
C++ Network Programming with Patterns,
Frameworks, and ACE

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/�schmidt/ (615) 343-8197

Sponsors
NSF, DARPA, ATD, BBN, Boeing, Cisco, Comverse, GDIS, Experian, Global MT,

Hughes, Kodak, Krones, Lockheed, Lucent, Microsoft, Mitre, Motorola, NASA, Nokia,
Nortel, OCI, Oresis, OTI, QNX, Raytheon, SAIC, Siemens SCR, Siemens MED,

Siemens ZT, Sprint, Telcordia, USENIX

Advanced ACE Tutorial Douglas C. Schmidt

Roadmap to Levels of Middleware

HHOOSSTT IINNFFRRAASSTTRRUUCCTTUURREE MMIIDDDDLLEEWWAARREE

DDIISSTTRRIIBBUUTTIIOONN MMIIDDDDLLEEWWAARREE

CCOOMMMMOONN MMIIDDDDLLEEWWAARREE SSEERRVVIICCEESS

AAPPPPLLIICCAATTIIOONNSS

HHAARRDDWWAARREE DDEEVVIICCEESS

WWTTSS
HHUUDD

NNaavv

AAVVIIOONNIICCSS
RREEPPLLIICCAATTIIOONN

SSEERRVVIICCEE
DDOOMMAAIINN--SSPPEECCIIFFIICC MMIIDDDDLLEEWWAARREE SSEERRVVIICCEESS

OOPPEERRAATTIINNGG SSYYSSTTEEMMSS && PPRROOTTOOCCOOLLSS

EEVVEENNTT
CCHHAANNNNEELL

CCoonnss
CCoonnss

CCoonnss

www.cs.wustl.edu/˜schmidt/PDF/
middleware-chapter.pdf

� Observations

– Historically, apps
built atop OS

– Today, apps built
atop middleware

– Middleware has
multiple layers

� Just like network
protocol stacks

Vanderbilt University 1

Advanced ACE Tutorial Douglas C. Schmidt

Motivation for Concurrency

SERVER

WORK

REQUEST

WORK

REQUEST

WORK

REQUEST

WORK

REQUEST

CLIENT

CLIENT

CLIENT CLIENT

(2) CONCURRENT SERVER

maxfdp1

read_fds

WORK

REQUEST

SERVER

CLIENT

WORK

REQUEST

WORK

REQUEST

WORK

REQUESTCLIENT

CLIENT CLIENT

(1) ITERATIVE SERVER

� Leverage hardware/software

– e.g., multi-processors and OS
thread support

� Increase performance

– e.g., overlap computation and
communication

� Improve response-time

– e.g., GUIs and network servers
� Simplify program structure

– e.g., sync vs. async

Vanderbilt University 2

Advanced ACE Tutorial Douglas C. Schmidt

Motivation for Distribution
PRINTER

FILE
SYSTEM

PRINTER FILE SYSTEM

COMPUTER

(1) STAND-ALONE APPLICATION ARCHITECTURE

(2) DISTRIBUTED APPLICATION ARCHITECTURE

CD ROM

CD ROM

NETWORK
FI LE

SERVICE

CYCLE

SERVICE

DISPLAY

SERVICE

PRINT

SERVICE

NAME

SERVICE

TIME

SERVICE

� Collaboration! connectivity and
interworking

� Performance! multi-processing
and locality

� Reliability and availability!

replication

� Scalability and portability!

modularity
� Extensibility! dynamic

configuration and reconfiguration

� Cost effectiveness! open
systems and resource sharing

Vanderbilt University 3

Advanced ACE Tutorial Douglas C. Schmidt

Challenges and Solutions

� Developing efficient, robust, and extensible concurrent networking
applications is hard

– e.g., must address complex topics that are less problematic or not
relevant for non-concurrent, stand-alone applications

� OO techniques and OO language features help to enhance software
quality factors

– Key OO techniques include patterns and frameworks
– Key OO language features include classes, inheritance, dynamic

binding, and parameterized types
– Key software quality factors include modularity, extensibility,

portability, reusability, and correctness

Vanderbilt University 4

Advanced ACE Tutorial Douglas C. Schmidt

Caveats

� OO is not a panacea

– Though when used properly it helps minimize “accidental”
complexity and improve software quality factors

