
26.11.1999 ACT.doc

Asynchronous Completion Token 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Asynchronous Completion Token

The Asynchronous Completion Token design pattern efficiently
dispatches processing actions within a client in response to the
completion of asynchronous operations invoked by the client.

Also Known As Active Demultiplexing [PRS+99]

Example Consider a distributed Electronic Medical Imaging System (EMIS)
[PHS96] consisting of multiple components, such as image servers,
which store and retrieve medical images [JWS98].1 The performance
and reliability of an EMIS is crucial to physicians, medical staff, and
patients using the system. Therefore, it is important to monitor the
state of EMIS components carefully. Specialized agent components
address this need by propagating events from other EMIS compo-
nents, such as image servers, back to management applications. Ad-
ministrators can use these management applications to monitor,
visualize, and control [PSK+97] the EMIS’s overall status and perfor-
mance.

For example, a management application can request that an agent
notify it every time an image server on a host accepts a new network
connection. Typically, such a request is issued by invoking an

1. Other components in a distributed EMIS include modalities, clinical and diag-
nostic workstations that perform imaging processing and display, hierarchical storage
management (HSM) systems, and patient record databases [BBC94].

: Management
Application

Monitoring Station

: Image
Server

: Agent

Host

event
propagation

connections
toad --> cobra
toad --> snake
lizard --> cobra

observation

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

asynchronous operation on one or more agents in the system. When
an agent on a particular host detects a new connection to the image
server, it sends a completion event to the management application so
that it can depict the new connection graphically on its monitoring
console display.

However, a management application may have requested many
different agents to send it notifications asynchronously for many
types of events, each of which may be processed differently in the
management application. For each completion event, therefore, the
management application must determine the appropriate action(s),
such as updating an administrators display or logging the event to a
database.

One way a management application could match up asynchronous
operation requests with their subsequent completion event responses
would be to spawn a separate thread for each event registration
operation it invoked on an agent. Each operation would block
synchronously, waiting for its agent’s responses. The action and state
information required to process agent responses could be stored
implicitly in the context of each thread's run-time stack.

Unfortunately, this synchronous multi-threaded design incurs
several drawbacks. For example, it may lead to poor performance due
to context switching, synchronization, and data movement
overhead.2 As a result, developing management applications using
separate threads to wait for each operation completion response can
yield inefficient and overly complex solutions. Yet, the management
application must associate service responses with client operation
requests efficiently and scalably to ensure adequate quality of service
for all its agents.

Context An event-driven system where clients invoke operations asynchro-
nously on services and subsequently process the responses.

Problem When a client invokes an operation request asynchronously on one or
more services, each service indicates its completion by sending a
response back to the client. For each such completion response, the
client must perform the appropriate action(s) to process the results of

2. The Example section of the Reactor pattern (97) describes the drawbacks of
synchronous multi-threading in more detail.

26.11.1999 ACT.doc

Asynchronous Completion Token 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

the asynchronous operation. Thus, we must define a demultiplexing
mechanism to associate service responses with the actions to be
performed by the client. To address this problem we must resolve the
following three forces:

• When a service response arrives back at a client, it should spend
as little time as possible determining the action(s) and state needed
to process the completion of the associated asynchronous
operation. In particular, searching a large table to associate a
response with its request can be unacceptable if the performance
of the client degrades significantly.

• It is hard for a service to know what information its clients need to
process operation completions because it does not necessarily
know the context in which clients invoked asynchronous opera-
tions. Therefore, it should be the responsibility of the client, not the
service, to determine what actions and state to associate with com-
pletion responses.

• There should be as little communication overhead as possible
between client and service to determine which action to perform in
the client when the asynchronous operation completes. This is
particularly important for clients that communicate with services
over bandwidth-limited communication links, such as modem
connections or wireless networks.

Solution Associate application-specific actions and state with responses that
indicate the completion of asynchronous operations. For every
asynchronous operation that a client invokes on a service, create an
asynchronous completion token (ACT) that uniquely identifies the
actions and state necessary to process the operation’s completion,
and pass the ACT along with the operation to the service. When the
service replies to the client, its response must include the ACT that
was sent originally. The client can use the ACT to identify the state
needed to process the completion actions associated with the
asynchronous operation.

