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Abstract 
Computing systems are increasingly distributed, real-

time, and embedded (DRE) and must operate under 
highly unpredictable and changeable conditions. An im-
portant and challenging problem for DRE systems is 
therefore adaptation of behavior and reconfiguration of 
resources to maintain the best possible application per-
formance in the face of changes in system load and avail-
able resources. To provide predictable mission-critical 
quality of service (QoS) end-to-end, QoS-enabled mid-
dleware services and mechanisms have begun to emerge. 
The current generation of commercial-off-the-shelf 
(COTS) middleware, however, lacks adequate support for 
applications with stringent QoS requirements in changing, 
dynamic environments. 

This paper presents two contributions to research on 
adaptive and reconfigurable DRE systems. First, we de-
scribe the structure and functionality of an advanced 
middleware platform for developing applications that 
apply various techniques to adapt themselves to changes 
in resource availability to meet real-time quality of ser-
vice (QoS) requirements. Second, we present the results of 
a case study of a multimedia application for Unmanned 
Aerial Vehicle (UAV) video distribution we developed 
using this middleware platform in conjunction with QoS-
enabled operating systems and networking protocols. We 
describe the design of the multimedia application using 
our middleware platform and report empirical results 
showing how adaptive behavior and end-to-end resource 
management techniques are used to reconfigure the sys-
tem dynamically to meet timeliness requirements, even in 
the face of processing power and network bandwidth re-
strictions that are characteristic of many types of DRE 
systems. Our results show that our adaptive middleware 
can effectively coordinate the reconfiguration of resources 
end-to-end and adapt application behavior to continue to 
meet QoS requirements over changing environments. 
 
Keywords: Adaptive middleware, reconfigurable DRE 
systems, aspect-oriented design, and multimedia applica-
tions. 
 

1 Introduction 

1.1 Emerging Trends and Challenges  
Some of the most challenging problems facing soft-

ware developers are those associated with producing 

software for real-time and embedded systems in which 
computer processors control physical, chemical, or bio-
logical processes or devices. Examples of such systems 
include airplanes, automobiles, CD players, cellular 
phones, nuclear reactors, oil refineries, and patient moni-
tors. In most of these real-time and embedded systems, 
the right answer delivered too late becomes the wrong 
answer, i.e., achieving real-time performance end-to-end 
is essential.  

Real-time and embedded systems have historically 
been relatively small-scale, but the trend is toward much 
greater functionality and complexity.  In particular, real-
time and embedded systems are increasingly being con-
nected via wireless and wireline networks – including the 
Internet – to create large-scale distributed real-time and 
embedded (DRE) systems, such as hot rolling mills, tele-
immersion environments, fly-by-wire aircraft, and total 
ship computing environments.  These DRE systems in-
clude many interdependent levels, such as network/bus 
interconnects, many coordinated local and remote endsys-
tems, and multiple layers of software, that together yield 
the following challenges.   
• As distributed systems, DRE systems require capa-

bilities to manage connections and message transfer 
between separate machines. 

• As real-time systems, DRE systems require predict-
able and efficient control over end-to-end system re-
sources, such as memory, CPU, and network band-
width. 

• As embedded systems, DRE systems have weight, 
cost, and power constraints that limit their computing 
and memory resources. For example, embedded sys-
tems often cannot use conventional virtual memory, 
since software must fit on low-capacity storage me-
dia, such as EEPROM or NVRAM. 
DRE systems have historically been developed and 

validated using relatively static development and analysis 
techniques (such as function-oriented design and rate 
monotonic analysis) to implement, allocate, schedule, and 
manage their resources. These static approaches are most 
suitable for closed DRE systems, where the set of applica-
tion tasks that will run in the system and the loads they 
will place on system resources change infrequently and 
are known in advance. They are not well-suited, however, 
for the next-generation of open DRE systems, which 
evolve more rapidly and must collaborate with multiple 
remote sensors, provide on-demand browsing and actua-
tion capabilities for human operators, and respond flexi-
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bly to unanticipated situational factors that arise at run-
time [9]. 

In open DRE systems, end-to-end control and adapta-
tion of various application quality of service (QoS) prop-
erties (such as latency, jitter, and throughput) are essential 
to maintain the best possible performance in the face of 
changes in available computing and networking resources 
and changes in mission requirements. The computing and 
networking infrastructure must therefore be flexible 
enough to support varying workloads at different times 
during an application’s lifecycle, while also maintaining 
highly predictable and dependable behavior. Key chal-
lenges for DRE systems are therefore control and adapta-
tion of resources to maintain the best possible real-time 
application performance in the face of competing de-
mands and changes in load and available resources. 

1.2 Towards Adaptive Middleware for DRE 
Systems 

 R&D activities on QoS for DRE systems over the past 
decade [2, 3, 4, 6, 7, 8, 10, 12, 13] have yielded a number 
of improvements to commonly available computing and 
networking infrastructures that can recognize and react to 
environmental changes. At the heart of these infrastruc-
tures is middleware. Middleware is systems software that 
resides between the applications and the underlying oper-
ating systems and networks to provide reusable services 
that can be composed, configured, and deployed to create 
DRE applications rapidly and robustly [5].  

As computing and networking performance continues 
to increase, so too does application demand for more con-
trol over computing and networking resources through 
middleware interfaces. Meeting this growing demand 
motivates the need for adaptive middleware-centric QoS 
management abstractions [6,8,10] and aspect-oriented 
software techniques [20,22]. Supporting this adaptive 
middleware QoS management architecture efficiently, 
predictably, and scalably requires new dynamic and adap-
tive resource management techniques that can (1) inte-
grate control and measurement of resources end-to-end, 
(2) mediate the resource requirements of multiple (often 
competing) applications, and (3) dynamically adjust re-
source allocation in response to changing requirements 
and conditions. Our earlier R&D efforts on these topics 
have focused on The ACE ORB (TAO) [3] and the Quality 
Objects (QuO) framework [2], which leverage Real-time 
CORBA [12] to provide efficient and predictable middle-
ware structures and services, and adaptive QoS man-
agement policies, respectively, in supporting DRE system 
QoS requirements. TAO 
(deuce.doc.wustl.edu/Download.html) is an open-source  
distribution middleware layer platform targeted (for DRE 
applications with both deterministic and statistical QoS 
requirements, as well as best-effort requirements. QuO 
(quo.bbn.com/quorelease.html) is an open-source QoS 
adaptive middleware layer framework designed to run on 
distribution middleware (such as CORBA and Java RMI) 
using aspect-oriented languages [19] and techniques [21] 

to support applications that can specify (1) their QoS re-
quirements via rule-based contracts, (2) the system ele-
ments that must be monitored and controlled to measure 
and provide QoS, and (3) the structure and behavior for 
adapting to QoS variations that occur at run-time.  

This paper describes how TAO and QuO have been 
integrated with multimedia middleware services (such as 
the CORBA Audio/Video Streaming Service [11]), real-
time operating systems (such as Real-time Linux [14]), 
and QoS-enabled networking protocols (such as IntServ 
[16] and DiffServ [15]). The goal of this integration is to 
simplify the development and operation of robust DRE 
systems that can adapt to changes in resource availability 
toward meeting their applications’ QoS requirements. We 
present our approach in the context of a  multimedia ap-
plication for Unmanned Air Vehicles (UAV) video distri-
bution we have developed using adaptive middleware. In 
this application a video flow from a UAV source adapts to 
meet its mission QoS requirements (such as timeliness 
and video quality) in the face of restrictions in processing 
power and network bandwidth.  

The ideas underlying this paper represent a long term 
and continuing research initiative in this area. The paper 
is based on, incorporates, and extends earlier work, some 
of which has been reported earlier in fragmentary fashion. 
A key contribution of this paper is to pull together more 
detailed aspects of the technical design and applied appli-
cation context with new and more extensive empirical 
evaluation results.  In particular, we discuss distinct be-
haviors and techniques that can be used to adapt to limita-
tions and restrictions in processing power and network 
bandwidth, e.g., reduction of the video flow volume by 
selectively dropping frames and managing the resources 
associated with the end-to-end paths. We also present and 
analyze empirical results gathered to evaluate this appli-
cation in the context of an open experimentation platform 
(OEP) developed to evaluate these technologies in opera-
tional contexts.  

An OEP is a hardware/software laboratory environ-
ment incorporating COTS infrastructure and representa-
tive applications operating in it, which can be modified 
and augmented with technology and application innova-
tions, toward evaluating their contribution to technical 
challenges in that context. We are currently using the 
Emulab facility at the University of Utah 
(www.emulab.net) to host the multimedia application 
OEP environment. The results from our OEP experiments 
in Section 5 show how the adaptation techniques pre-
sented in Section 4 can be controlled effectively by apply-
ing the integrated resource management framework de-
scribed in Section 3 and by superimposing application-
level policies managed via middleware to regulate per-
formance problems caused by processor and/or network 
load. Our multimedia application case study in Section 2 
provides insight into emerging aspect-oriented engineer-
ing practices where applications are composed from exist-
ing software component building blocks, and highlights 
some of the difficulties encountered and solution paths 



taken to meet end-to-end QoS constraints within this de-
velopment paradigm. 

2 Applying Managed QoS to DRE Systems: 
the Multimedia Application Case Study  

This section presents our case study of a multimedia 
application for UAV video distribution. In this applica-
tion, multi-layer resource management mechanisms are 
coordinated via adaptive middleware to ensure video 
flows can meet their mission QoS requirements (such as 
timeliness, jitter, and image resolution) by adapting to 
restrictions in available processing power and network 
bandwidth. As shown in Figure 1, the resulting architec-
ture adaptively controls video transmission captured from 
cameras via a distribution process to viewers on various 
computer displays using the following three stage pipe-
line: 
1. Sensor sources, (endsystems 1-3) including processes 

with live camera feeds (and those that simply replay 
from a pre-recorded file to simulate airborne sensors), 
which send video images to  

2. Distributor processes, (endsystem 4) which are re-
sponsible for distributing the video to one or more  

3. Receivers, (endsystems 5-7) including human-oriented 
video displays and CPU-intensive image processing 
software. 

The management of end-to-end QoS in the UAV 
video dissemination application crosscuts the core func-
tional decomposition of the application. It therefore repre-
sents a separate concern, one representing how the work 
is done, rather than what is done and requires coordinat-
ing the QoS management from end-to-end in a video 
stream and across video streams that are sharing re-

sources. Too often, these types of applications have been 
developed by intertwining the QoS management code 
within the core functionality code.   

Our UAV multimedia application uses the QuO and 
TAO middleware outlined in Section 1.3 to separate the 
QoS concerns and manage them by engaging application 
adaptive behavior, such as dropping frames, requesting 
resource reservations, indicating prioritization among data 
streams, and ensuring transparent fault recovery in a 
bounded amount of time. QuO includes a QoS encapsula-
tion model [21] and a set of aspect-oriented languages 
[23] we used to develop encapsulated QoS behaviors as 
separate aspects and weave the QoS management code 
into the places where QoS can be measured, controlled, 
and managed, as illustrated in Figure 2. In the QuO QoS 
encapsulation model the individual QoS behaviors are 
known as qoskets,  and this term is used throughout the 
paper to denote specific, narrowly focused aspects of an 
overall QoS management approach. 

