Transparently Parameterizing Synchronization
into a Concurrent Distributed Application

A Case Study of C++ Design Evolution

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis, 63130

Anearlier version of thispaper appeared inthe July/August
1994 issue of the C++ Report.

1 Introduction

Many useful C++ classes have evolved incrementally by
generalizing from solutionsto practica problems that arise
during system development. After the interface and imple-
mentation of a class have stabilized, however, thisiterative
process of class generalization is often de-emphasized. That
is unfortunate since a major barrier to entry for newcomers
to object-oriented design and C++ is (1) learning and inter-
nalizing the process of how to identify and describe classes
and objects and (2) understanding when and how to apply
(or not apply) C++ festures such as templates, inheritance,
dynamic binding, and overloading to simplify and generalize
their programs.

In an effort to capture the dynamics of C++ class de-
sign evolution, thefollowing articleillustratesthe process by
which object-oriented techniquesand C++ idiomswereincre-
mentally applied to solve arelatively small, yet surprisingly
subtle problem. This problem arose during the devel opment
of afamily of concurrent distributed applicationsthat execute
efficiently on uni-processor and multi-processor platforms.
This article focuses on the steps involved in generaizing
from existing code by using templates and overloading to
transparently parameterize synchronization mechanismsinto
a concurrent application. Some of the infrastructure code is
based on componentsinthefredy available ADAPTIVE Ser-
vice eXecutive (ASX) framework described in [1, 2, 3, 4, 5].

2 Motivation

The following C++ code illustrates part of the main event-
loop of atypical distributed application (such as an object
location broker [6] or amulti-threaded network file server):

Example 1

t ypedef unsigned | ong COUNTER
COUNTER request _count; // At file scope

void *

run_svc (void *)
Message_Bl ock *nb;

while (get_next_request (nmb) > 0) {
/'l Keep track of nunber of requests
request _count ++;

/1 ldentify request and
/] perform service processing here...

}

return O;

This code waits for messages to arrive from clients,
dequeues the messages from a message queue using
get _next _r equest , and performs some type of process-
ing (e.g., database query, file update, etc.) depending on the
type of message that is received.

This code worksfineaslong asr un_svc runsinasingle
thread of control. However, incorrect results will occur on
many multi-processor platformswhen r un_svc isexecuted
simultaneously by multiplethreads of control runningon dif-
ferent CPUs. The problem here is that the auto-increment
operation onthe global variabler equest _count contains
arace condition where different threads may increment ob-
solete versions of ther equest _count variable stored in
their per-CPU data caches.

The remainder of this Section illustratesthis phenomenon
by executing the following C++ code example on a shared
memory multi-processor running the SUnOS 5.x operating
system. SunOS5.x isaversionof UNIX that allowsmultiple
threads of control to execute in paralel on a shared memory
multi-processor [7]. Thiscodeisagreatly simplified version
of the original distributed application.

/1 Manage a group of threads atonically
Thr _Manager thr_nanager;

t ypedef unsigned | ong COUNTER
COUNTER request _count; // At file scope

void *
run_svc (int iterations)

Thr_Cntl t (& hr_nanager);

for (int i =0; i <iterations; i++)

request _count++; // Count # of requests

return t.exit ((void *) i);

}

int
main (int argc, char *argv[])

int n_threads =

argc > 1 ? atoi (argv[1]) : 4
int n_iterations =

argc > 2 ? atoi (argv[2]) 1000000;
/1 Divide iterations evenly anong threads
int iterations = n_iterations / n_threads;

/1 Spawn off N threads to run in parallel
t hr _manager. spawn_n (n_threads, & un_svc,
(void *) iterations,

THR_BOUND | THR_SUSPENDED);

/] Start executing all the threads together
thr_manager.resume_all ();

/] Wait for all the threads to exit
thr _manager.wait ();

" iterations\n"
request _count”

cout << n_iterations <<
<< request_count <<
<< endl ;

return O;

}

Thr _Manager isaclass from the ASX framework. It con-
tains a set of mechanisms for managing groups of threads
that collaborate to implement collective actions (such as a
pool of threads that render different portions of alarge im-
age in pardld). The Thr _Manager : : spawn_n method
cregtes n new threads of control. In the SunOS imple-
mentation of Thr _Manager, the spawn_n method calls
the t hr _cr eat e thread library routine to create a new
thread. In this example, each newly created thread will
execute the function r un_svc, which iterates 2=ilerations
times. Each thread is spawned using the THR.BOUND
and THR.SUSPENDED flags. THRBOUND indicates to
the SunOS thread run-time library that each thread may
run in parallel on a separate CPU in a multi-processor
system. The THR.SUSPENDED flag crestes each thread
in the “suspended” state, which ensures that dl threads
are completely initialized before starting the tests with
Thr _Manager: : resune.al | .