� It’s also essential to understand advanced OS features to enhance
functionality and performance, e.g.,

– Multi-threading
– Multi-processing
– Synchronization
– Shared memory
– Explicit dynamic linking
– Communication protocols and IPC mechanisms

Vanderbilt University 5

Advanced ACE Tutorial Douglas C. Schmidt

Tutorial Outline

� Brief overview of key OO networking and concurrency concepts and
OS platform mechanisms

– Emphasis is on practical solutions

� Examine a range of examples in detail

– Networked Logging Service
– Concurrent Web Server
– Application-level Telecom Gateway
– Call Center Manager Event Server

� Discuss general concurrent programming strategies

� Provide URLs for further reading on the topic

Vanderbilt University 6

Advanced ACE Tutorial Douglas C. Schmidt

Software Development Environment

� The topics discussed here are largely independent of OS, network,
and programming language

– Currently used successfully on UNIX/POSIX, Windows, and
RTOS platforms, running on TCP/IP networks using C++

� Examples are illustrated using freely available ADAPTIVE
Communication Environment (ACE) OO framework components

– Although ACE is written in C++, the principles covered in this
tutorial apply to other OO languages

– e.g., Java, Eiffel, Smalltalk, etc.

� In addition, other networks and backplanes can be used, as well

Vanderbilt University 7

Advanced ACE Tutorial Douglas C. Schmidt

Sources of Complexity
PRINTER

FILE
SYSTEM

PRINTER FILE SYSTEM

COMPUTER

(1) STAND-ALONE APPLICATION ARCHITECTURE

(2) DISTRIBUTED APPLICATION ARCHITECTURE

CD ROM

CD ROM

NETWORK
FI LE

SERVICE

CYCLE

SERVICE

DISPLAY

SERVICE

PRINT

SERVICE

NAME

SERVICE

TIME

SERVICE

� Inherent complexity

– Latency
– Reliability
– Synchronization
– Deadlock

� Accidental Complexity

– Low-level APIs
– Poor debugging tools
– Algorithmic

decomposition
– Continuous

re-invention

Vanderbilt University 8

Advanced ACE Tutorial Douglas C. Schmidt

Sources of Inherent Complexity

Inherent complexity results from fundamental domain challenges,
e.g.:

Concurrent programming

� Eliminating “race conditions”

� Deadlock avoidance

� Fair scheduling

� Performance optimization
and tuning

Distributed programming

� Addressing the impact of latency

� Fault tolerance and high availability

� Load balancing and service
partitioning
� Consistent ordering of distributed
events

Vanderbilt University 9

Advanced ACE Tutorial Douglas C. Schmidt

Sources of Accidental Complexity

Accidental complexity results from limitations with tools and techniques
used to develop concurrent applications, e.g.,

� Lack of portable, reentrant, type-safe and extensible system call
interfaces and component libraries

� Inadequate debugging support and lack of concurrent and
distributed program analysis tools

� Widespread use of algorithmic decomposition

– Fine for explaining concurrent programming concepts and
algorithms but inadequate for developing large-scale concurrent
network applications

� Continuous rediscovery and reinvention of core concepts and
components

Vanderbilt University 10

Advanced ACE Tutorial Douglas C. Schmidt

OO Contributions to Concurrent
and Distributed Applications

Concurrent network programming is
traditionally performed using
low-level OS mechanisms, e.g.,

� fork/exec

� Shared memory and semaphores

� Memory-mapped files

� Signals

� sockets/select

� Low-level thread APIs

Patterns and frameworks elevate
development level to focus on
application concerns, e.g.,

� Service functionality and
policies

� Service configuration
� Concurrent event

demultiplexing and event
handler dispatching

� Service concurrency and
synchronization

Vanderbilt University 11

Advanced ACE Tutorial Douglas C. Schmidt

Overview of Patterns

� Patterns represent solutions to problems that arise when developing
software within a particular context

– i.e., “Patterns == problem/solution pairs within a context”

� Patterns capture the static and dynamic structure and collaboration
among key participants in software designs

– They are particularly useful for articulating how and why to
resolve non-functional forces

