
Activator 1
Activator
Authors Michael Stal, Siemens Corporate Technology, Munich, Germany

Douglas C. Schmidt, Vanderbilt University, Nashville, TN, USA

Pattern Description

The Activator design pattern automates scalable on-demand activation and
deactivation of service execution contexts to run services that can be
accessed by many clients.

Example In the industry automation domain, distributed systems such as traffic
control systems or manufacturing plants, are increasingly implemented
using many embedded devices known as controllers. Individual
controllers communicate via interconnects, such as CANBUS,
Fiberchannel, or Firewire. When software developers build automation
systems, they must determine how to provide services, such as inventory
trackers, system monitoring, and command and control services, in a
manner that scales gracefully as the distribution toplogy and number of
clients increases.

In automation systems, service processing must be scalable since multiple
clients may access embedded devices concurrently. One service
deployment strategy is to apply an eager resource allocation strategy
[POSA3], which activates processes in controllers during system
initialization and runs all services in processes while the system is
operational, irrespective of which services are acutally accessed by clients.
However, embedded devices often have a limited amount of computing
resources, such as main memory, CPU-time, and network connections
[SmallMemory]. As the number of clients or services increases, therefore,
an eager resource allocation strategy scales poorly because unused server
processes consume computing resources that could be allocated more
effectively to services actually being accessed by clients.
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

2

A typical scenario in the lifetime of an eager resource allocation strategy
for a controller in an industrial automation system is shown in the figure
below.

In this eager resource allocation scheme, all services are activated
automatically at system initialization and consume a considerable amount
of available system resources. In the depicted time span above only service
1 is accessed by a client. All other services are busy waiting for incoming
requests. The consumption of resources by allocated − but unused − server
processes can unnecessarily increase

• Service response time, e.g., by competing for resources with services
actually accessed by clients, and

• Hardware costs, e.g., by requiring more main memory and CPU than
would otherwise be needed.

Better service activation strategies are therefore necessary to optimize
resource usage and enhance scalability.

Context A resource-constrained distributed computing environment without
stringent real-time requirements.

Problem In distributed systems, multiple clients often access services concurrently.
These services are deployed in service execution contexts (such as

Client

Time

Server Load

100%
Service 1

Service 2

Service n

System Start

Embedded Controller Device
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 3
operating system processes, threads, and/or component containers) and
consume limited system resources (such as network/database connections,
threads, virtual memory, process table slots, and open files). As a
consequence, it is often necessary to balance the following forces:

• Parsimony. Service execution contexts available in the system should
only consume resources for services that are actively accessed by
clients.

• Transparency. Clients should be shielded from the location,
deployment, and management of services.

Solution Minimize resource consumption by activating service execution contexts
on demand, running service implementations in these contexts, and
deactivating services and their contexts when they are not accessed by
clients. Separate service usage from lifecycle aspects to provide location-
independent service access.

In detail: Implement services that have service identifiers and offer
functionality to client applications via their service references. Use service
execution contexts to manage the lifecycle of these services, in particular
their activation, processing, and deactivation. Implement an activator to
activate service execution contexts on demand and deactivate them again
when clients no longer access them. Provide a registration interface that
services can use to register and unregister their availability with the
activator. Use the service reference to ensure clients only access services
via activators. If a service is not running when a client tries to access it, an
activator automatically creates the appropriate service execution context
and arranges for the service to process the client’s request(s) in this
context.
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

4

Structure A client is an application that uses services to perform portions of its
computations. It accesses the services remotely using special proxies
called service references that it obtains from an activator.

➥ In our industrial automation system, clients access services within
embedded devices by connecting to these devices remotely. Example
clients include material flow controllers that identify optimal paths for
delivering goods to their destinations and administration consoles that
monitor and control an automation system. ❏

A service identifier is a token that clients use to identify a particular
service. A client passes a service identifier to an activator, which extracts
all required information to locate and provide the requested service.

➥ In our automation example, the service identifier opaquely encodes
a single service’s addressing information, including the physical network
address of its embedded device, the port address on which an activator
listens for incoming requests, and addititional context information, such as
session information and security information. ❏

Class
Client

Responsibility
• Uses services to

perform portions of its
computation

• Accesses services via
service references

• Obtains service
references from
activator

Collaborator
• Activator
• Service

Class
Service Identifier

Responsibility
• Identifies a service

Collaborator
• Service Reference
• Client
• Service
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 5
A service reference is a proxy [POSA1][GoF] that facilitates client
communication with the activator and service. In addition, it shields
clients from an activator’s involvement in connecting clients and services.
A service reference can also encode information about the service and the
service execution context that can be used to optimize communication and
enhance availability.