The Thr _Manager : : wai t method blocks the execu-
tion of the main thread until al the threads that are run-
ning run_svc have exited. When dl the other threads
have exited, the main thread prints out the total number of
i terations andthefina valueof r equest _count .

Compiling this code into an executable a. out file and
runningit on 1 thread for 10,000,000 iterations produces the
following:

% a. out 1 10000000
10000000 iterations
10000000 request _count

However, when executed on 4 threads for 10,000,000 itera-
tionson a4 CPU machine, the program prints:

% a.out 4 10000000
10000000 iterations
5000000 request _count

Clearly, something is wrong since the value of the global
variable r equest _count isonly one-haf the total num-
ber of iterations! The problem here is that auto-increments
onvariabler equest _count arenot being seriadized prop-
erly. In particular, r un_svc will produce incorrect results
when executed in parallel on shared memory multi-processor
platformsthat do not provide strong sequential order cache
consistency models. To enhance performance, many shared
memory multi-processors employ “weakly-ordered” cache
consistency semantics. For example, the SPARC V.8 and
V.9 multi-processor family provides both total store order
and partial store order memory cache consistency seman-
tics. With total store order semantics, reading a variable that
is being accessed by threads on different CPUs may not be
seridlized with simultaneous writes to the same variable by
threadson other CPUs. Likewise, with partial store order se-
mantics, writes may aso not be serialized with other writes.
In either case, expressions that require more than a single
load and store of a memory location (such as f oo++ or i
= i — 10) may produce inconsistent results due to cache
latencies across CPUs. To ensure that reads and writes of
variables shared between threads are updated correctly, pro-
grammers must manually enforce the order that changes to
these variables become globally visible.

A common technique for enforcing a strong sequential
order on a total store order or partial store order shared
memory multi-processor is to protect the increment of the
request _count variable by using some type of synchro-
ni zation mechanism, such as a mutex (short for “mutual ex-
clusion”) [8]. Mutexes are used to protect the integrity of a
shared resource that may be accessed concurrently by mul-
tiple threads of control. A mutex serializes the execution of
multiplethreads by defining acritical section where only one
thread executesits code at atime.

One of the smplest and most efficient types of mu-
tual exclusion mechanisms is a non-recursive mutex (this
and other types of mutexes are discussed further in Sec-
tion 4). SunOS 5.x implements non-recursive mutexes via
thenmut ex_t datatype and its corresponding mut ex_| ock
and mut ex_unl ock functions. On SunOS 5., a thread
may enter a critical section by invoking the mut ex_| ock
functiononanut ex_t variable. A cal to thisfunction will
block until thethread that currently ownsthelock has|eft the
critical section. To leave a critical section, athread invokes
the nut ex_unl ock function on the same nmut ex_t vari-
able. Calling mut ex_unl ock enablesanother thread that is
blocked on the mutex to enter the critical section.

On SunOS 5.x, operations on mutex variables are imple-
mented via adaptive spin-locksthat ensure mutual exclusion
by using an atomic hardware instruction. An adaptive spin-
lock operates by polling a designated memory location using

the atomic hardware instruction until (1) the value at thislo-
cation is changed by the thread that currently owns the lock
(signifying that the lock has been released by the previous
owner and may now be acquired) or (2) the thread that is
holding the lock goes to sleep (at which point the thread that
isspinning also goesto sleep to avoid needlesspolling). Ona
multi-processor, the system overhead incurred by a spin-lock
is relatively minor since polling affects only the loca CPU
cache of the thread that is spinning. A spin-lock isasimple
and efficient synchronization mechanism for certain types of
short-lived resource contention such asauto-incrementing the
global r equest _count variableillustrated in the example
above.

Thefollowing codeillustrateshow SunOS mutex variables
may beused to sol vetheauto-increment serialization problem
we observed earlier withr equest _count :

Example 2

t ypedef unsigned | ong COUNTER

COUNTER request _count; // At file scope

mutex_t m // mutex protecting request_count
/1 initialized to zero...

void *
run_svc (void *)
{

Thr_Cntl t (& hr_nmanager);

for (int i =0; i <.iterations; i++) {
mut ex_| ock (&);
request _count++; // Count # of requests
mut ex_unl ock (&m;

}

return t.exit ((void *) i);

Although it solves the origina synchronization problem,
this approach is somewhat inelegant and error-prone since
(2) it mixes C functionswith C++ objects, (2) it leaves open
the possibility that the programmer will forget to initialize
the mutex variable,! or (3) forget to call mut ex_unl ock,
and (4) it requires obtrusive changes to the code (in alarger
system, managing these types of changes becomes a serious
mai ntenance headache...).