� Patterns facilitate reuse of successful software architectures and
designs

Vanderbilt University 12

Advanced ACE Tutorial Do

Example: the Proxy Pattern

NETWORK
CLIENT

SERVER

2: FORWARD REQUEST
3: RESPONSE

: QUOTER

1: METHOD CALL

4: METHOD RETURN

: QUOTER

PROXY

: BROKER

Intent: Provide a surrogate for another object that
controls access to it

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Overview of Frameworks and Components

� A framework is:

– “An integrated collection of components that collaborate to
produce a reusable architecture for a family of related applications”

� Frameworks differ from conventional class libraries:

1. Frameworks are “semi-complete” applications
2. Frameworks address a particular application domain
3. Frameworks provide “inversion of control”

� Frameworks facilitate reuse of successful networked application
software designs and implementations

– Applications inherit from and instantiate framework components

Vanderbilt University 14

Advanced ACE Tutorial Douglas C. Schmidt

Class Libraries versus Frameworks

NETWORKING

DATABASE

GUI

EVENT

LOOP

APPLICATION-
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

EVENT

LOOP

CALL

BACKSINVOKES

(A) CLASS LIBRARY ARCHITECTURE

(B) FRAMEWORK ARCHITECTURE

DATABASE

CLASSES

NETWORK

IPC
CLASSES

MATH

CLASSES

ADT
CLASSES

GUI
CLASSES

APPLICATION-
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

GLUE

CODE

LOCAL

INVOCATIONS

ADT
CLASSES

MATH

CLASSES

Key distinctions

� Class libraries

– Reusable building blocks
– Domain-independent
– Limited in scope
– Passive

� Frameworks

– Reusable, “semi-complete”
applications

– Domain-specific
– Broader in scope
– Active

Vanderbilt University 15

Advanced ACE Tutorial Douglas C. Schmidt

The ADAPTIVE Communication Environment (ACE)

PROCESSES/
THREADS

DYNAMIC

LINKING

SHARED

MEMORY
SELECT/
IO COMP

FILE SYS

APIS

WIN32 NAMED
PIPES & UNIX

STREAM PIPES

UNIX

FIFOS

C
APIS

SOCKETS/
TLI

COMMUNICATION

SUBSYSTEM

VIRTUAL MEMORY & FILE

SUBSYSTEM

GENERAL OPERATING SYSTEM SERVICES

PROCESS/THREAD

SUBSYSTEM

FRAMEWORK

LAYER

ACCEPTOR CONNECTOR

NETWORKED

SERVICE

COMPONENTS

LAYER

NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

GATEWAY

SERVER

SOCK SAP/
TLI SAP

FIFO

SAP

LOG

MSG

SERVICE

HANDLER

TIME

SERVER

C++
WRAPPER

FACADE

LAYER SPIPE

SAP

CORBA

HANDLER

FILE

SAP

SHARED

MALLOC

THE ACE ORB

(TAO)

JAWS ADAPTIVE

WEB SERVER
STANDARDS-BASED MIDDLEWARE

REACTOR/
PROACTOR

PROCESS/
THREAD

MANAGERS

STREAMS

SERVICE

CONFIG-
URATOR

SYNCH

WRAPPERS

MEM

MAP

OS ADAPTATION LAYER

www.cs.wustl.edu/˜schmidt/ACE.html

Vanderbilt University 16

Advanced ACE Tutorial Douglas C. Schmidt

ACE Statistics

� ACE library contains � 250,000
lines of C++

– Over 40 person-years of effort

� Ported to UNIX, Windows, MVS, and
RT/embedded platforms

– e.g., VxWorks, LynxOS, Chorus

� Large user and open-source
developer community

– ˜schmidt/ACE-users.html

� Currently used by
dozens of companies

– Bellcore, BBN,
Boeing, Ericsson,
Hughes, Kodak,
Lockheed, Lucent,
Motorola, Nokia,
Nortel, Raytheon,
SAIC, Siemens, etc.

