006 Vanderbilt University 17

Douglas C. Schmidt OO Programming with C++

Object-Oriented Shape Example (cont’d)

Point

Shape

TriangleCircle

Color

Rectangle

1
1

AA
11

� Note, the “OOD challenge”
is to map arbitrarily
complex system
architectures into
inheritance hierarchies

Copyright c
1997-2006 Vanderbilt University 18

Douglas C. Schmidt OO Programming with C++

C++ Shape Class
// Abstract Base class & Derived classes for Shape.
class Shape {
public:

Shape (double x, double y, Color &c)
: center_ (Point (x, y)), color_ (c) {}

Shape (Point &p, Color &c): center_ (p), color_ (c) {}
virtual int rotate (double degrees) = 0;
virtual int draw (Screen &) = 0;
virtual ˜Shape (void) = 0;
void change_color (Color &c) { color_ = c; }
Point where (void) const { return center_; }
void move (Point &to) { center_ = to; }

private:
Point center_;
Color color_;

};

Copyright c
1997-2006 Vanderbilt University 19

Douglas C. Schmidt OO Programming with C++

C++ Shape Class (cont’d)

� Note, certain methods only make sense on subclasses of class
Shape

– e.g., Shape::rotate() & Shape::draw()

� The Shape class is therefore defined as an abstract base class

– Essentially defines only the class interface
– Derived (i.e., concrete) classes may provide multiple, different

implementations

Copyright c
1997-2006 Vanderbilt University 20

Douglas C. Schmidt OO Programming with C++

Abstract Base Classes (ABCs)

� ABCs support the notion of a general concept (e.g., Shape) of
which only more concrete object variants (e.g., Circle & Square)
are actually used

� ABCs are only used as a base class for subsequent derivations

– Therefore, it is illegal to create objects of ABCs
– However, it is legal to declare pointers or references to such

objects...
– ABCs force definitions in subsequent derived classes for

undefined methods

� In C++, an ABC is created by defining a class with at least one “pure
virtual method”

Copyright c
1997-2006 Vanderbilt University 21

Douglas C. Schmidt OO Programming with C++

Pure Virtual Methods

� Pure virtual methods must be methods

� They are defined in the base class of the inheritance hierarchy, &
are often never intended to be invoked directly

– i.e., they are simply there to tie the inheritance hierarchy together
by reserving a slot in the virtual table...

� Therefore, C++ allows users to specify ‘pure virtual methods’

– Using the pure virtual specifier = 0 indicates methods that are
not meant to be defined in that class

– Note, pure virtual methods are automatically inherited...

Copyright c
1997-2006 Vanderbilt University 22

Douglas C. Schmidt OO Programming with C++

Pure Virtual Destructors
� The only effect of declaring a pure virtual destructor is to cause the

class being defined to be an ABC

� Destructors are not inherited, therefore:

– A pure virtual destructor in a base class will not force derived
classes to be ABCs

– Nor will any derived class be forced to declare a destructor

� Moreover, you will have to provide a definition (i.e., write the code for
a method) for the pure virtual destructor in the base class

– Otherwise you will get run-time errors!

Copyright c
1997-2006 Vanderbilt University 23

Douglas C. Schmidt OO Programming with C++

C++ Shape Example

� In C++, special case code is associated with derived classes, e.g.,

class Circle : public Shape {
public:

Circle (Point &p, double rad);
virtual void rotate (double degrees) {}
// ...

private:
double radius_;

};
class Rectangle : public Shape {
public:

Rectangle (Point &p, double l, double w);
virtual void rotate (double degrees);
// ...

private:
double length_, width_;

};

Copyright c
1997-2006 Vanderbilt University 24

Douglas C. Schmidt OO Programming with C++

C++ Shape Example (cont’d)

� C++ solution (cont’d)

– Using the special relationship between base classes & derived
subclasses, any Shape * can now be “rotated” without worrying
about what kind of Shape it points to

– The syntax for doing this is:
void rotate_shape (Shape *sp, double degrees) {

sp->rotate (degrees);
// (*sp->vptr[1]) (sp, degrees);

}

– Note, we are still “interface compatible” with original C version!