3 C++ Solutions

C++ offers a number of language features that may be em-
ployed to solve the serialization problem more elegantly.
This section illustrates a progression of C++ solutions, each
one building upon insights from prior design iterations. As
you read the exampl es, you might consider the point at which
you would be satisfied with the solution and not contemplate
any further enhancements.

1In SunOS 5.x, a zero'd mut ex_t variable is considered to be implic-
itly initialized. However, other systems (such as Windows NT) do not
make these guarantees, and all synchronization objects must be initialized
explicitly.

3.1 An Initial C++ Solution

A somewhat more elegant solutionto the original problemis
to encapsulate theexisting SunOS mut ex t operationswith
a C++ wrapper, as follows:

cl ass Mitex

{
public:
Mitex (void) {
mutex_init (& his->lock, USYNC THREAD, 0);

}
“Mutex (void) {
mut ex_destroy (&t his->l ock);

int acquire (void) {
return nutex_| ock (& his->lock);

int release (void) {
return nmutex_unl ock (& his->lock);

}

private:
// SunCS 5.x serialization nmechanism
mut ex_t | ock;

};

One advantage of defining aC++ wrapper interface to mutual
exclusion mechanisms is that our code now becomes more
portable across OS platforms. For example, the following
codeisan implementation of the Mutex classinterface based
on mechanisms in the Windows NT WIN32 API [9]:

cl ass Mitex

{
public:
Mitex (void) {
InitializeCritical Section (& his->lock);

}
“Mutex (void) {
DeleteCritical Section (& his->lock);

int acquire (void) {
EnterCritical Section (& his->lock);
return O;

int release (void) {
LeaveCritical Section (& his->lock);
return O;

}

private:
/] Wn32 serialization nmechani sm
CRI TI CAL_SECTI ON | ock;

};

The use of the Mutex C++ wrapper class cleans up the
original code somewhat and ensures that initialization occurs
automatically when aMut ex object is defined, as shown in
the code fragment bel ow:

Example 3

t ypedef unsigned | ong COUNTER
COUNTER request _count; // At file scope

Mt ex m // mutex protecting request_count
void *

run_svc (void *)

{

Thr_Cntl t (& hr_nmanager);

for (int i =0; i <iterations; i++) {
m acquire ();
request _count++; // Count # of requests
mrel ease ();

}

return t.exit ((void *) i);

}

However, the C++ wrapper approach doesnot solvethe prob-
lem of forgetting to release the mutex (which still requires
manua intervention by programmers) and it still requires
obtrusive changes to the original source code.

3.2 Another C++ Solution

A straight-forward way to ensure the lock will bereleased is
to leverage off the semantics of C++ class constructors and
destructorsto automate the acquisition and rel ease of amutex
by supplying the following hel per class for class Mut ex:

class Quard

{
publi c:
Quard (Mutex &m: lock (m {
this->lock.acquire ();

}
“@uard (void) {

this->l ock.rel ease ();
}

private:
Mut ex &l ock;

}

The Guar d class defines a“block” of code over which a
Mut ex isacquired and then automatically rel eased when the
block is exited. It employs a C++ idiom (described in [10])
that uses the constructor of aCGuar d classto acquirethelock
on the Mut ex object automatically when an object of the
classiscreated. Likewise, the Guar d class destructor auto-
matically unlocksthe Mut ex object when the object goesout
of scope. By defining thel ock data member as areference
to a Mut ex object, we avoid the overhead of creating and
destroying an underlying SunOS nut ex_t variable every
timethe constructor and destructor of aGuar d are executed.

By making a slight change to the code, we now guarantee
that aMut ex isautomatically acquired and rel eased:

Example4

void *
run_svc (void *)

Thr_Cntl t (& hr_nmanager);

for (int i =0; i <iterations; i++) {

/1 Automatically acquire the nutex
Quard nmonitor (n);

request _count ++;

/1 Automatically rel ease the nutex

/1 Remai nder of service processing omtted

}

return t.exit ((void *) i);

}

However, thissolution still has not fixed the problem with
obtrusive changes to the code. Moreover, adding the extra
"{" and '}’ curly brace delimiter block around the Guar d is
inelegant and error-prone since a maintenance programmer
might misunderstand the importance of the curly braces and
remove them, yielding the following erroneous code:

for (int i =0; i <iterations; i++) {
Quard nonitor (n);
request _count ++;
/1 Remai nder of service processing omtted

}

Unfortunately, this “curly-brace elision” has the side-effect
of diminating all concurrent execution within the system by
seridizing the main event-loop. Therefore, if computations
may execute in parallel within that section of code, they will
be serialized unnecessarily.