Structure The following participants form the structure of the Asynchronous
Completion Token pattern:

A service provides some type of functionality.

A client invokes operations on a service asynchronously.

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

An asynchronous completion token (ACT) is a value that identifies the
actions and state necessary for a client to process the completion of
an asynchronous operation invoked on a service. The client passes
the ACT to the service when it invokes an operation; the service
returns the ACT to the client when the asynchronous operation
completes. Services can hold a collection of ACTs to handle multiple
client requests simultaneously. For a client, an ACT can be an index
into a table or a direct pointer to memory. To the service, however, the
ACT is simply an opaque value that it returns unchanged to the
client.

The following UML class diagram illustrates the participants of the
Asynchronous Completion Token pattern and the relationships be-
tween these participants:

Class
ACT

Responsibility
• Identifies actions

and state necessary
for a client to pro-
cess the completion
of an asynchronous
operation invoked
on a service

Collaborator

Class
Client

Responsibility
• Invokes operations

on a service
asynchronously

Collaborator
• Service
• ACT

Class
Service

Responsibility
• Provides

application
functionality

Collaborator

Client Service

operation ()

calls operations

Asynchronous
Completion

Token

1..* 1..*

26.11.1999 ACT.doc

Asynchronous Completion Token 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Dynamics The interactions in the Asynchronous Completion Token pattern are
as follows:

• Before invoking an asynchronous operation on a service, the client
creates the ACT associated with the operation.

• When invoking an operation on the service, the client passes the
ACT to the service.

• Clients can continue executing while the service performs the
operation asynchronously.

• When the asynchronous operation completes, the service sends a
response to the client that contains the original ACT. The client
uses the ACT to regain any necessary state and apply the
application-specific completion actions for that operation.

Implementation There are four steps involved in implementing the ACT pattern.

1 Define the ACT representation. An ACT representation must be
meaningful for the client and opaque to the service. The following are
three common ACT representations:

• Pointer-based ACTs. ACTs are often represented as pointers to
programming language constructs, such as pointers to abstract
base class objects in C++ or references to abstract base class
objects in Java. When a client initiates an operation on a service, it
creates the ACT and casts it to a void pointer. The pointer is then
passed to the service along with the asynchronous operation call.
Pointer-based ACTs are primarily useful for passing ACTs among
clients and services running on homogeneous platforms. Thus, it
is necessary to use portability features, such as typedefs or

: Client

: ACT

: Service

operation()ACT

notify() ACT

Other
client
processing

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

macros, to ensure a uniform representation of pointers throughout
heterogeneous distributed systems.

• Object reference-based ACTs. When implementing distributed
object computing middleware using CORBA, developers can
represent ACTs as object references. Upon receiving an object
reference-based ACT back from a service, a client can use the
CORBA _narrow() operation to downcast the ACT to a type that is
meaningful to it. CORBA object references provide a standard,
portable, and interoperable means to communicate ACTs between
clients and services. Naturally, object references may be
inappropriate if CORBA is not used as the middleware platform.

• Index-based ACTs. Rather than using pointers or object references
to represent ACTs, it is possible to implement them as indices into
a table accessible by the client. Any state and actions can be
associated with the appropriate index into the table. When a
response arrives from the service, the client simply uses the ACT to
access the corresponding entry in the table. This technique is
particularly appropriate for languages, such as FORTRAN, that do
not support pointers. Index-based ACTs are also useful for
associating ACTs with persistent entities, such as database
identifiers or offsets into memory-mapped files.

2 Determine how to pass the ACT from the client to the service. This step
is typically straightforward. Clients can pass ACTs as explicit or
implicit parameters in asynchronous operation requests. Explicit
parameters are defined in the signature of the asynchronous
operations. Implicit parameters are typically stored in a context or
environment that’s passed transparently to the service.3 In the
Example Resolved section we show an example of how ACTs can be
explicit parameters to service methods.

3 Determine a mechanism for holding the ACT at the service. Once the
ACT is received by a service, it must hold on to the ACT while
performing the designated client operation. If a service executes
synchronously, the ACT can simply reside in the run-time stack while

3. The CORBA service context field [OMG98d] is an example of an implicit
parameter.

26.11.1999 ACT.doc

Asynchronous Completion Token 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

the service processes the operation. Thus, if a service is running in a
different thread or process than its client, its operations can execute
synchronously, while still providing an asynchronous programming
model to the client [SV98].

