“orbix

stributed object technology

The Orbix"~ Architecture

IONA Technologies Ltd.
August 1993

Summary

An Object Request Broker (ORB) mediates betwaggplications - includinglistributed ones.
This documenfresents thalesign goals and philosophy that lead IONA Technologies to
produce the object request brok@rbix. A few simple programming examplage given,
together with some performance measures.

The introduction discusses the needs for ORBs and the indusatjves thatarosefrom that
need - culminating ithe OMG CORBAspecifications. This is significabecause Orbix is a
full and complete implementation of CORBA.

ARCH.DOC

Table of Contents:

What is OMG's CORBA SPeCifiCatiON?............uuuiiieiiiiiiiiieeeeeeiiiie e e 3
Technical Goals for a CORBA Implementation..............cccccoeiiiiiiiiiiiiiinieeceeeiinn 4
(@4 o] b QN o 11 (=T ox (1 PP 6

Orbix Architecture - The Communication Layer:cccccoeeeeeeiiimmmmm e, 7

Orbix Architecture - The RUNTIME ..o 8

Orbix Architecture - SMart ProXi€Suueiiiiiiiieeeieeeeie e 9

Orbix Architecture - Filteringccooiiiiiiiiiii e 10

Orbix Architecture - The Object Fault Handlerccccvviiiieeeeeeeeniinnen, 11

Orbix Architecture - Object Naming and the Location Service........................ 13

Orbix Architecture - The IDL Compiler and Interface Repositary.................... 14
Writing an OrbiX APPICALION.........uuiieeiiiiiie e 16

Writing an Orbix Application - The Server..........cccccviiiiiiiiiiiiiiiis 17

Writing an Orbix Application - The Dynamic Invocation Interfaceccc...... 17
MEASUIEIMENLES. ... ettt ettt ettt et e et e e e e e e e e e s e et e e e ea e enneeenns 18
(O] 3T 11153 o] o - 7P 19
GIOSSANY. ..ttt e e 20
] (=] 1] 1ot 20

info@iona.ie Page 2

What is OMG's CORBA Specification?

The problem ofigh level applicatiorinterworking and construction isell recognised by
industry. Microsoft, in particular, h&sdtheway with itsOLE technology as eeans for
interworking applications at a hightavel than byte streams. SunSoft's Tooltalk, &
Publish & Subscribe,and Hewlett-Packard's SoftBench ameamples ofsimilarly inspired
approaches. However each of thesechanisms, includingdLE, is proprietary.
Recognisingthe urgent requirement for a standardhigh level applicatiorinterworking,
including across mitiple platforms and network architectures, ndustry has formed a
consensusia the Object Manageme@roup (OMG)and in particular th€ommon Object
Request Broker Architecture (CORBA) specification.

The OMG is the primary industrial body for the promotion of the standardisation and adoption
of object technology. The OMG was formedAipril 1989 byAmerican Airlines, Canon,
DataGeneral, GoldHill, Hewlett Packard,Philips, Prime, Soft-Switch, Sun,Unisys and
3-COM. AT&T joinedtwo months later, followed by Digital adCR in March 1990. By
Januaryl1993, membership hadeached over 296ompanies, includinfor examplelBM,
Borland and Microsoft.

In October 1991, OMG announced its adoption of GI@RBA specification. Thérmal
announcement brouglibgether six submitting companies - Digital, Hewlett Packard,
HyperDesk, NCR , Object Design argunSoft. CORB/Aspecifies a messaging facility for
a distributed object environment: naechanisnfor a number of objects to have a standard
way of invokingthe services of each other. The specification comptiseschief parts - an
Interface Definition Language, and a Dynamic Invocation InterfaBeth are provided in the
context of an Object Request By (ORB) - afundamental service to enable messaging
between objects in centralised or distributed systems.

The InterfaceDefinition Languag€IDL) structures objects sihat, when combined with an

API for accessing objects at run time, applicatiares constructeavith prior knowledge of

the kinds of objects with which they will interwork at runtime. For this reason, this approach
is sometimes called the "static" approach.

The Dynamiclnvocation Interfac€DIl), emerging fromboth HyperDesk an®igital, does
not present a new language - such as IDiut instead an API that can balled from C. In
return for explicitly building messages and argument listaratime, the dynamicAPI allows
decisions to be made mudater than the static approachrhis is attractive for certain
applications, such as browsers and resource managemshichm insufficient information
about services is available at compile time. THisadvantage is that the API is more
complex to use than the static approach.

info@iona.ie Page 3

Technical Goals for a CORBA Implementation

IONA Technologies Ltd. started trading in March 1991. The Company was fqmnmetily

as a result of experience gained from participation in vaf€sBRIT projectsduring the

period 1985-91, all of which had to a greater or lesser extent encompassed object technology.
When the OMG published the CORBA specificatio®ictober 1991, IONAealised that the
experimental and prototyping lessons from the ESPRIT participation could be ls#d &n
implementation of CORBA.

