
Abstract

 When the Asynchronous Method Invocation (AMI)
model was introduced into the CORBA specification, client
applications benefited from the ability to invoke non-
blocking two-way requests. In particular, AMI improved
the scalability of clients by removing the restrictions
associated with Synchronous Method Invocations (SMI).
Server request handling remained synchronous, however,
which minimized the benefits of AMI for middle-tier
servers, such as firewall gateways and front-end database
servers.

 This paper describes our strategy for implementing a
scalable server-side asynchrony model for CORBA. We
first outline the key design challenges faced when
developing an Asynchronous Method Handling (AMH)
model for CORBA and then describe how we are resolving
these challenges in TAO, our high-performance, real-time
CORBA ORB. In general, AMH-based CORBA servers
provide more scalability than existing concurrency models,
with only a moderate increase in programming complexity.
Although targeted for CORBA, similar techniques can also
be used in other method-oriented middleware, such as
COM+ and Java RMI.

1. Introduction

Background

Most first-generation implementations of distributed object
computing middleware, such as CORBA [OMG 2000a],
DCOM [Box 1997], and Java RMI [Wollrath et al. 1996],
supported reliable communication solely through
Synchronous Method Invocation (SMI) models. In an SMI
model, a client invokes an operation through a local proxy,
which:

1. Sends the parameters to the target object and blocks

waiting for the reply
2. Returns control to the client thread along with the

response

Figure 1 illustrates a typical two-way SMI interaction
between a client and server.1

ServerClient

1

2

ORB

Figure 1: The SMI Model. (1) The client invokes the
operation and the ORB blocks. (2) After the response is
returned, the ORB returns control to the client
application thread that invoked the operation.

Although SMI is a common invocation model, it does not
scale well due to its need for a separate client thread to
execute for each concurrent two-way SMI call. Moreover,
SMI is not well suited for real-time or interactive
applications that must remain responsive while waiting for
replies to arrive from servers [Arulanthu et al. 2000a].

Recent changes to the CORBA specification [OMG 2000a]
have added a new type of invocation model known as
Asynchronous Method Invocation (AMI) [Arulanthu et al.
2000b]. By separating requests from responses in time and
space, AMI enables more scalable and responsive clients
compared with conventional SMI clients. The two variants
of AMI are polling and callbacks, as shown in Figure 2 and
Figure 3.

The polling model shown in Figure 2 is characterized by a
Poller object the client can use to check the status of the
request.

1 In the context of this paper, we assume all operations are
two-way operations.

Designing an Efficient and Scalable
Server-side Asynchrony Model for CORBA

Darrell Brunsch, Carlos O’Ryan, and Douglas C. Schmidt

{brunsch, coryan, schmidt}@uci.edu
Department of Computer Engineering

University of California, Irvine
Irvine, CA 92612, USA

P
o
l
l
e
r

ServerClient

1

2

ORB

Figure 2: The AMI Polling Model. (1) The client
invokes the operation and the call returns immediately.
(2) It later checks with the collocated Poller object to
retrieve the response.

The client uses the Poller object to check for a returned
response or to block until the response is available. The
callback model shown in Figure 3 differs in that the client
will pass a reply handler object with the request. This
object will be called back by the ORB to notify the
application of an available response [Arulanthu et al.
2000b].

ServerClient

1

2

ORB

reply
handler

Figure 3: The AMI Callback Model. (1) The client
invokes the operation and the call returns immediately.
(2) The ORB later invokes the callback when the
response arrives.

These two AMI models allow a client to make multiple
requests on remote objects residing on one or more servers
without blocking synchronously for responses. Moreover,
AMI allows clients to initiate many long-running method
invocations concurrently, without incurring the overhead
associated with using a separate thread for each request.

An interesting aspect of the CORBA AMI specification is
that it does not affect server design or behavior. AMI only
affects the behavior of clients by decoupling the sending of
the request and the receiving of the response. This design
allows a client to make requests asynchronously, but does
not (by itself) enable a server to handle the requests
asynchronously.