Copyright c
1997-2006 Vanderbilt University 25

D
ou

gl
as

C
.S

ch
m

id
t

O
O

P
ro

gr
a

C
++

S
ha

pe
E

xa
m

pl
e

(c
on

t’d
)

C
irc

le
R

ec
ta

ng
le

0
ro

ta
te

0
ro

ta
te

dr
aw

dr
aw

vp
tr

vp
tr

vt
ab

le
(C

irc
le

)
vt

ab
le

(R
ec

ta
ng

le
)

�

T
hi

s
co

de
w

or
ks

re
ga

rd
le

ss
of

w
ha

tS
h
a
p
e

su
bc

la
ss

sp
ac

tu
al

ly
po

in
ts

to
, e

.g
.,

C
ir
cl

e
c;

R
e
ct

a
n
g
le

r;

ro
ta

te
_
sh

a
p
e

(&
c,

1
0
0
.0

);
ro

ta
te

_
sh

a
p
e

(&
r,

2
5
0
.0

);

C
op

yr
ig

ht
c

19
97

-2
00

6
V

an
de

rb
ilt

U
ni

ve
rs

ity

Douglas C. Schmidt OO Programming with C++

C++ Shape Example (cont’d)
� The C++ solution associates specializations with derived classes,

rather than with function rotate shape()

� It’s easier to add new types without breaking existing code since
most changes occur in only one place, e.g.:

class Square : public Rectangle {
// Inherits length & width from Rectangle
public:

Square (Point &p, double base);
virtual void rotate (double degree) {

if (degree % 90.0 != 0)
// Reuse existing code
Rectangle::rotate (degree);

}
/* */

};

Copyright c
1997-2006 Vanderbilt University 27

Douglas C. Schmidt OO Programming with C++

C++ Shape Example (cont’d)

� We can still rotate any Shape object by using the original function,
i.e.,

void rotate_shape (Shape *sp, double degrees)
{

sp->rotate (degrees);
}

Square s;
Circle c;
Rectangle r;

rotate_shape (&s, 100.0);
rotate_shape (&r, 250.0);
rotate_shape (&c, 17.0);

Copyright c
1997-2006 Vanderbilt University 28

Douglas C. Schmidt OO Programming with C++

Comparing the Two Approaches

� If support for Square was added in the C solution, then every place
where the type tag was accessed would have to be modified

– i.e., modifications are spread out all over the place
– Including both header files and functions

� Note, the C approach prevents extensibility if the provider of
Square does not have access to the source code of function
rotate shape() !

– i.e., only the header files & object code is required to allow
extensibility in C++

Copyright c
1997-2006 Vanderbilt University 29

Douglas C. Schmidt OO Programming with C++

Comparing the Two Approaches (cont’d)
/* C solution */
void rotate_shape (Shape *sp, double degree) {

switch (sp->type_) {
case CIRCLE: return;
case SQUARE:

if (degree % 90 == 0)
return;

else
/* FALLTHROUGH */;

case RECTANGLE:
// ...
break;

}
}

Copyright c
1997-2006 Vanderbilt University 30

Douglas C. Schmidt OO Programming with C++

Comparing the Two Approaches (cont’d)
� Example function that rotates size shapes by angle degrees:

void rotate_all (Shape *vec[], int size, double angle)
{

for (int i = 0; i < size; i++)
vec[i]->rotate (angle);

}

� vec[i]->rotate (angle) is a virtual method call

– It is resolved at run-time according to the actual type of object
pointed to by vec[i]

– i.e.,
vec[i]->rotate (angle) becomes
(*vec[i]->vptr[1]) (vec[i], angle);

Copyright c
1997-2006 Vanderbilt University 31

Douglas C. Schmidt OO Programming with C++

Comparing the Two Approaches (cont’d)

� Sample usage of function rotate all() is

Shape *shapes[] = {
new Circle (/* */),
new Square (/* */)

};
int size = sizeof shapes / sizeof *shapes;
rotate_all (shapes, size, 98.6);

� Note, it is not generally possible to know the exact type of elements
in variable shapes until run-time

– However, at compile-time we know they are all derived subtypes
of base class Shape

� This is why C++ is not fully polymorphic, but is strongly typed

Copyright c
1997-2006 Vanderbilt University 32

Douglas C. Schmidt OO Programming with C++

Comparing the Two Approaches (cont’d)

Circle Square

0 rotate 0 rotate drawdraw

vptr vptr

vtable (Circle) vtable (Square)

0 1shapes

� Here’s what the memory layout looks like

Copyright c
1997-2006 Vanderbilt University 33

Douglas C. Schmidt OO Programming with C++

Comparing the Two Approaches (cont’d)

� Note that both the inheritance/dynamic binding & union/switch
statement approaches provide mechanisms for handling the design
& implementation of variants

� The appropriate choice of techniques often depends on whether the
class interface is stable or not

– Adding a new subclass is easy via inheritance, but difficult using
union/switch (since code is spread out everywhere)

– On the other hand, adding a new method to an inheritance
hierarchy is difficult, but relatively easier using union/switch (since
the code for the method is localized)

Copyright c
1997-2006 Vanderbilt University 34

Douglas C. Schmidt OO Programming with C++

Calling Mechanisms
� Given a pointer to a class object (e.g., Foo *ptr) how is the

method call ptr->f (arg) resolved?