When designing Orbix, wevere very conscious othe original goals ofthe designers of
UNIX: lightweight, elegant, and easy to use.meeting thesaims, wefocused orbuilding
a “low cost” ORBwhich provided theessential distributed object paradigrilowever, we
were also keen tallow the object requeshechanism to bepen, so thaOrbix application
programmers could intercept a request at various stages of processitiys ay many
ORB extensions and tailoring could be performedhegyprogrammer.This combination of a
simple and reusable ORB implementation would affier bestcombination offlexibility and
performance.

Performance was considered an esseasipect otbeing "lightweight". Similar to adatabase,

an ORB is a generiengineuponwhich various applicationarebuilt. If users or programmers
believe thatthe ORB is a performance bottleneck, thi#ey wil consider alternatives in
coupling their applications together.

Flexibility and elegancare equally vitalconcerns. Consider the databasalogy again: a
database is a generic engine, and is purchased in binary form. Since its usethake
access to its soura@mde, the database must provaigficient "hooks" toallow customers to
tailor and extend theystem wherappropriate: database triggaechanismsre anexample.
An ORB faces asimilar challenge irmeetingthe demands of a wide variety of application
requirements.

The third theme was ease of use. CORBaIf helps: its emphasis on language technology
and the objegbaradigmare keystones imaking distribution simple tase and reuseCORBA
itself however isnot thateasy tounderstand. Ituilding Orbix wewanted to remaifaithful to
CORBA, but also tanake CORBA more palatable to programme@rbix makes it possible
for programmers to build and integrate applications with relative ease.

We felt it was important to havefall implementation othe CORBAspecification, including

both the static andynamicinvocation interfaces. Although perhaps we would Haaen

able to build apartial implementatiormore quickly, wefully expected ourcustomers to
require thelexibility of both of the invocation interfaces. We further wanted to eribate

all of the CORBA specification was faithfully implemented in Orbikkowever this should not

- and did not - restrict us from adding certain value-added services and extensions to make the
product simple to use.

The currentversion ofthe CORBAspecification -v1.1 - isitself specified interms of a C
language binding. lour view, this binding is cumbersona@dnot particularly easy tase.
We therefore made agarly commitment taC++, the language of choice of object oriented
programmers. Using C++ also gave agportunities to makehe dynamic invocation

info@iona.ie Page 4

interface a little moreiserfriendly. AlthoughOMG had yet to provide a C+happing for
CORBA, webelieved that itwould be reasonably obviou®w such abinding could be
derived, based on theready published C mapping. the spring 0of 1993, the OMG
formally invited proposals for a C+mapping: Hewlett-Packard and SunSoft, NEC, and
IONA independently mposed threealmost identical mappings whiclwere subsequently
merged.

We were keen toecall our goodand bad experiences froour ESPRITparticipation in
designing andmplementingdistributed object systems. Onetbe key lessons learnt was
that it is essential to allow server programmeranantain close control over howheir
services are represented to clients. One example might be to cache state fromoatseyver
its clients, and seignificantly improveperformance by reducing tmmber ofremotecalls.
Another key lesson was that it lsghly beneficial ifprogrammers can transparently insert
applicationcode intoinvocation paths - foexamplefor debugging, auditing, or encryption
purposes. Yet turther conclusion was that it is desirable to be able, at different times, to
bind the same objectsogether into thesameprocess address space, atiernativelyacross a
network in different machines, without having to recode eitherclients or object
implementations. A couple of negative lessons we recalled, waddttattransparent
distributed garbage collection and transparent persisteaechanismsre highly challenging

to achieve.

Although inspired by theriginal themegor UNIX, and as reflected in theame Orbix itself,
Orbix however isnot intended to be an environment soléy UNIX. Forexample, Orbix
will shortly be available oMicrosoft's NT platform, and on Windovs1 towards thend of
1993.

info@iona.ie Page 5

Orbix Architecture

The CORBA specification igelatively free ofarchitectural stipulations. An ORB mediates
between clients and implementatioft$ application objects). The ORB must provide a
specified interface to such clients, ambther to sucimplementations. In CORBA, the
interface specified for object implementations is not as rigorously specified as it is for clients.

What, in practice, is the ORB? CORRWKes notspecify whether it is a set afuntime
libraries, a set of daemon processes, a server machine, or part of an operating system: it can
in principle be any of these.

Orbix is fundamentally implemented as a pair of librariese forclient applications, and for
servers - and an activation daemaorbixd . The clientlibrary provides a subset of the
serverlibrary: while the servellibrary can bothissue and receiveemote object operation
requests, thelient librarycanonly initiatesuch requests.Orbixd needonly bepresent at
server nodes, and iissponsibldor (re-)launching server processgamically agequired,
in accordance with the various activation policies described in the CORBA specification.

Where is theOrbix ORB ? Because of itBbrary implementation, the Orbix ORB is
conceptually omnipresent: there is no distinct compownéiith one canidentify and state

that thisone component encapsulates the entire ORB. There is no central component
throughwhich all object requests must pass: instead object requests are giassiy from

the client code to the invoked object implementation.