Limitations with CORBA AMI for Middle-tier Servers

For many types of systems, CORBA AMI improves
concurrency, scalability, and responsiveness significantly.
Since AMI allows a client to invoke multiple two-way
requests without waiting for responses, the client can use
the time normally spent waiting for replies to perform other
useful work. These capabilities are sufficient for a wide
range of applications, particularly two-tier client/server
applications.

There is another important class of systems where the
standard CORBA AMI capabilities are insufficient. These
systems have multi-tier architectures, such as the three-tier
structure found in many distributed business systems
[Eckerson 1995]. In a multi-tier system, one or more
“middle-tier” servers are placed between a source client
and a sink server. A source client’s two-way request may
visit multiple middle-tier servers before it reaches its sink
server; the result then flows in reverse through these
intermediary servers before arriving back at the source
client.

Figure 4 illustrates a multi-tier architecture involving a
middle-tier server and several source clients and sink
servers.

Source Client Sink Server

Middle-Tier Server

Source Client Sink Server
Figure 4: A Three-tier Client/Server Architecture

The three-tier client/server architecture shown in this figure
can be used for many types of systems. For example, the
middle-tier server could be a firewall gateway that validates
requests from external clients before forwarding them to
sink servers. Likewise, the middle-tier server could be a
load balancer that distributes access to a group of database

servers [Othman et. al. 2001]. In both cases, the middle-
tier servers act as intermediaries that accept requests from a
client and then pass the requests on to another server or
external data source. When an intermediary receives a
response, it sends its own response back to the source
client. The general behavior of a middle-tier server is
summarized in Figure 5.

Source Client Middle Tier Server Sink Server

method()

real_method()

real_method()

method()

1

2

3

4

5

Middle-Tier Server

Figure 5: Typical Middle-tier Server Steps: (1) client
sends request, (2) middle-tier processes the request and
sends a new request to a sink server, (3) sink server
processes and returns data, and (4) middle-tier returns
data to (5) the client.

Unlike ordinary source clients, middle-tier servers must
communicate with multiple source clients and sink servers.
They must therefore be highly scalable to avoid becoming a
bottleneck. Due to the cost of thread creation, context
switching, synchronization, and data movement, it may not
be scalable to dedicate a separate thread for each
outstanding client request.

The overhead of threads motivates the need for another way
to increase middle-tier server scalability. Unfortunately,
these servers cannot leverage the benefits of AMI fully
since AMI only provides asynchrony on the client side of a
request. In a middle-tier server, therefore, outgoing
requests can use AMI to return program control from the
ORB quickly, but the servant for the incoming request must
remain on the stack of activation records (i.e., control
cannot return back to the ORB) until a response can be
returned to the source client.

Properties of an Ideal Solution for Middle-tier Servers

Figure 5 shows the sequence of steps performed per-request
by a middle-tier server. The point where asynchrony can
provide the most benefit is step 3, i.e., send a new request
to another server or data source and wait to receive the
response. Depending on the speed of the sink server or
data source, considerable time could be spent blocked
waiting for a response. This waiting reduces the scalability
of the middle-tier server since it must dedicate a thread for
the duration of the request/response cycle.

An ideal solution to this problem should have the following
properties:

• Request throughput: A solution should provide high
throughput for a client, i.e., it should be able to handle
a large number of requests per unit time, e.g., per
second or per “busy hour.” A solution that serializes
or minimizes incoming requests can degrade
throughput.

• Latency/Jitter: A solution should minimize the
request/response processing delay (latency), as well as
the variation of the delay (jitter).

• Scalability: A solution should take advantage of
multiple sink servers and handle many aggregate
requests/responses.

• Portability: Ideally, little or no changes and non-
portable features should be required to implement a
scalable solution.

• Simplicity: Compared with existing SMI designs, the
solution should minimize the amount of work needed
to implement scalable middle-tier servers. In addition,
any ORB features required by the solution should be
easy to implement.

Although it is hard to achieve all these properties in a single
design, we present this ideal solution as an archetypical
baseline for comparison.

Paper Organization

The remainder of this paper is organized as follows:
Section 2 introduces our solution—Asynchronous Method
Handling (AMH)—and outlines its benefits; Section 3
describes how we are addressing the key design challenges
of AMH in The ACE ORB (TAO); Section 4 compares
AMH with related work; and Section 5 presents concluding
remarks.