� Supported commercially
by Riverace

– www.riverace.com

Vanderbilt University 17

Advanced ACE Tutorial Douglas C. Schmidt

The Key Frameworks in ACE

Acceptor-
Connector

Reactor Proactor

Service
Configurator

Streams Task

� ACE contains a number of frameworks that can be used separately
or together

� This design permits fine-grained subsetting of ACE components

– Subsetting helps minimize ACE’s memory footprint
– $ACE_ROOT/doc/ACE-subsets.html

Vanderbilt University 18

Advanced ACE Tutorial Douglas C. Schmidt

Patterns for Communication Middleware

Event
Patterns

Concurrency
Patterns

External
Polymorphism

Wrapper
Facade

Connector

Thread
Pool

Thread-per
Session

Thread-per
Request

Asynchronous
Completion

Token

Thread
Specific
Storage

Active
Object

Half-Sync/
Half-Async

Leader/
Followers

Component
Configurator

Object
 Lifetime
Manager

Reactor

Proactor

Double
Checked
Locking

Thread-
Safe

Interface

Scoped
Locking

Strategized
Locking

Initialization
Patterns

Synchronization
Patterns

Acceptor
Observation

� Failures rarely result from
unknown scientific
principles, but from failing
to apply proven
engineering practices and
patterns

Benefits of Patterns
� Facilitate design reuse

� Preserve crucial design
information

� Guide design choices

Vanderbilt University 19

Advanced ACE Tutorial Douglas C. Schmidt

The ACE ORB (TAO)

NETWORK

ORB RUN-TIME
SCHEDULER

operation()

IDL
STUBS

IDL
SKELETON

in args

out args + return
value

CLIENT

OS KERNEL

HIGH-SPEED
NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

OBJECT
(SERVANT)

OS KERNEL

HIGH-SPEED
NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE
COMPONENTS

OBJ
REF

REAL-TIME ORB CORE
IOP

PLUGGABLE
ORB & XPORT
PROTOCOLS

IOP
PLUGGABLE

ORB & XPORT
PROTOCOLS

REAL-TIME
OBJECT

ADAPTER

www.cs.wustl.edu/˜schmidt/TAO.
html

TAO Overview !

� A real-time,
high-performance
ORB

� Leverages ACE
– Runs on POSIX,

Windows,
RTOSs

Related efforts !

� QuO at BBN

� MIC/GME at
Vanderbilt

� XOTS

Vanderbilt University 20

Advanced ACE Tutorial Douglas C. Schmidt

TAO Statistics

� TAO order of magnitude

– Core ORB > 300,000 LOC
– IDL compiler > 200,000

LOC
– CORBA Object Services >

250,000 LOC
– Leverages ACE heavily

� Ported to UNIX, Windows, &
RT/embedded platforms

– e.g., VxWorks, LynxOS,
Chorus, WinCE

� � 50 person-years of effort

� Currently used by many
companies

– e.g., Boeing, BBN, Lockheed,
Lucent, Motorola, Raytheon,
SAIC, Siemens, etc.

� Supported commercially by OCI
and PrismTech

– www.ociweb.com
– www.prismtechnologies.com

Vanderbilt University 21

Advanced ACE Tutorial Douglas C. Schmidt

JAWS Adaptive Web Server
WWWWWW

SERVERSERVER
2: index.html2: index.html

1: GET ~schmidt1: GET ~schmidt

HTTP/1.0HTTP/1.0

COMMUNICATION PROTOCOLCOMMUNICATION PROTOCOL

((EE..GG.,., HTTP HTTP))

GUIGUI

HTMLHTML
PARSERPARSER

REQUESTERREQUESTER

GRAPHICSGRAPHICS
ADAPTERADAPTER

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

DISPATCHER

PROTOCOL

HANDLERS

WWW

CLIENTCLIENT

www.cs.wustl.edu/˜jxh/
research/

� JAWS Overview

– A high-performance
Web server

� Flexible concurrency
and dispatching
mechanisms

– Leverages the ACE
framework

� Ported to most OS
platforms

– Used commercially by
CacheFlow

� www.cacheflow.com

Vanderbilt University 22

Advanced ACE Tutorial Douglas C. Schmidt

Java ACE

FRAMEWORKS

AND CLASS

CATEGORIES

DISTRIBUTED

SERVICES AND

COMPONENTS
NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

TIME

SERVER

JAVA

WRAPPERS
SYNCH

WRAPPERS
SOCK_SAP

THREAD

MANAGER

LOG

MSG

TIMER

QUEUE

SERVICE

CONFIGURATOR

ADAPTIVE SERVICE EXECUTIVE (ASX)