3.3 Yet Another C++ Solution

To solve the remaining problems in a transparent, unobtru-
sive, and efficient manner requires the use of two additional
C++features: parameterized typesand operator overloading.
We may use these features to provide a template class called
At oni ¢_Op, aportion of which is shown below:

tenpl ate <class TYPE>
class Atonic_Op

{

public:
Atomc_Op (void) { this->count = 0; }
Atomic_Op (TYPE c) { this->count =c; }

TYPE operator++ (void) {
Quard m (this->l ock);
return ++thi s->count;
}
TYPE operator== (const TYPE i) {
Quard m (this->l ock);
return this->count == i;
}
voi d operator= (const Atomc_Op &ao) {
/1 Check for identify to avoid deadl ock!
if (this !'= &o)
Quard m (this->l ock);
t hi s->count = ao.count;
}

}
operator TYPE () {

Quard m (this->l ock);
return this->count;

}

/1 Qther arithnetic operations omtted...

private:
Mut ex | ock;
TYPE count;
}

The At omi ¢_Op class transparently redefines the normal
arithmetic operations (such as ++, - -, +=, etc.) on built-
in data types to make these operations work atomicaly. In
genera, any class that defines the basic arithmetic operators
will work with the At oni ¢_Op class due to the “deferred
instantiation” semantics of C++ templates.

Sincethe At om ¢_QOp classusesthe mutual exclusion fea-
tures of the Mut ex class, arithmetic operations on objects of
instantiated At omi ¢_Op classes now work correctly on a
multi-processor. Moreover, C++ features such as templates
and operator overloading allow thistechniqueto work trans-
parently on a multi-processor. In addition, all the method
operations in At onmi ¢_Op are defined as inline functions.
Therefore, a highly optimizing C++ compiler should be able
to generate code that ensures the run-time performance of
thisapproach is no grester than using the mut ex_| ock and
mut ex_unl ock function calls directly.

Using the At om ¢_Op class, we can now write the fol-
lowing code, which is aimost identical to the original non-
thread safe code (in fact, only the typedef of COUNTER has
changed):

Example5

typedef Atom c_Op <unsigned |ong> COUNTER
COUNTER request_count; // At file scope

void *
run_svc (void *)

Thr_Cntl t (& hr_nmanager);

for (int i =0; i <iterations; i++) {
/1 Actually calls Atom c_QOp:: operator++()
request _count ++;

}

return t.exit ((void *) i);

}

By combining the C++ constructor/destructor idiom for
acquiring and releasing the Mut ex automatically, together
with the use of templatesand overloading, we have produced
asimple, yet expressive parameterized class abstraction that
operates correctly and atomicaly on an infinite family of
types that require atomic operations. For example, to pro-
vide the same thread-safe functionality for other arithmetic
types we simply instantiate new objects of the At oni ¢_Op
template class as follows:

At om ¢c_Op <doubl e> at om c_doubl €;
At om ¢c_Op <Conpl ex> at om c_conpl ex;

4 Extending Atomic_Op by Parameter-
izing the Type of Mutual Exclusion
M echanism

Although the design of the At oni ¢_Op and Guar d classes
described above yielded correct and transparently thread-
safe programs, there is still room for improvement. In par-
ticular, note that the type of the Mut ex data member is
hard-coded into the At o ¢_Qp class. Since templates are
available in C++, this design decision represents an unnec-
essary restriction that is easily overcome by parameterizing
Guar d and adding another type parameter to the template
class At om ¢_QOp, asfollows:

tenpl ate <class MJTEX>
class Quard

/1 Basically the same as before...

private:
MUTEX &l ock; // new data menber change
b

tenpl ate <class MJTEX, class TYPE>
class Atomc_QOp

TYPE operator++ (void) {
Quar d<MJTEX> m ('t hi s->l ock);
return ++thi s->count;

}
11

private:
TYPE count;
MJUTEX | ock; // new data nenber

}s

Using this new class, we can make the following simple
change at the beginning of thefile:

typedef Atom c_Qp <Miutex, unsigned |ong> COUNTER

COUNTER request _count; // At file scope
/1l ... sane as before

Before making this change, however, it is worthwhile to
analyze the reasons why using templates to parameterize the
type of mutual exclusion mechanism used by a program is
beneficidl. After al, just because templates exist does not
necessarily make them useful in al circumstances. In fact,
parameterizing and generalizing the problem space viatem-
plates without clear and sufficient reasons may increase the
difficulty of understanding and reusing a class.