Services that process client operations asynchronously, however,
may need to handle multiple requests simultaneously. In this case,
the service must maintain a collection of ACTs in a data structure
that resides outside the scope of the run-time stack. The Manager
pattern [PLoPD3] can be used to implement the collection of ACTs.

4 Determine a demultiplexing mechanism to dispatch the ACT back to the
client. In some applications, when a client initiates an asynchronous
operation request on a service, the ACT is returned just once, usually
with the response. In other applications, however, ACTs from a single
request may be returned multiple times. For instance, in our EMIS
example, the client can use the same ACT to demultiplex and
dispatch many agent responses that are associated with the same
registration, such as a ‘connection established’ notification request.

In both the single and multiple response models, the following are
common demultiplexing strategies used to dispatch ACTs back to a
client when an asynchronous operation completes:

• Callbacks. In this strategy, a client specifies a function or object/
method that can be dispatched by a service, or a local service proxy
if the service is remote, when an operation completes [Ber95]. The
ACT value itself can be returned as a parameter to the callback
function or object/method.

Callbacks can be delivered to a client synchronously or
asynchronously. In the synchronous approach, the client
application typically waits in an event loop or reactor (97). When
the response returns from the service it is dispatched to the
appropriate callback. In the asynchronous approach the callback
is invoked via a signal handler [POSIX95]. Thus, clients need not
explicitly wait for notifications by blocking in an event loop. The
Example Resolved section shows an example of the synchronous
callback approach using objects.

• Queued completion notifications. In this strategy, the client ‘pulls’
the ACT from a completion queue at its discretion.4 ACT notifica-
tions are placed in a completion queue by a service or a local ser-

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

vice proxy. Windows NT overlapped I/O and I/O completion ports
[Sol98] use this approach, as described in the Known Uses section.

Regardless of how the ACTs are returned to the clients, once they are
returned, the job of the service is complete. Clients are responsible for
processing the responses from completed operations and freeing any
resources associated with the ACT.

Example
Resolved

Consider a scenario where an EMIS administrator uses a
management application to monitor and log all connections made to
a particular image server. The management application must first
invoke an asynchronous operation request that registers with the
image server's agent to notify it when connections are established.
Subsequently, when connections are established, completion events
are sent by the agent and the management application must
efficiently log the data and update its GUI accordingly.

The Asynchronous Completion Token (ACT) pattern supports the use
case described above by allowing the management application to pass
an opaque value as an ACT when it registers with the agent. For in-
stance, the management application can pass a reference to a state
object as the ACT. The state object itself contains references to a log-
ging object and the appropriate GUI window that will be updated
when connection notification responses arrive from the agent. The
management application can use the state object referenced by the
ACT to update the correct user interface and record the event with the
appropriate logging object.

The C++ code below illustrates the use of ACTs for a management ap-
plication class that handles asynchronous EMIS events received from
agents. We first define an ACT to be a generic C++ pointer, as follows:

typedef void * ACT;

Next, we define an EMIS_Event_Handler class that defines the state
and actions necessary to process an ACT.

class EMIS_Event_Handler : public Receiver {
// The Receiver base class defines the pure
// virtual <recv_event> method.

public:
// References to State will be passed
// as ACTs via asynchronous operations.

4. In contrast, callbacks ‘push’ the ACT back to a client.

26.11.1999 ACT.doc

Asynchronous Completion Token 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

class State {
public:

State (Window *w, Logger *l) :
window_ (w), logger_ (l) {}

Window *window_; // Used to display state.
Logger *logger_; // Used to log state.
// ...

};

// Called back by EMIS agents when events occur.
virtual void recv_event (const Event & event, ACT act){

// Turn the ACT into the needed state.
State *state = reinterpret_cast < State *> (act);

// Update a graphical window and log the event.
state->window_->update (event);
state->logger_->record (event);
// ...

}
};

The following code defines the Agent interface that can be invoked by
clients to register for EMIS completion events.

class Agent {
// The types of events that applications
// can register for.
enum Event_Type {

NEW_CONNECTIONS,
IMAGE_TRANSFERS
// ...

