GPERF
A Perfect Hash Function Gener ator

Douglas C. Schmidt
schmidt@cs.wustl.edu
http://www.cswustl .edu/~schmidt/
Department of Computer Science
Washington University, St. Louis 63130
(TEL) 314-935-7538, (FAX) 314-935-7302

An earlier version of this paper appeared in the 274
USENIX C++ Conferencein San Francisco, California, April
1990.

Abstract

gper f isa“software-tool generating-tool” designed to au-
tomate the generation of perfect hash functions. This paper
describesthefeatures, algorithms, and obj ect-oriented design
and implementation strategiesincorporatedingper f . Italso
presents the results from an empirical comparison between
gper f -generated recognizers and other popular techniques
for reserved word lookup. gper f is distributed with the
GNU libg++ library and is used to generate the keyword
recognizers for the GNU C and GNU C++ compilers.

1 Introduction

Perfect hash functions are a time and space efficient imple-
mentation of static search sets, which are ADTs with oper-
ations like initialize, insert, and retrieve. Static search sets
are common in system software applications. Typical static
search sets include compiler and interpreter reserved words,
assembler instruction mnemonics, and shell interpreter built-
incommands. Search set elementsarecalled keywords. Key-
words are inserted into the set once, usualy at compile-time.

gper f isafredy available perfect hash function genera-
tor written in C++ that automatically constructs perfect hash
functions from a user-supplied list of keywords. It was de-
signedin the spirit of utilitieslikef | ex, | ex [1] andyacc
[2] to remove the drudgery associated with constructing time
and space efficient keyword recognizers by hand. gper f
trandates an n element user-specified keyword list (called
the keyfile) into source code containing a & element |ookup
table and a pair of functions, phash and i n_wor d_set .
phash uniquely maps keywords in keyfile onto the range
0.k —1,wherek > n. If k = n,thenphash isconsidered a
minimal perfect hash function. i n.wor d_set usesphash
to determine whether a particular string of characters occurs
in the keyfile, using at most one string comparison.

gper f isdesigned to run quickly for keyword sets up to
approximately 1,000 keys. In addition, the data structures

and algorithms described below enable gper f to operate
on keyword sets containing over 15,000 keywords. gper f

generates efficient ANSI and K&R C, C++, or Ada source
codeasoutput. It hasbeen usedto generate reserved keyword
recognizers in lexical anayzers for severa production and
research compilers and language processing tools, including
GNU C, GNU C++, GNU Pasca, GNU Modula 3, and GNU
i ndent [3].

This paper is organized as follows: Section 2 describes
variousstatic search set implementationsand compares them
against gper f -generated hash tables; Section 3 presents a
sample input keyfile; Section 4 highlightsimportant design
and implementation issues; Section 5 shows the resultsfrom
empirical benchmarks between gper f -generated recogni z-
ers and other popular techniques for reserved word lookup;
Section 6 outlinesthe limitationswith the current version of
gper f ; and Section 7 presents concluding remarks.

2 Static Search Set Implementations

There are numerous implementations of static search sets.
Common examples include sorted and unsorted arrays and
linked lists, AVL trees, optima binary search trees, digi-
tal search tries, deterministic finite-state automata, and vari-
ous hash table schemes, such as open addressing and bucket
chaining [4].

Different implementations offer trade-offs between mem-
ory utilization and search time efficiency. For example, an n
element sorted array is space efficient, though the average-
and worst-case time complexity for retrieval operationsusing
binary search on a sorted array is proportional to O(logn)
[4]. Conversely, chained hash tableimplementationslocate a
tableentry in constant, i.e,, O(1), timeon theaverage. How-
ever, they typically impose additional memory overhead for
link pointers and/or unused hash table buckets and also ex-
hibit O(n?) worst-case performance [4].

A minimal perfect hash functionis a static search set im-
plementation defined by two properties:

e The Perfect Property : locating a table entry requires
0O(1) time, i.e.,, at most one string comparison is required to
perform keyword recognition within the static search set.



e The Minimal Property : the memory alocated to store
the keywords is precisaly large enough for the keyword set
and no larger.

Minimal perfect hash functions provideatheoreticaly op-
timal time and space efficient solution for static search sets
[4]. However, severd variations are also useful for many
practical hashing applications, especially onesinvolving hun-
dreds or thousands of keywords:

e Non-Minimal Perfect Hash Functions : These func-
tionsdo not possess the minimal property, sincethey returna
range of hash valueslarger than the total number of keywords
in the table. However, they do possess the perfect property,
since at most one string comparison isrequired to determine
if astring isin the table. There are two main reasons for
generating non-minimal hash functions:

1. Generating non-minimal perfect functions may be sub-
stantialy faster than generating minimal perfect hash
functions|[5, 6].

2. Non-minimal perfect hash functions may also execute
faster than minima ones when searching for el ements
that arenotinthetable. Thissituationoften occurswhen
recognizing reserved wordsin program source code[7].

o Near-Perfect Hash Functions : Near-perfect hash func-
tions do not possess the perfect property, since they allow
non-unique keyword hash values [8] (they may or may not
possess the minimal property, however). Thistechniqueisa
compromisethat tradesincreased generated-code-execution-
time for decreased function-generation-time. Near-perfect
hash functionsare useful when main memory isat apremium,
since they tend to produce much smaller lookup tables.

gper f hascommand-line optionsthat instruct it generate
minimal perfect, non-minimal perfect, and near-perfect hash
functions.

3 Interacting with GPERF

gperf reads a keyword list and optional associated at-
tributesfrom a keyfile or from the standard input. Keywords
are specified as arbitrary character strings delimited by a
user-specified field separator defaultingto’,’ (i.e, key-
words may contain spaces and any other ASCII characters).
Associated attributes may be any C literals. For example,
keywords in Figure 1 represent months of the year. Asso-
ciated attributes in this figure include the number of leap
year and non-leap year days in each month, as well as the
months' ordinal numbers, i.e, january = 1, february =2, . . .,
december = 12.

gper f 'sinput format is structuraly similar to the UNIX
utilities| ex andyacc. It uses thefollowing input format:
decl arati ons and text inclusions
%0
I0<eywords and optional attributes

0
auxi liary code

A

#i ncl ude <stdio. h>

#i ncl ude <string. h>

/* Command-1ine options:
-C-p-a-n-t -o-j 1-k23
-Nis_month */

%

struct nonths {
char *nane;

int nunber;

int days;

int | eap_days
1
%
j anuary, 1, 31, 31
february, 2, 28, 29
mar ch, 3, 31, 31
april, 4, 30, 30
nmay, 5, 31, 31
j une, 6, 30, 30
july, 7, 31, 31
august, 8, 31, 31
sept enber, 9, 30, 30
oct ober, 10, 31, 31
novenber, 11, 30, 30
decenber, 12, 31, 31
%
/* Auxiliary code goes here... */