One motivation for parameterizing the type of mutua ex-
clusion mechanism is to increase portability across OS plat-
forms. Templates decouple theformal parameter class name
“MUTEX" from the actual name of the class used to provide
mutual exclusion. Thisis useful for platforms that already
usethesymbol Mut ex to denote an existing typeor function.
By usingtemplates, the At orri ¢ _Op class sourcecodewould
not require any changes when porting to such platforms.

However, a more interesting motivation arises from the
observation that there are actually severa different flavors of
mutex semantics one might want to use (either in the same
program or across a family of related programs). Each of
these mutual exclusion flavors share the same basic protocol
(i.e., acqui r e/r el ease), but they possess different seri-
alization and performance properties. Five flavors of mutual
exclusion mechanisms that | have found useful in practice
are described below.

¢ Non-Recursive Mutexes: Non-recursive mutexes pro-
vide an efficient form of mutua exclusion. They define a
critical section in which only asinglethread may execute at
atime. They are non-recursivesincethethread that currently
owns a mutex may not reacquire the mutex without releas-
ing it first. Otherwise, deadlock will occur immediately.
SunOS 5.x provides support for non-recursive mutexes via
itsmut ex_t type. The ASX framework providesthe Mut ex
C++ wrapper shown above to encapsulate the mut ex_t se-
mantics.

o ReadergWriter Mutexes. Readers/writer mutexes help
to improve performance for situations where an object pro-
tected by the mutex isread far more often than it is written.
Multiple threads may acquire the mutex simultaneoudy for
reading, but only one thread may acquire the mutex for writ-
ing. SUNOS 5.x provides support for readers/writer mutexes
viaitsr Wl ock_t type. The ASX framework providesa C++
wrapper called RAMUt ex that encapsulates ther wl ock_t
semantics.

¢ Recursive Mutexes. Recursive mutexesare asimpleex-
tension to non-recursive mutexes. A recursive mutex allows
calstoacqui r e tobenested aslong asthethread that owns
the Mut ex isthe one that re-acquiresit. For example, if an
At oni ¢_Op counter is called by multiple nested function
calls within the same thread, a recursive mutex will prevent
deadlock from occurring.

Recursive mutexes are particularly useful for callback-
driven C++ frameworks [11, 3, 4], where the framework
event-loop performsacallback to arbitrary user-defined code.
Sincethe user-defined code may subseguently re-enter frame-
work code viaa method entry point, recursive mutexes may
be necessary to prevent deadlock from occurring on locks
held within the framework during the callback. The mutua
exclusion mechanisms in the Windows NT WIN32 subsys-
tem provide recursive mutex semantics.

Thefollowing C++ classimplementsrecursivemutexesfor
SunOS 5.x, whose native mutex mechanisms do not provide
recursive mutex semantics:?

cl ass Recursive_Mitex

{
publi c:
/1 Initialize a recursive nutex.
Recursive_Mitex (const char *nane
void *arg

/Il Implicitly release a recursive nutex.

2Notethat POSIX Pthreadsand Win32 providerecursivemutexesin their
native thread libraries.

“Recursive_Mitex (void);

/1 Explicitly release a recursive nutex.
int renmove (void);

/1 Acquire a recursive mutex (will increnent
/1 the nesting | evel and not deadnutex if

/1 owner of the nutex calls this nmethod nore
/1 than once).

int acquire (void) const;

/1 Conditionally acquire a recursive nutex
/1 (i.e., won't block).
int try_acquire (void) const;

/'l Releases a recursive mutex (wll not
/1 release nutex until nesting |level == 0).
int rel ease (void) const;

thread_t get_thread_id (void);

// Return the id of the thread that currently
/1 owns the nutex.

int get_nesting_level (void);

/| Return the nesting level of the recursion.

/| When a thread has acquired the mutex for the
/| first time, the nesting | evel ==

/ level is increnented every tine the thread
| acquires the nmutex recursively.

private:
voi d set_nesting_level (int d);
void set_thread_id (thread_t t);

Miut ex nesting_nutex_;
/] Cuards the state of the nesting |evel
/1 and thread id.

Condi ti on<Mut ex> | ock_avai |l abl e_;

/1 This is the condition variable that actually
/'l suspends other waiting threads until the

/1 nutex is avail able.

int nesting_level_;
/1 Current nesting level of the recursion.

thread_t owner_id_;
/1 Current owner of the |ock.