➥ In our automation example, the service reference is a proxy object
that shields the client from system-level details of communication or
activation. The service reference uses the service identifier to extract all
necessary information to forward client requests to their destinations. ❏

A service execution context executes services and controls their activation
and deactivation lifecycle. It provides a factory to create services and/or
lookup functionality to obtain existing services. Common service
execution contexts are operating system processes or threads. Another
service execution context is a component container in component

Class
Service Reference

Responsibility
• Serves as a proxy to the

actual service
• Hides activation and

deactivation details from
clients.

• Encodes information
about the service and
service execution context

Collaborator
• Activator
• Service
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

6

middleware that provides the context for processing operation invocations
on components.

➥ Our example uses thread-based service execution contexts to run
automation services implemented as C++ objects. After activating a
service, the service execution context invokes a method on the service to
initialize itself. ❏

A service is an entity that is executed in a service execution context and
provides functionality or resources to clients. This pattern focuses on
services that

• Can be accessed by multiple clients concurrently,

• Require non-trivial utilization of resources, such as memory or
processing time,

• Are activated quickly relative to service processing time,

• Are not accessed continuously throughout system lifetime.

Class
Service Execution
Context

Responsibility
• Manages the lifecycle

of services, e.g., creates
new services and/or
obtains existing
services

Collaborator
• Activator
• Service
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 7
Services are named by their service identifiers and accessed by clients via
their service references. A service must be registered with an activator
manually by users or by some other administrative entity.

➥ In our automation example, embedded system controllers provide
remotely accessible services, such as command and control functionality
that allows adminstrators to check and change the current configuration.
These service instances run in threads and consume various system
resources, such as main memory, CPU time, sockets, or database
connections. Multiple clients access these service components at various
frequencies, i.e., not all services are accessed all the time. ❏

An activator is a mediator [GoF] between services and their clients. It
activates service execution contexts on demand. The activator uses an
activation table to insert and remove registration information about
services and their associated service execution contexts. When a client
needs to access a currently inactive service, the activator activates a
service execution context and arranges for the service to process the
upcoming client’s request(s) in this context.

A client obtains a service reference from the activator, which it then uses
to invoke operations on the service. The activator uses information in its
activation table to activate the appropriate service if it is currently inactive.
Clients that query the activator for a service must indicate the desired

Class
Service

Responsibility
• Provides functionality

or resources to clients

Collaborator
• Client
• Service execution

context
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

8

service via a service identifier, which the activator uses to find the
associated entry in its activation table.

➥ Activation in our automation example can involve different
activities. An activator can be implemented as a remote gateway listening
on a network port for incoming client requests. A client request is always
channeled through a service reference. If the service’s execution context
has already been created, the activator simply forwards the client request
to the service. If the service execution context is not activated, however,
the activator creates a thread to execute the service and initializes the
service. After this initialization phase, the service reference on the client
is associated with the service execution context and the client request is
forwarded to the service. ❏

An activator uses its activation table to map service identifiers to service
implementations and service execution contexts. An activator uses this
table to store associated registration and deregistration information when
new services become available. These entries may include the execution
path of the service executable or DLL, a reference to the service’s
interface, activation policies, and other configuration information.

➥ The activation table in our automation example is implemented by a
hash table that maps service identifiers to associated information, such as
the port address of the service execution context, the address of the
external service interface, information about the concrete service, a flag
indicating whether the service execution context and the service are
currently running, and other bookkeeping information. ❏

Class
Activator

Responsibility
• Activates and

deactivates service
execution contexts to
run service
implementations

Collaborator
• Service
• Activation Table
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 9
The UML class diagram below illustrates the relationships between the

participants in the Activator design pattern.

Dynamics There are three phases to the dynamics in this pattern: service registration,
service access and activation, and service deactivation. The following

Class
Activation Table

Responsibility
• Map service identifiers

to service
implementations

• Manage (i.e., insert,
delete, change, and
lookup) information on
services

Collaborator
• Service

Service Identifier

Service Execution
Context

activateService()
findService()
runService()

Service Reference

serviceOperation()

Service

serviceOperation()

<<uses>>

<<deactivation>>

1

*

<<find

Activator

createService()
findService()
activate()
deactivate()
addService()
remService()

1

*

Activation Table

list of services

lookup()
insert()
delete()

<<forwards_to>>

Client

doWork()

Service>>
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

10
figure illustrates these phases, which are described in detail after the
figure.