ACCEPTOR CONNECTOR
SERVICE

HANDLER

JAVA VIRTUAL MACHINE (JVM)

www.cs.wustl.edu/˜schmidt/JACE.html
www.cs.wustl.edu/˜schmidt/C++2java.

html
www.cs.wustl.edu/˜schmidt/PDF/

MedJava.pdf

Java ACE
Overview

� A Java version
of ACE

– Used for
medical
imaging
prototype

Vanderbilt University 23

Advanced ACE Tutorial Do

Networked Logging Service

P1

P2

P3

LOCAL IPC
CLIENT

LOGGING

DAEMON

P1

P2

P3

LOCAL IPC
CLIENT

LOGGING

DAEMON

NETWORK
STORAGE

DEVICE

HOST A HOST BA B

SERVER LOGGING

DAEMON

SERVERCLIENTHOST
A

REMOTE IPC

HOST
B

R
E

M
O

TE
 I

P
C

CLIENT

CONSOLE

PRINTER

Intent: Server logging daemon collects, formats,
and outputs logging records forwarded from client
logging daemons residing throughout a network or
Internet

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Networked Logging Service Programming API
The logging API is similar to printf() , e.g.:

ACE_ERROR ((LM_ERROR, "(%t) fork failed"));

Generates on logging server host:

Oct 31 14:50:13 1992@tango.ics.uci.edu@2766@LM_ERROR@client
::(4) fork failed

and

ACE_DEBUG ((LM_DEBUG,
"(%t) sending to server %s", server_host));

generates on logging server host:

Oct 31 14:50:28 1992@zola.ics.uci.edu@18352@LM_DEBUG@drwho
::(6) sending to server bastille

Vanderbilt University 25

Advanced ACE Tutorial Douglas C. Schmidt

Conventional Logging Server Design

Typical algorithmic pseudo-code for
networked logging server:

void logging_server (void) {
initialize acceptor endpoint

loop forever {
wait for events
handle data events
handle connection events

}
}

The “grand mistake:”

� Avoid the temptation to
“step-wise refine” this
algorithmically
decomposed
pseudo-code directly into
the detailed design and
implementation of the
logging server!

Vanderbilt University 26

Advanced ACE Tutorial Do

The select() -based Logging Server
Implementation

NETWORK

SERVER

LOGGING DAEMON

maxhandlep1

read_handles

CONNECTION

REQUEST

LOGGING

RECORDS LOGGING

RECORDS

LOGGING

RECORDS

CLIENT

CLIENT
CLIENT CLIENT

SERVER

acceptor

Serializes server processing at select()
demuxing level

Vanderbilt University

Advanced ACE Tutorial Do

Conventional Logging Server
Implementation

Note the excessive amount of detail required to
program at the socket level...

// Main program
static const int PORT = 10000;

typedef u_long COUNTER;
typedef int HANDLE;

// Counts the # of logging records processed
static COUNTER request_count;

// Acceptor-mode socket handle
static HANDLE acceptor;

// Highest active handle number, plus 1
static HANDLE maxhp1;

// Set of currently active handles
static fd_set activity_handles;

// Scratch copy of activity_handles
static fd_set ready_handles;

Vanderbilt University

Advanced ACE Tutorial Do

Main Event Loop of Logging Server

int main (int argc, char *argv[])
{

initialize_acceptor
(argc > 1 ? atoi (argv[1]) : PORT);

// Loop forever performing logging
// server processing.

for (;;) {
// struct assignment.
ready_handles = activity_handles;

// Wait for client I/O events.
select (maxhp1, &ready_handles, 0, 0, 0);

// First receive pending logging records.
handle_data ();

// Then accept pending connections.
handle_connections ();

}
}

Vanderbilt University

Advanced ACE Tutorial Do

Initialize Acceptor Socket
static void initialize_acceptor (u_short port)
{

struct sockaddr_in saddr;

// Create a local endpoint of communication.
acceptor = socket (PF_INET, SOCK_STREAM, 0);

// Set up the address info. to become server.
memset ((void *) &saddr, 0, sizeof saddr);
saddr.sin_family = AF_INET;
saddr.sin_port = htons (port);
saddr.sin_addr.s_addr = htonl (INADDR_ANY);

// Associate address with endpoint
bind (acceptor,

(struct sockaddr *) &saddr,
sizeof saddr);

