Acceptor

A Design Pattern for Passively
Initializing Network Services

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130, USA
(314) 935-7538

This paper appeared in the November/December issue of
the C++ Report magazine.

1 Introduction

Thisarticleispart of acontinuing seriesthat describes object-
oriented techniques for developing reusable, extensible, and
efficient communication software. The current topic exam-
ines the Acceptor pattern. This design pattern enables the
tasks performed by network servicesto evolveindependently
of the strategies used to passively initialize the services. By
decoupling serviceinitialization from serviceprocessing, this
pattern enables the creation of reusable, extensible, and ef-
ficient network services. When used in conjunction with
related patterns like the Reactor [1] and the Connector [2],
this pattern enables the creation of highly extensible and ef-
ficient communi cation software frameworks [3].

A companion article [2] examines the Connector pattern,
which isthe “dua” of the Acceptor pattern. The Connector
pattern decouples the active establishment of a connection
from the service performed once the connection is estab-
lished. Although these two patterns address similar forces
they are described separately since their structure differs
somewhat due to the asymmetry of connection establish-
ment protocols. In addition, the Connector pattern addresses
additiond forces by using asynchrony to actively establish
connections with alarge number of peers efficiently.

This article is organized as follows: Section 2 describes
the two primary connection roles (active and passive) used
to establish connections and explains how these roles can
be decoupled from the communi cation roles performed once
connections are established; Section 3 motivates the Accep-
tor pattern by applying it to a connection-oriented, multi-
service, application-level Gat eway ; Section 4 describesthe
Acceptor pattern in detail and illustrates how to implement
it flexibly and efficiently by combining existing design pat-
terns [4] and C++ language features, and Section 5 presents
concluding remarks.

2 Background

2: ACTIVE
ROLE
socket()
bind()

connect()

1: PASSIVE
ROLE
socket()
bind()
listen()
accept()

send()/recv()

> send()/recv()

3: SERVICE
PROCESSING

SERVER

NETWORK

Figure 1. Active and Passive Connection roles

Connection-oriented protocol s(such as TCP, SPX, or TP4)
reliably deliver data between two or more endpoints of com-
munication. Establishing connections between endpointsin-
volvesthefollowing two roles:

¢ Passiverole —which initializes an endpoint of commu-
nication at a particular address and waits passively for
the other endpoint(s) to connect with it;

o Activerole—which actively initiatesaconnectiontoone
or more endpointsthat are playing the passiverole.

Figure 1 illustrateshow these connection roles behave and
interact when a connection is established between an active
clientand apassive server using the socket network program-
ming interface [5] and the TCP transport protocol [6]. In this
figure the server plays the passive role and the client plays
the activerole.!

One god of the Acceptor and Connector patternsisto de-
couple the passive and active connection roles, respectively,
from the services performed once aconnection isestablished.

Litisimportant to recognizethat traditional distinctions between “client”
and “server” refer to communication roles, not necessarily to connection
roles. Although clients often take the activerolein establishing connections
with a passive server these connection roles can be reversed, as shown in
Section 3.

These patterns are motivated by observing that the service
processing performed on messages exchanged between con-
nected endpointsislargely independent of the following:

¢ Which endpoint initiated the connection — connection
establishment isinherently asymmetrica since the pas-
sive endpoint waits and the active endpoint initiatesthe
connection. Once the connection is established, how-
ever, data may be transferred between services a the
endpoints in any manner that obeys the application’s
communication protocol (e.g., peer-to-peer, request-
response, oneway streaming, etc.). This isillustrated
in Figure 1 by the peer-to-peer send/ r ecv commu-
ni cation between client and server once a connectionis
established.

e The network programming interfaces and underlying
protocols used to establish the connection — different
network programming interfaces (such as sockets [7]
or TLI [8]) provide different library cals to establish
connections using various underlying transport proto-
cols (such as TCP, TP4, or SPX). Once a connection
is established, however, data may be transferred be-
tween endpoints using standard r ead/wr i t e system
cals that obey the protocols used to communicate be-
tween separate endpointsin a distributed application.

e The creation, connection, and concurrency strategies
used toinitializeand executethe service—the processing
tasks performed by a service typicaly do not depend
on the strategies used to create a service, connect the
service to one or more peers, and execute the servicein
oneor morethreads or processes. Explicitly decoupling
these initialization strategies from the service behavior
itself increases the potentia for reusing and extending
the servicein different environments.

3 Motivation

To illustrate the Acceptor and Connector patterns, consider
the multi-service, application-level Gat eway showninFig-
ure 2. This Gat eway routes several types of data (such as
status information, bulk data, and commands) between ser-
vicesrunning on Peer s located throughout a wide area and
local area network. The Gat eway routes severa types of
data (such as status information, bulk data, and commands)
that are exchanged between services running on the Peer s.
These Peer s are located throughout local area networks
(LANs) and wide-area networks (WANSs) and are used to
monitor and control a satellite constellation.