The role oforbixd is somewhasimilar to the well-known UNIX inetd daemon. We
unfortunately couldnot easily make use of inetd itself,since the CORBA spafication
identifies several different ways in whidbject implementations can betivated. Resolving
which activationmode is appropriate omhich occasion requires extra sophisticatlmeyond
that offered by inetd. Orbixd uses a siple database, thenplementation Repository, to
obtain activation informatioffor its objectimplementations:for each suchmplementation,
the information includes the appropriate CORBA activation modenaime ofthe associated
executable image and any command line parameters.

In addition to theorbixd , client and server libraries,Orbix also consists of an IDL
compiler, Interface Repository and various utilities. Te compiler is primarily gpart of

the developmengnvironment, and used to translate IDL descriptions into stub code to aid
remote operations. However the IRbmpiler can also be a runtinnemponent, as is
explained inthe next section. The Interface Repository (IR) i©apix applicationwhich
allowsotherapplications to determirthe interface properties of objects at runtintée IR is
specified inthe CORBA document. Thatilities are used t@implify the management of the
Implementation Repository.

Finally, athird library is provided - currently calledbbth " - which can beused as an
alternative to thelient and server libraries. Bglinking the client and serveparts of an
application withthe both library, the entireapplication can be collocated and run asngle

(e.g. UNIX) process. Sudmwllocation can aidhe development of aapplication by easing
debugging, but also shows haBORBA facilities can be usedwvithin a non-distributed
application to aid large scale application development.

info@iona.ie Page 6

The entireOrbix system is itself implemented @++ (and has been compiled with several
compilers includingATT cfront 2.1and 3.0 compatibleUNIX compilers, gnu G++2.3.3,
and Microsoft C7).

The remainder of this document explains the components of figure 1.

Naming
Object Services ()

anterface Repository >
Application
Object

Implementation Repository
L. T
oo | oo T) (iy
IDL Stubs |] Dynamic |nvocati0n |nterface I j BaSiC Object Adaptor i i
Orbix Runtime I]
Orbix Communication Layer I j

POSIX Environment (SUN, HP and Windows NT)
figure 1: Orbix Architecture

IDL Compiler

Orbix Architecture - The Communication Layer:

This layer provideshe essentiatransportfacilities. Inthe Orbix source code, thkayer is
implemented primarily byour classes: MediaAccess , Network , RequestSender
andRequestReceiver

MediaAccess and Network aretwo alstract classes. The defautiplementation of
these classes us@€P/IP and XDR encodingtogetherwith a sinple messagingrotocol.

Alternative implementations dhese classedor example touse a differentransport stack)
are possible.

RequestSender and Receiver implement messaging obbject requestsusing
MediaAccess andNetwork . Currently theyare both concretelasses andely on the

info@iona.ie Page 7

UNIX selectsystem cal(or equivalent functionality). Both are present in th@rbix server
library, while the client library only has the Sender class.

Orbix Architecture - The Runtime

The Runtimeamplementgshe CORBAclient APIs(e.g. thedynamicinvocation interfaceDIl)
and server APIge.qg. thebasicobject adaptor BOA). lalsoimplementsthe functionality
required by themessagingstub code produced by the IDtompiler from IDL source
descriptions.

The fundamental classes the runtime are the Request and Object classes. The
interfaces toboth classesare available to Orbix applicatioprogrammersvia the CORBA
module. Programmers who choose to use the CORBA static invoc#oiace need not
however be particularlaware of theséwo classes, sincthe generated stub codrgely
insulates such programmers.

TheRequest class implementthe Request interface defined ithe CORBAspecification.

It is a part of the DIl,and in Orbix is alsamsed by generated stub cod®rbix extends the
DIl as specified by CORBA, with a stream based intedace When presentedwith
arguments to an invocation, tRequest class internallchecks whether these dpeing
delivered as a part of the DIl or from thimticallygenerated stubs. Dédrguments are passed
into a Named-Value listNVList) and theimmarshallingdeferred untiRequest::invoke

is called. Static arguments are marshalled directly.

The Object class implementthe Object interface defined ithe CORBAspecification.
In effect, an instance dhe Object class hashe fundamental information necessary to
communicate with @mote object. Fozach IDL interface @ampiled withthe IDL compiler,
there is a corresponding generated (e.g. Glags: we sometimes call this HDL class.
TheObject class is the ultimate baselass of all IDL classes.

In addition to thesewo fundamental classes, clasgpeCode andany implement their
corresponding CORBA specifications. Althoughy and TypeCode only receiveshort
descriptions in the CORBApecifications, their implementation is complex and comprises a
major part of theruntimesource code. Aalue ofany is fundamentally mapped - in C or
C++, to avoid* - thatis, essentially any valuehatsoever,including arbitrarily complex
structured data. In order tdentify the specific kind of value aany actually has at runtime,
eachany value is alsotaggedwith type information. The type information turn is
interpreted byTypeCode (and can be generated frahre IDL compiler). Marshalling an

any value can involve deep recursion, based on runtime interpretation of the type code tag.

Apart from these four classes, aothers, which implement interfaces laidown in the
CORBA specifications, the runtime includes classes specific ttee Orbix implementation.
During execution, theuntime builds &proxy", or "surrogate" for each remote object used

IThe set ofile descriptors used ithis select aravailable to Orbix application programmexsd can, for
example, be merged with other descriptors used in stifesystems - for example X windowsd its main
event loop.