}s

The following code illustrates the implementation of the
methodsinthe Recur si ve Mit ex class:

Recur si ve_Mit ex: : Recur si ve_Mit ex
(const char *nane, void *arQg)
nesting_|level _ (0),
owner _id_ (0),
nesting_rutex (nanme, arg),
| ock_avail abl e_ (nesting_nutex_, nane, arg)

{
}
Il Acquire a recursive lock (will increnent
/1 the nesting |l evel and not deadl ock if
/1 owner of lock calls nmethod nore than once).
int
Recur si ve_Mut ex: : acquire (void) const

thread_t t_id = Thread::self ();

Guar d<Mut ex> non (nesting_nutex_);

/1 1f there's no contention, just

/1 grab the |l ock inmmediately.

if (nesting_level_ == 0)

set _thread_id (t_id);
nesting_level _ = 1;

/1 1f we already own the I ock,
/1 then increnent the nesting |evel

The nesting

/1 and proceed.

else if (t_id == owner_id_)
nesting_| evel _++;
el se

{
/1 Wit until the nesting |evel
Il zero,
while (nesting_level _ > 0)
lock_available_.wait ();

has dropped to

set _thread_id (t_id);
nesting_level _ = 1;
}

return O;

/'l Rel eases a recursive |ock.

int
Recursive_Mitex::rel ease (void) const

thread_t t_id = Thread::self ();

/1 Automatically acquire nutex.
Guar d<Mut ex> non (nesting_nutex_);

nesting_| evel _--;

if (nesting_level_ == 0)
// Informwaiters that the lock is free.
| ock_avail abl e_. signal ();

return O;

}

e Intra-Process vs. Inter-Process Mutexes. To opti-
mize performance, many operating systems provide differ-
ent mutex mechanisms for seridizing (1) threads that ex-
ecute within the same process (i.e., intra-process seridiza
tion) vs. (2) threads that execute in separate processes
(i.e., inter-process seridization). For example, in Windows
NT, the Criti cal Secti on operations define a mutua
exclusion mechanism that is optimized to seridize threads
within a single process. In contrast, the Windows NT mu-
tex operations (e.g., Cr eat eMut ex) define amore general,
though less efficient, mechanism that allows threads in sep-
arate processes to seridize their actions. In SunOS 5., the
USYNC_THREAD flag to the mut ex_i ni t function cre-
ates a mutex that is vaid only within a single processes,
whereas the USY NC_PROCESS flag creates a mutex that is
valid in multiple processes. By combining C++ wrappers
and templates, we can create a highly-portable, platform-
independent mutual exclusion class interface that does not
impose arbitrary syntactic constraints on our use of different
synchronization mechanisms.

e TheNull Mutex: There are aso cases where mutual ex-
clusionissimply not needed (e.g., we may know that apartic-
ular program or service will always run in asingle thread of
control and/or will not contend with other threads for access
to shared resources). In this casg, it is useful to parame-
terize the At omi ¢_Op class with a “Nul | _-Mut ex.” The
Nul I -Mut ex class in the ASX framework implements the
acqui re and r el ease methods as “no-op” inline func-
tions that may be removed completely by a compiler opti-
mizer.

Often, selecting a mutual exclusion mechanism with the
appropriatesemantics depends on the contextinwhichaclass

at whi ch point we can acquire the | ock.

isbeing used. For instance, consider the following methods
in a C++ search structure container class that maps exter-
nal identifiers (such as network port numbers) onto interna
identifiers (such as pointersto control blocks):

tenpl ate <class EX_I D,
cl ass Map_Manager

{
public:
int bind (EXID ex_id,
Quar d<MUTEX> noni t or
/1

}

int unbind (EX_ID ex_id) {
Quar d<MJTEX> noni tor (this->lock);
/1

}

int find (EX.ID ex_id,
Quar d<MUTEX> noni t or

const INID *in_id) {
(this->lock);

INID & n_id) {
(this->lock);

if (this->locate_entry (ex_id, in_id)
/* ex_id is successfully |located */
return O;
el se
return -1;
}

private:
MUTEX | ock;
/1

}

Oneadvantageto thisapproachisthat theMut ex lock will be
released regardless of which execution path exits a method.
Forexample, t hi s- >I ock isreleased properly if either arm
of thei f / el se statement returns from the f i nd method.
In addition, this “constructor as resource acquisition” idiom
also properly releasesthelock if an exceptionisraised during
processing in the definition of the | ocat e_ent ry helper
method. The reason for thisis that the C++ exception han-
dling mechanism isdesigned to call al necessary destructors
upon exit from a block inwhich an exception isthrown. Note
that had wewrittenthedefinitionof f i nd usingexplicit calls
to acquire and release the MUt ex, i.e.

int find (EXID ex_id, INID &n_id) {
t his->l ock.acquire ();

if (this->locate_entry (ex_id, in_id) {
/* ex_id is successfully |ocated */
this->l ock.rel ease ();
return O;

el se {
t hi s->l ock.rel ease ();
return -1;

}
}

that not only would the fi nd method logic have been
more contorted, but there would be no guarantee that

class IN_ID, class MJTEX>

t hi s- >l ock was released if an exception was thrown in
thel ocat e_ent r y method.