This application exhibits a wide variety of character-
istics that are representative of many multimedia applica-
tions. These characteristics include varying (1) data for-
mats, such as MPEG and PPM, with different data sizes 
and compression characteristics, (2) network transports, 
such as wireless, LAN, and WAN, with variable and con-
strained bandwidth over both noisy and private channels, 
(3) image processing algorithms, such as image display 
and image recognition processes, with different CPU us-
age patterns, (4) granularities of real-time deadlines, rang-
ing from microseconds to milliseconds and seconds, and 
(5) resource constraints. Thus, while this paper demon-
strates our results on a particular application suite, the 
characteristics of that suite are representative of a broad 
class of time-sensitive, mobile, and dispersed applica-
tions, especially in the domains of pervasive computing, 
remote sensing, hazardous operating environments, and 
automated process control. 

In the context of our multimedia application, manag-
ing real-time end-to-end QoS requires supporting and 
coordinating the following measures of operational effec-
tiveness:  
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Fig. 1. Architecture of the Multimedia Application Suite 

• Minimal frame rate. Full motion video is typically 
30 frames per second (fps), but smooth video is still 
acceptable above 20 fps. Lower frame rates are visi-
bly less smooth, but are usable as long as other quali-
ties (such as data fidelity and jitter) are controlled. 
Our multimedia application uses variable frame rates 
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MP E G_ A V _ S en d e r: :M P E G_ A V _S e n d er ()  :  f ra me _ n um b er _ (0 ),  s ta r te d _( 0) , te m p _ le n _( 0 ) { }

// / E a c h  ti m e  t h e M P E G p a rs e r ha s  a  n e w  f ra m e , it  c al ls  t h is  m e th o d

in t MP E G_ A V _ S e nd e r: :p r o ce s sF r a m e( c on s t MP E Gp a rs e r*  m p,  c h ar  * b u f,  s iz e_ t  le n ) {

fo r  ( C on n e ct io n _ M a n ag e r: :P r o to c ol _O bj e ct s: :i te r at o r ite r a to r =  p r ot o co l_ o b je ct s .b eg i n () ;

           it er a to r  ! = p ro t oc o l_ o bj e ct s. en d  ( );  + + it e ra to r ) {
          i n t re s ul t = (* i te ra t or ). in t _i d _- > se n d _f ra me  ( n ew _b u f,  n e w _ le n) ;

          i f (r e su lt  <  0 )  A C E _ E R R OR _ R E T U R N  (( L M _ E R R OR ,  " s en d  f a ile d :% p " , 

                                " M P E G _ A V _ S en d e r: :p r oc e ss _ fr a me se n d \n " ),  - 1) ;

          p r e v_ t v =  n o w _t v ; }

      th i s- > fr a me_ n u mb e r_ + + ; }
  A C E _C A T C H A N Y  {

      A C E _ P R IN T _E X C E P T I O N  (A C E _ A N Y _ E X C E P T I ON , "A V _S e n d er :: p ro c es s _f ra m e  F a i le d\ n " );

      r et u rn  -1 ; }

  A C E _E N D T R Y ;

  r e tu r n  0 ; }
te m p la t e cl as s  A C E _ A u to _ A r ra y _P t r <c h a r> ;

lo n g  se n d er _ p id = 0 ;

st a tic  A C E _C S t ri n g p ro c es s _n a me _ ;

S en d e r: :S e n de r  ( vo id )  :  d e bu g _ le v el _ (0 ),  s en d e r_ m m d ev ic e _ (0 ) , f il en a m e _ (" i np u t ") , in p u t_ fi le _  ( 0) ,

    f ra me _ ra t e_  ( 5 ),  e nd l es s _l oo p _  ( 0) , se n d er _ na me _  ( " se n de r " ), u se _ q os _ st re a m _ (0 ) {

  m p _. re g is te r C al lb a ck ( &a v _) ; }
in t S en d e r: :p a r se _ ar g s (i nt  a r gc , c ha r  * * ar g v ) {

  i f( a rg c  <  2 ) { u s a ge ( );  r et u rn  - 1 ; }

  f o r( in t  i= 0 ;  i <  a rg c ; i+ + ) {

  / / P ar s e co mm an d  l in e  a rg u m e n ts

  A C E _G et _O pt  o p ts  ( a rg c , a r g v,  " s: f: r :d :l " );
  i n t c;

  w hi le  ( (c =  o p ts  ( ))  ! = -1 ) {

      s w it ch  ( c ) {

        ca s e 'f ':  th i s- > fi le na me _  =  o p t s.o p t ar g ; br e ak ;

        ca s e 'r ':  t hi s- > fr a me _r a te _  =  A C E _ OS : :a to i  (o p ts .o p t ar g );  b r ea k ;
        ca s e 's ':  t hi s- > se n d er _ n am e_  =  op t s. op t ar g ; br e a k;

        ca s e 'l ':  th i s- > en d le s s_ lo o p _ =  1 ; br e ak ;

        ca s e 'd ':  t h is -> d eb u g _ le ve l _ =  A C E _ O S :: a to i (o p ts .o p ta r g) ; b re a k;

        d ef au l t:  u s ag e () ; re tu r n  - 1;  }  }

  r e tu r n  0 ; }
in t S en d e r: :i n it  (i n t ar g c,  c h ar  * a rg v [] , C O R B A : :E n v ir o nm en t &  A C E _ T R Y _ E N V )  {

  / / In i tia l iz e th e  e n dp o in t  s tr a te g y w it h th e  o r b a nd  po a .

  i f (r e su lt  ! =  0 ) re tu r n  r es u lt ;

  / / In i tia l iz e th e  c o nn e ct io n  m an a g er .

  i f (r e su lt  ! =  0 ) re tu r n  r es u lt ;
  / / P ar s e th e  c om m a nd  li ne  a r g um en t s

  r e su l t = th is - >p a r se _ ar g s (a r gc , a rg v );

  i f (r e su lt  ! =  0 ) re tu r n  r es u lt ;

  / / Op en  fi le  to  re a d.

  t h is -> i np u t _f il e_  =  A C E _ OS :: fo p en  (t hi s- > fi le n am e_ .c _ st r () , "r " );
  i f (t h is -> in p u t_ f ile _  = =  0 )

    A C E _ E R R OR _R E T U R N  (( L M_ D E B U G ,  " C a n n ot  o p en  in p u t f il e %s \n " , th is - >f il en a me _ .c _s tr  ()) , -1 );

  / / S er v an t  R e fe r en c e C o un t in g  t o ma n ag e  l ife t ime

  r e tu r n  0 ; }

//  M e t ho d  t o  s en d  d a ta  a t  t he  s p ec i fie d  r a te
in t S en d e r: :p a c e_ d a ta  ( C O R B A : :E n v ir on m en t  &A C E _ T R Y _ E N V )  {

  / / T h e tim e th a t sh o u ld  l a ps e  b et w e en  tw o  c o n se cu t iv e  fr a me s se n t.

  A C E _T i m e _V al u e in te r _f r am e_ ti me ;

  / / T h e tim e b et w ee n  t w o  c on s e cu t iv e fr a m e s.

  i n te r _f ra m e _ ti me .s et  ( 1 / (d o ub l e)  t h is -> fr a m e _r a te _ );
av _ .s e tI n te rf ra m e T i m e( in t er _ fr a m e _t ime ) ;

  c h a r b uf [B U FS I Z ];

  A C E _T R Y  {

      //  T h e ti me  t ak e n  fo r  s e nd i ng  a fr a me a nd  p re p ar in g  f o r th e  n e xt  f ra m e

      A C E _ Hig h _ R es _ T ime r  e la p se d _ tim er ;

      //  P u t an  ex tr a  M P E G  s ta r t s e q ue n c e to  m a k e  D V D v ie w  ha p p y

      mp _ .p u tB y te ( 0) ; m p _. p u tB y te (0 ) ; mp _. p ut B y te (1 ) ; m p_ . pu t B y te (0 );          

      //  C o n ti nu e  t o  se n d  d a ta  t il l th e  fi le  i s re a d  to  th e e nd .
      w h il e (1 ) {

          / / R ea d  f ro m  th e  f ile  i n to  a  m es sa g e  b lo c k .

          i n t n  = A C E _ OS :: fr e ad  ( b u f,  si z eo f( c ha r ),  B U F S I Z , t h is -> in p u t_ f ile _ );

          i f (n  <  0 )  A C E _ E R R OR _ R E T U R N  (( L M_ E R R OR ,  " S en d e r: :p a c e_ d a ta  f re a d  f ai le d \n " ),  -1 ) ;

          i f (n  = =  0 )  {
            if  ( th i s- >e n d le ss _ lo o p _)  {

              //  A t  e nd  of  f il e go  b a c k  to  th e  b eg i nn i n g

A C E _ OS :: r ew i n d (t h is -> in p u t_ f ile _ );  }

            e ls e {

              //  A t  e nd  of  f il e br e a k th e  l oo p  a n d  e n d th e  s en d e r.
if  ( D E B U G_ L E V E L  >  0)  A C E _ D E B U G  (( L M_ D E B U G , "H an d le _ S ta r t: E nd  of  f il e\ n ") );

              b re a k ; }  }

          f o r( in t i= 0 ; i <  n ; i + +)  {  m p_ . pu t B yt e (b u f[ i] );   }  }  }

  A C E _ C A T C H A N Y  {

      A C E _ P R IN T _ E X C E P T I O N  ( A C E _ A N Y _ E X C E P T IO N , " S e n de r :: p ac e _d a ta  Fa i le d \n " );

      re t ur n  - 1 ; }
  A C E _ E N D T R Y ;

  r e tu r n 0 ; }

vo id  S en d er : :u s ag e ()  {

    A C E _ D E B U G( (L M _D E B U G, " U s a ge : \n \n " )) ;

    A C E _ D E B U G( (L M _D E B U G, "    s e n de r  - f [ fi le n am e]  - r [f ra me  r a te ] -s  [ se n d er  n a me ]\ n ") );
    A C E _ D E B U G( (L M _D E B U G, "           [ -l,  l oo p  f o re v er ]  - d  [d e b u g le v el ]\ n" ) );

    A C E _ D E B U G( (L M _D E B U G, "           [ -- qo s ]\ n" ) );  }

co n st  c h ar  *  Se n d er : :n a m e ()  c on s t { re tu r n  s en d e r_ n a me _. c_ s tr () ; }

in t ma in  ( in t  a rg c , c h a r ** a r gv )  {

  s e nd e r _p i d =  A C E _ O S :: g et p id () ;
  p r o ce ss _ n am e_  =  A C E :: b as e na m e ( ar g v[ 0 ]) ;

  A C E _ D E C L A R E _ N E W _ C O R B A _ E N V ;

  A C E _ T R Y  {

      C O R B A : :O R B _ v a r or b  =  C O R B A :: O R B _ in i t ( a rg c , a r g v,  0 , A C E _ T R Y _E N V );

      A C E _ T R Y _ C HE C K;
      C O R B A : :O b j ec t_ v a r ob j  =  o r b -> r es o lv e_ i ni ti a l_ re f er en c e s (" R o ot P O A " , A C E _ T R Y _ E N V );

      A C E _ T R Y _ C HE C K;

      // G et  t h e P OA _ va r  o b je ct  f ro m  O b je c t_ v ar

      P or t ab l eS e rv e r: :P O A _v a r r oo t _p o a  =  P o rt a b le Se r v er :: P OA :: _ n ar r ow  (o b j. in  ( ),  A C E _ T R Y _ E N V ) ;

      A C E _ T R Y _ C HE C K;
      P or t ab l eS e rv e r: :P O A Ma n ag e r_ v a r m g r =  r oo t _p o a -> th e _ P O A M a n a ge r  ( A C E _T R Y _E N V ) ;

      A C E _ T R Y _ C HE C K;

      mg r- > ac t iv a te  ( A C E _T R Y _E N V );