The Gat eway isaMediator [4] that coordinates interac-
tions between its connected Peer s. From the Gat eway’s
perspective, these Peer services differ solely by their mes-
sageframing formatsand payload types. TheGat eway uses
a connection-oriented interprocess communication (IPC)
mechanism (such as TCP) to transmit data between its con-
nected Peer s. Using a connection-oriented protocol sim-

TRACKING

SATELLITES STATION

’

STATUS INFO /

/
WIDE AREA ¥ /

/ / 4
NETWORK ’ / / Y
/
ry / BULK DATA

COMMANDS / /

/ / // TRANSFER

GROUND
STATION
PEERS

Figure2: A Connection-oriented, Multi-service Application-
level Gateway

plifies application error handling and enhances performance
over long-delay WANS.

Each communication service in the Peer s sends and re-
ceives status information, bulk data, and commands to and
from the Gat eway using separate TCP connections. Each
connection is bound to a unique address (e.g., an |P address
and port number). For example, bulk datasent from aground
station Peer throughthe Gat eway isconnected to adiffer-
ent port than statusinformation sent by atracking station peer
through the Gat eway to a ground station Peer . Separat-
ing connections in this manner allows more flexible routing
strategies and more robust error handling when connections
fail.

One way to design the Peer s and Gat eway isto des
ignate the connection roles a priori. For instance, the
Gat eway could be hard-coded to actively initiate the con-
nections for all its services. To accomplish this, it could
iterate through a list of Peer s and synchronously connect
with each of them. Likewise, Peer s could be hard-coded
to passively accept the connections and initiaize their ser-
vices. Moreover, the active and passive connection code
for the Gat eway and Peer s, respectively, could be imple-
mented with conventional network programming interfaces
(such as sockets or TLI). In this case, a Peer could call
socket, bind, listen, andaccept toinitidizea
passive-mode listener socket and the Gat eway could call
socket andconnect toactively initiateadata-mode con-
nection socket. Once the connections were established, the
Gat eway could route data for each type of service it pro-

vided.
However, the approach outlined above has severa draw-
backs:

o Limited extensibility and reuse of the Gat eway and
Peer software. For example, the type of routing ser-
vice (e.g., status information, bulk data, or commands)
performed by the Gat eway isindependent of themech-
anisms used to establish the connection. Moreover,
these services tend to change more frequently than the
connection mechanisms. Therefore, tightly coupling the
softwarethat i mplements connection establishment with
the software that implements the service makes it hard
to reuse existing services or to extend the Gat eway
by adding new routing services and enhancing existing
Services.

e Error-prone network programming interfaces — low-
level network programming (such as sockets or TLI)
do not provide adequate type-checking since they uti-
lize low-level I/O handles[9]. Itissurprisingly easy to
accidentally misuse these interfacesin waysthat cannot
be detected until run-time.

e Lack of scalability — If there are a large number of
Peer s the synchronousconnection establishment strat-
egy of the Gat eway will not take advantage of the
paralelism inherent in the network and Peer s.

Therefore, a more flexible and efficient way to design the
Peer s and Gat eway isto use the Acceptor and Connector
patterns. These patterns resolve the following forces for
network clients and servers that explicitly use connection-
oriented communication protocols:

e How to enableflexible strategies for executing network
services concurrently — Once a connection is estab-
lished, peer applications use the connection to exchange
data to perform some type of service (e.g., remote lo-
gin, WWW HTML document transfer, etc.). However,
aservice can runin asingle-thread, in multiplethreads,
or multipleprocesses, regardless of how the connection
was established.

o How to reuse existing initialization code for each new
service — The Connector and Acceptor patterns permit
key characteristics of services (such as the application-
level communication protocol and dataformat) toevolve
independently and transparently from the strategi es used
to initialize the services. Since service characteristics
tend to change morefrequently thaninitializationstrate-
gies this separation of concerns helps reduce software
coupling and increases code reuse.

¢ Howto actively establish connectionswith large number
of peers efficiently — The Connector pattern can employ
asynchrony to initiate and complete multiple connec-
tions in non-blocking mode. By using asynchrony, the
Connector pattern enablesapplicationsto actively estab-
lish connectionswith alarge number of peersefficiently
over long-delay WANS.

e How to make the connection establishment code
portable across platforms that contain different net-
work programming interfaces — This is important for
asynchronous connection establishment, which is hard
to program portably and correctly using lower-level net-
work programminginterfaces (such assocketsand TL1).
Likewise, parameterizing the mechanisms for accepting
connections and performing services helps to improve
portability by allowing the wholesale replacement of
these mechanisms. This makes the connection estab-
lishment code portabl eacross platformsthat contain dif-
ferent network programming interfaces (such as sockets
but not TLI, or vice versa).

e How to ensure that a passive-mode I/O handle is not
accidentally used to read or write data — By strongly
decoupling the Accept or from the Svc Handl er
passive-mode listener endpoints cannot accidentally be
used incorrectly (e.g., to try to read or write data on
a passive-mode listener socket used to accept connec-
tions).

Section 4 describes the Acceptor pattern in detail. The
Connector patternis described in [2].

4 The Acceptor Pattern

41 Intent

Decouples the passive initidization of a service from the
tasks performed once a serviceisinitiaized.

4.2 AlsoKnown As

Listener

4.3 Applicability

Use the Acceptor pattern when connection-oriented applica
tions have the following characteristics:

e The behavior of a network service does not depend on
the steps required to passively initialize a service;

e Connections may arrive concurrently from different
peers, but blocking or continuous polling for incoming
connectionson any individua peer isinefficient.