#i f def DEBUG
int main () {
char buf[ BUFSI Z] ;
while (gets (buf)) {
struct nmonths *p = is_nonth (buf, strlen (buf))
printf ("% is% a nonth\n",
p ? p->nane : buf, p?"" " not");

}
y o
#endi f

Figure1: An Example Keyfilefor Months of the Year

A pair of consecutive%symbolsinthefirst column separate
declarations from the list of keywords and their optiona
attributes. C, C++, or Ada source code and comments are
included verbatim into the generated output file by enclosing
thetextinside%q 94 delimiters(whicharestripped off when
the output file is generated), e.g.:

%

#1 ncl ude <stdio. h>

#i ncl ude <string. h>

/* Command-1ine options
-C-p-a-n-t -o-j 1-k 23
-Nis_nonth */

%

An optional user-supplied st ruct declaration may be
placed at theend of the declaration section, just before the %86
separator. This feature enables typed attributeinitialization.
In Figure 1, for example, st ruct nont hs is defined to
havefour fieldsthat correspond to theinitializer values given
for the month names and their respective associated values,

eg.

struct nonths {
char *nane;
i nt nunber;
int days;
int | eap_days;

]

80



Lines containing keywords and associated attributes ap-
pear in the “keywords and optional attributes’ section of the
keyfile. Thefirst field of each line always contains the key-
word itself, left-justified against the first column and with-
out surrounding quotation marks. Any additiona attribute
fields follow the keyword. Attributes are separated from the
keyword and from each other by field separators, and they
continueuptothe“end-of-linemarker” (whichisthenewline
character ('\ n’) by default). The attribute field values are
used to initialize components of the user-supplied st r uct
appearing at the end of the declaration section, e.g.:

j anuary, 1, 31, 31
february, 2, 28, 29

mar ch, 3, 31, 31

As with | ex and yacc, it is legal to omit the initial
declaration section entirely. In this case, the keyfile begins
with the first non-comment line (linesbeginning witha* #’
character are treated as comments and ignored). Thisformat
styleisuseful for building keyword set recogni zersthat do not
possess any associ ated attributes. For example, aperfect hash
functionfor “frequently occurring Englishwords” efficiently
filtersout uninformativewordssuchas“the,” “as,” and“this,”
etc. from considerationin a“key-word-in-context” indexing
application [4].

Again, as with | ex and yacc, al text in the optional
third “auxiliary code” section is included verbatim into the
generated output file, starting immediately after the final %86
and extending to the end of the keyfile. It is the user’s
responsibility to ensure that the inserted code is valid (e.g.,
C, C++, Ada, etc.). In Figure 1 example, this “auxiliary”
code provides a test driver that is conditionally compiled if
the DEBUG symbol isenabled when compilingthe generated
C or C++ code.

4 Design and | mplementation | ssues

Many articles describe perfect hashing [9, 6, 10, 11] and
minimal perfect hashing algorithms[7, 12, 5, 13, 14]. Few
articles, however, describe the design and implementation
of agenera-purpose perfect hashing generator tool in detail
[15]. This section describes the data structures, algorithms,
output format, and reusable components.

gper f is written in approximately 4,500 lines of C++
source code. C++ was chosen as the implementation lan-
guage since it supportsdata abstraction and information hid-
ing better than C, while still maintaining C's efficiency and
expressiveness[16].

gper f’s three main phases for generating a perfect or
near-perfect hash function are:

1. Process command-line options, read keywords and at-
tributes (the input format is described in Section 3),
and initializeinternal data structures (described in Sec-
tion4.1).

2. Performanon-backtracking, heuristically guided search
for a perfect hash function (described in Section 4.2.1
and Section 4.2.2 below).

3. Generate formatted C, C++, or Ada code according to
the command-line options (output format is described
in Section 4.3 below).

Thefollowingsectionoutlinesgper f ’'sperfect hash func-
tion generation algorithms and internal data structures, ex-
amines its generated source code output, describes several
reusabl e class components, and di scusses the program’s cur-
rent l[imitations.

4.1 Internal Data Structures

gper f 's implementation involves two important interna
datastructures. keyword signaturesand theassociated values
array.

411 Keyword Signatures

Every user-specified keyword and its attributes are read from
the keyfile and stored in a node on a linked list. gper f

only considers a subset of each keywords' characters while
searching for a perfect hash function solution. The subset
is caled the “keyword signature,” or keysig. The keysig
represents the particular subset of characters used by the
automatically generated recognition function to compute a
keyword's hash value. Keysigs are created and cached in
each linked list node when the keyfileisinitially processed.

4.1.2 Associated Values Array

The associated values array is a data structure closely re-
lated to keysigs. In fact, it is indexed by keysig charac-
ters. The array is constructed internaly by gperf and
referenced frequently during gper f 's execution. During
the generation process an ASCII representation of the as-
sociated array is output in the generated hash function as
astatic loca array. This array is declared as u_i nt
asso_val ues[ MAX_ASCI | _SI ZE] . When searching for
aperfect hash function solution, gper f repeatedly reassigns
different values to certain asso_val ues elements speci-
fied by keysig entries. At every step during the search for the
perfect hash function solution, the asso_val ues array’s
contents represent the current associated values configura-
tion.

By default, gper f searches for an associated val ues con-
figuration that maps all » keysigs onto non-duplicated hash
values. A perfect hash function is produced when gper f
findsaconfigurationthat assignseach keysigtoauniqueloca
tion within the generated lookup table. The resulting perfect
hash functionreturnsanunsi gned i nt vaueintherange
0..(k — 1), where k = (maximum keyword hash value +
1). When £ = n aminimal perfect hash function is pro-

duced; for k£ larger than n, the lookup table's load factor is
n (number of keywords
% ( total table size )




Keyword || Keysig | Hash Value
january an 3
february be 9
march ar 4
april pr 2
may ay 8
june nu 1
july lu 6
august gu 7
september ep 0
october ct 10
november ov 11
december ce 5

Tablel: Keywords, Keysigs, and Hash Va uesfor theMonths
Example

A keyword's hash value is computed by combining the
associated values of its keysig with its length (the *
optioningtructsgper f not includethelength of the keyword
when computing the hash function). By default, the hash
function adds the associated value of akeyword'sfirst index
position plusthe associated value of itslast index positionto
itslength, i.e.:

hash_val ue =
asso_val ues[ keywor d[ OH
+ asso vaI ues[ keyword]l ength - 1]]
+ length

Other combinations are often necessary in practice. For ex-
ample, using this default scheme for C++ causes a collision
between thedel et e and doubl e reserved words. Resolv-
ing this collision and generating a perfect hash function for
C++ reserved words requires adding an additional charac-
ter to the keysig viathe * - k’ command-line option with
parameters

hash_val ue =
asso_val ues[keiv\ord[o ]
+ asso_val ues[ eyword[ 1] ]
+ asso_val ues[ keyword[length - 1]]
+ | ength;

Usersusethe* - k' option to control the generated hash
function’'s contents by explicitly specifying the keyword in-
dex positionsto use as keysig elements. The default is* - k
1,% ,wherethe’ $' represents the keyword's fina char-
acter. Keysigs are multisets since they may contain multiple
occurrences of certain characters. Thisapproach differsfrom
other perfect hash function methods, where only the key-
word'sfirst and last characters, plusits length, are examined
when computing the hash value[7].