      A C E _ T R Y _ C HE C K;

      //  I ni ti al iz e  t he  A V  S tr e am  c om po n e nt s .
      T A O_ A V _ C O R E :: in s ta n c e () -> in i t ( o rb . in  ( ),  r oo t _p o a .in  () , A C E _T R Y _ E N V ) ;

      A C E _ T R Y _ C HE C K;

      //  I ni ti al iz e  t he  C l ie n t.

      in t  r es u lt  =  0 ;

      re s u lt =  S E N D E R : :in s ta n c e () -> in i t (a rg c , ar g v,  A C E _ T R Y _ E N V ) ;
      A C E _ T R Y _ C HE C K;

      if  ( re su l t < 0 ) A C E _E R R O R _R E T U R N  ( (L M _E R R O R , " c li en t :: in it  f a ile d \n " ),  - 1) ;

      S E N D E R :: in s ta n ce  ( )- > p ac e _d a ta  (A C E _ T R Y _ E N V ) ;

      A C E _ T R Y _ C HE C K;  }

  A C E _ C A T C H A N Y  {
      A C E _ P R IN T _ E X C E P T I O N  ( A C E _ A N Y _ E X C E P T IO N ," S en d e r F ai le d \n " );  r et u rn  -1 ; }

  A C E _ E N D T R Y ;  A C E _C H E C K _ R E T U R N  ( -1 );

  r e tu r n 0 ; }
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Dis tri butor_Rece ive r_C al lback::Distri butor _Rec eiver_C al lbac k ( voi d) { }
Int  D is tribut or_Rec ei ver _Call back::re cei ve_frame (AC E_Mess age_Bl ock *f rame, 
       TAO_AV_fr am e_i nfo *,  const  ACE _A ddr &) {
  //  Upc all  from the A VStre ams when ther e i s dat a t o be  rec eive d f rom  the  se nde r.
  //  Send fr ame to all  rec ei vers.
  for (Connec ti on_Manager ::Pr otocol _Objec ts: :i ter ator ite rator  = prot oc ol _obje cts .begi n ( );
       iter ator ! = pr otocol_objects .end ( );  ++i te rator)  {
      i nt res ult  = (*iter ator ) .int_id_- >send_f rame ( frame);
      i f (r esul t < 0) ACE_ERR OR_RETUR N ( (LM_ERROR , "se nd fai le d:%p", 
           "Se nder::pac e_data send\n") , -1) ; }
  re turn 0;  }
int  Di st ribut or_Rec ei ver _Call back::handle_dest roy (void) {
  //  Call ed when t he sender request s the  st ream to be  shutdow n.
  ACE_TRY_NEW_ENV {
      / / We c an clos e down now.
      DISTRIBUTO R:: ins tance ( )->done  (1);  }
  ACE_CATC HANY {
      AC E_PRIN T_E XCEPTION (AC E_ANY_EXCEPT ION , 
              "D is tributor_Re ce iver_Cal lback: :handl e_destr oy Faile d\ n");
      return -1; }
  ACE_ENDTR Y;
  re turn 0;  }
  int  r esult  = obje ct_->se nd_fram e (fram e );
    prev_tv = now_tv;   }
  re turn re sult ; }
Dis tri butor:: Dist ri butor  (voi d) : debug_le vel _ (0), s ende r_name _ ( "sende r") , 
    di str ibutor _name _ ("di st ributor ") , done_ (0)  { }
Dis tri butor:: ~Dis tri butor ( voi d) {}
Int  D is tribut or::par se_args  ( int  ar gc,  char **argv) {
  //  Par se c ommand li ne argume nts
  ACE_Ge t_O pt opt s (ar gc,  argv,  "s:r: d:");
  int  c ;
  whil e ((c = opts ( ))  ! = -1) {
      swi tch (c)  {        case ' s':  thi s- >s ende r_nam e_ = opts.optarg; bre ak;
        case ' r':  thi s ->distri butor_nam e_ = opts .opt arg; bre ak;
        case ' d':  this ->debug_l evel _ = ACE _O S::atoi (opts. opt arg) ; break;
        de fault :  return -1;  }  }
  re turn 0;  }
int  Di st ribut or::i nit  (i nt argc, char  ** argv, C ORBA::Envi ronm ent  &A CE_TRY_ENV ) {
  //  Par se t he com mand l ine  argum ents
  re sult  = t his ->pars e_ar gs ( argc ,  argv) ;
  if  (res ult  != 0) re turn re sult ;
  re turn 0;  }
int  Di st ribut or::done (voi d) const { re turn this->done_; }
voi d Di str ibutor: :done ( int  done)  {  this->done_ = done; }
int  mai n ( int  argc , c har **argv)  {
  ACE_DECLA RE_NEW_CORBA_EN V;
  ACE_TRY {
      / / Ini ti al iz e the ORB fi r st .
      CO RBA: :ORB_var orb = CORBA ::ORB_i ni t (argc,  ar gv,  0,  ACE_TR Y_ENV) ;
      AC E_TRY_CHEC K;
      CO RBA: :Obj ect _var  obj  = orb->re sol ve_i nit ial_refe rences ("RootPOA", ACE_TRY _EN V);
      AC E_TRY_CHEC K;
      / / Get the  POA _var obje ct fr om Objec t_var.
      Por tabl eServe r:: POA_var r oot _poa = PortableServe r:: POA::_nar row (obj .in () , ACE_TRY_EN V);

      A CE_TRY_CHEC K;
      Portabl eSer ver: :POA Manager _var m gr = r oot_poa->the_POAManager  (ACE_TRY_EN V);
      A CE_TRY_CHEC K;
      m gr- >act ivate (ACE _TR Y_ENV) ;
      A CE_TRY_CHEC K;
      / / Ini ti aliz e t he AVStreams  components.
      / / Ini ti aliz e t he Di st ri butor
      i nt res ult  = D ISTRI BUTO R:: inst ance  ( )- >ini t (argc ,  ar gv,  ACE_TR Y_ENV);
      A CE_TRY_CHEC K;
      i f (resul t != 0)  re tur n re sul t;
      w hi le (!DISTR IBU TOR::i nstance  ( )->done () ) {
          orb- >perf orm _work (ACE _T RY_ENV);
          ACE_TR Y_CHECK ; }
      / / Hac k for now. ...
      A CE_OS::s leep (1) ; }
  ACE_CATC HANY {
      A CE_PRIN T_EXCEPTION (AC E_ANY_EXCE PTIO N,"mai n");
      re turn -1; }
  ACE_ENDT RY;
  ACE_CHE CK_RETUR N (-1);
  re turn 0;  }
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in t R ec e iv er _ St r ea m E n d Po i nt :: g et _c a llb a c k (c o ns t ch a r * flo w n a me,  T A O _ A V _ C al lb a ck  *&c a ll ba c k ) {

  A C E _ D E C L A R E _ N E W_ C OR B A _ E N V ;

  / / C re a te  a nd  re tu r n  th e  s en d e r ap p li ca ti o n ca ll b ac k  t o A V S tr ea ms  f or  f u rt he r  u p ca ll s.
  i n t r e tv a l =  0 ;

  c a ll ba c k =  &t hi s- > ca ll b ac k _;

  r e tu r n re tv a l;  }
R ec e iv er _ C al lb a ck : :R e ce iv e r_ C a ll ba c k (v o id ) : fr am e_ c ou n t_  ( 1 ) {

  A C E _ I N E T _A d d r  in e t_ a dd r (o u tp u t_ p o rt , " l oc a lh o st ") ;

  d v d vi ew _ e n dp o in t _. op e n (in e t_ a d dr );  }

in t R ec e iv er _ C al lb a ck : :r ec e iv e_ fr a m e  (A C E _ Me s sa g e_ B lo c k * fr am e,  T A O_ A V _f r am e _ in fo  *  /* fr am e_ in f o* /,
                    co n st  A C E _ A d d r & ) {

  / / U pc a ll fr o m t he  A V S t re a ms w h en  t h er e  is  d a ta  t o b e re ce iv e d  fr o m t h e se n de r .

  + + fr a m e _c o un t _;
  w h i le  (f r am e  ! =  0 ) {

      ch a r  * bu f  =  f ra m e -> r d _p tr ( );

      if  (o u tp u t _f il e)  {
        // W r it e th e re c ei ve d  d a ta  t o th e  fi le .

        in t re su l t =  A C E _OS : :f w ri te  ( se nd _ b u f, se n d _l en , 1 , o u tp u t_ fi le );  }

      d vd v ie w _ en d p oi n t_ .s en d  ( se n d_ b u f,  se n d _l en ) ;

      fr a m e =  fr a m e -> co n t () ; }
  r e tu r n 0;  }

R ec e iv er :: R ec e iv er  ( v oi d ) :  d e bu g _ le ve l_  ( 0 ), mm d e vi ce _  ( 0) , o u tp u t_ f ile _ n am e _  ( ), is _o u tp u t _f il e_  ( 0) ,

    s en d er _ n am e_  ( "d i st ri b ut o r" ),  r ec e iv er _ na me _  ( "r e ce iv e r" ),  u s e_ q os _ st re a m_ (0 ) {}
R ec e iv er :: ~ R ec ei v er  ( vo id )  { }

in t R ec e iv er :: in it  ( in t,  c h ar  * * , C O R B A ::E n v ir o nm en t  & A C E _ T R Y _ EN V ) {

  / / In it ia li ze  t h e en d p oi nt  s tr a te gy  w ith  th e o rb  a n d  p oa .
  i n t r e su lt  =  t h is -> re a ct iv e _s tr a te g y_ .i n it (T A O_ A V _ C O R E :: in s ta n ce  ( )- >o r b  () , 

                          T A O _ A V _C OR E :: in st an c e  () -> p o a () );

  i f (r es u lt  !=  0)  r et u rn  r e su lt ;

  / / In it ia li ze  t h e co n ne c ti on  m an a g er .
  / / R eg is te r  th e  r ec e iv er  m m d ev ic e  o bj ec t  w it h  th e  OR B

  C O R BA ::O R B _v a r or b  =  T A O _ A V _ C OR E :: in s ta n ce  ( )- >o r b () ;

  r e tu r n 0;  }
in t R ec e iv er :: p ar s e_ a rg s  (i n t a r gc , ch a r * *a r gv )  {

  i f( ar g c <  2  ){

    u sa g e( );

    r et u rn  - 1 ; }
  / / Pa r se  t h e co m ma n d  li ne  a r g ume n ts

  A C E _ G e t_ Op t op t s (a rg c , a r g v,  " f: s: r: d :p :" ) ;

  i n t c ;
  w h i le  (( c  =  o p ts  () ) !=  - 1 ) {

      sw i tc h  (c )  {

        ca se  ' f' : t h is -> o ut p u t_ fi le _n a me _ =  o pt s. op t ar g ; th is -> i s_ ou t p ut _ fil e_  = 1;  b r ea k ;
        ca se  ' s' : th is -> s en d er _ n ame _  =  o p ts .o p ta r g;  b r ea k ;

        ca se  ' r' : th is -> r ec e iv er _ na m e _  =  o p ts .o p ta rg ;  b re a k ;

c a se  ' d ': th is -> d e bu g _ le ve l_  = A C E _O S: :a to i  (o p ts .o p ta r g) ; br e ak ;

        ca se  ' p ': o ut p ut _ po r t = A C E _O S: :a to i (o p ts .o pt a rg );  b r ea k ;
        de fa u lt : A C E _E R R OR _ R E T U R N  ((L M _E R R O R , " U s ag e : re ce iv e r -f  f ile n am e" ) , - 1) ; } }

  r e tu r n 0;  }

vo id  R ec e iv er :: u sa g e( ) {
  A C E _ D E B U G( (L M _ D E B U G,  " U sa g e: \n \n " )) ;