4.4 Structureand Participants

The structure of the participants in the Acceptor pattern is
illustrated by the Booch class diagram [10] in Figure 3 and
described below:?

o Reactor

2In this diagram dashed clouds indicate classes; dashed boxes in the
clouds indicate template parameters; and a solid undirected edge with a
hollow circle at one end indicates a uses relation between two classes.

ST~ T
// \)
(\ Svc Handler ,

—/
|

O
-~ Acceptor \
peer _stream |
\open() 7T 41V
N b

~ ———

N \
peer_acceptor_)
\\ handle event() ,//

—_——— -
—— —
s -~

—_—

 Reactor)
| N —

\
(' handle _event() \
_

ATES

\ —
_————

_

Figure 3: Structure of Participantsin the Acceptor Pattern

— Demultiplexes connection requests received on
one or more communication endpoints to the ap-
propriateAccect or . TheReact or alowsmul-
tiple Accept or s to listen for connections from
peers within a singlethread of control.

o Acceptor

— Passively accepts connections from peers using
thepeer _accept or _endpoint, then creates and
activates a Svc Handl er. The Acceptor'’s
handl e_event method implements the strat-
egy forinitializingaSvc Handl er by passively
connecting it with a peer. The React or cdls
back this method automatically when a connec-
tion arrives for the Accept or .

e Svc Handler

— Defines a generic interface for a service. The
Svc Handl er contains a communication end-
point (peer _st r eam) that encapsulates an I/0
handle (dso known as an “1/O descriptor”).
This endpoint is used to exchange data be-
tweentheSvc Handl er and itsconnected peer.
The Accept or activates the Svc Handl er’s
peer stream endpoint by caling its open
method when aconnection completessuccessfully.

45 Collaborations

Figure 4 illustrates the collaboration between participants
in the Acceptor pattern. These collaborations are divided
into three phases:

1. Endpoint initialization phase —which creates a passive-
mode endpoint that isbound to a network address (such
as an |P address and port number). The passive-mode
endpoint listensfor connection requests from peers.

2. Service initialization phase — which activates a Svc
Handl er. When a connection arrives the React or

ace : :SOCK sh: reactor :
Acceptor Acceptor Sve_Handler Reactor

j open()

Server

INITIALIZE PASSIVE
ENDPOINT

open() |

register_handler(acc)
REGISTER HANDLER -

|
EXTRACT HANDLE | get_handle)

Y
-

} handle_events()
|

]

START EVENT LOOP

ENDPOINT
INITIALIZATION
PHASE

select() >

1 handle_input()

|
FOREACH EVENT DO }

CONNECTION EVENT

CREATE, ACCEPT,
AND ACTIVATE OBJECT

accept_svc_handler (sh)
activate_svc_handler (sh)
—

SERVICE
PHASE

register_handler(sh)
REGISTER HANDLER ‘—>
“LIENT I

FOR CLIENT I/0 } get_handle()
AL VI

EXTRACT HANDLE |

|

|

|

1

} handle_input()
1 E sve()
|

|

|

|

I

DATA EVENT

PROCESS MSG]

| handle_close()
——————————————

SERVICE
PROCESSING INITIALIZATION

PHASE

CLIENT SHUTDOWN

|
|
|

} { sh = make_svc_handler()
|

|

|

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

|
SERVER SHUTDOWN , handle_close()

.

Figure4: CollaborationsAmong Partici pantsin the Acceptor
Pattern

cals back to the Acceptor’s handl e_event
method. This method performs the strategy for initial-
izingaSvc Handl er. Thisinvolvesassembling the
resources necessary to creste a new Concrete Svc
Handl er object, accept the connectionintothisobject,
and activate the Svc Handl er by cdling its open
method. Theopen method of theSvc Handl er then
performs service-specific initialization.

3. Service processing phase — Once the connection has
been established passively and the service has been ini-
tialized, the application enters into a service process-
ing phase. This phase performs application-specific
tasks that process the data exchanged between the Svc
Handl er and itsconnected peer(s).

4.6 Consequences
The Acceptor pattern providesthe following benefits:

¢ Enhances the reusability, portability, and extensibil-
ity of connection-oriented software — For instance, the
application-independent mechanisms for passively es-
tablishing connections are decoupled from application-
specific services. Thus, the application-independent
mechanisms in the Accept or are reusable compo-
nentsthat know how to establish aconnection passively
and activateitsassociated Svc Handl er . Incontrast,
theSvc Handl er knowshow to perform application-
specific service processing.

Thisseparation of concerns decoupl es connection estab-
lishment from service handling, thereby allowing each
part to evolve independently. The strategy for active
connection establishment can be written once, placed
into a class library or framework, and reused via in-
heritance, object composition, or templateinstantiation.
Thus, the same passive connection establishment code

need not be rewritten for each application. Services, in
contrast, may vary according to different applicationre-
quirements. By parameterizing the Accept or witha
Svc Handl er ,theimpact of thisvariationislocalized
to asingle point in the software.

o Improves application robustness — By strongly decou-
pling the Accept or from the Svc Handl er the
passive-mode peer _accept or _ cannot accidentally
be used to read or write data. This eliminates a class
of subtle and pernicious errorsthat can arise when pro-
gramming with weakly typed network programming in-
terfaces such as socketsor TLI [9].