};
// Register for <receiver> to get called
// back when the <type> of EMIS events occur.
// The <act> is passed back to <receiver>.
void register (Receiver *receiver,

Event_Type type,
ACT act);

// ...
};

The next code fragment shows how a management application
invokes operation requests on an Agent and subsequently processes
Agent notification responses. The application starts by creating its
resources for logging and display. It then creates State objects that
identify the completion of connection and image transfer events. The
State objects contain references to Window and Logger objects. The
address of the State objects are used as the ACTs.

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

int main (void) {
// Create application resources for
// logging and display. Some events will
// be logged to a database, while others
// will be written to a console.
Logger database_logger (DATABASE);
Logger console_logger (CONSOLE);

// Different graphical displays may need
// to be updated depending on the event type.
// For instance, the topology window showing
// an iconic view of the system needs to be
// updated when new connection events arrive.
Window main_window (200, 200);
Window topology_window (100, 20);

// Create an ACT that will be returned when
// connection events occur.
EMIS_Event_Handler :: State connection_act

(&topology_window; &database_logger);

// Create an ACT that will be returned when
// image transfer events occur.
EMIS_Event_Handler :: State image_transfer_act

(&main_window, &console_logger);

// Object that will handle all incoming
// EMIS events.
EMIS_Event_Handler agent_handler;

// Binding to a remote Agent that
// will call back the EMIS_Event_Handler
// when EMIS events occur.
Agent agent = ... // Bind to an Agent proxy.

Next, the application registers the EMIS_Event_Handler instance
with the Agent for each type of event. Once these registrations are
complete, the application enters its event loop, where all GUI and
network processing is driven by callbacks.

// Register with Agent to receive
// notifications of EMIS connection events.
agent.register (&agent_handler,

Agent ::NEW_CONNECTIONS,
 reinterpret_cast <ACT>

&connection_act);

26.11.1999 ACT.doc

Asynchronous Completion Token 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// Register with Agent to receive
// notifications of EMIS image transfer events.
agent.register (&agent_handler,

Agent ::IMAGE_TRANSFERS,
 reinterpret_cast <ACT>

&image_transfer_act);

run_event_loop ();
}

When an event is generated by an EMIS component, the Agent sends
the event to the agent_handler , where it is dispatched to the
management applications via the recv_event() callback method.
The management application then uses the ACT returned by the agent
to access the State object associated with the operation completion
in order to decide the appropriate action to process each event
completion. Image transfer events are displayed on a GUI window and
logged to the console, whereas new connection events are displayed
on a system topology window and logged to a database.

Variations Synchronous ACTs. ACTs can also be used for operations that result
in synchronous callbacks. In this case, the ACT is not really an
asynchronous completion token, but a synchronous one. Using ACTs
for synchronous callback operations provides a well-structured
means of passing state related to an operation through to a service.
In addition, this approach decouples concurrency policies so that the
code that receives an ACT can be used for either synchronous or
asynchronous operations.

Chain of service ACTs. A chain of services can occur when
intermediate services also play the role of clients that initiate
asynchronous operations on other services in order to process the
original client’s operation.

➥ For instance, consider a management application that invokes
operation requests on an agent, which in turn invokes other requests
on a timer mechanism. In this scenario, the management application
client uses a chain of services. All intermediate services in the chain—
except the two ends—are both clients and services because they
receive and initiate asynchronous operations. ❏

A chain of services must decide which service ultimately responds to
the client. Moreover, if each service in a chain uses the ACT pattern

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

several issues related to passing, storing, and returning ACTs must
be considered:

• If an intermediate service does not associate any completion
processing with the asynchronous operation(s) it initiates, it can
simply pass along the original ACT it received from its previous
client.

• When completion processing must be associated with an
asynchronous operation and an intermediate service can be sure
that its clients’ ACT values are unique, the service can use client
ACT values to index into a data structure that maps each ACT to
completion processing actions and state.

• If an intermediate service cannot assume uniqueness of client
ACTs, the original ACT cannot be reused to reference intermediate
completion actions and state. In this case, an intermediate service
must create a new ACT and maintain a table that stores these ACTs
so they can be mapped back to their original ACTs when the chain
‘unwinds’.