2|t also implements the standard DIl interface.

3In C++, the virtual base class.

info@iona.ie Page 8

by thelocal process. Each such proxy is iastance of an IDL class. the IDL class is
unavailable to the local process - because theitirface was unknown #tetime thelocal
process wasuilt, and thughere is no IDL stub codavailable -then the proxy isnstead
made an instance of cla@bject .

The runtimemaintains a table odll proxies, and ohll implementations ofDL interfaces
(these forexampleoccur in servers),which in the Orbix source code igalled the Object
Table (OT). There is one such table per process context (e.g. per UNIX process).

Orbix Architecture - Smart Proxies

The default action of the generated stubs of eachdBss is to marshalhe request and to
forward it on to the remote object. These stubs are the methods of the proxy aieesits:
that each proxy is an instance of an IDL class.

An Orbix programmer cahowever change this default. Using inheritantee generated

stub codecan be overridden in a new derived class: furthermdine,original (generated)

code which implementsthe remote operations @vailable by calling uphe inheritance
hierarchy. Orbix also provides a mechanism such that when a new proxy must be constructed
for a particular IDL interface at runtimethe proxy can instead bmade from a specified
derived class of the corresponding IDL class.

In fact, for aspecificIDL class, there can lseveral alternative derived classes. When any
particular new proxy must be constructed, theasses can collaborate &greewhich of
them is responsibléor this particular construction, based tre identity of the specific
remote object for which the proxy is about to be built.

Smart proxy support for aparticular IDL interface istypically provided by a server
programmer, whavishes tocontrol thebehaviour of her servewhich is presented to its
clients in theirprocess contexts. Smart progypport istypically transparent to a®rbix
client programmer.

The most common use for smart proxies is when a server programshes to allow her
clients to cachstatefrom the server, so as improve performance and reduttes number
of remotecalls. It should benoted thatwhile the Orbix client library cannotreceive
unsolicited incomingequests(which distinguishes it fronthe Orbix serverlibrary) it can
nevertheless receive incomingquests “call-backs" - from a server witwhich it has earlier
corresponded. Serveall-backs can be used mwtify a smart proxy cache of a change of
state at its associated server.

Smart proxies can have several other uses, for example:

. Serverrebinding, wherdghe proxy can be rebound to an alternative remote
server when the original server fails

info@iona.ie Page 9

. Breakpoints, when debugging and trace code can be executed.

. Type conversion of IDL types to non-IDL types, &le converting IDL
sequences into conventional linked lists, when migrating legacy applications
onto CORBA.

Orbix Architecture - Filtering

Orbix does notdirectly implementvarious functions sometimes required in distributed
environments: foexample, itdoes noiimplementauthentication, encryption, auditing, a
threads environment, nor atomic transactions or two-phase commitment. One motivation for
this was to keephe implementatiorflexible and light-weight: we felt it importantot to

insist that every Orbix installation must be configurethmsame way. For example, some
sitesmay require authentication and sommay not. Furthermore, sommay becontent to

use the Kerberos package as Ilasisfor authentication, wilst othersmay insist on even
stronger requirements.

In a sense, Orbix is @RB and nothing more. Welt it important tokeep itsfunctionality
orthogonal andomplementary t@ther software infrastructure packagé&shis also provides
third party developers with an opportunity to add value-added services to the basic substrate.

Smart proxies allowthe behaviour of remote representatives of objects to be extended and
modified. Smart proxies could conceivably be used as a way of introducing functionality such
as Kerberos into Orbix: a proxy class would have to be provateelveryIDL class, and

each and every smart proxy class would have tginen such gpport. Clearly itwould be
preferable to have a mechanism twas independent adll the IDL and proxyclasses.
Furthermore, proxy classese normally associated with clients amibt serves: a package

such as Kerberos requires support on both sides of a communication channel.

The Orbix runtime allows Orbix programmers to supfilyering code in bothclients and

servers. Filters are instances of filter classes, which in turn are delaseds ofhe abstract
classFilter provided by Orbix. Filterare formed in dinked list: that is, an arbitrary
number of filters may be installed.

Fundamentally, filtersare applied when aroperation request oreply is about to be
transmitted from grocess context, andhen such aequest oreply is received. The
default action (inherited from claBdter), in each case, is to iy pass the event on to
the nextfilter in thechain. Having grocessed an event, fikler canchoose to suppress the
event fromthe remaining filters inthe chain. Thechief parameter to eachiter event is the
current request, from which the targetobject and operatiomame can be determined.
Further parameters catill be marshalled intgor from, as appropriate) the current request
by thefilter, usingthe stream-based DIl: faxample, an authenticatidoken might be
marshalled into the request at the time it is about to leave the process context.

info@iona.ie Page 10

Coupling with a threads package isspecial case othe filter mechanism. Orbix is not
delivered integrated with a threads package, because we envisaged that some applications
may not wish to use threads all, andfor those that do themnay beseveral possibilities
including SunOs Iwp, Solaris 2.2 threads and Microsoft NT threads. A filter can however be
written to catchall incomingrequests into a process context and dispatch each on a new
thread. The creating thread returinem the filter, with the request evenapparently
suppressed: the new thread continues with the regajgslyingthe remaining filters (if any)

in the filter chain, and then calling the target object.