Service registration. The following scenario illustrates how a service is
registered with the activator.

• A service developer implements a service using appropriate
programming language and platform libraries or middleware.

• The service is registered with the activator. The entity responsible for
service registration and the registration time depends on the
implementation strategy.

Service access and activation. The following scenario illustrates how a
client accesses a service via an activator and then uses the service:

• A client obtains a reference to a service based on the service’s identifier.

: Client : Activator :Activation
Table

<<lookup>>

<<activateService>>

Service
 ID

<<find

Info

Service

<<serviceOperation>>

: Service
Execution
Context

<<ready>>

<<deactivate>>

<<delete>>

Service
 ID

Service
 ID

Reference
:Service

Service>>
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 11
• The client then accesses a service via its reference, e.g., it invokes an
operation on the service.

• The client’s request is transparently sent to the activator, which
determines the service from the identifier in the request and finds the
corresponding entry in the activation table.

• The activator checks whether a service execution context running the
service is currently active. If it’s inactive, the activator uses activation-
related information in its activation table to activate the service
execution context that runs the service.

• The activator waits for acknowledgement that the service execution
context and the service it implements are activated and ready to receive
requests.

• The activator then delegates the request to the service execution
context, which carries out the client’s request.

Service deactivation. The following scenario illustrates how a service is
deactivated.

• When no clients are accessing the service it can be deactivated. How
deactivation is triggered is up to the implementation, as discussed in
Section 3.3.

• Deactivation may cause the service to store any non-volatile state
information in persistent storage and then terminate the service
execution context it’s running in.

Implementation There are many ways to instantiate the Activator pattern. The following
activities focus on the key design and implementation issues, rather than
covering all details.

1 Define clients and the services. Analyze the application domain for types
of services that applications often need.

➥ For example, embedded system controllers typically require
services for configuring and monitoring parts of the automation system.
These activities represent service types in this application domain. ❏

2 Identify services that should be activated and deactivated on demand. For
this activity, iterate through the following subactivities:
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

12
2.1 For each service determine the costs for activating and deactivating
services, as well as keeping them alive. The latter costs are measured in
terms of resources required by the service types.

➥ For example, although an embedded controller contains a limited
amout of computing resources, such as CPU time or memory, monitoring
services typically incur high usage of both resources. In contrast,
activation time is relatively low, so it makes sense to implement on-
demand activation strategies for embedded controllers that don’t have
hard real-time requirements. ❏

2.2 Determine client/service usage profiles and identify quality of service
(QoS) requirements. If instances of a particular service are used
continuously throughout the whole lifecycle of their clients − and/or if it is
critical that clients have low and predictable latency − they may not be
good candidates for on-demand activation. An example for such a service
might be a real-time controller for an anti-lock braking system, which may
not be feasible to activate on demand due to the increased latency and jitter.
In contrast, an FTP or SSH login service are often accessed by clients
sporatically and don’t have stringent latency and predictability
requirements, so they are better candidates for on-demand activiation.
Another part of the service usage profile is how many instances of a given
service must be active at the same time and thus competing for the same
resources.

2.3 Identify services for on-demand activation. Using the results of the
previous subactivities, determine all services that are subject to on-demand
activation. As a rule of thumb, such service have the following properties:

• They are used temporarily − not continuously − by clients, so it makes
sense to activate and deactivate them on-demand to minimize resource
consumption.

• The costs for activating and deactivating these services is negligible
compared with the QoS requirements of clients, as well as with the time
periods when these services must be available.

➥ In our automation system example, no services have stringent real-
time requirements, so they are candidates for on-demand activation via the
Activator pattern. ❏
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 13
3 Develop a service activation and deactivation strategy. For every service,
determine the details of service activation and deactivation by performing
the following subactivities:

3.1 Define the service execution context representation. A common service
execution context is an operating system process, which provides the unit
of virtual memory protection and security, or thread, which provides a unit
of execution. Another service execution context is a container, which
provides the runtime context for a service implemented as a component.