  A C E _ D E B U G( (L M _ D E B U G,  "    re c ei ve r  -s  [ se n d er  n a me ] - r [r e ce iv er  n a m e ]\ n" ) );

  A C E _ D E B U G( (L M _ D E B U G,  "              - d  [d e b ug  le ve l]  - f [ fi le  n a m e] \n " )) ;
  A C E _ D E B U G( (L M _ D E B U G,  "              - p  [o u tp u t U D P  p o rt , d e fa u lt  is  % d ]\n " , ou t p ut _ po r t) );

  A C E _ D E B U G( (L M _ D E B U G,  "           [ -- qo s ]\ n" ) );  }

A C E _C s tr in g  R e c ei ve r :: ou tp u t _f il e_ n am e (v oi d ) {

 r et u rn  t h is -> o ut p ut _ fil e_ n a me_ ;  }
in t R ec e iv er :: is _ ou t pu t _f il e (v oi d ) {

  r e tu r n th is -> i s_ o ut p ut _ fil e_ ;  }

in t R ec e iv er :: sp a w n _v i ew e r( ) {
   if ( A C E _ O S : :a cc e ss (" .. /d v dv ie w / sr c/ d vd v ie w " , X _ O K)  ! = 0 ) {

      re t ur n  - 1;  }

   A C E _P r o ce ss  p r oc e ss ;

   A C E _P r o ce ss _ Op tio n s  o pt io n s;
   op t io n s. co mma n d _l in e (" % s - z  %d  a " , ". ./ dv d v ie w /s rc /d v d vi ew " ,  o ut p ut _ po r t) ;

   p id _t  v ie w e r_ p id  =  A C E _O S : :f or k () ;

   p id _ t re ce iv e r_ p id  =  0;

   s w itc h (v ie w e r_ p id )  {

       c a se  - 1:  / * er r or  * / A C E _ O S: :e x it (9 9) ; b re a k;
       c a se  0 : /*  c h il d */  p r oc e ss .s pa w n (o p ti on s );  A C E _ OS :: ex it (0 ) ; b r ea k ;

       d e fa u lt : /*  p a re n t * / re c ei ve r _p i d =  A C E _ O S ::f o rk ( );  

          s w it c h( re c ei ve r _p i d) {
               c a se  - 1:  / * er ro r  * / A C E _OS : :e x it( 9 8) ; br e ak ;

               c a se  0 : /*  c h ild  */  b re a k ;

               d e fa u lt : b r ea k ; }

          b r e ak ;  }
   in t  s ta tu s 1,  s ta tu s 2;

   if ( re c ei ve r _p id  !=  0 ) {

     A C E _O S: :w a it p id (v ie w e r_ p id , &s ta tu s 1,  0 );
     A C E _O S: :w a it p id (r e ce iv e r_ p id , &st a tu s2 , 0 );

     A C E _O S: :e x it( 0 );   }

   r et u rn  0 ; }
c on s t c h a r * R ec e iv er :: n am e( ) c o n st  {

  re tu r n  r ec ei v er _ na me _ .c _s tr () ; }

in t  ma in  ( in t  a rg c , c h ar  * * a rg v ) {

  re c ei ve r_ p id _  =  ( C OR B A : :L o ng ) A C E _OS : :g e tp id () ;
  pr o ce s s_ n am e_  =  A C E : :b a se n a me( a rg v [0 ]) ;

  A C E _D E C L A R E _ N E W_ C OR B A _ E N V ;

  A C E _T R Y  {
      //  I n iti a liz e  th e  O R B  fi rs t.

      C O R B A : :O R B _ v ar  o r b =  C OR B A : :OR B _ in it  ( ar g c,  a r gv , 0,  A C E _ T R Y _ EN V );

      A C E _ T R Y _ C H E C K;
      C O R B A : :O b j ec t_ v ar  o b j = o rb -> r e so lv e _i ni ti al _ re fe re n c es  ( "R o o tP O A " , A C E _T R Y _ E N V ) ;

      A C E _ T R Y _ C H E C K;

      //  G e t th e  P OA _ va r  o b je ct  f ro m  Obj e ct _v a r.

      P o rt ab l eS e rv e r: :P O A _ v ar  r o ot _ po a  =  P o r ta bl e Se r ve r ::P OA : :_ n a rr o w  (o b j. in  ( ),  A C E _ T R Y _E N V ) ;
      A C E _ T R Y _ C H E C K;

      P o rt ab l eS e rv e r: :P O A M an a g er _v a r  mg r =  r oo t_ p o a- > th e _P O A M an a ge r  ( A C E _T R Y _ E N V );

      A C E _ T R Y _ C H E C K;
      mg r -> a ct iv at e  (A C E _ T R Y _ E N V );

      A C E _ T R Y _ C H E C K;

      //  I n iti a liz e  th e  A V S t re am s co m p o ne n ts .

      T A O_ A V _ C OR E :: in st a nc e  ( )-> i ni t (o rb . in  ( ), ro o t_ p o a. in  ( ), A C E _ T R Y _E N V ) ;
      A C E _ T R Y _ C H E C K;

      R e ce iv e r *r e ce iv e r = R E C E IV E R : :i ns ta n c e ();

      in t  r es u lt  =  r ec e iv er -> p a rs e _a r gs  ( ar g c,  a rg v );
      if  ( re s ul t ==  -1 ) re tu r n -1 ;

      r ec e iv er -> s p aw n _ v ie w er () ; 

      if  ( re c ei ve r -> is _ ou t pu t _f il e () ) {
        //  Ma k e su r e w e h av e  a  v al id  < o u tp u t_ fi le >

        ou t p ut _ fil e =  A C E _ OS :: fo p en  ( re c ei ve r -> o ut p ut _ fi le _n a me  () .c _ st r (),  " w " );

        if  (o u tp u t _f il e = =  0 )  

          A C E _E R R OR _ R E T U R N  ( (L M _D E B U G,  " C a n no t o pe n  o u tp u t fil e % s \n " , 
                  r e ce iv e r- >o u tp u t _f ile _ n am e (). c_ s tr  ( )) , - 1) ;

        el se  A C E _ D E B U G  ( (L M _D E B U G , “ F il e O pe n e d S uc c es sf u lly \n " ) ); }

      r es u lt  =  r ec e iv er -> i ni t (a rg c , a r g v,  A C E _ T R Y _E N V ) ;
      A C E _ T R Y _ C H E C K;

      if  ( re s ul t !=  0 ) re tu r n  r es u lt ;

      o rb - >r u n  ( A C E _T R Y _ E N V );
      A C E _ T R Y _ C H E C K;

      //  H a c k fo r  n o w ... .

      A C E _ O S :: sl ee p  (1 ) ;

      o rb - >d e st r oy  ( A C E _ TR Y _E N V ) ;
      A C E _ T R Y _ C H E C K; }

  A C E _C A T C H A N Y  {

      A C E _ P R IN T _ E X C E P T ION  (A C E _ A N Y _ E X C E P T ION , "r e ce iv e r: :i ni t" ) ;
      r et u rn  - 1 ; }

  A C E _E N D T R Y ;

  A C E _C H EC K _R E T U R N  (- 1) ;

  A C E _OS : :f cl os e  (o u tp u t_ f ile ) ;
  re tu r n  0 ; }
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in t R ec e iv er _ S tr ea mE n d P oi nt :: g et _c a ll ba c k (c o ns t ch a r  * flo w n a me , T A O_ A V _ C a llb a ck  *& ca ll ba c k ) {
  A C E _ D E C L A R E _ N E W_ C OR B A _ E N V ;

  / / C re a te  a n d re tu r n  th e  s en d e r ap p li ca t io n ca l lb ac k  t o A V S tr ea ms  f or  f u rt he r  u p ca ll s.

  i n t r e tv a l =  0;

  c a ll ba c k  =  &t hi s- > ca ll b ac k _;
  r e tu r n re tv a l;  }

R ec e iv er _ C al lb a ck : :R e ce iv e r_ C a ll ba c k  (v o id ) : fr am e_ c ou n t_  ( 1 ) {

  A C E _ I N E T _A d d r  in e t_ a dd r (o u tp u t_ p o rt , " l oc a lh o st ") ;
  d v d vi ew _e n dp o in t _. op e n (i ne t_ a d dr ) ; }

in t R ec e iv er _ C al lb a ck : :r ec e iv e_ f ra me  (A C E_ M es sa g e_ B lo c k  * fr am e,  T A O_ A V _f r am e _ in fo  * /* fr a me_ in f o* / ,

                    co n s t A C E _ A d d r & ) {
  / / U pc a ll  fr o m  t h e A V St re a ms  w h en  t h er e  is  d a ta  t o  b e re c ei ve d  fr o m t h e se n de r .

  + + f ra me _c o un t _;

  w h i le  ( fr am e  ! =  0 ) {

      ch a r  * bu f  =  f ra me -> r d _p t r( );
      if  ( ou t pu t _f il e)  {

        // Wr it e th e  re c ei ve d  d a ta  t o th e  f ile .

        in t re su l t =  A C E _O S : :f w ri te  ( se n d_ b u f, se n d _l en ,  1 , o u tp u t_ f ile );  }
      d vd v ie w _ en d p oi n t_ .s en d  ( se n d _b u f,  s en d _ le n) ;

      fr a me =  fr a me -> co n t () ; }

  r e tu r n 0;  }

R ec e iv er :: R e ce iv e r (v oi d ) :  d e bu g _ le ve l_  (0 ),  mm d e vi ce _  ( 0) , o u tp u t _f il e_ n am e_  ( ),  is _ ou t pu t _f il e_  ( 0) ,
    s en d e r_ n am e_  ( " di st ri b ut o r" ),  r ec e iv er _ n ame _  ( "r e ce iv e r" ) , u s e_ q os _ st re a m _ (0 ) {}

R ec e iv er :: ~ R ec e iv er  ( vo i d)  { }

in t R ec e iv er :: in i t ( in t,  c h ar  * * , C O R B A :: En v ir o n m en t  &A C E _ T R Y _ E N V ) {
  / / In it ia li ze  t h e en d p oi n t s tr a te g y w ith  th e  o rb  a n d  p o a.

  i n t r e su lt  =  t h is -> r ea c tiv e _s tr a te g y_ .i n it (T A O_ A V _ C OR E :: in s ta n ce  ( )- >o r b  () , 

                          T A O_ A V _ C OR E :: in st a nc e  () -> p o a () );
  i f (r es u lt  !=  0)  r et u rn  r e su lt ;

  / / In it ia li ze  t h e co n n ec ti on  man a g er .