2. An Overview of Asynchronous
Method Handling for Middle-tier
Servers

The difficulty of implementing a scalable middle-tier server
is rooted in the tight coupling between a server’s receiving
a request and returning a response in the same activation
record. This tight coupling limits a middle-tier server’s
ability to handle incoming requests and responses
efficiently. In particular, each request needs its own
activation record, which effectively restricts a
request/response pair to a single thread in standard
CORBA.

This restriction also affects the design of servers that
depend on long-running asynchronous hardware tasks.
These servers cannot take advantage of asynchrony of the
hardware because the ORB and servants must handle
requests synchronously.

A solution to this problem is to extend the same benefits of
AMI to the server by employing Asynchronous Method
Handling. By allowing the server to asynchronously return
responses, we decouple the existing 1-to-1 association of an
incoming request to the run-time stack originating from the
activation record that received the request without incurring
the overhead of multi-threading. This design can be seen in
Figure 6, where the out parameters must be set when the
servant upcall returns control to the ORB.

: ORB : Servant

method(rh, in)

out

Figure 6: Current Method Handling Model

Adding AMH to a middle-tier server that also uses the AMI
callback model yields a server that can take full advantage
of asynchrony. Such an AMI/AMH server can act much
like a message-oriented middleware (MOM) server, which
is well suited for use in middle-tier servers. A middle-tier
server’s main task is to forward requests from source
clients and responses from sink servers. A server using
AMI and AMH can treat a method call as two separate
messages: a request and a response. This type of

architecture results in a more efficient design that does not
require as much state in a middle-tier server as a method-
oriented design.

Much as AMI allows a client application to provide a reply
handler object to an ORB, AMH allows an ORB to provide
a server application’s servant with a response handler
object that contains the context information needed to
return a response to the appropriate client. The server
application can return a response via this response handler
either during the servant upcall or at some later point
during the server’s execution.

Figure 7 shows how a servant upcall in a middle-tier server
receives a response handler object and “in” parameters.

: ORB

: Servant

rh : ResponseHandler

create()

method(rh, in)

method(out)

: ReplyHandler

Figure 7: Asynchronous Method Handling Model

Using AMH, this middle-tier server can invoke an AMI call
to a sink server and return control to the ORB without
specifying the “out” parameters. When the response from
the sink server becomes available, it is dispatched to the
AMI callback handler, which can use the context
information stored in the response handler to specify the
“out” parameters and return a response to the client.

Below we evaluate the pros and cons for this AMI/AMH
model in terms of the ideal solution we outlined towards
the end of Section 1.

• Request throughput: The middle-tier server can
provide very high throughput by handling multiple
incoming requests from a client asynchronously.

• Latency/Jitter: When a request arrives, it is handled
quickly, and when the response returns from the sink
server, a reply can be sent back immediately. Latency
should be relatively low since no additional threads
need be created to handle requests and wait for
responses. However, more state is required than in the
simple single-threaded case, resulting in more context
stored on the heap.

• Scalability: Scalability can be very high since the
upcall for requests and callbacks on ReplyHandler
objects need not block. Moreover, performance can be
enhanced to take advantage of multiple CPUs by
combining the AMI/AMH model with a thread pool
[Schmidt 1998].

• Portability: AMH is not yet defined in a CORBA
specification, nor is it implemented by many ORBs.
TAO’s implementation will include a proof-of-concept
prototype.

• Simplicity: The server application becomes more
complicated because application code uses both AMH
and AMI. The ORB and IDL compiler also become
more complicated because request lifetimes are
decoupled from the lifetime of a servant upcall.

3. The Design of TAO’s Asynchronous
Method Handling Architecture

The design of TAO’s AMH support is modeled after its
AMI callback model implementation [Arulanthu et al.
2000b]. In the AMI callback model, the client creates a
custom ReplyHandler object that it passes to the ORB
when it uses the callback version of an operation. Methods
on a ReplyHandler are then invoked by the client ORB
when a reply is returned from the server.