➥ Our automation system implements service execution contexts
using threads. All initialization information, such as the factory for
creating service implementations, is specified declaratively. ❏

3.2 Define a service initialization strategy. If all services are stateless, little or
no initialization may be required. If they are stateful, however, they must
be initialized when they are created. In some cases, the activator or the
service execution context can handle initialization issues, e.g., an activator
can invoke internal initialization methods of the service based on
information stored in its activation table. In some cases, a service may
perform its own initialization. In yet other cases, clients may be responsible
for initializing their services.

➥ In the automation example, all services are stateless so initialization
is simplified and self-contained. ❏

3.3 Define a service deactivation strategy. There are several strategies for
deactivating services:

• Service-triggered deactivation. In this strategy, a service decides to
deactivate itself. For example, an activator could choose to deactivate
the service if a designated period of time elapses without any clients
sending the service requests. This strategy is commonly known as the
Evictor pattern [POSA3] [HV99].

• Client-triggered deactivation. In this strategy, a client explicitly
invokes an operation to trigger deactivation of the service. To
implement client-triggered deactivation, the service must be notified
whenever a client is obtaining a reference or releasing its reference to
this particular service. Internally, the service may keep a reference
count that it increments/decrements on service access/release. When
the count reaches zero the service is deactivated.
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

14
• Activator-triggered deactivation. In this strategy, the activator decides
when to deactivate a service. For example, the activator might track
resource usage on a particular computing node and deactivate services
after a certain threshold is crossed. Naturally, care must be taken to
deactivate services gracefully to avoid disrupting vital processing and
losing important state information.

In most cases, once the service is ready for deactivation it should inform
the service execution context so it can release any allocated resources.

➥ “Our automation example uses service-triggered deactivation via
the Evictor pattern, i.e., services deactivate themselves and terminate their
service execution context if they don’t receive any client requests after a
certain period of time. ❏

4 Define the interoperation between services and the service execution
context. The service execution context may provide the following types of
operations to its services:

• Operations to access information and resources managed by the
execution context,

• Operations to request service deactivation,

• Operations to modify the behavior of the service manager.

Likewise, services might provide

• Global operations for service instantiation,

• Callback methods that the services execution context invokes
automatically upon the occurrence of interesting service lifecycle
events, such as service activation, deactivation, creation, and
destruction.

➥ [Services in the automation example might implement a callback
interface the service execution context automatically invokes when a
service is activated or deactivated, when it is created, and before it is going
to be removed. These callback methods are used to acquire or release
resources. ❏

5 Define the necessary contracts between interoperating participants. A
contract specifies the set of interfaces implemented by each pair of parties
that communicate and protocols they must obey. Activity diagrams or
interaction diagrams can be used to model the protocol; class diagrams
can be used to model the interfaces.
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 15
First, determine the following internal contracts that are not visible to
clients:

• The contract between the activator and the service execution context
specifies how an activator locates, registers, unregisters, and activates
a service. It also describes how the activator activates, registers, and
unregisters services managed by the service execution context.

• The contract between the service execution context and its services
introduces interfaces for creating, initializing, and releasing services. It
also specifies how a service can notify its service execution context
about its deactivation.

In addition, define the following external contracts that are visible to
clients:

• The contract between the client and the activator defines how a client
obtains a service reference from the activator. This contract defines a
service identifier that encapsulates the primary key necessary for
service identification, as well as the primary key for the service
execution context where the service implementation runs. An activator
knows how to extract these keys from a service identifier.

• The contract between the client and the service defines the set of
operations a client can use to access the functionality of the service and
how it releases the service after its processing is complete.

Variants Distributed Activator. In this variant, there is one activator on each
network node. When a clients asks for a particular service, that node’s
activator checks whether the corresponding service is available locally or
remotely. In the former case, the workflow continues exactly as in the
general pattern. In the latter case, however, the local activator determines
on which network node the appropriate service is available and then
connects to the remote activator, which retrieves a reference to the service
and returns it to the local activator, which in turn returns the service
reference to the client. Remote proxies help clients to access remote
services in a location-transparent way.

Transparent Activator. In some implementations of the Activator pattern,
clients or their service references may be aware that they are retrieving
services via an activator. It is often beneficial, however, to shield clients
from the activator, so they believe they are accessing the service directly
rather than indirectly. To implement the Transparent Activator variant an
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

16
interceptor, proxy, or mediator agent can be used to transparently contact
the activator whenever the service is instantiated.