As described abovdiltering is aper-processevel mechanismand applies (transparently) to

all requests and replies leaving and entering a process context. We have also seen how smart
proxies can transparently mediate clissquests. Orbix provides asecond form ofiltering

which complements smart proxies and operates within servers.

Per-objectfiltering is a mechanisnfor providing afilter chain attached to apecific object
instance (within a serve Thechain camoperateindependently obther server objects. A
per-objectfilter chain is appliedafter the per-procedster chain, inthe case of amcoming
request, and before the per-process chain when the reply (if any) to that request is formed.

A further distinction fromper-processiltering is that atthe time aper-objectfilter chain is
applied, the actual paramete(g any) to the specificoperationhave been unmarshalled and
areavailable tothefilter code. Thdilter code ineffect is thus anothemplementation of the
IDL interface associated witthe targetobject: thefilter codehas methods for each of the
IDL operations for the target objectOnce again, a filter carthoose to suppress the event,
and so a per-objeétter might choose not tass the request through totasgetobject and
instead, perhaps, generate an exception.

Per-objecfiltering can havesimilar uses to smart proxiesncluding assistance in debugging,
auditing, and legacy applications.However a further use is to l@ble to transparently
propagate a server event acrossaddlection of objects, where such a collection can
transparently change. A "move" operation agraphical object described IBL could, for
example, be notified to set of attachedraphical objects, so th#te entire aggregate is
moved in unison.

Orbix Architecture - The Object Fault Handler

Orbix does not have any direpport forhandlingpersistent objects - that is, objects whose
statecan be saved an@storedfrom non-volatile staage. Some of the ION£am in fact
have had very considerable experiencéuiding distributed and persistent object systems,
based orour earlierwork in variouseSPRIT project@andother research. Howevewhen
building Orbix and in keeping with our themes of simplicity, flexibility and elegance, we were
convinced that it would be unwise to ship Orbix with a tighttypled persisterstore, which

could adversely affect performance aabt. Inaddition, no single approach or persistent
store would be likely to suit all applications.

info@iona.ie Page 11

Coupling a persisterstore -whether it be flafile based, an rdbms or an oodbms elesarly
nevertheless an important requirementrf@ny applications. The fundamenslipport for
this isthe abstractlassLoaderClass in theOrbix runtime. Instances abaderClass

- loaders - are formed inlamked list. Whenever a neabject (described in IDL) ibuilt and
registered with Orbix,the loaders areotified. A server programmer can also choose to
name a newobject (using a character string) and th&ne - if any - isalso passed to the
loaders togetheawith theidentity ofthe object's IDL interface. Theame given tdhe object

is called its marker nameThe loaders must be coded so thay agreewhich loader is
responsibldor which object. Typically there is a single loader, or one loader for a particular
set of IDL interfaces. The loader responsibde the new object can choose @adopt the
proposed object name (if any) or generate a name for the object. A generatexigisinbe,

for example, a relational key which will be later used as a basis for storing the object.

Alternatively, a specific loader can be nominated when an object is registered with Orbix: for
example, a class may be written so @lhof constructors ensure that teeme loader is used
for all of its instances.

The loaders armotified whenthe server process exits, and can choosaufefully store the
state of the objects favhich theyareresponsible. A loader can also chooseriaterally
save the state of an object prior to process exit.

When anoperation request is received into a server, the loadersoéfied if the Orbix
runtime cannot locatthe targetbject - i.e. théarget is notyet registered in th®T. The
targetobject's name is alspassed to the loaders, so that thsponsible loader can be
identified and so that ihay attempt to restore thebject'sstate from persistent storage. |If
the targetobject issuccessfullyretrieved, the OT is updated and the operation request
(transparently) resumed - the "object fault" has been successfully handled.taty#tebject
cannot be retrieved, or no loader recognises the oljpactie, then an exception is returned
back to the client.

The actual translation of thlatile state of aspecificobject into and from its persistestate
is nothandled by Orbix. We felt that this was more properly a confcgrtools associated
with a particulaistoragemanager, rather than the ORBelf. We certainly didhot wish to
constrain the way in which this is done, by forcing the usage of a specific store.

The default implementation dfoaderClass - the defaultLoader - names its objects
using simple increasing numeric values. détes not attempt teave objects tstore, and
ignores object faults.

Orbix Architecture - Object Naming and the Location Service

In Orbix, an object is named by concatenating hostname ofthe node awhich it was
created, with the name ofthe servewhich created it, and theame whichthe object has
within that server - its marker name, as previously explained.

The name of aserver is by default theame name as that of DL interface which it
implements. For example, if we have a server implementation of an intedatted bank ,

info@iona.ie Page 12

then the server by default will also be calhk . However it is quite common for tisame
server toimplement severalDL interfaces: our bank servemight also contain code to
implementIDL interfaces for bankaccount objects, bank statementsthe bank manager,
and soon. Inthis case, itnay bepossible tachoose the serve&ame by identifying anaster
interface whichabstracts théunctionality whichthe entire server provides, awé which all
objects managed e server are obtained. Fobanking application,the interface to the
bank itself may be such a master interface.