The Acceptor pattern has the following drawbacks:

o Additional instructions — compared with overhead of
programming to the underlying network programming
interfaces directly. However, if parameterized typesare
used, there is no significant overhead as long as the
compiler implements templates efficiently.

o Additional complexity — this pattern may add unneces-
sary complexity for simple client applicationsthat con-
nect with a single server and perform a single service
using asingle network programming interface.

4.7 1mplementation

Thissection describeshow toimplement the Acceptor pattern
in C++. The implementation described below is based on
the ACE OO network programming toolkit [3]. In addition
to illustrating how to implement the Acceptor pattern, this
section shows how the pattern interacts with other common
communi cation software patterns provided by ACE.

Figure 5 divides participants in the Acceptor pattern into
the Reactive, Connection, and Application layers® The Re-
active and Connection layers perform generic, application-
independent strategies for handling events and establishing
connections passively, respectively. The Application layer
instantiates these generic strategies by providing concrete
template classes that establish connections and perform ser-
vice processing. This separation of concerns increases the
reusability, portability, and extensibility of thisimplementa
tion of the Acceptor pattern.

There is a striking similarity between the structure of the
Acceptor class diagram and the Connector class diagram
shownin [2]. In particular, the Reactive layer isidentical in
both and the roles of the Svc Handl er and Concr et e
Svc Handl er are dso very similar. Moreover, the
Accept or and Concr et e Accept or play rolesequiv-
dent to the Connect or and Concrete Connect or
classes. In the Acceptor pattern, however, these two classes
play an passive rolein establishing a connection, rather than
aactiverole.

3This diagram illustrates additional Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge
indicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.

Concrete_Sve_Handler
SOCK_Acceptor

e~
’'n SOCK Stream ~~
- "

\ Concrete (/ (

-4
=
< 7
/
o > 1Sve Handler , Concrete /
=< o /
=3 Acceptor
&~ _ open() /‘—O\ P
& -~ "—~~__ acrwvares ~—7 -7
\
R N \“ mmmmmmm
N\ N e ———n
{ ,,,,,,, /’*_‘ SVC_HANDLER |
ST | PEER STREAM ! ! W | PEER_ACCEPTOR |
\ Sve / Acceptor j
. Handler | ;

| make_svc_handler() (/
|l accept_svc_handler() \

! | activate_svc_handler() /
| open() /
/\Ohandle event() _—7

7 ~——- S~

Z

sh = make_svce_handler();
accept_sve_handler (sh);
activate_svc_handler (sh);

|
| open() !
\ /I

CONNECTION
LAYER

L

=

-/ Event

‘Handler |—/Q Reactor)

handle event() \

4

REACTIVE
LAYER

e ——_7

N~ T~

Figure5: Layering of Participantsin the Acceptor Pattern

4.71 ReactiveLayer

The Reactivelayer isresponsiblefor handling eventsthat oc-
cur on endpoints of communication represented by 1/0O han-
dles (aso known as “descriptors’). The two participants at
thislayer, theReact or and Event Handl er , arereused
from the Reactor pattern [1]. This pattern encapsulates OS
event demultiplexing system cdls (such assel ect , pol |
[7], and WAi t For Mul ti pl eCbj ect s [11]) with an ex-
tensible and portable callback-driven object-oriented inter-
face. The Reactor pattern enabl es efficient demultiplexing of
multipletypesof eventsfrom multiplesourceswithinasingle
thread of control. An implementation of the Reactor pattern
isshownin [12] and the two main rolesin the Reactive layer
are describe below.

e Reactor: This class defines an interface for registering,
removing, and dispatching Event Handl er objects(such
as the Accept or and Svc_Handl er). An implementa
tion of the React or interface providesa set of application-
independent mechanisms that perform event demultiplexing
and dispatching of application-specific event handlersin re-
sponse to events.

e Event Handler: This class specifies an interface that
the React or usesto dispatch callback methods defined by
objectsthat are pre-registered to handle events. These events
signify conditions such as a new connection reguest or the
arrival of datafrom a connected peer.

4.7.2 Connection Layer

The Connection layer is responsible for creating a service
handler, passively connecting a service handler to its peer,
and activating the handler once it's connected. Since al
behavior at this layer is completely generic, these classes
delegate to the concrete | PC mechanism and concrete service
handler instantiated by the Application layer. Likewise, the
Connection layer delegates to the Reactor pattern in order
to establish connections asynchronously without requiring
multi-threading. The two primary roles in the Connection
layer are described bel ow.

e Svc Handler: This abstract class provides a generic in-
terface for processing services. Applicationsmust customize
thisclass to perform a particular type of service.

tenpl ate <cl ass PEER_STREAM> // Concrete | PC nech.
class Svc_Handl er : public Event_Handl er

{

publi c:
/1 Pure virtual nethod (defined by a subcl ass).
virtual int open (void) = 0;