The generated hash function properly handles keywords
shorter than a specified index position by skipping characters
that exceed the keyword's length. Users may aso instruct
gper f toincludeall of akeyword's charactersinitskeysig
viathe' - k*’ option. Table 1 showsthe keywords, keysigs,
and hash valuefor each month shown in the Figure 1 keyfile.

for i «— 1ltonloop
if phash (i*" key) collideswith any phash (15t key ... (i —
then
modify disjoint union of associated valuesto resolve collisions
based upon certain collision resolution heuristics
end if
end loop

1)°* key)

Figure2: Gperf’sMain Algorithm

4.2 Perfect Hash Function Generation

This subsection givesadetailed description of gper f 'snon-
backtracking search algorithm.

421 Main Algorithm

gper f iterates sequentidly through the list of i keywords
(1 < i < n), where n equals the total number of keywords.
During each iteration gper f attempts to extend the set of
uniquely mapped keywordsby 1. It succeedsif thehashvalue
computed for keyword ¢ does not collide with the previous
¢ — 1 uniquely hashed keywords, as shown in Figure 2.

The agorithm terminates and generates a perfect hash func-
tion when i = n and no unresolved hash collisionsremain.
The best-case asymptotic time-complexity for thisalgorithm
islinear in the number of keywords, i.e.,, Q(n).

4.2.2 Collision Resolution Strategies

Digoint Union As outlined in Figure 2 above, gper f
attempts to resolve keyword hash collisions by modifying
certain associated values. To avoid performing unnecessary
work, gper f is selective when changing associated val ues.
It only considers characters comprising the digjoint union of
the colliding keywords' keysigs. The digoint union of two
keysigs {A} and {B} isdefined as {4 U B} — {A N B}.
Notethat no other associated values will resolvethecollision
at thispoint.

For instance, the keywords j anuary and march
have the keysigs ‘ an’ and ‘ ar’, respectively (see Ta
ble 1). A coallison occurs during gper f’s execution
when asso_val ues[’ a’' ], asso_val ues['n’ ], and
asso.val ues[’ r’] al equal O (notethat sincethe’ - n
optionis used, the different keyword lengths are not consid-
ered in the resulting hash function). When gper f resolves
thiscollisionit only considerschanging the associated values
for’ n’ and/or’ r’ . Changing’ @’ by any increment will
not resolve the collision, since’ a’ occurs the same number
of timesin each keysig.

By default, all asso_val ues are initialized to 0, and
when a collision is detected gperf increments the se-
lected associated value by 5. The command-line option
‘-j’ may be used to increment by a random amount
or by any fixed amount. In the months example, the
‘-j 1’ option was used, so gper f quickly resolves the



Associated
Values

Frequency of
Occurrence

Keysig
Characters

1

1

a
1b1

w

—Q

-~ =T O 3

OOO0OUINORRFRPRONOUON
PR WRNNRPRNRRWOWNR

< < c

Table2: Associated Valuesand Occurrencesfor Keysig Char-
acters

collision between j anuary and nmar ch by incrementing
asso_val ue[’' n’] by 1 (which aso turns out to be its
final value, as shown in Table 1).

Heuristics As a heuristic, characters in the digoint union
are sorted by increasing frequency of occurrence, so that
less frequently used characters are changed before more fre-
guently used characters. The assumption here isthat chang-
ing lessfrequently used charactersfirst decreasesthenegative
impact on keywords that are aready uniquely hashed with
respect to each other. Table 2 shows the associated values
and frequency of occurrences for al the keysig charactersin
the months example.

A perfect hash function is achieved if the systematic
changes to the associated values configuration described in
the previousparagraph diminate all keyword collisionsupon
reaching the end of the keyword list. The wor st-case asymp-
totic time-complexity for this algorithm is O(n®l), where {
is the number of characters in the largest disjoint union be-
tween colliding keyword keysigs. After experimenting with
gper f on many keyfilesit appears that such worst-case be-
havior occursrarely in practice.

Many perfect hash function generation algorithmsare sen-
sitive to the order that keywords are considered [5, 6]. If
the* - 0’ command-line optionisenabled, gper f mitigates
this effect by optionally reordering the keywords before in-
voking the main algorithm. Thisreordering isdonein atwo
stage pre-pass that applies two common heuristics described
by Cichelli. Firgt, the keyword list is sorted by decreas-
ing frequency of keysig characters' occurrence. The second
reordering pass then places keys with “aready determined
keysig values’ earlier inthekeylist.

These two heuristics potentialy prune the search space
by handling inevitable collisionsearly in the generation pro-
cess. gperf will run faster on many keyword sets and
often decrease the perfect hash function range if it is able

to resolve these collisions quickly by changing the appro-
priate associated values. On the other hand, if the number
of keywordsis large and the user wishes to generate a near-
perfect hash function, this reordering sometimes increases
gper f 's execution time, since collisions begin earlier and
frequently persist throughout the remainder of keyword pro-
cessing. Additional details and rationalizations for these
reordering heuristicsare discussed in[7, §].

4.3 Output Format

Figure 3 depicts the C code produced from the gper f -
generated minimal perfect hash function correspondingtothe
keyfile depicted in Figure 1. Execution time was negligible
on a Sun 4/260, i.e, 0.0 user and 0.0 system time. The
following section uses portions of this code as a working
exampletoillustrate various aspects of gper f 'soutput.

4.3.1 Generated Symbolic Constants

gper f 'soutput contai ns seven symbolic constantsthat sum-
marize the results of applying the agorithm in Figure 3 to
thekeyfile, eg.:

enum

TOTAL_KEYWORDS = 12,
M N WORD LENGTH = 3,
MAX_WORD_LENGTH = 9,
M N_HASH VALUE = 0,
MAX_HASH VALUE = 11,
HASA VALUE RANGE = 12,
DUPLTCATES = 0

}s

gperf produces a minimal perfect hash function
when HASHVALUE_ RANGE = TOTAL_KEYWORDS and
DUPLI CATES = 0. A non-minimal perfect hash function
occurswhen DUPLI CATES = 0 and HASH_-VALUE_RANGE
> TOTAL_KEYWORDS. Findly, a near-perfect hash func-
tion occurs when DUPLI CATES > 0 and DUPLI CATES «
TOTAL_KEYWORDS.