Finally, aservername can be chosen which is independeranyfparticular IDL interface.
Forexample, we couldhoosefinancialRepository as thename ofour bank server,
eventhough there is no IDL interface with thaame inthe application. Serverames can
also be hierarchically structured, similar to UNIX file names.

The name choselffior a server issignificant because it is registered in th@plementation
Repository, and used lyrbixd to identify the executabldile which should beused to
activate the server. Tlsame executablide can be registered under several senames;
i.e. different servers can use the same executable image.

When a clienprogramwishes touse a particular named service at runtime, it must instruct
Orbix to bindthe client to a suitablserver. Onavay to do this idor the client to provide
Orbix with a character string which represents a full Orbix object referencemehlganism is
prescribed by the CORBApecification. Thesource of such a character string is not
prescribed: it could be found infiée, or indeedtranscribed from an electroniail or fax
message!

Alternatively, in Orbix, a client cabind to a specifiservername at a particuldrost. The
servername must bene of the servemamesregistered in thémplementation Repository at
that host - forexample, bank or financialRepository as above. Thelient can go
further, and attempt tbind to a specific nameabject at that server, gs/en bytheobject's
marker name. Itheclientdoes nospecify atargetmarker name, then Orbbindsthe client

to anyobjectwithin the servemhich provides an interface compatible with that expected by
the server.

The most general form of a client bind is when the client identifies a sebutaiot aspecific
hostwhich canprovide that service. The service is named by a server naere: ormore
host¢ may recognise that server name, based t@ information in their respective
Implementation Repositories. In this c&ix must "searchthe network, looking for
suitable hosts.

Such a search is managedtbg location medmism, implemented ithe Orbix runtime by

the abstractlasslocatorClass . This class is called with a service nafas a character
string) and is expected to returnlist of host names at whicltthe service appears to be
present. ThéocatorClass is usually used transparently to application code.

The default implementation ¢dcatorClass uses a configuratiofile at eachhost: this
registers knowledge abowtich hosts, and groups of hostsan providespecific services.
Each configurationfile can contain a pointer to anothbost to which queries can be

4In fact, the orbixd daemons running at those hosts.

info@iona.ie Page 13

forwarded if theinformation required isot found in the currentile. The number of hops
used to consult these configuration files is bounded.

The default implementation can coburse be overruled bgroviding a derived class of
locatorClass and registering an instance of this neesatorwith Orbix. An alternative

implementation mightor exampleuse a directory service which the mapping from service
names to groups of hosts had been registered.

If the location service identifies that several hosts can provide the target service, Orbix selects
anyone of these hosts at randoRandomisinghe selectiorhelps tospread serveoading
when multiple clients are using the same service.

Orbix Architecture - The IDL Compiler and Interface Repository

The IDL compiler is internallystructured so as tmaintain a cleaseparation between the
front-end parsing and analysis, and the back-end interpretation of the parsed IDlfilssurce
Three different back-ends have so far been written:plsinegeneration of theriginal IDL
sourcefrom the parse tree; stub code generatiorCfof; and generation of information for
the Interface Repository.

The clean separation betwe&ont-end and back-end has possibenmercial as well as
technical benefits. W#ought itpossible thabther partiesnay wish tohave access to an
IDL compiler inorder to dotheir own interpretation of IDL soura@de. In the standard
Orbix product the headdiles definingthe internal compiler interfaceare notdocumented
and shipped. However, principle theycould begiven tointerested customers, together
with the source code for the simple IDL regeneration back-end.

At about thetime that we hadhe first version ofthe IDL compiler completed, SunSoft
placed a version of theawn IDL compiler effectively intdhe public domain. At thastage,

we were committed t@wur own develpment, and saw no particular reason to change.
Naturally however weare keen to ensure thatur compiler remains aligned to the
specification of IDL and with SunSoft's compiler.

The IDL compiler is shipped in Orbix asfall executable for the stub generation. However
during our design of Orbix, wewere also concerneabout thecomplexity ofthe CORBA
Interface Repository specification ameere keen tosimplify its implementation as much as
possible. Clearly, parsing tdL sourcefiles should directly or indirectly havilne side effect

of providing the information required by the IR.

We considered how the IDtompiler could be integrated intbe IR usingthe objectfault

handler mechanism described earlier. Thatis, the IR should be built as a normal Orbix object
server. It should use the objdeult handler todetect an attempteithvocations on(IR)

objects as yet unknown to it. To resolve these object faults, it could use tleertipilerat
runtimeto parse the appropriate IDL sourdes and generate the objects useirnally by

the IR.

info@iona.ie Page 14

As a result the IR does not use a persistent objent forits information: rather IDL source
codefiles are ineffectthe persistenstore for the IR. Anmmediate benefitvas the use of
standardutilities - in UNIX, such asmacs and RCS - tgpdate and provideersion control
on the IR information.