The type of MUTEX that the Map_Manager template
classisinstantiated with dependsupon the particular structure
of paradlelism in the program code when it is used. For
example, in some situationsit is useful to be ableto declare:

t ypedef Map_Manager <Addr, TCB, Mitex>
MAP_MANACER;

and have @l calsto fi nd, bi nd, and unbi nd automeati-
caly seridized. In other situations, it is useful to turn off
synchronization without touching any existing library code
by using the Nul | _Mut ex class:

t ypedef Map_Manager <Addr, TCB, Null_Muitex>
MAP_MANACER;

Inyet another situation, it may be the case that callstof i nd
arefar more frequent than bi nd or unbi nd. Inthiscase, it
may make sense to use the Readers/Writer Mutex:

typedef Map_Manager <Addr, TCB, RW Mitex>
MAP_MANACER;

By using templates to parameterize the type of locking, little
or no application code must change to accommodate new
synchronization semantics.

5 Discussion

| frequently encounter several questionswhen discussing the
use of templatesinthe At omi ¢ _Op class. Thefirstis“what
istherun-time performance penalty for al the added abstrac-
tion?’ The second is“aren’t you obscuring the synchroniza-
tion properties of the program by using templates and over-
loading?’ The third question is “instead of templates, why
not use inheritance and dynamic binding to emphasize uni-
form mutex interface and to share common code?’ Severd
of these questions are related and I'll discuss my responses
in this section.

The primary reason why templates are used for the
At oni ¢_Op class involve efficiency. Once expanded by
an optimizing C++ compiler during template instantiation,
the additional amount of run-time overhead is minimal. In
contrast, inheritance and dynamic binding often incur more
overhead at run-timeinorder to dispatch virtual method calls.

Figure 1 illustrates the performance exhibited by the mu-
tual exclusion techniques used in Examples 2 through 5
above? This figure depicts the number of seconds required
to process 10 million iterations, divided into 2.5 million it-
erations per-thread. The test examples were compiled using
the - O4 optimization level of the Sun C++ 3.0.1 compiler.
Each test was executed 10 times on an otherwiseidle4 CPU

SExample 1 is the original erroneous implementation that did not use
any mutual exclusion operations. Althoughit operatesextremely efficiently
(approximately 0.09 seconds to process 10,000,000 iterations), it produces
results that are totally incorrect!

©
o

~N
o O

o

o
Ll

w ~ O O
o O
i |

Number of Seconds

N
o
Ll

=
o
Ll

o
i

2 3 4 5
Example
Figure 1: Number of Seconds Required to Process
10,000,000 Iterations

| Example | usecs per operation | Ratio ||

Ex. 2 2.76 1

Ex. 3 2.35 0.85
Ex. 4 4.24 154
Ex. 5 3.39 1.29

Table 1: Seriaization Time for Different Examples

Sun SPARCserver 690MP. The results were averaged to re-
duce the amount of spurious variation (which proved to be
insignificant).

Example 2 uses the SunOS nut ex_t functions directly.
Example 3 usesthe C++ Mut ex classwrapper interface. Sur-
prisingly, thisimplementation consistently performed better
than Example 2, which used direct cdls to the underly-
ing SunOS mutex functions. Example 4 uses the Guar d
helper class inside of a nested curly brace block to ensure
that the Mut ex is automatically released. This version re-
quired the most timeto execute. Finally, Example 5 usesthe
At o ¢ _Op template class, which is only dightly less effi-
cient than using the SunOS mutex functions directly. More
aggressively optimizing C++ compilers would likely reduce
the amount of variation in the results.

Table 1 indicates the number of micro-seconds (usecs)
incurred by each mutual exclusion operation for Examples
2 through 5. Recall that each iteration requires 2 mutex
operations(i.e., oneto acquirethelock and oneto release the
lock). Example 2 isused as the base-line value since it uses
the underlying SunOS primitives directly. The third column
of Examples 3 through 5 are normalized by dividing their
valuesby Example 2.