Multi-Instance Activator. Instead of making the activator a singleton, each
service or service execution context could provide its own activator
instance. In this variant, the activation table is provided as a global
repository accessible by all activator instances. The advantage of this
approach is its higher scalability and reliability. However, activator
instances must coordinate access to the activation table, which can
increase complexity.

One Service per Service Execution Context. Instead of allowing a service
execution context to provide multiple service types, this variant enforces
a 1:1 relationship between service execution contents and services. Each
service execution context implements exactly one service. The advantage
of this approach is a reduced complexity of the activator implementation.
However, resource contention increases when more service execution
contexts are available. Hence, this approach is primarily advantageous
when services have a long execution time or when the number of services
is relatively small.

Combined Component Configurator and Activator. This compound
pattern combines the Component Configurator pattern [POSA2] with the
Activator pattern to provide the ultimate in on-demand flexibility. In this
variant, an activator is responsible for activating/deactivating service
execution contexts in which services run, whereas a component
configurator is responsible for determining what service implementations
are actually linked into a server from a dynamic link library (DLL). This
compound pattern approach leads to a highly flexible design with well-
defined separation of concerns. For example, the activator in such systems
could use a component configurator to link and unlink service
implementations on-demand from DLLs.

Example Resolved Applying the Activator pattern to the industrial automation system as
described in the Implementation section improved the scalability of the
system by ensuring that computing resources are consumed only by
services being accessed by clients. The diagram below shows that
activating services only on demand improves system scalability. In the
initial implementation, only a small number of clients could access the
system at the same time since limited system resources were devoted to
running unused services. In the refactored implementation, a larger
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 17
number of clients can access the same or different services concurrently
without causing overload.

After refactoring of the initial eager resource allocation strategy, the
revised system activates service execution contexts and services on-
demand and deactivates them when clients don’t access them after a
designated period of time. Some addition runtime overhead is caused by
the activator spawning threads to run newly activated services, but this
overhead is negligible since each client exchanged a number of requests
with the service before focusing its attention elsewhere.

Known Uses Object Request Broker (ORB) and Component Middleware
frameworks, such as CORBA, CORBA Component Model (CCM),
Microsoft COM+, and Java RMI use the Activator pattern in several ways:

• They use the pattern to transparently spawn server processes when
clients invoke operations on remote objects.

Client

Client

Client

Time

Server Load

30%

System

Embedded Controller Device

Client

Client

Client

Client

Client
Start
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

18
• For example, in COM+ the Service Control Manager (SCM) can
spawn server processes on demand. It then connects to the
appropriate class factory and creates a new instance of a COM
object. The activation table is implemented by a combination of the
Windows registry and internal tables. A global DLL, called
OLE32.DLL encapsulates access to the activator implementation
transparently for clients.

• CORBA ORBs use the Transparent Activators variant to activate
servers on demand. When a client invokes an operation on an
object reference, the call initially goes to an Implementation
Repository [VH99], which plays the role of the activator in this
pattern. The Implementation Repository checks to see if a server
process containing the object being accessed by the client is
running. If it’s not running, the server process is spawned. After the
Implementation Repository verifies the process is running, it
returns a LOCATION_FORWARD message to the client ORB,
which updates the object reference to note the new location and
reissues the call to the server transparently to the client application.

• The pattern is used to transparently activate components via a hierarchy
of actiavtors. For example, in the CORBA Component Model (CCM)
the Implementation Repository is used to spawn server processes.
Servant activators can then be used to create containers that provide the
runtime environment for managing the lifecycle of component
implementations. Similar mechanisms are available in Enterprise
JavaBeans.

Network superservers. The Activator pattern has been used in
‘superservers’ that manage network servers. Two widely available
network server management superservers are Inetd [Ste90] and
Listen [Rago93]. Both frameworks consult configuration scripts that
specify the following information:

• Service names, such as the standard Web and Internet services HTTP,
TELNET, FTP, DAYTIME, and ECHO,

• Port numbers to listen on for clients to connect with these services, and

• An executable file to invoke and perform the service when a client
connects.

Both Inetd and Listen contain a master acceptor process that monitors
a set of port numbers associated with the services. When a client
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 19
connection occurs on a monitored port, the acceptor process accepts the
connection and demultiplexes the request to the appropriate pre-registered
service handler. This handler performs the service, either reactively,
proactively, or as an active object [POSA2], and returns results to the
client.