• If no service in the chain created new ACTs, then the last service in
the chain can notify the client. This design can optimize the
processing because, in this case, ‘unwinding’ the chain of services
is unnecessary.

Non-opaque ACTs. In some implementations of the Asynchronous
Completion Token pattern, services do not treat the ACT as purely
opaque values. For instance, Win32 OVERLAPPED structures are non-
opaque ACTs because certain fields can be modified by the kernel.
One solution to this problem is to pass subclasses of the OVERLAPPED
structure that contain additional state.

Known Uses Operating system asynchronous I/O mechanisms. The Asynchro-
nous Completion Token pattern is used by most operating systems
that support asynchronous I/O. The techniques used by Windows NT
and POSIX are outlined below.

• Windows NT. ACTs are used in conjunction with handles, Over-
lapped I/O, Win32 I/O completion ports on Windows NT [Sol98].
When Win32 handles5 are created, they can be associated with
completion ports using the CreateIoCompletionPort() system
call. Completion ports provide a location for kernel-level services to

26.11.1999 ACT.doc

Asynchronous Completion Token 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

queue completion notification responses, which are subsequently
dequeued and processed by clients that invoked the operations
originally. For instance, when clients initiate asynchronous reads
and writes via ReadFile() and WriteFile() , they specify OVER-
LAPPED structure ACTs that will be queued at a completion port
when the operations complete. Clients use the GetQueuedComple-
tionStatus() system call to dequeue completion notifications,
which contain the original OVERLAPPED structure as an ACT.

• POSIX. The POSIX Asynchronous I/O API [POSIX95] uses ACTs for
its asynchronous I/O read and write operations. In the POSIX API,
results can be dequeued through the aio_wait() and
aio_suspend() interfaces, respectively. In addition, clients can
specify that completion notifications for asynchronous I/O opera-
tions be returned via UNIX signals.

CORBA demultiplexing. The TAO CORBA Object Request Broker
[POSA3] uses the Asynchronous Completion Token pattern to demul-
tiplex various types of requests and responses efficiently, scalably,
and predictably on both the client and server, as described below.

• On a multiple-threaded client, for example, TAO uses ACTs to
associate responses from a server with the appropriate client
thread that invoked the request over a single multiplexed TCP/IP
connection to the server process. Each TAO client request carries
a unique opaque sequence number (the ACT), which is represented
as a 32-bit integer. When an operation is invoked, the client-side
TAO ORB assigns its sequence number to be an index into an
internal connection table managed using the Leader/Followers
pattern (299). Each table entry keeps track of a client thread that
is waiting for a response from its server over the multiplexed
connection. When the server replies, it returns the sequence
number ACT sent by the client. TAO's client-side ORB uses the ACT
to index into its connection table to determine which client thread
to awaken and pass the reply.

• On the server, TAO uses the Asynchronous Completion Token
pattern to provide a low-overhead demultiplexing throughout the
various layers of features in an Object Adapter [POSA3]. For

5. For Win32 overlapped I/O, handles are used to identify network connection
endpoints or open files. Win32 handles are similar to UNIX file descriptors.

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

instance, when a server creates an object reference, TAO Object
Adapter stores special object ID and POA ID values in its object key,
which is ultimately passed to clients as an ACT contained in an
object reference. When the client passes back the object key with
its request, TAO's Object Adapter extracts the special values from
the ACT and uses them to index directly into tables it manages.
This so-called ‘active demultiplexing’ scheme [PRS+99] ensures
constant-time O(1) lookup regardless of the number of objects in a
POA or the number of nested POAs in an Object Adapter.

EMIS network management. The example described in this paper is
derived from a distributed Electronic Medical Imaging System (EMIS)
developed at Washington University for Project Spectrum [BBC94]. A
network management application monitors the performance and
status of multiple components in an EMIS. Agents provide the
asynchronous service of notifying the Management Application of
EMIS events, such as connection events and image transfer events.
Agents use the Asynchronous Completion Token pattern so that the
management application can efficiently associate state with the
arrival of events from agents that correspond to earlier asynchronous
registration operations.