An argument | have heard against using templates to pa-
rameterize synchronizationisthat it hides the mutua exclu-
sion semantics of the program. However, whether thisis a
problem or not dependson how one believesthat concurrency
and synchronization should beintegrated into aprogram. For
class libraries that contain basic building-block components
(suchastheMap_Manager described above), allowing syn-

chronization semantics to be parameterized is often desirable
sincethis enables devel opersto precisely control and specify
the concurrency semanticsthat they want. Theaternativesto
thisstrategy are (1) don't use classlibrariesif multi-threading
is used (which obvioudly limits functionadity), (2) do dl the
locking outside the library (which may be inefficient or un-
safe), or (3) hard-code the locking strategy into the library
implementation (which is also inflexible and potentialy in-
efficient). All these dternatives are antithetical to principles
of reuse in object-oriented software systems.

An appropriate synchronization strategy for designing a
class library depends on several factors. For example, cer-
tain library users may welcome simple interfaces that hide
concurrency control mechanisms from view. In contrast,
other library users may be willing to accept more compli-
cated interfacesin return for additional control and increased
efficiency. A layered approach to class library design may
be quite useful to satisfy both groups of library users. In
such an approach, thelowest layers of the classlibrary would
export most or al of the parameterized types as template
arguments. The higher layers would provide reasonable de-
fault type values and provide an easier-to-use application
developer’s programming interface.

The new “default template argument” feature recently
adopted by the ANSI C++ committee will facilitate the de-
velopment of class librariesthat satisfy both types of library
users. This feature allows library devel opers to specify rea-
sonable default types as arguments to template class and
function definitions. For example, the following modifice-
tion to template class At oni ¢_Op provides it with typical
default template arguments:

tenpl ate <class MJTEX = Mit ex,
class TYPE = unsigned | ong>
class Atom c_Op

/] Same as before

}s
/11

#if defined (MI_SAFE)

// default is Mutex and unsigned |ong
Atom c_Op request_count;

#else /* don’t serialize */

At om ¢c_Op<Nul | _Mut ex> request_count;
#endif /* MI_SAFE */

Due to the complexity that arises from incorporating con-
currency into applications, I' ve found the C++ template fea-
ture to be quite useful for reducing redundant development
effort. However, as with any other language festure, it is
possible to misuse templates and needlessly complicate a
system’s design and implementation. Currently, the heuris-
tic | use to decide when to parameterize based on typesis
to keep track of when I’m about to duplicate existing code
by only modifying the data types it uses. If | can think of
another not-too-far-fetched scenario that would require me
to make yet athird version that only differs according to the

typesinvolved, | typically generalize my original code to use
templ ates.

6 Concluding Remarks

Theexampl e described inthispaper was derived from amuch
larger distributed application that runson a high-performance
shared memory multi-processor. The At omi ¢_Op class
and Mut ex-related classes are some of the components
available in the ADAPTIVE Communication Environment
(ACE), which is a freely available object-oriented toolkit
designed to simplify the development of distributed ap-

plications on shared memory multi-processor platforms
[12]. ACE may be obtained via anonymous ftp from
ics.uci.edu in the file gnu/ C++_wr appers.tar. Z and
ghu/ C++.w apper s_doc. t ar. Z. Thisdistributioncon-

tains complete source code and documentation for the C++

components and examples described in thisarticle. Compo-
nents in ACE have been ported to both UNIX and Windows
NT and are currently being used in a number of commercial

productsincludingthe AT& T Q.port ATM signaling software
product, the Ericsson EOS family of PBX monitoring appli-
cations, and the network management portion of theMotorola
Iridium mobile communications system.

References

[1] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[2] D.C.Schmidtand P. Stephenson,“ An Object-Oriented Frame-
work for Developing Network Server Daemons,” in Proceed-
ingsof the2™® C++ World Conference, (Dallas, Texas), SIGS,
Oct. 1993.

[3] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

[4] D. C. Schmidt, “ The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX 1/O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

[5] D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[6] Object Management Group, The Common Object Reguest Bro-
ker: Architectureand Specification, 1.2 ed., 1993.

[7] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[8] A. D. Birrell, “An Introduction to Programming with
Threads,” Tech. Rep. SRC-035, Digital Equipment Corpo-
ration, January 1989.

[9] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[10] G.BoochandM. Vilot, “ Simplifying the Booch Components,”
C++ Report, vol. 5, June 1993.
[11] M. A. Linton and P. R. Calder, “The Design and Implemen-

tation of InterViews,” in Proceedings of the USENIX C++
Workshop, November 1987.

[12] D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: An Object-Oriented Network Programming Toolkit for
Developing Communication Software,” in Proceedingsof the
12" Annual Sun Users Group Conference, (San Jose, CA),
pp. 214225, SUG, Dec. 1993.

10