A consequence of th#esign however was thtte IDL compiler(front-end, and at least one
back-end) would have to be runtime callabbele. Theamajor issue here was to enstinat
whenthe compiler wascalled at runtime, ndynamicallyallocated memoryas leaked as a
result of parsing. The compiler (and its cpp-ligee-processorhas been engineered
accordingly, making extensive use of the Purify tool to ensure leak-free operatiowleexs
has the remainder of the Orbix system.

One concern regarding runtime parsing of I8durcefiles might bethe delay in handling an
object faultwhile the IDL compiler was called. The compilerdgnamically linked into the
IR application and isot called as &eparate process, so at least theli#lesoverhead on its
activation. However, the IR can also be instructed to pre-ppes#fiedIDL sourcefiles,
and so avoid object faults on IDL interfacehkich are known in advance to m®mmonly
used.

A second concern regarding runtime parsing has te=rirtual memory requirements of the
IR. Forlong-running systems, in whiaghanyIDL interfaces need to be known tie IR,
there is gossibility that memorysage by the IRhaygrow. We haveget to experiencéhat

so far by thdR, butmayneed to introduce mechanism intdhe IR code so thahemory
usage can be monitored and so that less recently used interfaces registered (i.ewglarsed)
the IR are forgotten: if they are needed again, they will have to be reparsed.

Writing an Orbix Application

Given anIDL object description, it igpossible togenerateall the necessary code tmarshall
and unmarshatll the parameterahich must be passed with an object invocation. The IDL
stubs are automatically generated by the IDL compiler.

Consider the following IDL:

// 1DL
interface foo {

string op1(in long X, inout float y, out string z);
I3

The IDL compiler will generate the appropriate codentarshallthe parameters on tlodient
side, transmit the request to the server, dispatch it toaimect objecand send the results of
the invocation back to the client.

info@iona.ie Page 15

To the client programmer this is very natural to invoke from C++:

/I C++

char *result;
long X;

float y;

char *z;
fooRef myFoo;

/I bind myFoo (see below)
myFoo = foo::_bind ();

/I use myFoo
result = myFoo->opl(x, y, z);

In this case,myFoo was bound t@nyfoo server running somewhere tre network(using
the location service).

More elaborate binding can be done, and exception handling can be included:

Il C++
TRY {
// bind to object 16716 at the Fred server on host qwerty
myFoo = foo::_bind ("16716:Fred","qwerty", IT_X);
/[use myFoo
result = myFoo->opl(x, y, z, IT_X);
}
CATCHANY {
cout << "Unexpected exception " << IT_X << end|;
}
ENDTRY

The TRY, CATCHANYandENDTRYmacros are provided to assist exceptimgmnagement
pendingthe widespreadvailability of C++ exceptionhandling inC++ compilers. The
variablelT_X is defined bythe TRY macro and iincludes exception information (which can
be displayed on astream usingoperator<<).

Writing an Orbix Application - The Server

For a server programmaeagtoviding an implementation dhe example interface is agauery
natural:

Il C++
class foo_impl : public fooBOAImpl {
public:
virtual char* op1(long x, float& y, char&* z,
CORBA::Environment &env
=CORBA::default_environment);
J¥

The classfooBOAImpl is produced by the IDLcompiler for interfacefoo, and is
responsiblefor arranging for theunmarshalling ofthe bar operation. Note thextra

info@iona.ie Page 16

(defaulted) trailing argumenthich corresponds to the optional exception argument for the
client.

A server programmer can createiastance offoo and provide théoo service by telling
Orbix that the server is now ready to receive bar requests. The simplest mainline is thus:

/I C++

main () {
foo_impl obj;
CORBA::Orbix.impl_is_ready ();

Writing an Orbix Application - The Dynamic Invocation Interface

Use of the IDLcompiler, as above, requireglgent to have available (possibly blynamic
link loading) the marshallingstub code used to accemsy of the remote objectwhich its
uses.

For some applications, this constraintay be too restrictive. CORBAspecifies an
alternative, API-based, DIl. Orbix provides the CORBA DIl APIl. However, this APl is, in
our view, quite difficult to use and so we have provided an alternative stream based interface.
Using the Orbix stream based DIl the same client code as above can be written:

char *result;
long X;

float y;

char *z;

TRY {
/I Initialise an object reference and a request
CORBA::ObjectRef target =
CORBA::Object::_bind ("16716:Fred","qwerty", IT_X);
CORBA::Request r(target, “opl”);

/l stream in the arguments, and make call
r << x << CORBA::inOutMode <<y

<< CORBA::outMode << z;
r.invoke (IT_X);

// obtain result if no exception pending
if (IT_X)
r >> result;

}
CATCHANY {
cout << "Unexpected exception " << IT_X << end|;

}
ENDTRY

Measurements

info@iona.ie Page 17

The following performance measuredere obtained on a pair dightly loaded Sun
SPARCstation ELCs, configured with 8Mbytes memory, and under SdarflO& andusing
the gnu g++compiler (v2.3.3), using TCP/IP and XDR encoding. Aull-bodied (non-
inlined) null-argumenC++ function call on thesmachinesakes 0.3usecs. Aull-bodied
null-argument virtual member function call takes 0.4pusecs.