� There are three basic approaches:

1. Static Binding
2. Virtual Method Tables
3. Method Dispatch Tables

� C++ & Java use both static binding & virtual method tables, whereas
Smalltalk & Objective C use method dispatch tables

� Note, type checking is orthogonal to binding time...

Copyright c
1997-2006 Vanderbilt University 35

Douglas C. Schmidt OO Programming with C++

Static Binding

� Method f ’s address is determined at compile/link time

� Provides for strong type checking, completely checkable/resolvable
at compile time

� Main advantage: the most efficient scheme

– e.g., it permits inline method expansion

� Main disadvantage: the least flexible scheme

Copyright c
1997-2006 Vanderbilt University 36

Douglas C. Schmidt OO Programming with C++

Virtual Method Tables

� Method f() is converted into an index into a table of pointers to
functions (i.e., the “virtual method table”) that permit run-time
resolution of the calling address

– The *ptr object keeps track of its type via a hidden pointer
(vptr) to its associated virtual method table (vtable)

� Virtual methods provide an exact specification of the type signature

– The user is guaranteed that only operations specified in class
declarations will be accepted by the compiler

Copyright c
1997-2006 Vanderbilt University 37

Douglas C. Schmidt OO Programming with C++

Virtual Method Tables (cont’d)

� Main advantages

1. More flexible than static binding
2. There only a constant amount of overhead (compared with

method dispatching)
3. e.g., in C++, pointers to functions are stored in a separate table,

not in the object!

� Main disadvantages

– Less efficient, e.g., often not possible to inline the virtual method
calls...

Copyright c
1997-2006 Vanderbilt University 38 D
ou

gl
as

C
.S

ch
m

id
t

O
O

P
ro

gr
a

V
irt

ua
lM

et
ho

d
Ta

bl
es

(c
on

t’d
)

ob
j

2

ob
j

1

ob
j

3

0
1

2

vp
tr

vp
tr

vp
tr

vt
ab

le

f2
f1

�

e.
g.

,

cl
a
ss

F
o
o

{
p
u
b
lic

:
vi

rt
u
a
l

in
t

f1
(v

o
id

);
vi

rt
u
a
l

in
t

f2
(v

o
id

);
in

t
f3

(v
o
id

);
p
ri
va

te
:

//
d
a
ta

..
.

}; F
o
o

o
b
j_

1
,

o
b
j_

2
,

o
b
j_

3
;

C
op

yr
ig

ht
c

19
97

-2
00

6
V

an
de

rb
ilt

U
ni

ve
rs

ity

Douglas C. Schmidt OO Programming with C++

Method Dispatch Tables

� Method f is looked up in a table that is created & managed
dynamically at run-time

– i.e., add/delete/change methods dynamically

� Main advantage: the most flexible scheme

– i.e., new methods can be added or deleted on-the-fly
– & allows users to invoke any method for any object

� Main disadvantage: generally inefficient & not always type-secure

– May require searching multiple tables at run-time
– Some form of caching is often used
– Performing run-time type checking along with run-time method

invocation further decreases run-time efficiency
– Type errors may not manifest themselves until run-time

Copyright c
1997-2006 Vanderbilt University 40

Douglas C. Schmidt OO Programming with C++

Downcasting

� Downcasting is defined as casting a pointer or reference of a base
class type to a type of a pointer or reference to a derived class

– i.e., going the opposite direction from usual
“base-class/derived-class” inheritance relationships...

� Downcasting is useful for

1. Cloning an object
– e.g., required for “deep copies”

2. Restoring an object from disk
– This is hard to do transparently...

3. ‘Taking an object out of a heterogeneous collection of objects &
restoring its original type‘
– Also hard to do, unless the only access is via the interface of

the base class

Copyright c
1997-2006 Vanderbilt University 41

Douglas C. Schmidt OO Programming with C++

Contravariance

� Downcasting can lead to trouble due to contravariance, e.g.:

struct Base {
int i_;
virtual int foo (void) { return i_; }

};
struct Derived : public Base {

int j_;
virtual int foo (void) { return j_; }

};
void foo (void) {

Base b;
Derived d;
Base *bp = &d; // "OK", a Derived is a Base
Derived *dp = &b;// Error, a Base is not necessarily a Derived

}

Copyright c
1997-2006 Vanderbilt University 42

Douglas C. Schmidt OO Programming with C++

Contravariance (cont’d)

i i

j

bpdp

b d

?

� Problem: what happens if dp->j_ is referenced or set?