// Make endpoint listen for connection requests.
listen (acceptor, 5);

// Initialize handle sets.
FD_ZERO (&ready_handles);
FD_ZERO (&activity_handles);
FD_SET (acceptor, &activity_handles);
maxhp1 = acceptor + 1;

}

Vanderbilt University

Advanced ACE Tutorial Do

Handle Data Processing

static void handle_data (void) {
// acceptor + 1 is the lowest client handle

for (HANDLE h = acceptor + 1; h < maxhp1; h++)
if (FD_ISSET (h, &ready_handles)) {

ssize_t n = handle_log_record (h, 1);

// Guaranteed not to block in this case!
if (n > 0)

++request_count;
// Count the # of logging records

else if (n == 0) {
// Handle connection shutdown.
FD_CLR (h, &activity_handles);
close (h);
if (h + 1 == maxhp1) {

// Skip past unused handles
while (!FD_ISSET (--h,

&activity_handles))
continue;

maxhp1 = h + 1;
}

}
}

}

Vanderbilt University

Advanced ACE Tutorial Do

Receive and Process Logging Records

static ssize_t handle_log_record (HANDLE in_h,
HANDLE out_h) {

ssize_t n;
size_t len;
Log_Record lr;

// The first recv reads the length (stored as a
// fixed-size integer) of adjacent logging record.

n = recv (in_h, (char *) &len, sizeof len, 0);
if (n <= 0) return n;
len = ntohl (len); // Convert byte-ordering

// The second recv then reads <len> bytes to
// obtain the actual record.
for (size_t nread = 0; nread < len; nread += n

n = recv (in_h, ((char *) &lr) + nread,
len - nread, 0);

// Decode and print record.
decode_log_record (&lr);
if (write (out_h, lr.buf, lr.size) == -1)

return -1;
else return 0;

}

Vanderbilt University

Advanced ACE Tutorial Do

Handle Connection Acceptance

static void handle_connections (void)
{

if (FD_ISSET (acceptor, &ready_handles)) {
static struct timeval poll_tv = {0, 0};
HANDLE h;

// Handle all pending connection requests
// (note use of select’s polling feature)

do {
// Beware of subtle bug(s) here...
h = accept (acceptor, 0, 0);
FD_SET (h, &activity_handles);

// Grow max. socket handle if necessary.
if (h >= maxhp1)

maxhp1 = h + 1;
} while (select (acceptor + 1, &ready_handles,

0, 0, &poll_tv) == 1);
}

Vanderbilt University

Advanced ACE Tutorial Do

Conventional Client Logging
Daemon Implementation

The main() method receives logging records from
client applications and forwards them on to the
logging server

int main (int argc, char *argv[])
{

HANDLE stream = initialize_stream_endpoint
(argc > 1

? atoi (argv[1])
: PORT);

Log_Record lr;

// Loop forever performing client
// logging daemon processing.

for (;;) {
// ... get logging records from client
// application processes ...

size_t size = htonl (lr.size);
send (stream, &size, sizeof size);
encode_log_record (&lr);
send (stream, ((char *) &lr), sizeof lr);

}
}

Vanderbilt University

Advanced ACE Tutorial Do

Client Connection Establishment

static HANDLE initialize_stream_endpoint
(const char *host, u_short port)

{
struct sockaddr_in saddr;

// Create a local endpoint of communication.
HANDLE stream = socket (PF_INET, SOCK_STREAM, 0);

// Set up the address info. to become client.
memset ((void *) &saddr, 0, sizeof saddr);
saddr.sin_family = AF_INET;
saddr.sin_port = htons (port);
hostent *hp = gethostbyname (host);
memcpy ((void *) &saddr,

htonl (hp->h_addr),
hp->h_length);

// Associate address with endpoint
connect (stream,

(struct sockaddr *) &saddr,
sizeof saddr);

return stream;
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Limitations with Algorithmic Decomposition
Algorithmic decomposition tightly couples application-specific
functionality and the following configuration-related characteristics:

� Application Structure

– The number of services per process
– Time when services are configured into a process

� Communication and Demultiplexing Mechanisms

– The underlying IPC mechanisms that communicate with other
participating clients and servers

– Event demultiplexing and event handler dispatching mechanisms

� Concurrency and Synchronization Model

– The process and/or thread architecture that executes service(s) at
run-time

Vanderbilt University 36

Advanced ACE Tutorial Douglas C. Schmidt

Overcoming Limitations via OO

� The algorithmic decomposition illustrated above specifies many
low-level details

– Moreover, the excessive coupling impedes reusability,
extensibility, and portability...