/1 Conversion operator needed by
/'l Acceptor and Connector.
operator PEER STREAM &() { return stream; }

protected:
PEER_STREAM stream ; // Concrete | PC nechani sm

H

The open method of a Svc Handl er is caled by the
Accept or factory after a connection is established. The
behavior of this pure virtual method must be defined by a
subclass, which performs service-specific initidizations. A
subclass of Svc Handl er aso determines the service's
concurrency strategy. For example, aSvc Handl er may
employ the Reactor [1] pattern to process data from peers
in asingle-thread of control. Conversely, aSvc Handl er
might use the Active Object pattern [13] to process incom-
ing data in a different thread of control than the one the
Accept or object used to connect it. Section 4.8 illustrates
how severa different concurrency strategies can be config-
ured flexibly without affecting the structure of the Acceptor
pattern.

e Acceptor: This abstract class implements the generic
strategy for passively initidizing network services. The
following class interface illustrates the key methods in the
Accept or factory:

tenpl ate <class SVC HANDLER, // Type of service

cl ass PEER ACCEPTOR> // Accepts connections

cl ass Acceptor :
publi c:
/1 Initialize l|ocal_addr |istener endpoint
/1 and register with Reactor.
virtual int open
(const PEER _ACCEPTOR: : PEER_ADDR &l ocal _addr,
Reactor *reactor);

public Event _Handl er {

/] Factory that creates, connects, and
/'l activates SVC_HANDLER' s.
virtual int handl e_event (void);

/1 Demul tipl exi ng hooks used by Reactor
virtual HANDLE get_handl e (void) const;

virtual int handle_close (void);

protected:
/1 Defines the handler’s creation strategy.
virtual SVC HANDLER *make_svc_handl er (void);

/1 Defines the handler’s connection strategy.
virtual int accept_svc_handl er (SVC_HANDLER *);

/1 Defines the handler’s concurrency strategy.
virtual int activate_svc_handl er (SVC_HANDLER *);

private:

/1 I PC nech. that establishes connections passively.

PEER_ACCEPTCOR peer _acceptor_;

/1 Event denulti pl exor.
Reactor *reactor_;
b

/1 Useful "short-hand" nacros used bel ow.
#define SH SVC_HANDLER
#defi ne PA PEER_ACCEPTOR

Since Accept or inherits from Event Handl er, the
React or can automatically call back tothe Acceptor’ s
handl e_.event method when a connection arrives from
apeer. The Accept or is parameterized by a particular
typeof PEER ACCEPTORand SVC HANDLER. The PEER
ACCEPTOR provides the transport mechanism used by the
Accept or to passively establish the connection. The SVC
HANDL ER providestheservicethat processesdataexchanged
with its connected peer. Parameterized types are used to de-
coupl ethe connection establishment strategy from thetype of
service handler, network programming interface, and trans-
port layer connection initiation protocol.

The use of parameterized types helps improve portability
by allowing the wholesa e replacement of the mechanisms
used by the Acceptor. This makes the connection establish-
ment code portable across platforms that contain different
network programming interfaces (such as sockets but not
TLI, or vice versa). For example, the PEER ACCEPTOR
template argument can be instantiated with either a SOCK
Acceptor oraTLI Accept or, depending on whether
the platform supports socketsor TLI. An even more dynamic
type of decoupling could be achieved via inheritance and
polymorphism by using the Factory Method and Strategy
patterns described in [4]. Parameterized types improve run-
time efficiency at the expense of additional space and time
overhead during program compiling and linking.

The implementation of the Accept or 's methods is pre-
sented below. To save space, most of the error handling has
been omitted.

Network applicationsusetheopen method toinitializean
Accept or . Thismethod isimplemented as follows:
tenpl ate <class SH, class PA> int
Accept or <SH, PA>::open

(const PEER _ACCEPTOR : PEER_ADDR &l ocal _addr,
React or *reactor)

/] Store pointer to a Reactor.
this->reactor_ = reactor;

/1 Forward initialization to the PEER ACCEPTOR
t hi s->peer_acceptor _. open (|l ocal _addr);

/! Register with Reactor.

}

The open method is passed the | ocal _addr network ad-
dressusedtolistenfor connections. It forwardsthisaddressto
the passi ve connection acceptance mechanism defined by the
PEER ACCEPTOR. This mechanism initializes the listener
endpoint, which advertisesits* service access point” (e.g., IP
address and port number) to clients interested in connecting
with the Accept or . The behavior of the listener endpoint
is determined by the type of PEER ACCEPTOR instantiated
by auser. For instance, it can be a C++ wrapper for sockets,
TLI, STREAM pipes, etc.

After the listener endpoint has been initialized, the open
method registers itself with the React or . The React or
performs a “double dispatch” back to the Accept or’s
get _handl e method in order to obtain the underlying
HANDLE, as follows:

tenpl ate <class SH, class PA> HANDLE
Accept or <SH, PA>::get_handl e
{

return this->peer_acceptor_.get_handle ();

}

TheReact or storesthisHANDLE internally and usesitto
detect and demultiplex incoming connection from clientsin
order to dispatchthe Accept or 'shandl e_event method,
whichisthefoca point of the Accept or . Asshown below,
handl e_event isaTemplate Method [4] that implements
the strategies for creating a new SVC HANDLER, accepting
aconnectionintoit, and activating the service;

this->reactor_->register_handl er (this, READ MASK);

tenpl ate <class SH, class PA> int
Accept or <SH, PA>::handl e_event (void)

/'l Create a new SVC_HANDLER.
SH *svc_handl er = this->make_svc_handler ();

/1 Accept connection fromclient.
t hi s->accept _svc_handl er (svc_handl er);

/1 Activate SVC HANDLER
thi s->activate_svc_handl er (svc_handler);

}

This method isvery concise sinceit factors al low-level de-
tailsinto the parameterized types. Moreover, all of itsbehav-
ior isperformed by virtual functions, which alow subclasses
to extend any or al of the Accept or 'sstrategies.