4.3.2 TheGenerated Lookup Table

When given akeyfileasinput, gper f atemptsto generate a
perfect hash function that uses at most one string comparison
to recognize keywordsin thelookup table. gper f produces
alookup table called asso_val ues, shown in thephash
functionin Figure 3. The asso_val ues array is used by
the two generated functions that compute hash values and
perform table lookup.

The lookup table is implemented by either an array or
aswi t ch statement (note, the generated Ada code uses a
case statement rather than aswi t ch statement). An ar-
ray is generated by default, emphasizing run-time speed over
minimal memory utilization. However, there are command-
line options that alow trading-off memory for execution-
time. For example, expanding the range of hash values pro-
duces a sparser lookup table. This generaly yields faster
keyword searches but requires additiona memory.



#i ncl ude <stdio. h>

#i ncl ude <string. h>

/* Command-|ine options
-C-p-a-n-t -o-j 1-k23
-Nis_month */

struct nonths {
char *nane;
int nunber;
int days;
int | eap_days

enum {

TOTAL_KEYWORDS = 12
M N WORD LENGTH = 3
MAX_WORD LENGTH = 9
M N_HASH VALUE = 0
MAX_HASH VALUE = 11,
HASH VALUE_RANGE = 12
) DUPLT CATES = 0

static unsigned int )
phash (const char *str, int len)

?tatic const unsigned char asso_val ues[] =

12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 12, 12, 12
12, 12, 12, 12, 12, 12, 12, 2, 9, 5
12, 0, 12, 7, 12, 12, 12, 12, 6, 12
1, 11, 0O, 12, 2, 12, 5, 0O, O, 12
12, 6, 12, 12, 12, 12, 12, 12

b
return asso_val ues[str[2]] + asso_values[str[1]];

const struct nonths * )
is_month (const char *str, int |en)

?tatic const struct nonths wordlist[] =

"septenber”, 9, 30, 30
"june", 6, 30, 30
“april”, 4, 30, 30
"january", 1, 31, 31
"march", 3, 31, 31
"decenber", 12, 31, 31
"july", 7, 31, 31
"august ", 8, 31, 31
“na%“, 5, 31, 31
"february", 2, 28, 29
"october”, 10, 31, 31
"novenber", 11, 30, 30

:ff (1en <= MAX_WORD LENGTH
& len >= M N_WORD_LENGTH) {
int key = phash (str, |en)
if (key <= MAX_HASH VALUE
&& key >= M N_HASH VALUE) {
char *s = wordlist[key].nane,
if (*str == *s
& !'strenp (str + 1, s + 1))
return &wordl i st[key];

return O

Figure 3: Minimal Perfect Hash Function Generated by
gper f

The array-based method works best when the
HASH VAL UE_RANGE is not considerably larger than the
TOTAL_KEYWORDS. When there are alarge number of key-
words, and an even larger range of hash val ues, however, the
wor dl i st array ini s_nont h function in Figure 3 may
become extremely large. Severd problemsariseinthiscase:

e The time to compile the sparsely populated array is
excessive;

e Thearray sizemay betoo largeto storein main memory;

e A large array may lead to increased thrashing in virtua
memory environments.

To handle these problems, gper f can also generate one
or more swi t ch statements to implement the lookup table.
Depending on the underlying compiler’sswi t ch optimiza
tion capabilities, the swi t ch-based method may produce
smaller and faster code, compared with the large, sparsely
filled array. Notethat morethan oneswi t ch statement may
be required, since many C compilers do not generate correct
code for extremely large swi t ch statements e.g., greater
than 10,000 cases. Figure 4 shows how the swi t ch state-
ment code appears if the months example is generated with
gperf’s*-S 1’ option.

Since the months example is somewhat contrived, the
trade-off between the array and swi t ch approach is not
particularly obvious. However, agood compiler may gener-
ate assembly code implementing a*“ binary-search-of-1abel s’
scheme if the swi t ch statement’s case labels are sparse
compared totherange between thesmallest andlargest case
labels[3]. Thistechnique saves agreat dea of space by not
emitting unnecessary empty array locations or jump-table
slots. The exact time and space savings of this approach
varies according to the underlying compiler’s optimization
strategy.

gper f generates source code that constructs the array
or swi t ch statement lookup table a compile-time. There-
fore, initiaizing the keywords and any associated attributes
requires little additional execution-time overhead when the
recognizer function is run, since the “initialization” is auto-
matically performed as the program’sbinary imageis|oaded
from disk into main memory.

4.3.3 TheGenerated Functions

gper f generates ahash function and alookup function. By
default, they arecdled phash and i n.wor d_set , athough
adifferent name may be given for i n_wor d_set using the
‘- N command-line option. Both functions reguire two
arguments, a pointer to a NUL-terminated (' \ 0’ ) array of
characters, const char *str, and a length parameter,
int |en.

e The Generated Hash Function (phash): Figure 3
shows the phash function generated from the input keyfile
shownin Figure 1. Sincethecommand-line option* - k 2,
3’ wasenabled, phash returnsan unsi gned i nt vaue



const struct nonths *rw,

?w’ tch (key)

case 0: rw = &uwrdlist[0]; break;
case 1. rw= &nwrdlist[1]; break;
case 2: rw = &uordlist[2]; break;
case 3: rw = &uwrdlist[3]; break;
case 4: rw = &wrdlist[4]; break;
case 5: rw = &uwrdlist[5]; break;
case 6: rw = &ordlist[6]; break;
case 7: rw = &ordlist[7]; break;
case 8: rw = &uwrdlist[8]; break;
case 9: rw = &uordlist[9]; break;
case 10: rw = &uordlist[10]; break;
case 11: rw = &ordlist[11]; break;
default: return O;

if (*str == *rw>pane

&& !'strcmp (str + 1, rw>nanme + 1))

return rw

return O;

Figure4: The swi t ch-based Lookup Table

caculated by indexing the keysig characters (in this case
ASCII vaues of the second and third characters) from its
str argument intothelocd st ati c array asso_val ues
(Caraysstat at 0, so st r[ 1] isactualy the second char-
acter). The two resulting humbers are added together to
compute st r’s hash value. The asso_val ues array is
constructed by gper f ; it maps the user-defined keywords
onto unique hash vaues (additional details are described in
Section 4.1.2).