TAO’s AMH design uses a ResponseHandler that
behaves much like an AMI ReplyHandler. When a
server ORB invokes an upcall on a servant’s method, it
passes the ResponseHandler to the servant. The
servant upcall method then has the following choices:

• Immediate response -- It can use this Response

Handler during the upcall to send a reply
immediately (which is akin to conventional two-way
server behavior) or

• Deferred response -- It can save the Response
Handler and defer the reply to a more suitable point
in time, i.e., after the original upcall returns back to the
skeleton.

As with AMI, AMH requires changes to both IDL
compilers and ORB internals. For example, for each IDL
interface an IDL compiler must generate a POA skeleton

class that contains signatures that take the appropriate
ResponseHandler parameter. Likewise, an ORB must
be extended to handle both the immediate and deferred
response use-cases outlined above.

Below, we describe the challenges we encountered during
the design of TAO’s AMH support and outline our solution
approach.2

Challenge 1: How to Process Asynchronous Responses
Efficiently

Context: To support SMI-based servant upcalls, an ORB
can make assumptions about the lifetime of objects needed
for method handling. For example, ORBs can use
automatic variables to control the lifetime of objects
associated with method handling.

Problem: The introduction of AMH violates most of the
SMI assumptions. In the above example, the lifetime of an
object must be extended until a ResponseHandler is
used to return a response (which can occur long after the
upcall returns). Since assumptions like this are key to
optimizations involving memory allocations and thread
synchronization, new techniques must be devised to handle
these issues efficiently.

Solution: Use the Strategy pattern [Gamma et al. 1995] to
encapsulate different algorithms and interchange them
easily. To minimize the impact of AMH support, the TAO
ORB mechanisms that process incoming requests are
controlled by a strategy. The ORB will normally be
configured without support for AMH, thereby minimizing
the performance and footprint impact of this extension.

Challenge 2: How to Minimize the Time/Space Cost of
AMH Support on non-AMH Applications

Context: Only certain types of applications, such as
middle-tier servers, will require AMH capabilities.

Problem: AMH requires changes to the ORB’s use of
servant upcalls. As described in Challenge 1, this change
can affect the optimizations currently in place. As a result,
non-AMH calls can also be affected. Ideally, only servants
that make use of AMH should have to pay any penalties,
such as additional dynamic memory allocators or footprint
enlargement, related to this feature.

Solution: Use the Component Configurator pattern
[Schmidt et al. 2000], which allows middleware or
application developers to delay their configuration

2 Note to reviewers: the final version of this paper will
contain the results of benchmarks that will illustrate the
benefits of AMH empirically.

decisions until run-time. In TAO, we use this pattern to
dynamically load the AMH support strategies only when
needed. For example, a different implementation of a server
ORB’s request-processing strategy can be loaded
dynamically to handle the special requirements of AMH
request processing. Applications that do not require these
features need not load the AMH strategy, thereby avoiding
any time/space penalties it incurs.

Challenge 3: How to Leverage AMI Stub Generation in
TAO’s IDL compiler for AMH Skeleton Generation

Context: TAO’s IDL compiler currently has the ability to
generate AMI stubs. AMH requires the IDL compiler to
also generate AMH skeletons.

Problem: As noted earlier, many similarities exist between
the ReplyHandler class generated for AMI stubs and
the ResponseHandler class needed for AMH skeletons.
Instead of adding new code, it should be possible to reuse
existing AMI generation code to generate AMH skeletons.

Solution: TAO’s IDL compiler design is based on the
Visitor pattern [Gamma et al. 1995], which represents
operations that are performed and members of an object
structure. The use of this pattern allows us to reuse the
components that generate the ReplyHandler
declarations. However, the implementation of the new
server-side ReplyHandler requires the addition of other
visitors.

Challenge 4: How to Minimize or Remove All Blocking
I/O Operations from the ORB

Context: There are many opportunities for the ORB to
block due to flow control while reading or writing data to
the network.

Problem: Efficient use of the AMH model relies on the
ability of a single thread to do other work while waiting for
a response to outstanding requests. Whenever the ORB
blocks unnecessarily, the application is prevented from
handling other requests, which can degrade the
performance of middle-tier servers significantly.