  / / R eg is te r  th e  r ec e iv er  m md ev ic e  o bj e ct  w it h  t he  O R B

  C O R B A :: OR B _v a r or b  =  T A O _ A V _ C OR E : :in s ta n ce  ( )- > or b () ;
  r e tu r n 0;  }

in t R ec e iv er :: p ar s e_ a rg s  (i n t a r gc , ch a r  * *a r gv )  {

  i f( ar g c <  2  ){
    u s ag e ();

    r et u rn  - 1 ; }

  / / Pa r se  t h e co mm a n d  li n e ar g um en ts
  A C E _ Ge t_ Op t o pt s (a r gc , ar g v,  " f: s: r: d :p :" ) ;

  i n t c ;

  w h i le  ( (c  =  o p ts  () ) !=  - 1 ) {

      sw i tc h  ( c)  {
        ca se  ' f' : th is -> o u tp u t_ fi le _n a m e _ =  o pt s. o pt a rg ; th is -> i s_ o ut p ut _ fil e _ = 1;  b r ea k ;

        ca se  ' s' : th is -> s en d e r_ n am e_  =  o p ts .o p ta r g;  b r ea k ;

        ca se  ' r' : th is -> r ec e iv er _ n am e _  =  o p ts .o p ta r g;  b re a k ;
ca se  ' d ': th i s- >d e b ug _ le v el _ = A C E _O S: :a t oi  (o p ts .o p ta r g) ; br e ak ;

        ca se  ' p ':  o ut p ut _ po r t = A C E _O S: :a to i (o p ts .o pt a rg );  b r ea k ;

        de fa u lt : A C E _E R R O R _R E T U R N  (( LM _ E R R OR , " U s ag e : re c ei ve r  -f  f ile n a me" ) , - 1 ); } }

  r e tu r n 0;  }
vo i d R ec e iv er :: u sa g e( ) {

  A C E _ D E B U G ( (L M_ D E B U G,  " U sa g e: \n \n " ) );

  A C E _ D E B U G ( (L M_ D E B U G,  "    re c ei ve r  -s  [ se n d er  n a me ] - r [r e ce iv e r na m e ]\ n ") );
  A C E _ D E B U G ( (L M_ D E B U G,  "              - d  [d e b u g le ve l]  - f [ fi le  n a m e] \n " )) ;

  A C E _ D E B U G ( (L M_ D E B U G,  "              - p  [o u tp u t  U D P  p o rt , d e fa u lt  i s % d ]\ n" , o ut p ut _ po r t) );

  A C E _ D E B U G ( (L M_ D E B U G,  "           [ -- q os ]\ n" ) );  }
A C E _C s tr i ng  R e c ei ve r :: ou t pu t _f il e_ n am e (v o id ) {

 r et u rn  t h is -> o ut p ut _ fil e _n a me _;  }

in t R ec e iv er :: is _ ou t pu t _f il e (v o id ) {

  r e tu r n th is -> i s_ o ut p ut _ fi le _;  }
in t R ec e iv er :: sp a w n _ vi ew e r () {

   if ( A C E_ O S : :a cc e ss (" .. /d v dv i ew / sr c/ d vd v ie w " , X _ OK )  ! = 0  ) {

      re t ur n  - 1;  }
   A C E _ Pr o ce s s p r o ce ss ;

   A C E _ Pr o ce s s_ O p ti on s  o p tio n s;

   o pt io n s. co mm a n d _l in e  (" % s -z  % d  a" , " ../ dv d v ie w /s rc /d v d vi ew " ,  o ut p u t_ p or t) ;
   p id _ t v ie w e r_ p id  =  A C E _OS : :f or k () ;

   p id _ t re ce i ve r_ p id  = 0;
   s w it ch (v i ew e r_ p id )  {

       c a se  - 1 : / * er r or  * /  A C E _ OS: :e x it (9 9 ); b re a k;

       c a se  0 :  /*  c h il d */  p r oc e ss .s pa w n (o p ti o ns );  A C E _ O S :: ex it (0 ) ; b r ea k ;

       d e fa u lt : /*  p a re n t * /  r ec ei v er _p i d =  A C E _ OS :: fo rk ( );  
          sw i tc h( r ec ei v er _p i d) {

               c a se  - 1:  / * er r or  * / A C E _O S: :e x it( 9 8) ; br e ak ;

               c a se  0 : /*  c h ild  */  b re a k ;
               d e fa u lt : b r ea k ; }

          br e ak ;  }

   in t  s ta tu s 1,  s ta tu s 2;
   if ( re c ei ve r _p i d !=  0 ) {

     A C E _O S: :w a it p id (v i ew e r_ p id ,  &s ta tu s 1,  0 );

     A C E _O S: :w a it p id (r e ce iv e r_ p id , & st a tu s2 ,  0 );

     A C E _O S: :e x it (0 );   }
   r et u rn  0 ;  }

c on s t ch a r * R ec e iv er :: n am e( ) c o n st  {

  re tu r n  r ec e iv er _ na me _ .c _s tr () ; }
in t  ma in  ( in t  a rg c , c h ar  * * a rg v ) {

  re c ei ve r _p id _  =  (C OR B A : :L o n g) A C E _O S: :g e tp id ( );

  p ro ce s s_ n am e_  =  A C E: :b a se n a m e( a rg v [0 ]) ;

  A C E _D E C L A R E _ N E W _C O R B A _ E N V ;
  A C E _T R Y  {

      / / I n it ia liz e  t he  OR B  fi rs t.

      C O R B A : :O R B _ v ar  o r b  =  C OR B A : :OR B _ in i t ( a rg c , a r gv , 0,  A C E _ T R Y _ E N V );
      A C E _ T R Y _ C HE C K;

      C O R B A : :O b j ec t_ v ar  o b j =  o rb - >r e so lv e _i ni ti al _ re fe r en c es  ( "R o o tP OA " , A C E _ T R Y _E N V ) ;

      A C E _ T R Y _ C HE C K;
      / / G e t th e  P OA _ v ar  o b je ct  f ro m  O b je ct _v a r.

      P o rt a bl eS e rv e r: :P O A _ v ar  r o ot _ po a  =  P o r ta b le Se r ve r :: PO A ::_ n a rr o w  (o b j. in  ( ),  A C E _ T R Y _E N V ) ;

      A C E _ T R Y _ C HE C K;

      P o rt a bl eS e rv e r: :P O A M an a g er _ va r  mg r =  r oo t_ p o a- > th e _P OA M an a g er  ( A C E _T R Y _ E N V ) ;
      A C E _ T R Y _ C HE C K;

      mg r -> a ct iv a te  (A C E_ T R Y _ E N V );

      A C E _ T R Y _ C HE C K;
      / / I n it ia liz e  t he  A V S t re a m s co m p o ne n ts .

      T A O_ A V _ C O R E :: in s ta nc e  ( )- >i n it (o r b. in  ( ),  r oo t_ p o a. in  ( ),  A C E _ T R Y _E N V ) ;

      A C E _ T R Y _ C HE C K;
      R e ce iv e r *r e ce iv e r = R E C E IV E R : :i ns t an c e () ;

      i nt  r es u lt  =  r ec e iv er -> p a rs e _a r gs  ( ar g c,  a rg v );

      i f ( re s ul t ==  -1 ) re tu r n  -1 ;

      r ec e iv er -> s p aw n _ v ie w er () ; 
      i f ( re c ei ve r -> is _ ou t pu t _f il e () ) {

        //  Ma k e su r e w e h av e  a  v al id  < o u tp u t_ fi le >

        o ut p ut _ fil e  =  A C E _ O S :: fo p en  ( re c ei ve r -> o ut p u t_ fi le _n a m e  () .c _ st r () , " w " );
        if  ( ou t pu t _f il e ==  0)  

          A C E _E R R O R _ R E T U R N  ( (L M _D E B U G , " C a n no t  o pe n  o u tp u t fil e %s \n " , 

                  r e ce iv e r- > ou t pu t _f il e_ n am e () .c_ s tr  ( )) , - 1) ;

        el se  A C E _ D E B U G  ((L M _D EB U G , “ F il e Op en e d S uc c es sf u lly \ n" ) );  }
      r es u lt  =  r ec e iv er -> i ni t (a rg c , ar g v,  A C E _ T R Y _E N V ) ;

      A C E _ T R Y _ C HE C K;

      i f ( re s ul t !=  0 ) re t ur n  r es u lt ;
      o rb - > ru n  ( A C E _T R Y _ E N V );

      A C E _ T R Y _ C HE C K;

      / / H a c k  fo r  n o w ... .
      A C E _ OS :: sl ee p  ( 1) ;

      o rb - > de s tr oy  ( A C E _ T R Y _E N V ) ;

      A C E _ T R Y _ C HE C K; }

  A C E _C A T C H A N Y  {
      A C E _ P R IN T _ E X C E P T IO N  (A C E _ A N Y _ E X C E P T ION , "r e ce iv e r: :i ni t" ) ;

      r et u rn  - 1 ; }

  A C E _E N D T R Y ;
  A C E _C H E C K_R E T U R N  (- 1) ;

  A C E _O S: :f cl os e  (o u tp u t _f il e) ;

  re tu r n  0 ; }
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Fig. 2. QoS Aspects are Separately Programmed and Woven into the UAV Video Dissemination Appli-
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as low as 2 fps for human viewing and lower for im-
age processing. 

• Minimal latency. Some uses of sensor information 
(such as remote piloting) require remote end viewers 
to see an accurate and timely view of the sensor data, 
which implies a minimal latency requirement. Studies 
have indicated that humans can perceive a delay of 
more than 100-200 ms, which provides a lower 
bound timeliness requirement in cases where the 
video is meant for human viewing and precision ac-
tion. In cases where an image is processed automati-
cally, the latency should be low enough such that the 
information being processed is never stale relative to 
what else is already available.  

• Minimal jitter. Controlling the smoothness of the 
video can have greater impact on the perceived qual-
ity than the frame rate. Minimizing jitter requires 
control throughout the end-to-end path since it can be 
affected by changes to video transmission rates, de-
livery latency, and display rates. Common strategies 
for reducing jitter (such as buffering) are not as use-
ful in real-time video because of the timeliness con-
straints. 

• Image quality. The image must be of high enough 
quality (i.e., have the requisite image size, pixel 
depth, etc.) for the purpose it is being used. For hu-
man viewing, the video must be large enough and 
clear enough to discern details that humans need. For 
automated processing, it means the image must con-
tain whatever important features the processing is in-
tended to detect. 

• Coordination of multiple activities. The middleware, 
in conjunction with OS, network, and application di-
rectives, must control and coordinate the necessary 
allocations and tradeoffs that are made to ensure that 
the highest priority streams and the most important 
characteristics (e.g., frame rate, latency, and jitter) are 
favored, even while other, less important characteris-
tics may be minimized or neglected. 
Satisfying the measures of operational effectiveness 

outlined above requires managing resources (particularly 
CPU and network bandwidth) along the entire path from 
video source to sink. It also involves trading off one prop-
erty (e.g., timeliness) against another property (e.g., fidel-
ity) based on the particular requirements of end-users at 
that moment. For example, our multimedia application 
cannot suspend the display during a period of network 
congestion and resume the display from the same point in 
the video flow when bandwidth is restored because that 
can violate the timeliness constraint of the delivered im-
ages. It is likewise unacceptable to drop arbitrary frames 
or retransmit lost frames continuously.  

All remote operation calls in our multimedia applica-
tion are made via the TAO real-time ORB [3]. The TAO 
implementation of the CORBA Audio/Video (A/V) 
Streaming Service [4] is used to establish the video 
streams and to transport the data. We encode QoS meas-

urement, control, and adaptation directives and policies 
via QuO contracts [2] that are distributed throughout the 
multimedia application. These contracts are responsible 
for managing the resource and application/data adaptation 
necessary to achieve an appropriate end-to-end QoS 
matched to the circumstances relevant at that time. Often, 
a single QoS aspect will require contracts at many places 
to implement a particular QoS aspect. For example, con-
trolling image latency might include prioritizing the net-
work traffic (e.g., setting a Diffserv codepoint), shaping 
the data to the amount of bandwidth available (e.g., com-
pressing or scaling), and monitoring the latency by time-
stamping. These operations affect code all along the video 
path, since compressed images will need to be uncom-
pressed and timestamps will need to be inserted, removed, 
and processed.  