Note that all asso_val ues array entries with values
grester than MAX_HASH.VALUE (i.e, dl the “12's’ in the
asso_val ues array in Figure 3) represent ASCII charac-
tersthat do not occur as either the second or third characters
in the months of the year. This information is used by the
i s_nmont h function shown in Figure 3 to quickly diminate
input strings that cannot possibly be month names.

e Generated Lookup Function (i n.word._set): The
i n.wor d_set function is the interface to the perfect hash
lookup routines (the phash function is declared st ati c
and is not directly invoked by application programs). If the
function’'sfirst parameter,char *str,isavalid user-define
keyword then i n_wor d_set returns a pointer to the corre-
sponding record containing each keyword and its associated
attributes, otherwise a NULL pointer is returned.

Figure 3 dso shows the in.word_set func
tion, renamed to is_nmonth for the current ex-
ample via the ‘-N command-line option. Note
how gperf checks the | en parameter and result-
ing phash function return value against the symbolic
constants for MAX_WORD_LENGTH, M N\WORD_LENGTH,
MAX_HASH VAL UE, and M NLHASH VAL UE. This quickly
eliminates many non-month names from further considera-
tion. If users know in advance that all input stringsare valid
keywords, gper f will suppress this addition checking with
the - O option.

T —— TN —
) ) \ N
/ )
( OPTIONS { / GEN |
\__ GLoBAL \ PERF \
\
COTTTON -
J ]
¢ KEY
AN —— \ LIST / AN —
{ N -7 \ >
\/READ / s \/BOOL
/
\ BUFFER ! y \
N /;/ " HASH /, \éRRA/YJ/
= "\ TABLE / g
N )

Figure5: gper f 'sInheritance Hierarchy

If gper f isinstructed to generate an array-based lookup
tablethe generated codeisquiteconcise, i.e.,, onceit isdeter-
mined that the hash val uelieswithin the proper rangethe code

is simply (filling in the / * see text ... */
comment from Figure 3):
char *s = wordlist[key];
if (*s == *str
&& I'strcnp (str + 1, s + 1))
return s;
The' *s == *str’ expressionquickly detectswhenthe

computed hash vaue indexes into a “null” table slot, since
‘*s’ isthe NUL character (' \ 0’) in this case. Thisis
useful when searching a sparse keyword lookup table, where
there is a higher probability of locating a null entry. If a
null entry islocated, there is no need to perform afull string
comparison (note that since the months example generates a
minimal perfect hash function null enties never appear; the
check isdtill useful, however, sinceit avoidscallingthestring
comparison routinewhenthest r ’sfirst letter doesnot match
any of the keywords in the lookup table).

4.4 Reusable Components

Figure 5 illustrates gper f's overall program structure.
gper f is constructed from reusable components that also
serve as base-classes in a“forest”-style library [17]. Each of
these classes evolved “ bottom-up” from specia -purpose util -
itiesinto reusabl e software components. Severa noteworthy
reusabl e classes include the following abstract data types:

e Bool Array: Earlier versions of gperf were instru-
mented with a run-time code profiler. The results showed
that gper f spent approximately 90 to 99 percent of itstime
in a single routine when performing the algorithm in Fig-
ure 2 on large input keyfiles that evoke many collisions.
Thisoneroutine, Gen_Per f : : af f ect s_pr evi ous, de-
termines how changes to associated val ues affect previously



hashed keywords. In particular, it identifies duplicate hash
values that occur during program execution.

Since this routine is caled so frequently, it is impor-
tant that it exhibits minimal execution overhead. gper f
employs a novel boolean array abstract data type caled
Bool _Arr ay to expedite this process. The C++ interface
for theBool _Array classisdepicted in Figure6. All class
data and member functions are declared with storage class
st ati c, since only one copy of Bool _Arr ay isrequired
(this reduces run-time overhead since no “t hi s” pointer is
passed during function calls).

Class member function Bool _Array: :in_set effi-
ciently detects duplicate keyword hash vaues for a given
associ ated val ues configuration, returningnon-zeroif avalue
is adready in the set and zero otherwise. Whenever a dupli-
cateisdetected, Bool _Array: : reset iscaledtoreset all
the array elements back to “empty” for ensuing iterations of
the search process.

If many hash collisionsoccur, Bool _Array: : reset is
executed frequently during the duplicate detection and eim-
ination process. Processing large keyfiles, eg., containing
more than 1,000 keywords, tendsto require amaximum hash
value k that is often much larger than », the total number of
keywords. Due to the large range, it becomes expensive to
explicitly reset all lementsinBool _Array: : ar r ay back
to empty, especially when the number of keywords actualy
checked for duplicate hash valuesis comparatively small.

To address thisissue, gper f usesatechnique called gen-
eration numbering, which optimizes the search process by
not explicitly reinitializingthe entirearray. Generation num-
bering operates as follows:

1. The class constructor dynamicaly alocates space
for k& unsigned short integers and points
Bool _Array: : array at the dlocated memory. All
k array elements in Bool _Array: : array are ini-
tialy assigned O (representing “empty”) and the
Bool _Array: : generati onnunber counter is
settol.

2. TheBool _Array: :in_set member functionisused
to detect duplicate keyword hash vaues. If the num-
ber stored at thephash( keywor d) index positionin
Bool _Array: : array isnot equa tothecurrent gen-
eration number, then that hash value is not already in
the set. In this case, the current generation number is
immediately assigned tothephash( keywor d) array
location, thereby marking it as aduplicateif it issubse-
quently referenced during this particul ar iteration of the
search process.

3. If Bool _Array: :array [ phash(keyword)] is
equa tothegeneration number, aduplicateexistsandthe
algorithm must try modifying certain associated values
to resolve the collision.

4. If aduplicateis detected, the Bool _Array: : array
elements are reset to empty for subsequent iterations of
the search process. Bool _Array: : reset simplyin-

cl ass Bool _Array

{

publi c:
/1 Allocate a k el ement dynam c array.
Bool _Array (int k);

/1 Returns dynamic nmenory to free store.
“Bool _Array (void);

/] Checks if ‘value’ is a duplicate.
int in_set (int value);

/!l Reinitializes all set elenments to FALSE.
voi d reset (void);

private:
/1 Current generation count.
u_short generation_nunber;

/1 Dynamically allocated storage buffer.
u_short *array;

/1 Length of dynamically allocated array.
int size;

h

Figure 6: Boolean Array Abstract Data Type

crements Bool _Array: : gener ati on_nunber by
1. Theentire k array locations are only reinitialized to
0 when the generation number exceeds the range of an
unsi gned short integer (thisoccursinfreguentlyin
practice).