� In contrast, OO focuses on application-specific behavior, e.g.,

int Logging_Handler::handle_input (void)
{

ssize_t n = handle_log_record (peer ().get_handle (),
ACE_STDOUT);

if (n > 0)
++request_count; // Count the # of logging records

return n <= 0 ? -1 : 0;
}

Vanderbilt University 37

Advanced ACE Tutorial Douglas C. Schmidt

OO Contributions to Software

� Patterns facilitate the large-scale reuse of software architecture

– Even when reuse of algorithms, detailed designs, and
implementations is not feasible

� Frameworks achieve large-scale design and code reuse

– In contrast, traditional techniques focus on the functions and
algorithms that solve particular requirements

� Note that patterns and frameworks are not unique to OO!

– However, objects and classes are useful abstraction mechanisms

Vanderbilt University 38

Advanced ACE Tutorial Douglas C. Schmidt

Patterns in the Networked Logging Server

IteratorAdapter Template
Method

Factory
Method

Wrapper
Facade

TACTICAL PATTERNS

STRATEGIC

PATTERNS

Acceptor

Active
Object

Component
Configurator

Reactor

� Strategic and tactical are relative to the context and abstraction level

Vanderbilt University 39

Advanced ACE Tutorial Douglas C. Schmidt

Summary of Pattern Intents

� Wrapper Facade ! “Encapsulates the functions and data provided
by existing non-OO APIs within more concise, robust, portable,
maintainable, and cohesive OO class interfaces”

� Reactor ! “Demultiplexes and dispatches requests that are
delivered concurrently to an application by one or more clients”

� Acceptor ! “Decouple the passive connection and initialization of a
peer service in a distributed system from the processing performed
once the peer service is connected and initialized”

� Component Configurator ! “Decouples the implementation of
services from the time when they are configured”

� Active Object ! “Decouples method execution from method
invocation to enhance concurrency and simplify synchronized
access to an object that resides in its own thread of control”

Vanderbilt University 40

Advanced ACE Tutorial Douglas C. Schmidt

Components in the OO Logging Server

� Application-specific components

– Process logging records received from clients

� Connection-oriented application components

– ACE_Svc_Handler (service handler)

� Performs I/O-related tasks with clients
– ACE_Acceptor factory

� Passively accepts connection requests

� Dynamically creates a service handler for each client and
“activates” it

� Application-independent ACE framework components

– Perform IPC, explicit dynamic linking, event demultiplexing, event
handler dispatching, multi-threading, etc.

Vanderbilt University 41

Advanced ACE Tutorial Do

Class Diagram for OO Logging Server

Service
Configurator

Stream
Connection

Logging
Acceptor

Logging_Handler
SOCK_Acceptor

Logging
Handler

SOCK_Stream
Null_Synch

SVC_HANDLER
PEER_ACCEPTOR

PEER_STREAM
SYNCH_STRAT

C
O

N
N

E
C

T
IO

N
-

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

A
C

E

F
R

A
M

E
W

O
R

K

C
O

M
P

O
N

E
N

T
S

IPC_SAP

Reactor

<<activates>>

1 n

Concurrency

PEER
ACCEPTOR

PEER
STREAM

Svc
Handler

Acceptor

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Addressing Robustness, Portability,
and Maintainability Challenges

� Problem

– Building distributed applications using low-level APIs is hard

� Forces

– Low-level APIs are verbose, tedious, and error-prone to program
– Low-level APIs are non-portable and non-maintainable

� Solution

– Apply the Wrapper Facade pattern to encapsulate low-level
functions and data structures

Vanderbilt University 43

Advanced ACE Tutorial Douglas C. Schmidt

The Wrapper Facade Pattern

Intent

� Encapsulates the functions
and data provided by
existing lower-level,
non-OO APIs within more
concise, robust, portable,
maintainable, and cohesive
higher-level OO class
interfaces

1: method_k()

2: function_k()

client

Functions
function_1()
...
function_n()