Our multimedia application illustrates a number of 
challenges and design decisions that must be made, such 
as centralized, policy-driven QoS management versus 
localized, application-driven QoS management. In this 
type of distributed system with remote UAVs connected 
via narrow-pipe tactical links, a centralized QoS man-
agement is only practical if it is based on the dissemina-
tion of policy at discrete epochs, such as theater-wide 
mission mode changes. Another design is decentralized, 
cooperative control, in which all the UAV senders are 
aware of their relative place in the mission and cooperate 
to divide resources and achieve the mission. We have ex-
perimented with both designs and favor an approach in 
which local qosket behaviors provide cooperative control 
and management, directed by policy (such as the relative 
importance and available resources) pushed by a central 
QoS management authority residing coincident with the 
theater command and control authority. 

Another design challenge is the correct level at which 
to represent QoS behaviors. Even when the application is 
decomposed into components and the QoS behaviors are 
organized into qosket components, the two crosscut one 
another. A high-level QoS behavior (such as end-to-end 
latency) might consist of a single design-time qosket, but 
requires multiple run-time qosket components in order to 
implement it. We have therefore combined aspect-
oriented and object-oriented designs, weaving the con-
tracts and other QuO mechanisms where they are needed 
[34].   

3 Resource Management for DRE Multime-
dia Applications 

This section describes the priority- and reservation-
based OS and network resource management mechanisms 
we integrated and evaluated within our QoS management 
framework for multimedia applications based on QuO and 
TAO. These OS and network mechanisms are necessary 
conditions for establishing end-to-end QoS, but they are 
not sufficient by themselves. To achieve end-to-end QoS, 
therefore, we use a middleware-mediated QoS manage-
ment framework to control and coordinate these individ-
ual resource management mechanisms, augmented with 
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additional adaptation mechanisms for making dynamic 
adjustments and modulating the application's footprint for 
using resources as discussed in this section.  

3.1 Mechanisms for Prioritized and Reserved 
Management of Computing and Network-
ing Resources 

Achieving end-to-end QoS for multimedia applica-
tions requires management and control of the processing 
resources on endsystems in a distributed system and the 
network resources that connect them. A number of 
mechanisms for managing these individual resources are 
emerging, including the mechanisms described below that 
(1) prioritize competing network traffic using standard 
Internet technologies and (2) reserve pre-specified 
amounts of processor time on endsystem computers. In 
addition to outlining these mechanisms, we describe how 
we have experimented with – and augmented with com-
plementary mechanisms – various combinations to find 
the most effective solutions to end-to-end management in 
the context of our UAV video distribution application 
described in Section 2. 

Priority-based OS resource management. The 
management of CPU resources in most operating systems 
has traditionally been handled by assigning priorities to 
tasks in the system (usually threads or processes) and ap-
plying scheduling algorithms to assign each task a share 
of CPU time. CORBA (as well as other standards-based 
COTS middleware) historically lacked features that lever-
age these priority-based OS resource management capa-
bilities, which made it hard to ensure and coordinate pre-
dictable platform processing behavior via middleware. To 
remedy this omission, the Real-time CORBA 1.0 specifi-
cation [12] defines standard features that support end-to-
end predictability for operations in fixed-priority CORBA 
applications, thereby enabling fine granularity allocation, 
scheduling, and control of key endsystem OS resources. 

The TAO implementation supports the Real-time 
CORBA interfaces and QoS policies. As a result, applica-
tions that use TAO have standard ways to configure (1) 
processor resources via end-to-end priority preservation 
mechanisms, thread pools, intra-process mutexes, and a 
global scheduling service, (2) networking resources via 
protocol properties and explicit bindings, and (3) memory 
resources by bounding request buffering and thread pool 
size. Our earlier work (www.dist-
systems.bbn.com/papers) describes how these priority-
based OS resource management mechanisms have been 
applied to avionics mission computing systems via TAO.  

Reservation-based OS resource management. An 
alternative to priority-based OS resource management is 
to reserve sufficient resources a priori for estimated ap-
plication needs. TimeSys has applied this approach to 
resource management by implementing a CPU reservation 
feature for their TimeSys Linux real-time OS. An applica-
tion – or a middleware proxy for the application – running 
on top of the TimeSys OS can specify its QoS require-
ments for timeliness, and their underlying resource kernel 

[17] will manage the OS resources so that these require-
ments can be met. For CPU resources, TimeSys Linux 
allows applications to specify their timeliness require-
ments by specifying parameters for compute time and 
period. If the resource kernel can allocate resources that 
meet these requirements, it grants an application a re-
serve, which guarantees that for every period, the applica-
tion will have the requested amount of CPU compute time 
and will not be preempted.  

Although TimeSys Linux provides mechanisms for 
reserving OS CPU resources, the QuO and TAO middle-
ware are ultimately responsible for determining who gets 
the reserved capacity, how much, and for how long. These 
policy decisions are performed by the middleware since it 
retains the end-to-end perspective to set the OS resources 
appropriately. We have worked with the University of 
Utah to develop a CORBA-based CPU reservation man-
ager [7] that (1) is the local agent for setting up reserva-
tions on an endsystem and (2) translates various represen-
tations of reservation specification into the style sup-
ported by TimeSys Linux. Section 5.2, especially meas-
urement 2, reports the results of applying reservation-
based OS resource management within our multimedia 
application context described in Section 2. 

Priority-based network resource management. 
The Internet Engineering Task Force (IETF) Differenti-
ated Services (DiffServ) architecture provides different 
types or levels of service for IP network traffic. Individual 
traffic flows can be made more resistant to packet drop-
ping (and hence get preferential delivery) by setting the 
value of each IP packet’s DiffServ field appropriately. An 
IP header has an eight bit DiffServ field that encodes 
router-level QoS into (1) six bits of DiffServ Codepoint 
(DSCP), which enables 64 service categories of per-hop 
behavior, and (2) two bits of explicit congestion notifica-
tion. The middleware is responsible for adding the appro-
priate QoS management DSCP encoding to the data 
packet headers to specify the appropriate type of service 
within the multi-application environment. DiffServ-
enabled routers then use the DSCP to distinguish among 
varieties of  network traffic.  

We have enhanced TAO and QuO to leverage Diff-
Serv capabilities. First, TAO provides an efficient and 
flexible way of setting the DSCP by extending its Real-
time CORBA protocol properties on the GIOP request and 
response packets so that priority can propagate to requests 
as they transit the network and OS resources. Based on 
various factors (such as resource availability, application 
conditions, and operational requirements), the QuO mid-
dleware can change these priorities dynamically by mark-
ing application streams with appropriate DSCPs to ensure 
appropriate priority handling against lower priority com-
peting traffic. Second, TAO provides a mechanism to map 
Real-time CORBA priorities to DiffServ network priori-
ties. The TAO ORB provides a priority-mapping manager 
that QuO uses to install a custom mapping to override the 
default mapping. Section 5.2, especially measurement 1, 
reports on empirical evaluation of the results of applying 
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priority-based network resource management (in combi-
nation with reserved CPU management) to our multime-
dia application described in Section 2. 

Reservation-based network resource management. 
Setting DSCPs as discussed above makes traffic flows 
less likely to be dropped due to network congestion in 
routers. There is no way in the DiffServ model, however, 
to guarantee a level of service to a traffic flow unless it is 
the single highest priority traffic at each intermediate step. 
As with the OS-level resource reservations discussed ear-
lier, it is also desirable to request resources from the net-
work to help guarantee properties (such as latency or 
bandwidth of network traffic) across some competing 
flows by reserving appropriate capacity in advance. 

To address these issues, the IETF developed the Re-
source Reservation Protocol (RSVP), also commonly re-
ferred to as IntServ (for Integrated Services), which is a 
new reserved capacity mechanism to augment IP. 
Whereas the DiffServ mechanisms outlined earlier merely 
classify and prioritize packets for different service levels, 
IntServ reservations allocate and coordinate router behav-
ior along a communication path flow to ensure the re-
served end-to-end bandwidth. Earlier experiments [8] 
measured and evaluated the effects of reservation-based 
network resource management mechanisms applied to 
multimedia applications via the CORBA A/V Streaming 
Service [4] provided with TAO. 

3.2 A QoS Management Framework for Mul-
timedia Applications 

The OS and network resource management mecha-
nisms described in Section 3.1 can be used in various 
combinations that reflect tradeoffs of integrated method-
ology, current practice, widespread availability, or maxi-
mum performance/cost advantage. Although it may be 
desirable in some circumstances to have a single method-
ology (i.e., priority-based or reservation-based) apply 
throughout, other combinations can be useful in practice. 
Likewise, managing an individual resource (e.g., CPU or 
network connection) will not enable predictable multime-
dia application performance if the other complementary 
DRE system resources along an end-to-end path are con-
strained, unmanaged, or even managed in an uncoordi-
nated manner. Instead, these resources must be managed 
in combination to achieve appropriate end-to-end and 
aggregate results.  

To enable more effective coordination and control of 
individual and aggregate end-to-end resources, we have 
created elements of a QoS management framework for 
multimedia applications by integrating the TAO and QuO 
middleware described in Section 1.2 with the mechanisms 
described in Section 3.1 that manage lower level OS and 
network resources. The primary focus of the resource 
management control strategies described in Section 3.1  is 
to ensure that more important application tasks get the 
resources they need to complete their actions at the ex-
pense of – or isolated from – other less important tasks. In 
many cases, however, this is not sufficient to achieve 

managed QoS objectives, either because there may still be 
insufficient resources available or because it may be more 
appropriate to share resources using gradations of service 
levels that could operate simultaneously, each with dimin-
ished resources.  

To complement the resource control strategies, our 
QoS management framework supports adaptive strategies 
that seek to change the resource consumption of an indi-
vidual DRE application dynamically. Our QoS manage-
ment framework therefore offers a set of aspect languages 
to program the adaptive strategies separately from the 
core functionality of the application [23] and an encapsu-
lation model for packaging adaptive behaviors so that 
they can be instantiated and reused throughout an applica-
tion and maintained separately across applications. 

By intelligently modifying the approach to the appli-
cation’s core functionality (e.g., by using alternative algo-
rithms, changing heuristics, or being more selective about 
degrees of fidelity for various aspects of a computation), 
we can change the way an application performs its task 
(and indirectly shape/reduce the amount and timing re-
sources needed to perform that task) to dynamically adapt 
to the current load, resource availability, or operating 
conditions prevalent at the time.  Section 4 describes the 
key adaptive strategy used by our UAV video distribution 
application, each of which have been implemented as 
qoskets and QoS aspects provided by QuO. 

4 Maintaining Real-time QoS Under Reduced 
Resource Availability in the Multimedia 
Application  

This section describes how we augmented and ap-
plied the QoS management control aspects described in 
Section 3 with application-level adaptation to complement 
resource control by shaping the interactions between 
components so they can continue to meet the QoS re-
quirements under diminished resources available to appli-
cations. 

4.1 Using Adaptation to Meet Multimedia Ap-
plication QoS Requirements 

A bottleneck may occur in our multimedia applica-
tion because at some point along the video transport path 
there are not enough resources to send the entire video to 
the viewers in real time. For example, the distributor 
endsystem may not have enough CPU power available to 
dispatch video frames to all viewers at that rate or failures 
could cause there to be insufficient bandwidth in the net-
work path to one or more viewers. A bottleneck can also 
occur when one or more of the competing UAVs has (or 
gains) priority access to significant fractions of the avail-
able resources, while the rest must operate within the di-
minished resources available. When such a bottleneck is 
detected, we use adaptation techniques (e.g. rate changing 
and filtering) to mitigate the damage to our QoS objec-
tives. Depending on user requirements, it is possible to 
omit some frames of the video entirely, yet still retain an 
end-user video that displays the motion of the scene in 



real time without the total fidelity of continuously dis-
played motion achieved at frame rates of 24 frames or 
more per second. 