The Acceptor’s default strategy for creating SVC
HANDL ERs isdefined by thermake_svc _handl er method:

tenpl ate <class SH, class PA> SH *
Accept or <SH, PA>::nmake_svc_handl er (void);

return new SH;

Thedefault behavior usesa“demand strategy,” which creates
anew SVC HANDLERfor every new connection. However,
subclasses of Accept or can overridethisstrategy to create
SVC HANDLERs using other strategies (such as cresting
an individual Singleton [4] or dynamicaly linking the SVC
HANDL ER from a shared library).

The Acceptor’ s SVC HANDLER connection accep-
tance strategy is defined by the accept _svc_handl er
method:

tenpl ate <class SH, class PA> int
Accept or <SH, PA>::accept_svc_handl er (SH *handl er);
{

t hi s- >peer_acceptor _->accept _ (*handl er);

}

The default behavior delegates to theaccept method pro-
vided by the PEER ACCEPTOR. Subclasses can override
the accept _svc_handl er method to perform more so-
phisticated behavior (such as authenticating the identity of
the client to determine whether to accept or rgject the con-
nection).

TheAccept or’ s SVC HANDLER concurrency strategy
isdefined by theact i vat e_svc_handl er method:

tenpl ate <class SH, class PA> int

Accept or<SH, PA>::activate_svc_handl er (SH *handler);

handl er - >open ();

The default behavior of this method is to activate the
SVC HANDLER by calling its open method. This allows
the SVC HANDLER to select its own concurrency strat-
egy. For instance, if the SVC HANDLER inherits from
Event Handl er it can register with the React or . This
allows the React or to dispatch the SVC HANDLER' s
handl e_.event method when events occur on its PEER
STREAMendpoint of communication. Subclasses can over-
ride this strategy to do more sophisticated concurrency acti-
vations (such as making the SVC HANDLER an “active ob-
ject” [13] that processes data using multi-threading or multi-
processing).

When an Accept or terminates, either due to errors or
due to the entire application shutting down, the React or
cals the Accept or’s handl e_cl ose method to en-
able it to release dynamically acquired resources. In this
case, the handl e_cl ose method simply closes the PEER
ACCEPTOR'slistener endpoint, as follows:

tenpl ate <class SH, class PA> int
Accept or <SH, PA>::handl e_cl ose (void)

return this->peer_acceptor_.close ();

4.7.3 Application Layer

The Applicationlayer isresponsiblefor supplyingaconcrete
interprocess communication (IPC) mechanism and a con-
crete service handler. The IPC mechanisms are encapsul ated
in C++ classes to simplify programming, enhance reuse, and
to enable wholesad e replacement of IPC mechanisms. For
example, the SOCK Accept or, SOCK Connect or, and
SOCK St reamclasses used in Section 4.8 are part of the
SOCK SAP C++ wrapper library for sockets[14]. Likewise,
the corresponding TLI * classes are part of the TLI SAP
C++ wrapper library for the Transport Layer Interface [7].

SOCK SAP and TLI SAP encapsulate the stream-oriented
semantics of connection-oriented protocols like TCP and
SPX with a efficient, portable, and type-safe C++ wrappers.

The two main rolesin the Application layer are described
bel ow.

e Concrete Svc Handler: This class implements the con-
crete application-specific service activated by a Concr et e
Acceptor. A Concrete Svc Handl er isinstantiated
with a specific type of C++ IPC wrapper that exchanges
data with its connected peer. The sample code examples
in Section 4.8 use a SOCK St r eamas the underlying data
transport delivery mechanism. Itiseasy tovary thedatatrans-
fer mechanism, however, by parameterizing the Concr et e
Svc Handl er withadifferent PEER STREAM(such asa
TLI Stream.

e Concrete Connector: This class instantiates the generic
Accept or factory with concrete parameterized type ar-
guments for SVC HANDLER and PEER ACCEPTOR. In
the sample code in Section 4.8, SOCK Accept or is the
underlying transport programming interface used to estab-
lish a connection passively. However, parameterizing the
Accept or with a different PEER ACCEPTOR (such as a
TLI Accept or) is straightforward since the |PC mecha
nisms are encapsulated in C++ wrapper classes. Therefore,
the Accept or ’s generic strategy for passively initidizing
services can bereused, whilepermitting specific details(such
as the underlying network programming interface or the cre-
ation strategy) to change flexibly. In particular, note that no
Accept or components must change when the concurrency
strategy is modified.

The following section illustrates sample code that in-
stantiates a Concr et e Svc Handl er and Concrete
Accept or toimplement the Peer s described in Section 3

4.8 SampleCode

The sample code below illustrates how Peer s described in
Section 3 use the Acceptor pattern to simplify the task of
passively initializing services whose connections are initi-
ated actively by the Gat eway. ThePeer s play the passive
role in establishing connections with the Gat eway (an im-
plementation of the Gat eway using the Connector pattern
appearsin [2]). Figure 6 illustrates how participantsin the
Acceptor pattern are structured in a Peer .