A design principle employed throughout gper f 'simple-
mentation is “first determine a clean set of operations and
interfaces, then successively tune the implementation.” In
the case of generation numbering, this policy of optimiz-
ing performance, without compromising program clarity, de-
creased gper f 'sexecution-timeby an average of 25 percent
for large keyfiles, compared with the previous method that
explicitly “zeroed out” the entire boolean array’s contentson
every reset.

e Read_Buffer: Each line in gperf’'s input contains a
single keyword followed by any optional associated at-
tributes, ending with a newline character ('\ n’). The
Read_Buf f er: : r ead member function copies an arbi-
trarily long '\ n’-terminated string of characters from the
input into adynamically allocated buffer. A recursive auxil-
iary function, * Read_Buf f er: : r ec_r ead, insures only
onecall ismade to the free store allocator per input lineread,
i.e., thereisno need for reallocating and resizing buffers dy-
namically. This class has been incorporated into the GNU
libg++ stream library [17] and the ACE network program-
ming tookit [18].

e Hash_Table: This class provides a search set imple-
mented viadoublehashing [4]. During programinitialization
gper f usesaninstance of thisclassto detect keyfile entries
that are guaranteed to produce duplicate hash values. These
duplicates occur whenever keywords possess both identical
keysigsandidentical lengths, e.g., thedoubl e anddel et e
collision described in Section 4.1.2. Unless the user speci-



Input File Identifiers | Keywords Total
ET++.in 624,156 350,466 | 974,622
NI Hin 209,488 181,919 | 391,407
g++.in 278,319 88,169 | 366,488
idraw. in 146,881 74,744 | 221,625
cfront.in 98,335 51,235 | 149,570
libg++.in 69,375 50,656 | 120,031

Table 4: Total Identifiers and Keywords for Each Input File

fiesthat anear-perfect hash functionisdesired, attemptingto
generate a perfect hash function for keywordswith duplicate
keysigs and identicd lengthsis an exercisein futility!

5 Empirical Results

Tool-generated recognizers are useful from a software engi-
neering perspective, sincethey reduce development timeand
decrease the likelyhood of development errors. However,
they are not necessarily advantageous for production-quality
applications unless the resulting executable code speed is
competitivewith typica aternativeimplementations. Infact,
it has been argued that there are no circumstances where per-
fect hashing proves worthwhile, compared with other com-
mon static search set methods[19].

To compare the efficacy of the gper f -generated perfect
hash functions against other common static search set im-
plementations, seven test programs were devel oped and exe-
cuted onsix largeinputfiles. Each test program implemented
thesamefunction: arecognizer for the71 GNU g++ reserved
words. The function returns 1 if agiven input stringisiden-
tified as areserved word and O otherwise.

The seven test programs are described below. They are
listed by increasing order of execution time, as shownin Ta-
ble3. Theinput files used for the test programs are described
in Table 4. Table 5 shows the number of bytes for each
test program’s compiled object file, listed by increasing size
(both pat ri ci a. 0 and chash. o use dynamic memory,
so their overall memory usage depends upon the underlying
free store mechanism).

¢ trieexe: aprogram based upon an automatically gen-
erated table-driven search trie created by the trie-gen
utility included with the GNU libg++ distribution.

o flex.exe: af | ex-generated recognizer created with the
“-f’ (no table compaction) option. Note that both
the flex.exe and trie.exe are uncompacted, determinis-
tic finite automata (DFA)-based recognizers. Not using
compaction maximizes speed in the generated recog-
nizer, at the expense of much larger tables. For example,
theuncompacted f | ex. exe programisamost 5times
larger than the compacted conp- f | ex. exe program,
i.e, 117,808 bytes versus 24,416 bytes.

o gperf.exer agper f -generated recognizer created with
the'-a -D-S 1 -k 1,9 options. Theseoptions

Object Byte Count

File text data bss | dynamic total
control .o 88 0 0 0 88
bi nary. o 1,008 288 0 0 1,296
gperf.o 2,672 0 0 0 2,672
chash. o 1,608 304 8 1,704 3,624
patricia.o 3,936 0 0 2,272 6,208
comp-flex.o 7,920 56 | 16,440 0| 24416
trie.o 79,472 0 0 0 79,472
flex.o 3,264 | 98,104 | 16,440 0 | 117,808

Table 5: Size of Object Filesin Bytes

mean “generate ANSI C prototypes(* - a’ ), handledu-
plicate keywords (* - D' ), viaa single switch statement
(‘-S 1), and make the keysig be the first and last
character of each keyword.”

e chash.exe: adynamic chained hash tablelookup routine
similar to the one that recognizes reserved words for
AT&T'scfront 2.0 C++ compiler. The table's load
factor is0.39, thesame asitisincfront 2.0,i.e -

181
forchash. exe versus 72 for cf ront 2.0.

e patricia.exe: a PATRICIA trie recognizer, where PA-
TRICIA stands for “Practical Algorithm to Retrieve
Information Coded in Alphanumeric.” A complete
PATRICA trieimplementation is available in the GNU
libg++ class library distribution [17].

e binary.exe: acarefully coded binary search routinethat
minimizes the number of complete string comparisons.

e comp-flex.exe: af | ex-generated recognizer crested
with the default * - cemi options, providing the high-
est degree of table compression. Note the obvi-
ous time/space trade-off between the uncompacted
fl ex. exe (which is faster and larger) and the com-
pacted conp- f | ex. exe (which issmaler and much
slower).

In addition to these seven test programs, a simple C++
program called cont r ol . exe measures and controls for
I/O overhead, i.e.:
int main §voi d) {

char buf[ BUFSI Z] ;

whi | buf
Ipr?nt(?et(ﬁ‘yé",u )b)uf) ;

All of the above reserved word recognizer programs were
compiled by the GNU g++ 2.7.2 compiler with the * - O
-fstrength-reduce -finline-functions
- fdel ayed- branch’ options enabled. They were then
tested on an otherwiseidle SPARCstation 20 model 712 with
128 megabytes of RAM.