Invocation Tests

arguments Request/ Request/Reply Oneway
Reply using collocation calls
0 8msecs 2.5usecs 3msecs
1 8msecs 2.5usecs 3msecs
10 8msecs 2.7usecs 3msecs
100 10msecs 2.7usecs Smsecs
1000 25msecs 2.7usecs 20msecs
10000 191msecs 2.7usecs 140msecs
Each argument was am unsigned long , with multiplearguments beingassed am
arrays ofunsigned long s. The bodies of the invoked operations were empty. The

flat behaviour othe resultisingthe collocatiorlibrary - i.e. the "both'ibrary - is explained
by the fact that array arguments in IDL are passed by paiakee inthe corresponding C++,
and are therefore independent of the actual size of the array.

We experimented witthe cost otusing smart proxies and filters tioe invocatiorpath. We

added a smart proxy to the tests above, which simply invoked its base class (i.e. the generated
IDL class). Thecostwasinsignificantfor remotecalls, being othe order of a furthetpsec.
Likewise the cost of filtering code (assuming null filter functions) is about 1.5usec per filter.

The creation of an object at a server requires registering the object wilrlixeruntime
(including its insertion inhe COT). This code is not marally written, butinherited from a
generated base class constructor. It takes 650usecs.

Remotely activating a server, whéme locatorservice isnot used (i.e. the target host is
explicitly provided) takes about 4 second3his perhaps could beduced: thérbix client
library currently makes up to 1l€onsecutive attempts to activate a remote seriethe
associated remotarbixd , at 2 second intervals. Thebixd must launch a newrocess
during activation (ifJNIX, afork andexec call), andthe new server mustitialise itself
and callimpl_is_ready before the client can succeed in passing request through to it.

In the case where the senteas been previously activatedyinding a client to thaserver
takes about 960msecs.

info@iona.ie Page 18

Conclusions

The UNIX operatingsystem has beeone of the most unexpected success stories of
computing. One motivation for itdesign was a reaction against an alternativecangplex
operating system, Multics. Onetbk major reasons fahe earlyinterest in UNIX was that

it was relatively lightweight, requiring only a moderate amount of memory and CPU power to
run. It had a reasonable performance for interactive usagpartras aconsequence of its

size. It becamavailable on a wideange of platforms, again part as aconsequence of its

size and ease of comprehension. It alsorbkdively open interfaces, and nepplications

can be composed simply from others using the shell facilities such as pipes and i/o redirection.

Much of thedesign of Orbix has been inspiré¢de original goals ofthe UNIX design:
lightweight and easy taise. However, Orbix follows anagreed industry standard - the
OMG CORBA specification -unlike the early versions ofUNIX, which perhaps as a
consequence of tHack of a standardwere slow to be accepted by industry. Furthermore,
much experience has been learnt frdme difficulties in extendingthe early monolithic
versions of complexsoftware systems such agNIX: Orbix follows the trend towards
modular design, based on object orientation, tamehrds operninterfaces which can be
tailored to particular operating requirements.

Orbix is being made available on both UNIX and non-UNIX platforms.

UNIX originally introduced eleganhechanismsor developing new applications, and - what
was at thetime - a revolutionarymechanisnfor coupling applicationsogetherusing byte
streams. Much of this elegance has bleshin today's computing environmentsjnce
heterogeneous hardware and operasiystemsare beingused, and thénformation being
exchanged frequently has a higlerel of structure than siple raw, byte-oriented streams.
The OMG CORBA specificatioattempts to restorgomeorder to thgroblem of application
interworking, and Orbix is a faithful, lightweight and easyuse implementation of this
standard.

info@iona.ie Page 19

Glossary

API
BOA
CORBA
CoT

Dl
ESPRIT
IDL

IR

Applications Programming Interface
CORBA Basic Object Adaptor
Common Object Request Broker Architecture
Orbix Context Object Table
CORBA Dynamic Invocation Interface
European Strategic Programme for Research in Information Technology
CORBA Interface Definition Language
CORBA Interface Repository

NVListCORBA Named-Value List

OLE
OMG
ORB

Microsoft's Object Linking and Embedding mechanism
Object Management Group
Object Request Broker

References

Contact:

Common Object Request Broker: Architecture and Specification. Published by
the Object Management Group and X/Open, Reference OMG.91.12.1

Trademarks
Orbix is a registered trademark of IONA Technologies Ltd.
OLE is a registered trademark of Microsoft.
Publish & Subscribe is a registered trademark of Apple Computers.
Purify is a registered trademark of Highland Software, Inc.
SoftBench is a registered trademark of Hewlett-Packard.
Tooltalk is a registered trademark of SunSoft, Inc.
UNIX is a registered trademark of UNIX System Laboratories.
All other products and services mentioned in this document are covered
by the trademarks, service marks or product names as designated by
the companies who market those products.

Mr. Colin Newman
IONA Technologies Ltd.
8-34 Percy Place

Dublin 4
IRELAND

Tel: +353-1-6686522
Fax: +353-1-6686573
email: info@iona.ie

ftp: ftp.iona.ie

O Copyright 1993-1994 IONA Technologies Ltd.

info@iona.ie Page 20