To perform data filtering in the UAV prototype, we 
employ the technique of reducing the transmitted frame 
rate, e.g., from the distributor to the viewer or between the 
video source and the distributor. In one important mode of 
operation, the frame rate must not be reduced in such a 
way as to create a “slow motion effect,” i.e., a vehicle that 
crossed the field of view of the video source camera in 
say, 2.5 seconds, should still cross the viewer in 2.5 sec-
onds. A video source attempts to transmit data at the stan-
dard rate of 30 fps, which is received at that rate (when 
system resources permit), but an adaptive behavior can be 
interposed that sends out a smaller number of frames rep-
resenting the action that occurs during each second. The 
subset to be sent is selected by dropping some frames 
from the video, and also sending out the remaining frames 
at a reduced rate. 

The implementation of data filtering to reduce the 
volume of video data is dependent on the video encoding 
format. MPEG-encoded video results in sequences of 15 
frames, each of which consist of an independent I-frame, 
as well as 10 derived B-frames and 4 derived P-frames 
(see Figure 3, and [1] for a synopsis of MPEG encoding 
of video). One second of video at the full rate of 30 fps 
requires two sequences of these frames. The best frame-
dropping strategies drop B-frames when only a few 
frames needed to be dropped. There are 20 B-frames in 
each second of video, so this technique can bring the 
sending rate down to a still effective 10 frames per sec-
ond. To drop more frames, P-frames can then be dropped. 
I-frames can be dropped only if intervals of 1 second or 
more between images are acceptable, which in our appli-
cation it was not. 

For practical implementation reasons we chose to 
drop frames entirely in such a way that the remaining 
frames were to be displayed at a constant rate. This strat-
egy provided us with three significantly different levels of 
QoS among which to adapt the application, as determined 
by the frame rate: (1) 30 fps, which is done by transmit-
ting the video intact to provide the highest level of QoS, 
(2) 10 fps, which is done by dropping all B-frames from 
the video and transmitting all the I- and P-frames, which 
preserves most perception of motion in the video scene, 
and (3) 2 fps, which is done by dropping all P- and B-
frames from the video and transmitting all I-frames, 
which loses the finer details of motion and some very 

short-lived actions. We then adaptively switch among 
these three frame rates by assigning each frame rate to a 
different region of a QuO contract, and setting the frame-
dropping strategy at any given time according to the cur-
rent region (and indirectly the currently available re-
sources). Below 2 fps, the application would go dormant, 
until appropriate conditions were restored, because these 
were below the threshold of operator usability. 

4.2 Analysis of Bandwidth Reduction from 
Frame Filtering 

In the video used in our experiments, I-frames aver-
aged approximately 13,800 bytes, P-frames approxi-
mately 5,000 bytes, and B-frames approximately 2,900 
bytes. The approximate size in bits of two average MPEG 
encoded sequences is therefore (2(13,800) + 8(5,000) + 
20(2,900)) * 8 = 1,004,800, i.e., near the capacity of a 1.5 
Mbit link, which is the bandwidth requirement of sending 
one second of the video at the full rate of 30 fps. If we 
drop the rate to 10 frames per second by eliminating the 
B-frames, the bandwidth required, in bits per second, falls 
to approximately (2(13,800) + 8(5,000)) * 8 = 540,800 
and if we drop the rate to 2 fps by eliminating the P-
frames as well, the required bandwidth in bits per second 
falls to approximately 2(13,800) * 8 = 220,800, i.e., re-
ducing the frame rate from 30 to 10 (a 67% reduction) 
reduces the bit rate by 46%, and reducing the frame rate 
from 30 to 2 (a 93 % reduction) reduces the bit rate by 
78%.  

The reductions of bandwidth and other system re-
source demands outlined above are substantial, so it is not 
hard to find system conditions under which the full band-
width is not supportable, but one of the reduced-
bandwidth adaptations is. The reduction in bit rate is not 
proportional to the reduction in frame rate because the 
frames that are dropped first are precisely those frames 
that have the greatest dependency on other frames (and 
the fewest frames depending on them), and consequently 
the encoded sizes of these dropped frames are relatively 
smaller. Conversely, reduction in the perceived value of 
the reduced-frame-rate display to a human viewer also is 
not proportional to the reduction in frame rate, judging 
from the reactions of system operators who watched dem-
onstrations of the application adapting. 
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Fig. 3. Sequence of Frames in MPEG File 

5 Empirical Results of End-to-end Resource 
Management Experiments 

This section presents and analyzes the results of ex-
periments that cover end-to-end management capabilities 
stemming from the integration of the individual resource 
management techniques discussed in Section 3.1 within 
our middleware-mediated QoS management framework 
described in Section 3.2. These experiments evaluate the 
ability of multiple resource management technologies 
coordinated via middleware to effectively and predictably 
maintain end-to-end QoS as systems scale to include more 
participants and more competing load. Our earlier work 
showed the ability of individual technologies to (1) man-

7 
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age QoS end-to-end when competing load was concen-
trated exclusively on either the processing nodes or the 
network and (2) fail to manage end-to-end QoS when the 
type of competing load was unconstrained. These results 
indicated the need to conduct experiments using inte-
grated and coordinated multiple types of resource man-
agement (e.g., CPU and network management) provided 
by our QoS management framework to evaluate its ability 
to sustain managed QoS in the presence of a more realis-
tic combined resource load. 

5.1 Experimental Design and Hard-
ware/Software Testbed 

To test the hypothesis that middleware-coordinated 
CPU and network management working together can 
maintain end-to-end QoS in systems with constrained and 
loaded processors and links, we conducted a set of ex-
periments that ran up to 14 simultaneous simulated UAVs 
sending imagery to the simulated ground control stations 
(distributors) and control centers (receivers) described in 
Section 2. The number of image streams was enough to 
overload the networks transporting the imagery and con-
trol information, and to overload the processors executing 
the image processing systems. We measured the ability of 
the resource management mechanisms to control resource 
allocations sufficiently for an image stream designated as 
most critical (the experimental case) to consistently sus-
tain the resources needed to complete the application re-
quirements (i.e., detecting and reporting identified targets 
in imagery data), as contrasted with other competing im-
age streams not marked as critical (the control cases).  

In this series of experiments, each of the 14 senders 
transmitted a sequence of images at a constant rate of 2 
fps, in accordance with the application architecture de-
picted in Figure 1 in Section 2. For a single image stream, 
a sender process sends images to a distributor and the 
distributor transmits these images to a receiver. The re-
ceiver transmits images to an automated target recogni-
tion (ATR) program. If the ATR identifies a target in the 
image stream, it sends a notification to a QuO contract 
monitoring the imaging components, which in turn propa-
gates the alert via the TAO Real-time Event Channel [27] 
to a consumer. When this consumer receives the alert, it 
performs a round-trip time calculation designed to meas-
ure the overall time that elapsed from (1) when an image 
with a target in it was sent from the sender to (2) the time 
when an alert notification reached the ATR Event Channel 
client. This time represents the desired end-to-end capa-
bility for which we are trying to maintain a predictable 
QoS footprint under heavy load.  

In this experiment, there was contention for both net-
work and CPU resources due to the number of processes 
involved in simultaneously trying to deliver and identify 
objects in the 14 image streams. Our coordinated network 
and CPU QoS management framework capability was 
configured to attempt to sustain the end-to-end perform-
ance of a designated image stream (which in these ex-
periments was arbitrarily selected to be the 7th stream, out 

of 14). This coordinated QoS management capability un-
der test combined DiffServ network prioritization and 
CPU reservations. For stream 7, we applied DiffServ net-
work prioritization (over other competing, non-prioritized 
traffic) using QoS management setup to introduce this 
behavior between the sender and distributor, and between 
the distributor and the receiver. In addition, we applied 
the CPU reservation behavior to the ATR for stream num-
ber 7 (only), using a middleware-mediated CPU broker 
developed at the University of Utah [7].  

The CORBA object in the ATR that received the 
frames was encapsulated by a QuO delegate responsible 
for determining the magnitude of the CPU reservation 
requested from the CPU broker. The policy used in this 
experiment adjusted the CPU reservation request to the 
highest value seen in processing the five previous frames. 
This adaptive policy works well in general since it can 
quickly adapt to spikes in usage without overprovisioning 
for long periods of time. For this experiment, we used a 
“strict priority” contention policy that favors high-priority 
processes when making reservations. Under that policy, 
the designated high priority UAV stream would be 
granted its reservation request regardless of the requests 
of the other activities.  

Experiments were performed on hardware and soft-
ware provided by the University of Utah’s Emulab test-
bed. The hardware configuration for each node in our 
experiments included (a) 850 MHz Intel Pentium III proc-
essor, (b) 512MB PC133 ECC SDRAM, (c) 4 Intel 
EtherExpress Pro 10/100Mbps Ethernet ports (Experi-
mental network), (d) 1 Intel EtherExpress Pro 
10/100Mbps Ethernet port (Control network), and (e) 40 
GB IBM 60GXP 7200 RPM ATA/100 IDE hard disk The 
machines’ experimental network interfaces are connected 
to a Cisco 6509 high-end switch and automatically in-
cluded in “virtual LANs” to simulate the network topol-
ogy for our experiments (not shown). This network topol-
ogy was designed to allow multiple UAV sender programs 
to transmit imagery data to multiple distributor programs, 
which in turn would transmit this data to receiver pro-
grams. The software configuration for our experiments 
included (a) Red Hat Linux 7.3, (b) TimeSys v3.1 (se-
lected nodes), (c) FreeBSD 4.8 on "router" nodes, modi-
fied to support QoS for network traffic using the (ALTQ) 
extensions, (d) TAO v.1.3.3, (e) QuO v.3.0.11, and (e) 
CPU Broker v1. 

5.2 Managed End-to-end Behavior Observa-
tions 

We now report the results of the testbed configura-
tions described above, using observed/measured values 
that indicate how our integrated middleware-mediated 
QoS management framework can be used effectively to 
sustain adequately predictable QoS results under heavy 
competing load using realistic application scenarios. 

Measurement 1: Number of frames received at re-
ceiver. For this measurement, the number of images re-
ceived at each of the competing receivers was recorded. 
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Fig 6. Latency of Images; Stream 7 uses a CPU Reserva-

tion and Diffserv Priority 

Stream 7 (only) was prioritized for its network traffic us-
ing DiffServ and used CPU Reservations to ensure ade-
quate processing resources. Figure 4 shows that UAV#7 
received all of its frames (as did unmanaged UAV's 
#2,4,5), while some of the rest received most of their 
frames (#8,9,11), and most (#1,3,6,10,12,13,14) received 
hardly any service at all, as measured by the number of 
frames that arrived during the experimentation interval. 
Since frames are received prior to the CPU intensive 
processing of the ATR, this measure is dominated largely 
by controlling network behavior. 

Measurement 2: Number of ATR alert control 
messages received. For this measurement, the number of 
ATR Alert control messages, which were received by the 
ATR Event Channel client program, was recorded. Stream 
7 was prioritized with DiffServ and CPU Reservations. 
These alert messages are sent only after identification of 
an object of interest by the CPU intensive ATR. Figure 5 
shows that only stream #7 successfully identified all of its 
target objects (as evidenced by receiving all of its alerts). 
All of the other (unmanaged) streams missed completing 
the identification cycle (or couldn't get their identifying 
signal to the collector) at least some of the time, with 
most (#1,3,5,6,8-14) missing almost all of the identifica-
tion opportunities. The key factor here is the use of CPU 
reservation to ensure timely processing of the CPU inten-
sive activity. 