All six input files used for the tests contained a large
number of words, both user-defined identifiers and g++ re-
served words, organized with one word per line (this for-



Executable Input File

Program ET++.in NIH. in g++.in | idrawin | cfront.in | libg++.in
control.exe 38.8|1.00 | 15.4|1.00 | 15.2|1.00 89| 1.00 57| 1.00 45]1.00
trie.exe 59.1|152 | 238|154 | 238|156 | 13.7|153 8.6|1.50 70| 155
flex.exe 60.5| 155 | 239|155 | 239|157 | 138|155 89| 156 7.1|157
gperf.exe 646|166 | 26.0|1.68 | 251|165 | 146|164 9.7|1.70 77171
chash.exe 69.2|1.78 | 275|178 | 271|178 | 15.8]|1.77 10.1| 1.77 82182
patricia.exe 717|184 | 289|187 | 278|182 | 16.3|1.83 10.8| 1.89 87193
binary.exe 725|186 | 29.3|190 | 285|187 | 164|184 10.8| 1.89 8.8|1.95
comp-flex.exe || 80.1|2.06 | 31.0|201 | 326|214 | 182|204 11.6]2.03 92| 204

Table 3: Raw and Normalized CPU Processing Time

mate was automatically created by running the UNI X com-
mand“tr -cs A-Za-z_ '\ 012’ " onthe preprocessed
source code for several large C++ systems. These systems
included the ET++ windowing toolkit (ET++. i n), the NIH
class library (NI H. i n), the GNU g++ 2.7.2 C++ compiler
(g++. i n), the idraw figure drawing utility from the Inter-
Views 2.6 distribution (i dr aw. i n), the AT&T cfront 2.0
C++ compiler (cf ront . i n), and the GNU libg++ 2.8 C++
classlibrary (I i bg++. i n). Table4 showstherelativenum-
ber of identifiers and keywords for the test input files.

Table 3 depicts the amount of time each search set im-
plementation spent executing the test programs, listed by
increasing execution time. The first number in each col-
umn represents the user-time CPU seconds for each recog-
nizer. The second number is “normalized execution time,”
i.e, the ratio of user-time CPU seconds divided by the
control . exe program execution time. The normalized
execution time for each technique is very consistent across
the input test file suite, illustrating that the timing results are
representative for different source code inputs.

Several conclusions result from these empirical bench-
marks:

e Theuncompacted, DFA-basedtrie(t ri e. exe andflex
(f I ex. exe) implementations are both the fastest and
the largest implementations, illustrating the time/space
trade-off dichotomy. Applicationswhere savingtimeis
more important than conserving space may benefit from
these approaches.

e While the tri e. exe and fl ex. exe recognizers
alow programmers to trade-off space for time, the
gper f -generated perfect hash function gper f . exe
is comparatively time and space efficient. Empiri-
cal support for this claim may be calculated from the
data for the programs that did not alocate dynamic
memory, i.e, trie. exe, fl ex. exe, gperf. exe,
bi nary. exe, and conp-fl ex. exe. The num-
ber of identifiers scanned per second per byte of exe-
cutable program overhead was 5.6 for gper f . exe,
but less than 1.0 for tri e. exe, fl ex. exe, and
conp-fl ex. exe.

Sincegper f generates astand-alonerecognizer, it iseas-

10

ily incorporated into an otherwise hand-coded lexica ana-
lyzer, such as the ones found in the GNU C and GNU C++
compiler. It is more difficult, on the other hand, to partialy
integratef | ex orl ex intoalexica analyzer, sincethey are
generaly used in an “dl or nothing” fashion. Furthermore,
neither f | ex nor | ex are capable of generating recognizers
for the 15,400 line MEDLINE keyfileinput, because thesize
of the state machine istoo large for their internal DFA state
tables.

6 Limitations

6.1 Current Compromises

Severa other hash function generation agorithms utilize
some form of backtracking when searching for a perfect or
minimal perfect solution [5, 7, 8]. For example, Cichdli’s
algorithm recursively attempts to find an associated values
configuration that uniquely maps al n keywords to distinct
integers in the range 1..n. In his scheme, the agorithm
“backs up” if computing the current keyword's hash value
exceeds the minimal perfect table size constraint at any point
during program execution. Cichelli’s algorithm then pro-
ceeds by undoing selected hash table entries, reassigning
different associated val ues, and continuing to search for aso-
[ution. Unfortunately, the exponential growth rate associated
with the backtracking search process is simply too time con-
suming for large keyfiles, since even “intelligently-guided”
exhaustive search quickly becomesimpractical for morethan
several hundred keywords.

To simplify the agorithm in Figure 2, and to improve
average-case performance, gper f does not backtrack when
keyword hash collisions occur. gperf may process the
entire keyfileinput, therefore, without finding a unique asso-
ciated values configuration for every keyword, even if one
exists. If aunique configurationis not found, users have two
choices: (1) they may either rungper f again, enabling dif-
ferent optionsin search of aperfect hash function, or (2) they
may guarantee a solution by instructing gper f to generate
an near-perfect hash function.

Near-perfect hash functions permit gper f to operate on
keyword sets that it otherwise could not handle, e.g., if the



char *rw,
switch (phash (str, len)) {
case 46

rw = "del ete";

if (*str == *rw

&& !'stremp (str + 1, rw+ 1, len - 1))
return rw
rw = "doubl e";
if (*str == *rw
&& !'stremp (str + 1, rw+ 1, len - 1))
return rw
return O;
case 47:
rw = "default"; break;
case  49:
rw = "void"; break;
if (*str == *rw
&& !'strenp (str + 1, rw+ 1, len - 1))
return rw
return O;

Figure 7: The Near-Perfect Lookup Table Fragment

keyfile containsduplicatesor thereare avery large number of
keywords. Although the resulting hash function is no longer
“perfect,” it handles keyword membership queriesefficiently
since only a small number of duplicates usually remain (the
exact number depend on the keyword set and the command-
line options).

Both duplicate keyword entries and unresolved keyword
collisions are handled by generalizing the swi t ch-based
scheme described in Section 3. gper f treats duplicate key-
words as members of an equivalence class and generates
swi t ch statement code containing cascading i f - el se
comparisonswithinacase label to handle non-uniquekey-
word hash values.

For example, if gperf is run with the default keysig
selection command-lineoption‘ - k 1, $' onakeyfilecon-
taining C++ reserved words, a hash collision occurs between
the del et e and doubl e keywords, thereby preventing a
perfect hash function. Using the * - D' option produces a
near-perfect hash function, that allows at most one string
comparison for al keywords except doubl e, which is rec-
ognized after two comparisons. Figure 7 shows the relevant
fragment of the generated near-perfect hash function code.

A simplelinear search isperformed on duplicate keywords
that hash to the same location. Linear search is effective
since most keywords still require only one string compari-
son. Support for duplicate hash vaues is useful in severa
circumstances, such as large input keyfiles (e.g., dictionar-
ies), highly similar keyword sets (e.g., assembler instruction
mnemonics), and secondary keys. In the latter case, if the
primary keywordsare distinguishableonly viasecondary key
comparisons, the user may edit the generated code by hand
or via an automated script to completely disambiguate the
search key.

11

6.2 Enhancementsand Extensions

Fully automating the perfect hash function generation process
isgper f 's most significant unfinished extension. One ap-
proachistoreplacegper f 'scurrent al gorithmwithmoreex-
haustive approaches [8, 6]. Dueto gper f ’s object-oriented
program design, such modificationswill not disrupt the over-
all program structure. The perfect hash function generation
module, cl ass Gen_Per f , isindependent from other pro-
gram components, it represents only about 10 percent of
gper f 'soveral lines of source code.