Web servers use the Activator pattern to start services on demand when
HTTP requests arrive. Plug-ins may be registered with the Web server
(e.g., using configuration files or Component Configurators [POSA2])
which represent service execution contexts. These plug-ins are responsible
to handle HTTP requests for a specific (namespace of) URL addresse(s).
For example, when the URL specifies a file with a PHP file-extension, a
PHP-plug-in is accessed by the web server to handle this kind of request.
Handling the request in this context means to load the PHP interpreter,
execute the PHP-script specified, and return a HTML page to the
originator of the request. To optimize performance, the server only
activates plug-ins on demand when an appropriate request arrives.

Human Usage. A human known use of the Activator pattern is a call
center used to provide technical help desk services, credit card fraud
reporting, or airline reservations. Here the resources to be optimized are
telephone lines, computer and databased connections, and call center
operators. The activator is the central system that is called by customers.
After a customer has specified their service indentifier via voice or
touchtone input, the call center activator connects the customer to the
appropriate operator, after first activating the resources needed by the
operator to handle the call, which can involve establishing network and
database connections, preparing information on the user interface display,
etc. The customer is then connected directly to the operator. Hanging up
the telephone triggers service deactivation and releases the allocated
resources for use in servicing other customer calls.

Consequences The Activator pattern offers the following benefits:

Scalable resource usage. Service execution contexts only run when
services are being accessed by clients. They are deactivated and
reactivated on demand, which helps improve the scalability of the overall
system by allocating resources more effectively.

Implicit initialization. All details of service and service execution context
activation and deactivation are encapsulated by the activator interface,
which enables service developers to initialize services when they are
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

20
activated. For example, service state can be stored in a database and loaded
whenever the service execution context is activated., so clients may not
need to initialize services explicitly themselves.

Exchangeable strategies due to transparent service creation. As a
consequence of using activators as intermediaries, the service creation
strategy can be exchanged without impacting clients. For example, an
activator can choose between different services supporting the same
service type via load balancing or fault tolerance replication mechanisms.

Location transparency with respect to services. If the service references
returned by the activator point to proxies, the location of the service can
be made invisible to clients. Clients can thus access services residing on
remote machines transparently.

Efficient and fast service access. After clients have obtained updated
service references from an activator, they can access the services directly,
bypassing further indirection and delegation.

On the other hand be aware of the following liabilities:

QoS penalties due to activation. When a client first accesses an inactive
service, the activator must activate a server execution context to run the
service, which increases the latency and jitter of the initial access.

Complex state management. If service execution contexts running services
are deactivated and activated on demand, any non-volatile state must be
persisted across succeeding passivation and activation events, which can
complicate service development.

Debugging and testing can be hard. Decoupling clients from the activation
of services can make it harder to determine why failures occur. For
example, if there is not enough memory to activate a service in a service
execution context, the client may not be able to ascertain what caused the
problem since service activation is supposed to be transparent.

See Also The Component Configurator design pattern [POSA2] allows applications
to dynamically link and unlink their component implementations at run-
time without having to modify, recompile, or statically relink application
code. The primary difference between Component Configurator and
Activator is that Activator focuses on activating/deactivating a service
execution context on-demand, whereas Component Configurator focuses
on dynamic linking/unlinking the code that runs within an execution
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

Activator 21
context. The Component Configurator and Activator patterns can be
combined into a compound pattern, as described in the Variants section.

The Virtual Component [PLoP9] and Virtual Proxy design patterns
[POSA1] can be used in conjunction with the Component Configurator
pattern to provide an transparent way of loading and unloading
components that implement middleware and/or application software
functionality. This pattern ensures that the software provides a rich and
configurable set of functionality, yet occupies main memory only for
components that are actually being used. Whereas the Virtual Component
and Virtual Proxy patterns focus largely on creating component memory
on demand, the Activator pattern focuses on a broader set of issues, such
as locating services and activating/deactivating service execution contexts
on demand.

The Broker architectural pattern [POSA1] structures distributed software
systems with decoupled components that interact via local and/or remote
invocations. A broker component is responsible for coordinating
communication, such as establishing connections and forwarding
requests, as well as for handling results and exceptions. Remote objects
represent services that reside in servers. For performance and scalability
reasons, these Broker systems often instantiate the Activator pattern to
spawn server processes on demand. A common example is the
Implementation Repository in CORBA-based ORBs [VH99].