Measurement 3: Receiver frame latency. This 
measurement recorded the time that elapsed when an im-
age was transmitted from the sender to the receiver. 
Stream 7 was prioritized with DiffServ and CPU Reserva-
tions. Figure 6 charts the average latency for frames re-
ceived (a lower number is better for this chart, in contrast 
with the previous). This figure shows streams #1,4,6 with 
average latency per frame delivered lower than for the 
prioritized stream 7.  

Only streams #2,4,5,7,8,9,11, however, had a signifi-
cant number of successful frame deliveries (from figure 4) 
so the lower latency for streams #1,6 can be discounted 
because of the relatively few successful deliveries. Stream 

#4 had (as yet inexplicably) a lower average latency for 
delivered frames despite being unmanaged, but stream #7, 
with controlled resource management working in its favor 
had a significantly lower standard deviation. This result 
stems from the more controlled outcome expected by ap-
plying course grain resource management strategies to 
ensure outcome. 

5.3 Analysis of End-to-end Resource Manage-
ment Control Experiments 

Out of the 14 image competing streams, half of them 
did not even come close to receiving and processing even 
a non-trivial fraction of their intended workload, as shown 
in Figure 4. The DiffServ prioritized stream processed its 
intended workload with no observed packet loss. The 
most significant observations of this experiment were:  
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• In this and all subsequent runs of the experiment, the 
prioritized stream (the seventh stream) always 
reached the receiver endsystem with no observed 
packet loss. The behavior of non-prioritized streams 
was not reproducible over multiple runs of the ex-
periment, i.e., sometimes these streams reached the 
receiver endsystem and sometimes they did not. 
Which ones did and did not would vary from trial to 
trial. Non-prioritized streams also had higher rates of 
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packet loss than the prioritized stream. 
• The number of ATR Alert control messages for the 

prioritized and CPU reserved stream was signifi-
cantly higher than for any of the other streams. Nine 
out of the fourteen streams (64%) did not produce 
ATR Alert control messages indicating successful ob-
ject identification, and requiring successful and 
timely upstream delivery and processing. Stream 7 
produced 150 alerts, which reached the ATR Event 
Channel consumer, which was 21% better than the 
next best stream (Stream 2) that produced 124 alerts. 
The prioritized stream performed much better than 
the non-prioritized streams for two reasons: (1) Diff-
Serv prioritizing stream 7 reduced the packet loss 
compared to other streams, so images with targets in 
them were more likely to reach the ATR for process-
ing and (2) reserving CPU resources for ATR 7 sig-
nificantly improved the ability of this ATR to process 
images and identify targets in a timely fashion despite 
competing load. 
The most significant conclusion drawn from the em-

pirical results described above is that by using a multi-
layer middleware-mediated QoS framework that inte-
grates resource management mechanisms (such as Diff-
Serv network priorities and TimeSys Linux CPU reserva-
tions), the end-to-end path of a critical, multi-host appli-
cation exhibits (1) higher performance (delivery of all 
object identification alerts) and (2) better predictability 
(consistently, timely delivery of video images and no ob-
served packet loss) than other less critical applications 
competing for limited network and CPU resources. The 
ability to selectively control these end to end behaviors 
throughout different parts of an overall system and 
through different areas of technical focus is a giant leap 
forward in itself. In addition, it represents an important 
building block in the long-term R&D pursuit of QoS 
managed adaptive behavior for DRE systems through a 
common framework, where design time analysis is com-
bined with runtime adaptive mechanisms and policies that 
manipulate this system level control, while at the same 
time integrating system-centric adaptation with applica-
tion-centric adaptation. 

6 Related Work 
This section reviews related work in enhancing mid-

dleware platforms so they can support adaptive DRE QoS 
properties and application QoS aspects. 

Adaptive middleware mechanisms. In their dy-
namicTAO project, Kon and Campbell [15] apply adap-
tive middleware techniques to extend TAO so it can be 
reconfigured at runtime by dynamically linking selected 
modules, according to the features required by the appli-
cations. As with our prior efforts on TAO and QuO, Kon 
and Campbell provide mechanisms to realize QoS provi-
sion in the middleware level. The work described in this 
paper goes further, however, by integrating QoS provi-
sioning mechanisms at the middleware, OS, and network 
levels. 

The Distributed Multimedia Research Group at Lan-
caster University has developed a prototype of advanced 
reflective middleware called Adapt [18]. This middleware 
model concentrates on dynamic composition of objects 
through open bindings [6], which (1) allows object im-
plementations to be configured dynamically, (2) deter-
mines various aspects of object implementations, such as 
adding or removing methods from an object, and (3) ex-
plicitly establishes transport connections between objects 
that can be used for streaming multimedia data. The 
Adapt project model also facilitates QoS properties man-
agement and monitoring. Compared to the Adapt project, 
our efforts concentrate on applying QoS provisioning 
techniques to implement and improve the implementation 
of an existing middleware standard (CORBA), whereas 
the Adapt project defines and implements the meta-space 
of a new middleware framework at a higher level. 

Aspect-oriented techniques can be applied to specify 
middleware QoS behaviors and configure the supporting 
mechanisms for these QoS behaviors. In particular, the 
container architecture in component-based middleware, 
such as Enterprise Javabeans (EJB) and the CORBA 
Component Model (CCM), provides the vehicle for ap-
plying meta-programming techniques that provide QoS 
assurance control in component middleware. Conan et al 
[20] use containers together with aspect-oriented software 
development techniques to plug in different non-
functional behaviors. This project is similar to QuO dele-
gates in that mechanisms are provided to inject aspects 
into applications statically at the middleware level. QuO 
goes further, however, since it also supports dynamic QoS 
provisioning via its qosket mechanisms [21]. 

de Miguel [22] extends other work on QoS-enabled 
containers by enhancing an EJB container to support a 
QoSContext interface that allows the exchange of QoS-
related information with component instances. To take 
advantage of the QoS-container, a component must im-
plement QoSBean and QoSNegotiation interfaces. A key 
difference between de Miguel's approach and ours is the 
QuO delegates and contracts enable the QoS negotiation 
protocols to be performed transparently to the component 
implementations. 

Control-theoretic approaches to adaptive middle-
ware. A number of control-theoretic approaches are now 
being applied to DRE systems to overcome limitations 
with traditional scheduling approaches that do not handle 
dynamic changes in resource availability and therefore 
result in a rigidly scheduled system that adapts poorly to 
change. A survey of these techniques is presented in [28].  

Feedback control scheduling (FCS) [29] is designed 
to address the challenges of applications with stringent 
end-to-end QoS executing in open DRE systems. These 
algorithms provide robust and analytical performance 
assurances despite uncertainties in resource availability 
and/or demand. FC-U and FC-M [30] applies this ap-
proach to manage processor utilization. CAMRIT [31] 
applies control-theoretic approaches to ensure transmis-
sion deadlines of images over an unpredictable network 
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link and also presents analytic performance assurance that 
the transmission deadlines are met.  

A hierarchical control scheme that integrates resource 
reservation mechanisms [32] with application-specific 
QoS adaptation is proposed in [33]. This control scheme 
features a two-tier hierarchical structure: (1) a global QoS 
manager is responsible for allocating computational re-
sources to various applications in the system and (2) ap-
plication-specific QoS managers/adapters modify applica-
tion execution to use the allocated resources efficiently 
and maximize application QoS.  

Although these approaches are similar to the work we 
report in this paper, these algorithms/mechanisms perform 
resource management of only one type of system re-
source, i.e., either computing power or network band-
width. In contrast, our QoS management framework per-
forms resource management of both network and comput-
ing resources, which is crucial for real-world DRE sys-
tems. We have also recently used the two-tier hierarchical 
management approach similar to that cited above as an 
extension to our multi-resource QoS management frame-
work, for dynamic mission management applications [35].  

 

7 Concluding Remarks 
Developing DRE systems that can maintain the best 

possible application performance in the face of changes in 
available resources is an important R&D challenge. This 
paper describes the design and performance of a QoS 
management framework that adaptively controls the end-
to-end behavior of multimedia applications by applying 
resource management techniques for processing and 
communication tasks. This framework integrates QoS-
enabled middleware (TAO and QuO), multimedia mid-
dleware services (the CORBA Audio/Video Streaming 
Service), real-time operating systems (Real-time Linux) 
and QoS-enabled networking protocols (IntServ and Diff-
Serv) to develop robust multimedia applications that can 
adapt to changes in resource availability to meet their 
QoS requirements. 

Creating a stove-piped one-of-a-kind application 
would have been an unsatisfying solution, although that 
has been the state-of-the-practice until recently. We there-
fore designed our solution based upon advanced software 
engineering principles, such as separation of concerns and 
aspect-oriented programming. We have incorporated these 
concepts as key design principles underlying our middle-
ware framework and have used them to develop represen-
tative applications. 

Over the past several years we have enhanced, ap-
plied, and evaluated these middleware-mediated QoS 
management technologies in the context of an open ex-
perimentation platform (OEP) that embodied complex 
challenge problems associated with multimedia applica-
tions – in particular a UAV video distribution application 
suite. The relevant QoS management activities associated 
with this OEP include trading off sensor/image quality 
and timeliness and coordinating resource usage among 

competing applications to satisfy changing mission re-
quirements under dynamic (and potentially hostile) envi-
ronmental conditions. Our experiments used a combina-
tion of CPU reservation along with network priority for 
end-to-end control of resources management policy to 
effect the controlled QoS behavior reported for our UAV 
video distribution application. Our empirical results 
showed how integrating resource management techniques 
can be effective in sustaining predictable QoS results un-
der heavy competing load.  

The work reported here also formed the basis for sub-
sequent exploration and evaluation in the context of a live 
flight, multiple UAV exercise at White Sands Missile 
Range in April 2005, which integrated and managed the 
interactions among widely dispersed air, ground, fixed 
and mobile assets performing dynamic mission planning 
for time-sensitive activities [25]. That work combined the 
middleware-mediated managed resource approach with 
the adaptation approach used to dynamically shape appli-
cation behavior, and combined elements of design time 
analytic approaches with runtime adaptive behavior ap-
proaches [26]. Based on experience and experiments with 
those real applications in their natural operating contexts, 
we conclude that the approaches and techniques outlined 
in this paper are both feasible and effective in managing 
QoS demands in realistic and changing deployment envi-
ronments.  

The UAV video dissemination application illustrates 
the challenges associated with dimensions of scale. Mov-
ing from managing QoS in an application to managing 
end-to-end QoS in a streaming video application is hard 
enough. Adding the complexity of multiple competing 
streams over shared and constrained resources increases 
the complexity. The scale of the problem space does not 
end there, however, since the complexity continues to 
scale if the number of UAVs can change at runtime, and if 
the runtime conditions (including possible mission 
modes) can change. We have had success in managing 
end-to-end QoS for multiple, competing streams, as de-
scribed in this paper. Up to now, however, we have done 
so only for fixed (or bounded) numbers of UAVs and for a 
fixed set of mission modes which are known a priori. Al-
lowing these two dimensions to scale unconstrained adds 
a new set of challenges for us to address. Our future work 
focuses on a more comprehensive analysis of the trade-
offs, effectiveness, and widespread availability of mid-
dleware-mediated OS and network resource management. 
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