Solution: Recently, support for non-blocking I/O for both
sending and receiving data in the ORB was added to TAO.
This feature is fundamental for the efficient use of AMH in
a server. The ORB configuration must be extended to help
enable the appropriate configurations for optimal ORB
behavior when AMH is enabled.

Challenge 5: How to Handle Multithreaded Issues with
AMH

Context: TAO supports multiple threading models, ranging
from one thread (i.e., a reactive model [Schmidt et al.
2000]) to thread-per connection, to various forms of thread
pools [Schmidt 1998].

Problem: The separation of the lifetime of the servant
upcall to the lifetime of the request causes situations where
the thread receiving the request may not be the thread
sending back the response. These situations must be
handled in an efficient and scalable manner.

Solution: The nature of AMH modifies some seldom-used
properties of CORBA servers. For example, an application
can ordinarily consult the POACurrent to obtain
incoming request information, such as its target ObjectID.
In AMH, this information cannot be obtained from a
thread-specific object, and must therefore be represented
explicitly. To support this capability, therefore, we are
adding a new AMHCurrent to represent all information
normally contained in the thread activation. This object
can be obtained during the upcall to the AMH skeleton, and
used by the application until the response is sent, or it can
be passed as an extra argument in the AMH operation.

Likewise, CORBA ORBs must follow strict threading rules
in the invocation of interceptors and similar mechanisms;
those rules cannot be followed for AMH requests. We
expect that applications designed for AMH will simply take
these changes into consideration, however, and normal
servants should not be affected by the relaxation of these
rules.

4. Related Work
[Draves et al. 1991] outlines the use of continuations in an
operating system’s kernel. Continuations allow a thread to
discard its call stack and provide a high-level representation
of its execution state. This capability is similar to AMH in
that AMH also encapsulates state in a Response
Handler that is later used to return a response to a client.

The AMH model is based on the design of the AMI
callback model [Arulanthu et al. 2000a]. The idea of a
ReplyHandler was extended for use within the server as
a ResponseHandler. In addition to allowing a client to
use callbacks when the ORB receives a response from a
server with AMI, the server application can now use a
callback into the ORB to send a response back to the client.

Some other examples of work on this subject include
Futures [Halstead et al. 1985] and Promises [Liskov et al.
1998], which are language mechanisms that decouple
method invocation from method return values passed back

to the caller when a method finishes executing. While
mainly dealing with the client side of an operation, their use
can be extended into the method itself to provide further
decoupling.

The TAO AMH design is influenced by the Proactor
pattern [Schmidt et al. 2000], which allows event-driven
applications to efficiently demultiplex and dispatch service
requests triggered by the completion of asynchronous
operations. The Proactor pattern separates (1) long-duration
operations that execute asynchronously and (2) completion
handlers that process the results of these operations to
achieve the performance benefits of concurrency without
incurring certain of its liabilities.

5. Concluding Remarks
Recent CORBA specifications [OMG 2000a] have
standardized an Asynchronous Method Invocation (AMI)
mechanism, which helps improve the scalability of client
applications. Within the context of middle-tier servers,
however, the utility of AMI is restricted by the fact that the
activation records of threads in the servers cannot perform
useful work while waiting for a response. A potentially
better solution, therefore, is to apply a combination of AMI
and the Asynchronous Method Handling (AMH)
mechanism described in this paper.

AMH allows servants in middle-tier server applications to
store response handlers in a container maintained by the
servant application code and return control to the ORB
immediately. This design allows the ORB to start handling
a new request while it is waiting for a response from a sink
server without requiring a thread for each request/response
pairing in a middle-tier server. Any response from a sink
server can invoke an immediate response to the client.
Similarly, AMH can be applied to servers that block for a
long time, e.g., waiting for I/O, communicating over wide-
area and other high latency networks, or long computations.
Such applications can take advantage of AMH to improve
predictability, latency and throughput, without the overhead
of multi-threaded ORB server concurrency models
[Schmidt 1998].