Copyright c
1997-2006 Vanderbilt University 43

Douglas C. Schmidt OO Programming with C++

Contravariance (cont’d)

� Since a Derived object always has a Base part certain operations
are ok:

bp = &d;
bp->i_ = 10;
bp->foo (); // calls Derived::foo ();

� Since base objects don’t have subclass data some operations aren’t
ok

– e.g., accesses information beyond end of b:
dp = (Derived *) &b;
dp->j_ = 20; // big trouble!

� C++ permits contravariance if the programmer explicitly casts, e.g.,

dp = (Derived *) &b; // unchecked cast

� Programmers must ensure correct operations, however...

Copyright c
1997-2006 Vanderbilt University 44

Douglas C. Schmidt OO Programming with C++

Run-Time Type Identification (RTTI)

� RTTI is a technique that allows applications to use the C++ run-time
system to query the type of an object at run-time

– Only supports very simple queries regarding the interface
supported by a type

� RTTI is only fully supported for dynamically-bound classes

– Alternative approaches would incur unacceptable run-time costs
& storage layout compatibility problems

Copyright c
1997-2006 Vanderbilt University 45

Douglas C. Schmidt OO Programming with C++

Run-Time Type Identification (cont’d)

� RTTI could be used in our earlier example

if (Derived *dp = dynamic_cast<Derived *>(&b))
/* use dp */;

else
/* error! */

� For a dynamic cast to succeed, the “actual type” of b would have to
either be a Derived object or some subclass of Derived

� if the types do not match the operation fails at run-time

� if failure occurs, there are several ways to dynamically indicate this
to the application:

– To return a NULL pointer for failure
– To throw an exception
– e.g., in the case of reference casts...

Copyright c
1997-2006 Vanderbilt University 46

Douglas C. Schmidt OO Programming with C++

Run-Time Type Identification (cont’d)
� dynamic cast used with references

– A reference dynamic cast that fails throws a bad cast
exception

� e.g.,

void clone (Base &ob1)
{

try {
Derived &ob2 =

dynamic_cast<Derived &>(ob1);
/* ... */

} catch (bad_cast) {
/* ... */

}
}

Copyright c
1997-2006 Vanderbilt University 47

Douglas C. Schmidt OO Programming with C++

Run-Time Type Identification (cont’d)

� Along with the dynamic cast extension, the C++ language now
contains a typeid operator that allows queries of a limited amount of
type information at run-time

– Includes both dynamically-bound and non-dynamically-bound
types...

� e.g.,

typeid (type_name) yields const Type_info &
typeid (expression) yields const Type_info &

� Note that the expression form returns the run-time type of the
expression if the class is dynamically bound...

Copyright c
1997-2006 Vanderbilt University 48

Douglas C. Schmidt OO Programming with C++

Run-Time Type Identification Examples
Base *bp = new Derived;
Base &br = *bp;

typeid (bp) == typeid (Base *) // true
typeid (bp) == typeid (Derived *) // false
typeid (bp) == typeid (Base) // false
typeid (bp) == typeid (Derived) // false

typeid (*bp) == typeid (Derived) // true
typeid (*bp) == typeid (Base) // false

typeid (br) == typeid (Derived) // true
typeid (br) == typeid (Base) // false

typeid (&br) == typeid (Base *) // true
typeid (&br) == typeid (Derived *) // false

Copyright c
1997-2006 Vanderbilt University 49

Douglas C. Schmidt OO Programming with C++

Run-Time Type Identification Problems

� RTTI encourages dreaded “if/else statements of death” e.g.,

void foo (Object *op) {
if (Foobar *fbp = dynamic_cast<Foobar *> (op))

fbp->do_foobar_things ();
else if (Foo *fp = dynamic_cast<Foo *> (op))

fp->do_foo_things ();
else if (Bar *bp = dynamic_cast<Bar *> (op))

bp->do_bar_things ();
else

op->do_object_stuff ();
}

� This style programming leads to an alternative, slower method of
dispatching methods

– i.e., duplicating vtables in an unsafe manner a compiler can’t
check

Copyright c
1997-2006 Vanderbilt University 50

Douglas C. Schmidt OO Programming with C++

Summary
� Dynamic binding enables applications & developers to defer certain

implementation decisions until run-time

– i.e., which implementation is used for a particular interface

� It also facilitates a decentralized architecture that promotes flexibility
& extensibility

– e.g., it is possible to modify functionality without modifying existing
code

� There may be some additional time/space overhead from using
dynamic binding...

– However, alternative solutions also incur overhead, e.g., the
union/switch approach

Copyright c
1997-2006 Vanderbilt University 51