48.1 SvcHandlersfor Sending and Receiving Routing
M essages

The classes shown below, Status Handl er, Bul k
Dat a Handl er,and Cormand Handl er, process rout-
ing messages sent and received from a Gat eway. Since
theseConcr et e Svc Handl er classesinheritfrom Svc
Handl er they are capable of being passively initiaized by
an Accept or. To save space, these examples have been
simplified by omitting most of the error handling code.

& _
SOCK_St
7 _Stream

\
} Command'n
t Handler

ACTIVATES < Acceptor_//,

~_ ~——"T~_7

| -
| r~ !
| v SOCK_Stream e

\ /
l} Bulk Data \)n ACTIVATES
| g ACTATES

APPLICATION
LAYER

I
|
|
| |
| \ Handler | { Acceptor | |
b - N
| | 7 |
1Y Status < . [
|)
I | \ Handler —————9 ' o
[\77_\\~/ ACTIVATES | Acceptor,\ | |
ll ! / ST TN T [
e R e I L] o e
z vy ¥ Loy
9 o P "| PEER_STREAM | /Ths;ciﬂ;r;w;";j
B E \ Svc () \’/ \FEFEE:;CCEPTUR}
=3 | Handler \ 8
z = D N / Acceptor
s \ /\\-a/«\,_-/
O
= /= L
Z & 7 \n
3= | Event | T ~
Z5 | Handler)) Reactor
~ (N o _ -

s

Figure 6: Structure of Participants in the Peer Acceptor
Pattern

To illustrate the flexibility of the Acceptor pattern, each
open routineinthe Svc Handl er s implements a differ-
ent concurrency strategy. In particular, when the St at us
Handl er is activated it runs in a separate thread; the
Bul k Data Handl er runs as a separate process, and
the Conmand Handl er runsin the same thread as with
the React or that demultiplexes connection requests for
the Accept or factories. Note how changes to these con-
currency strategies do not affect the architecture of the
Accept or, which is generic and thus highly flexible and
reusable.

We'll start by definingaSvc_Handl er thatisspeciaized
for socket-based data transfer:

typedef Svc_Handl er <SOCK_Streanr PEER _HANDLER;

Thisclass formsthe basisfor all the subsequent service han-
diers. For instance, the St at us _Handl er class processes
status data sent to and received from a Gat eway':

class Status_Handl er :
{
publi c:
/1 Perforns handl er activation.
virtual int open (void) {
/1 Make handler run in separate thread (note that
/1 Thread::spawn requires a pointer to a static
/1 method as the entry point for the thread).

publ i ¢ PEER_HANDLER

Thread: : spawn (&St atus_Handl er::svc_run, this);

}

/] Static entry point into the thread, which bl ocks
/1 on the handle_event() call in its own thread.
static void *svc_run (Status_Handler *this_) {

/1 This nmethod can block since it

/1 runs in its own thread.
while (this_->handl e_event () != -1)
conti nue;

/'l Receive and process status data from Gat eway.
virtual int handle_event (void) {

char buf [MAX_STATUS_DATA] ;

this->stream .recv (buf, sizeof buf);

/1
}

11
b

The following class processes bulk data sent to and received
from the Gat eway.

class Bul k_Data_Handl er :
{
publi c:
/1 Perforns handl er activation.
virtual int open (void) {
/1 Handl er runs in separate process.
if (fork () >0) // In parent process.
return O;
else // In child process.

publ i ¢ PEER_HANDLER

/1 This method can block since it

/1 runs in its own process.

while (this->handl e_event () != -1)
continue;

}

/'l Receive and process bul k data from Gat eway.
virtual int handl e_event (void) {

char buf [MAX_BULK_DATA ;

this->stream .recv (buf, sizeof buf);

/1
}

11
b

The following class processes bulk data sent to and re-
ceived fromaGat eway:

/1 Singleton Reactor object.
extern Reactor reactor;
cl ass Command_Handl er : public PEER HANDLER
publi c:
/1 Perforns handl er activation.
virtual int open (void) {
/1 Handler runs in sanme thread as nain Reactor.
reactor.regi ster_handl er (this, READ MASK);

/'l Receive and process conmand data from Gat eway.
virtual int handle_event (void) {
char buf [MAX_COMVAND DATA| ;
/1 This nethod cannot block since it borrows
/1 the thread of control fromthe Reactor.
this->stream .recv (buf, sizeof buf);
/1
}

...
H
4.8.2 Acceptorsfor Creating Svc Handlers

Thes_accept or,bd_accept or, and c_accept or ob-
jects shown below are Concrete Acceptor factories

: Acceptor

Handler

Handler

ACTIVE
CONNECTIONS

PASSIVE

: Reactor

Figure 7: Object Diagram for the Peer Acceptor Pattern

that create and activate St at us Handl er s, Bul k Dat a
Handl er s, and Conmand Handl er s, respectively.