The open-source software, documentation, tests, examples,
and related papers pertaining to TAO are available from
http://www.cs.wustl.edu/~schmidt/TAO.html.

References
[Arulanthu et al. 2000a] A.B. Arulanthu, C. O’Ryan, D.C.

Schmidt, M. Kircher: The Design and Performance of
a Scalable ORB Architecture for CORBA
Asynchronous Messaging, in J. Sventek, G. Coulson
(eds.): Middleware 2000, Proceedings of the
IFIP/ACM International Conference on Distributed

Systems Platforms, Springer, 2000, ACM/IFIP,
Lecture Notes in Computer Science, Springer, 2000

[Arulanthu et al. 2000b] A.B Arulanthu, C. O’Ryan, D.C
Schmidt, M. Kircher: Applying C++, Patterns, and
Components to Develop an IDL Compiler for CORBA
AMI Callbacks, C++ Report, vol. 12, March 2000

[Box, 1997] D. Box: Essential COM, Addison-Wesley,
Reading, MA. 1997

[Draves et al. 1991] R.P. Draves, B.N. Bershad, R.F.
Rashid, R.W. Dean: Using Continuations to Implement
Thread Management and Communication in Operating
Systems, Proceedings of the 13th Symposium on
Operating System Principles (SOSP), October 1991

[Eckerson 1995] W.W. Eckerson: Three Tier Client/Server
Architecture: Achieving Scalability, Performance, and
Efficiency in Client Server Applications, Open
Information Systems, vol. 10, no. 1, January 1995

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, J.
Vlissides: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading,
MA. 1995

[Halstead et al. 1985] R.H. Halstead, Jr.: Multilisp: A
Language for Concurrent Symbolic Computation,
ACM Trans. Programming Languages and Systems,
vol. 7, pp. 501-538, October 1985

[Liskov et al. 1998] B. Liskov and L. Shrira: Promises:
Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems, in
Proceedings of the SIGPLAN’88 Conference on
Programming Language Design and Implementation,
pp 260-267, June 1998

[OMG 2000a] Object Management Group: The Common
Object Request Broker: Architecture and Specification,
2.4 ed., October 2000.

[OMG 2000b] Object Management Group: Real-Time
CORBA, formal/00-10-28, October 2000

[Othman et al. 2001] O. Othman, C. O’Ryan, D.C.
Schmidt: The Design and Performance of an Adaptive
CORBA Load Balancing Service, IEEE Distributed
Systems Online, vol. 2, no. 4, April 2001

[Schmidt 1998] D.C. Schmidt: Evaluating Architectures for
Multi-threaded CORBA Object Request Brokers,
Communications of the ACM, special issue on
CORBA, Krishnan Seetharaman (ed.), vol. 41, no. 10,
ACM, October 1998

[Schmidt et al. 2000] D.C Schmidt, M. Stal, H. Rohnert, F.
Buschmann: Pattern-Oriented Software Architecture:
Patterns for Concurrency and Distributed Objects,
Volume 2, Wiley & Sons, New York, NY. 2000

[Wollrath et al. 1996] A. Wollrath, R. Riggs, and J. Waldo:
A Distributed Object Model for the Java System, in
Proceedings of the 1996 USENIX Conference on
Object-Oriented Technologies (COOTS), Toronto,
Canada, 1996

http://www.cs.wustl.edu/~schmidt/TAO.html

	Introduction
	Background
	Limitations with CORBA AMI for Middle-tier Servers
	Properties of an Ideal Solution for Middle-tier Servers
	Paper Organization

	An Overview of Asynchronous Method Handling for Middle-tier Servers
	The Design of TAO’s Asynchronous Method Handling Architecture
	Challenge 1: How to Process Asynchronous Responses Efficiently
	Challenge 2: How to Minimize the Time/Space Cost of AMH Support on non-AMH Applications
	Challenge 3: How to Leverage AMI Stub Generation in TAO’s IDL compiler for AMH Skeleton Generation
	Challenge 4: How to Minimize or Remove All Blocking I/O Operations from the ORB
	Challenge 5: How to Handle Multithreaded Issues with AMH

	Related Work
	Concluding Remarks
	References