FedEx inventory tracking. One of the most intriguing examples of
the Asynchronous Completion Token pattern is implemented by the
inventory tracking mechanism used by Federal Express postal
services. A FedEx Airbill contains a section labeled: ‘Your Internal
Billing Reference Information (Optional: First 24 characters will
appear on invoice).’ The sender of a package uses this field as an ACT.
This ACT is returned by FedEx (the service) to you (the client) with the
invoice that notifies the sender that the transaction has completed.
FedEx deliberately defines this field very loosely: it is a maximum of
24 characters, which are otherwise ‘untyped.’ Therefore, senders can
use the field in a variety of ways. For instance, a sender can populate
this field with the index of a record for an internal database or with a
name of a file containing a ‘to-do list’ to be performed after the
acknowledgment of the FedEx package delivery has been received.

Consequences There are several benefits to using the Asynchronous Completion
Token (ACT) pattern:

26.11.1999 ACT.doc

Asynchronous Completion Token 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Simplifies client data structures. Clients need not maintain complex
data structures to associate service responses with completion
actions. The ACT returned by the service contains all the information
needed to demultiplex to the appropriate client completion action.

Efficient state acquisition. ACTs are time efficient because they need
not require complex parsing of data returned with the service
response. All relevant information necessary to associated the
response with the original request can be stored either in the ACT or
in an object pointed to by the ACT. Alternatively, ACTs can be used
as indices or pointers to operation state for highly efficient access,
thereby eliminating costly table searches.

Space efficiency. ACTs need not consume much space, yet can still
provide applications with sufficient information to associate large
amounts of state to process asynchronous operation completion
actions. For example, in C and C++, ACTs that are four byte void
pointers can reference arbitrarily large objects.

Flexibility. User-defined ACTs are not forced to inherit from an
interface in order to use the service's ACTs. This allows applications
to pass as ACT objects for which changing the type is undesirable or
even impossible. The generic nature of ACTs can be used to associate
an object of any type with an asynchronous operation. For instance,
when ACTs are implemented as CORBA object references, they can be
narrowed to the appropriate concrete interface.

Does not dictate concurrency policies. Long duration operations can be
executed asynchronously because operation state can be recovered
from an ACT efficiently. Thus, clients can be single-threaded or multi-
threaded, depending on application requirements. In contrast, a ser-
vice that does not provide ACTs may force delay-sensitive clients to
perform operations synchronously within threads to handle opera-
tion completions properly.

There are several liabilities to avoid when using the Asynchronous
Completion Token pattern.

Memory leaks. Memory leaks can result if clients use ACTs as
pointers to dynamically allocated memory and services fail to return
the ACTs, if the service crashes, for instance. Clients wary of this
possibility should maintain separate ACT repositories or tables that
can be used for explicit garbage collection if services fail.

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 ACT.doc

Application re-mapping. If ACTs are used as direct pointers to
memory, errors can occur if part of the application is re-mapped in
virtual memory. This situation can occur in persistent applications
that may be restarted after crashes, as well as for objects allocated
out of a memory-mapped address space. To protect against these
errors, indices to a repository can be used as ACTs. The extra level of
indirection provided by index-based ACTs protects against re-
mappings, because indices can remain valid across re-mappings,
whereas pointers to direct memory may not.

Authentication. When an ACT is returned to a client upon completion
of an asynchronous event, the client may need to authenticate the
ACT before using it. This is necessary if the server cannot be trusted
to have treated the ACT opaquely and may have changed the value of
the ACT.

See Also The Asynchronous Completion Token and Memento [GHJV95]
patterns are similar with respect to the participants. In the Memento
pattern, originators give mementos to caretakers who treat the Me-
mento as ‘opaque’ objects. In the ACT pattern, clients give ACTs to
services that treat the ACTs as ‘opaque’ objects. However, these pat-
terns differ in motivation and applicability. The Memento pattern
takes ‘snapshots’ of object states, whereas the ACT pattern associates
state with the completion of asynchronous operations. Another differ-
ence is in the dynamics. In the ACT pattern, the client—which corre-
sponds to the originator in Memento—creates the ACT proactively
and passes it to the service. In Memento, the caretaker, that is the cli-
ent in terms of Asynchronous Completion Token, requests the cre-
ation of a memento from an originator, which is reactive.

Credits Thanks to Paul McKenney and Richard Toren for their insightful
comments and contributions.