A more comprehensive, albeit computationally expensive,
approach could switch over to a backtracking strategy when
theinitial, computationally |ess expensive, non-backtracking
first pass failsto generate a perfect hash function. For many
common uses, where the search sets are relatively small, the
programwill run successfully withoutincurring backtracking
overhead. In practice, the utility of these proposed modifica
tions remains an open question.

Another potentially worthwhile feature is enhancing
gper f toautomatically select the keyword index positions.
Thiswould assist users in generating time or space efficient
hash functions quickly and easily. Currently, the user must
use the default behavior or explicitly select these positions
via command-line arguments. Finaly, gper f 'soutput rou-
tines may be extended to generate code for other languages,
eg., Java, Smalltak, Module 3, Eiffd, etc.

7 Concluding Remarks

gper f wasoriginaly designed to automate the construction
of keyword recogni zersfor compilersandinterpreter reserved
wordsets. Thevariousfeaturesdescribedinthispaper enable
it to achieve its goal, as evidenced by its use in the GNU
compilers. In addition, gper f has also been used in the
following applications:

¢ A hashfunctionfor 15,400 “Medica Subject Headings’
used to index journa article citationsin MEDLINE, a
large bibliographic database of the biomedical literature
maintained by theNational Library of Medicine. Gener-
ating this hash function takes approximately 16 minutes
of CPU time on a16 MHz Sun 4/260.

e The GNU indent C code reformatting program, where
theinclusion of perfect hashing sped up the program by
an average of 10 percent.

¢ Hash functions for assembly mnemonics in the 80x86,
680x0, Z8000, and MIPS RISC instruction sets.

¢ A public domain program converting double precision
FORTRAN source code to/from single precision uses
gper f to modify subroutine names that depend on the
types of their arguments, e.g., replacing sgef a with
dgef ainthe LINPACK benchmark. Each name corre-
sponding to a subroutineis recognized viagper f and
substituted with the version for the appropriate preci-
sion.



e A gpeech synthesizer system, where there is a cache
between the synthesizer and a larger, disk-based dictio-
nary. A wordishashed usinggper f , andif thewordis
already inthe cacheitisnot looked upin thedictionary.

Since automatic static search set generators perform well in
practice and arewidely and freely available, thereseemslittle
incentiveto code keyword recognition functions by hand for
most applications.

gperf is distributed aong with the GNU libg++ li-
brary and the ACE network programming toolkit at

http://ww. cs.wist!.edu/~schm dt/ACE. htm .

The digtribution includes keyfiles for Ada, C, Pascal, C++,
Modula 2, and Modula 3 reserved keywords. A highly
portable, functionally equivalent K&R C version of gper f
isarchived in volume 20 of comp.sources.unix.

Acknowledgments

In addition to Keith Bostic, who initidly inspired gper f ,
specia thanks is extended to Michael Tiemann and Doug
Lea. Michadl wrote the GNU g++ compiler. Doug gave
me aforum in GNU libg++ to exhibit my creation; he also
commented on drafts of this paper. Adam de Boor and Nels
Olson contributed many insightsthat greatly helped improve
the quality and functiondity of gper f. Vern Paxson pro-
vided an efficient f | ex input specification file for the GNU
C++ keywords. Finaly, Rolf Ebert extended gper f to gen-
erate Ada code.

References

[1] M. Lesk and E. Schmidt, LEX - A Lexical Analyzer Genera-
tor. Bell Laboratories, Murray Hill, N.J., Unix Programmers
Manual ed.

S. Johnson, YACC - Yet another Compiler Compiler. Bell Lab-
oratories, Murray Hill, N.J., Unix Programmers Manual ed.

R. M. Stallman, Using and Porting GNU CC. Free Software
Foundation, GCC 2.7.2 ed.

D. E. Knuth, The Art of Computer Programming, vol. 1:
Searching and Sorting. Reading, MA: Addison Wesley, 1973.

C. R. Cook and R. R. Oldehoeft, “ A Letter Oriented Minimal
Perfect Hashing Function,” SSIGPLAN Notices, vol. 17, pp. 18—
27, Sept. 1982.

[6] A.TharpandM. Brain, “Using Triesto Eliminate Pattern Col-
lisionsin Perfect Hashing,” IEEE Transactionson Knowledge
and Data Engineering, vol. 6, no. 2, pp. 329-347,1994.

R. J. Cichelli, “Minimal Perfect Hash Functions Made Sim-
ple,” Communications of the ACM, vol. 21, no. 1, pp. 17-19,
1980.

M. Brainand A. Tharp, “ Near-perfect Hashing of Large Word
Sets,” Software — Practice and Experience, vol. 19, no. 10,
pp. 967978, 1989.

R. Sprugnoli, “Perfect hashing functions: A single probe re-
trieving method for static sets,” Communicationsof the ACM,
pp. 841-850, Nov. 1977.

[7]

(8]

(9]

12

[10] G. V. Cormack, R. Horspool, and M. Kaiserwerth, “Practical
Perfect Hashing,” Computer Journal, vol. 28, pp. 54-58, Jan.
1985.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heid,
H. Rohnert, and R. Tarjan, “Dynamic Perfect Hashing: Upper
and Lower Bounds,” SSAM Journal of Computing, vol. 23,
pp. 738-761, Aug. 1994.

G. Jaeschke, “ Reciprocal Hashing: A Method for Generating
Minimal Perfect Hashing Functions,” Communications of the
ACM, vol. 24, pp. 829-833, Dec. 1981.

[13] T. Sager, “A Polynomial Time Generator for Minimal Per-
fect Hash Functions,” Communications of the ACM, vol. 28,
pp. 523-532, Dec. 1985.

C. C. Chang, “A Scheme for Constructing Ordered Minimal
Perfect Hashing Functions,” Information Sciences, vol. 39,
pp. 187-195, 1986.

D. C. Schmidt, “ GPERF: A Perfect Hash Function Generator,”
in Proceedings of the 2"¢ C++ Conference, (San Francisco,
Cdlifornia), pp. 87-102, USENIX, April 1990.

Bjarne Stroustrup, The C++ Programming Language, 2"¢
Edition. Addison-Wesley, 1991.

D. Lea, “libg++, the GNU C++ Library,” in Proceedingsof the
1%* C++ Conference, (Denver, CO), pp. 243-256, USENIX,
Oct. 1988.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6'" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

J. Kegler, “A Polynomial Time Generator for Minimal Perfect
Hash Functions,” Communicationsof the ACM, val. 29, no. 6,
pp. 556-557, 1986.

[11]

[12]

[14]

[19]

[16]

[17]

(18]

[19]