The Lazy Acquisition design pattern [POSA3] defers the acquisition of
resources late in the system lifecycle, e.g., at installation- or run-time.
Although this pattern is similar to the Activator pattern, these patterns
address different problem contexts at different levels of abstraction. The
Lazy Acquisition pattern defines a broad strategy for allocating resources,
such as shared, passive entities like memory or connections, to active
entities, such as services. Activator, in contrast, is a more focused pattern
that addresses the activation and deactivation of service execution
contexts and services in resource-constrained distributed computing
environments.

The small memory patterns in [SmallMemory] describe a range of other
techniques that can be applied to reduce the consumption of memory in
embedded systems and handheld devices with their limited computing
horsepower.
16.06.2005 ActivatorReloaded.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

22
References

[GoF] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[JavaRMI] W. Grosso, Java RMI, O’Reilly, 2001.

[PLoP9] A. Corsaro, D. Schmidt, R. Klefstad, and C. O'Ryan, “Virtual Component: a
Design Pattern for Memory-Constrained Embedded Applications,” Proceedings of
the 9th Annual Conference on the Pattern Languages of Programs, Monticello,
Illinois, September, 2002.

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal: Pattern-
Oriented Software Architecture – A System of Patterns, John Wiley & Sons, 1996.

[POSA2] D.C. Schmidt, M. Stal, H. Rohner, F. Buschmann: Pattern-Oriented Software
Architecture, Volume 2 – Pattern for Concurrent and Networked Objects, John
Wiley & Sons, 2000.

[POSA3] M. Kircher and P. Jain: Pattern-Oriented Software Architecture, Volume 3 -
Patterns for Resouce Management, John Wiley & Sons, 2004.

[Rago93] S. Rago: UNIX System V Network Programming, Addison-Wesley, 1993.

[SOAP] E. Newcomer, Understanding Web Services, XML, WSDL, SOAP, and UDDI,
Addison-Wesley, 2002.

[Ste90] R. Stevens, UNIX Network Programming, Prentice Hall, 1990.

[VH99] S. Vinoski and M. Henning: Advanced CORBA Programming with C++, Addison-
Wesley, 1999.

[SmallMemory] C. Weir and J. Noble, Small Memory Software, Addison-Wesley, 2000.
© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved
16.06.2005 ActivatorReloaded.fm

	Activator
	Authors
	Pattern Description
	Example
	Context
	Problem
	Solution
	Structure
	Dynamics
	Implementation
	1 Define clients and the services. Analyze the application domain for types of services that applications often need.
	2 Identify services that should be activated and deactivated on demand. For this activity, iterate through the following subactivities:
	2.1 For each service determine the costs for activating and deactivating services, as well as keeping them alive. The latter costs are measured in terms of resources required by the service types.
	2.2 Determine client/service usage profiles and identify quality of service (QoS) requirements. If instances of a particular service are used continuously throughout the whole lifecycle of their clients - and/or if it is critical that clients...
	2.3 Identify services for on-demand activation. Using the results of the previous subactivities, determine all services that are subject to on-demand activation. As a rule of thumb, such service have the following properties:
	3 Develop a service activation and deactivation strategy. For every service, determine the details of service activation and deactivation by performing the following subactivities:
	3.1 Define the service execution context representation. A common service execution context is an operating system process, which provides the unit of virtual memory protection and security, or thread, which provides a unit of execution. Anot...
	3.2 Define a service initialization strategy. If all services are stateless, little or no initialization may be required. If they are stateful, however, they must be initialized when they are created. In some cases, the activator or the servi...
	3.3 Define a service deactivation strategy. There are several strategies for deactivating services:
	4 Define the interoperation between services and the service execution context. The service execution context may provide the following types of operations to its services:
	5 Define the necessary contracts between interoperating participants. A contract specifies the set of interfaces implemented by each pair of parties that communicate and protocols they must obey. Activity diagrams or interaction diagrams can ...
	Variants
	Example Resolved
	Known Uses
	Consequences
	See Also
	References
	[GoF]
	[JavaRMI]
	[PLoP9]
	[POSA1]
	[POSA2]
	[POSA3]
	[Rago93]
	[SOAP]
	[Ste90]
	[VH99]
	[SmallMemory]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