/1 Accept connection requests from Gateway and
/] activate Status_Handl er.
Accept or <St at us_Handl er, SOCK_Acceptor> s_acc;

/1 Accept connection requests from Gat eway and
/] activate Bul k_Data_Handl er.
Accept or <Bul k_Dat a_Handl er, SOCK_Accept or > bd_acc;

/1 Accept connection requests from Gat eway and
/1 activate Command_Handl er.
Accept or <Comrand_Handl er, SOCK_Acceptor> c_acc;

4.8.3 Themain() Function

Themain program initializesthe concrete Accept or facto-
ries by caling their open methods with the well-known
ports for each service. As shown in Section 4.7.2, the
Accept or: : open method registers itself with a Single-
ton [4] instance of the React or . The program then enters
an event loop that uses the React or to detect connection
requests from the Gat eway. When connections arrive, the
React or calls back to the appropriate Accept or , which
creates a new PEER HANDLER to perform the service, ac-
cepts the connection into the handler, and activates the han-
dier.

/1 Main programfor the Peer.

/1 Singleton Reactor object.
React or reactor;

int main (void)

{
/1 Initialize acceptors with their well-known ports.
s_acc. open (| NET_Addr (STATUS_PORT), &reactor);
bd_acc. open (I NET_Addr (BULK DATA PORT), &reactor);
c_acc. open (I NET_Addr (COVWAND _PORT)) & reactor;

/1 Loop forever handling connection request
/1 events and processing data fromthe Gateway.

for (;;)
reactor. handl e_events ();

Figure7 illustratesthe rel ationshi p between Acceptor pattern
objectsin the Peer after four connections have been estab-
lished. Whilethe various * Handl er s exchange data with
the Gat eway, the* Accept or s continueto listen for new
connections*

49 Known Uses

The React or, Svc Handl er, and Accept or classes
described in this article are al provided as reusable compo-
nentsin the ACE toolkit [3]. The Acceptor pattern has been
used in the following frameworks, toolkits, and systems:

e UNIX network superservers such as inetd [7],
[isten [8], and the Servi ce Confi gurator
daemon from the ASX framework [3]. These super-
servers utilize a master Acceptor process that listens
for connections on a set of communication ports. Each
port is associated with a communication-rel ated service
(such as the standard Internet servicesft p, t el net ,
dayti me, and echo). The Acceptor pattern decou-
ples the functionality in the i net d superserver into
two separate parts: one for establishing connections
and another for receiving and processing requests from
peers. When a service request arrives on a monitored
port, the Acceptor process accepts the request and dis-
patches an appropriate pre-registered handler to perform
the service.

e TheEricsson EOS Cadll Center Management system[15]
uses the Connector pattern to allow application-level
Cdll Center Manager Gat eways to actively establish
connections with passive Peer hosts in a distributed
system.

e The high-speed medica image transfer subsystem of
project Spectrum [16] uses the Acceptor pattern to pas-
sively establish connections and initidize application
services for storing large medical images. Once con-
nections are established, applications then send and re-
ceive multi-megabyte medical imagesto and from these
image stores.

410 Reéated Patterns

The Acceptor pattern may be viewed as a variation of the
Template Method and Factory Method patterns [4]. In the
Template Method pattern an agorithm is written such that
some steps are supplied by a derived class. In the Factory
Method pattern a method in a subclass creates an associate
that performsaparticular task, but thistask isdecoupled from
the protocol used to create the task.

The Acceptor pattern is a connection factory that uses a
template method (handl e_event) to create handlers for
communication channels. Thehandl e_event method im-
plements the a gorithm that passively listens for connection

4This diagram uses additional Booch notation [10], where solid clouds
indicate objects and undirected edges indicate some type of link (such asa
pointer or reference) exists between two objects.

10

requests, then creates, accepts, and activates a handler when
the connectionisestablished. The handler performsaservice
using data exchanged on the connection. Thus, theserviceis
decoupled from the network programming interface and the
transport protocol used to establish the connection.

5 Concluding Remarks

This article motivates the Acceptor and Connector pat-
terns and gives a detailed example illustrating how to
use the Acceptor pattern. A subsequent issue of the
C++ Report [2] will illustrate how to implement the Con-
nector pattern. UNIX versions of the Acceptor, Con-
nector, and Reactor patterns described in this article
are freely available via the World Wide Web at URL
http://ww. cs. wstl.edu/"schm dt/. Thisdis
tribution contai ns compl ete source code, documentation, and
example test drivers for the C++ components devel oped as
part of the ACE obj ect-oriented network programming toolkit
[3] developed a the University of Caifornia, Irvine and
Washington University. The ACE toolkit is currently being
used on communi cation software at many companies.
Thanksto Venkata-Subbarao Kandru for commentsonthis

paper.

References

[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

D. C. Schmidt, “Connector: a Design Pattern for Actively
Initializing Network Services,” C++ Report, vol. 8, January
1996.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

W. R. Stevens, TCP/IP lllustrated, Volume 1. Reading, Mas-
sachusetts: Addison Wesley, 1993.

W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1°* Conference on Object-
Oriented Technologies, (Monterey, CA), USENIX, June 1995.

G. Booch, Object Oriented Analysis and Design with Ap-

plications (2"¢ Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

(2]

(3]

[4]

(5]

(6]
[7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX 1/O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

R. G. Lavenderand D. C. Schmidt, “ Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2"¢ Annual Conference on the Pattern Languages
of Programs, (Monticello, lllinais), pp. 1-7, September 1995.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

D. C. Schmidt and T. Suda, “ An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280293, December 1994.

G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71-81, 1994.

11