Wrapper
Facade

method_1()
...
method_m()

POSA2 (www.cs.wustl.edu/
˜schmidt/POSA/)

Forces Resolved

� Avoid tedious, error-prone, and non-portable system APIs

� Create cohesive abstractions

Vanderbilt University 44

Advanced ACE Tutorial Do

Motivating the Wrapper Facade Pattern:
the Socket API

SERVER
CLIENT

socket()
bind()
(optional)
connect()

send()/recv()

socket()
bind()
listen()
accept()

send()/recv()

2: ACTIVE

ROLE

3: SERVICE

PROCESSING
close()

close()

NETWORK

1: PASSIVE

ROLE

Sockets are the most common network
programming API and are available on most OS
platforms

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Problem with Sockets: Lack of Type-safety
int buggy_echo_server (u_short port_num)
{ // Error checking omitted.

sockaddr_in s_addr;
int acceptor =

socket (PF_UNIX, SOCK_DGRAM, 0);
s_addr.sin_family = AF_INET;
s_addr.sin_port = port_num;
s_addr.sin_addr.s_addr = INADDR_ANY;
bind (acceptor, (sockaddr *) &s_addr,

sizeof s_addr);
int handle = accept (acceptor, 0, 0);
for (;;) {

char buf[BUFSIZ];
ssize_t n = read (acceptor, buf, sizeof buf);
if (n <= 0) break;
write (handle, buf, n);

}
}

� I/O handles are
not amenable to
strong type
checking at
compile-time

� The adjacent
code contains
many subtle,
common bugs

Vanderbilt University 46

Advanced ACE Tutorial Douglas C. Schmidt

Problem with Sockets: Steep Learning Curve

Many socket/TLI API functions have complex semantics, e.g.:

� Multiple protocol families and address families

– e.g., TCP, UNIX domain, OSI, XNS, etc.

� Infrequently used features, e.g.:

– Broadcasting/multicasting
– Passing open file handles
– Urgent data delivery and reception
– Asynch I/O, non-blocking I/O, I/O-based and timer-based event

multiplexing

Vanderbilt University 47

Advanced ACE Tutorial Douglas C. Schmidt

Problem with Sockets: Portability

� Having multiple “standards,” i.e., sockets and TLI, makes portability
difficult, e.g.,

– May require conditional compilation
– In addition, related functions are not included in POSIX standards

� e.g., select() , WaitForMultipleObjects() , and poll()

� Portability between UNIX and Windows Sockets is problematic, e.g.:

– Header files
– Error numbers
– Handle vs. descriptor types
– Shutdown semantics
– I/O controls and socket options

Vanderbilt University 48

A
dvanced

A
C

E
Tutorial

D
ouglas

C
.S

chm
idt

P
roblem

w
ith

S
ockets:

P
oorly

S
tructured

socket()
bind()
connect()
listen()
accept()
read()
write()
readv()
writev()
recv()
send()
recvfrom()
sendto()
recvmsg()
sendmsg()
setsockopt()
getsockopt()
getpeername()
getsockname()
gethostbyname()
getservbyname()

Lim
itations

�

S
ocketA

P
Iis

linear
rather

than
hierarchical

�

T
here

is
no

consistency
am

ong
nam

es...

�

N
on-portable

V
anderbiltU

niversity
49

Advanced ACE Tutorial Do

Socket Taxonomy

XFER
CONNECTION/

COMMUNICATION

ROLE

LOCAL LOCAL/REMOTE

S
T

R
E

A
M

ACTIVE

PASSIVE

D
A

T
A

G
R

A
M

C
O

N
N

E
C

T
E

D
D

A
T

A
G

R
A

M

T
Y

P
E

 O
F

 C
O

M
M

U
N

IC
A

T
IO

N
 S

E
R

V
IC

E

COMMUNICATION DOMAIN

sendto()/recvfrom()

socket(PF_UNIX)/bind() socket(PF_INET)/bind()

send()/recv()
socket(PF_UNIX)
bind()/connect()

socket(PF_UNIX)
bind()/listen()/accept()

socket(PF_UNIX)
bind()/connect()

send()/recv()

socket(PF_INET)
bind()/listen()/accept()

socket(PF_INET)
bind()/connect()

send()/recv()

socket(PF_UNIX)/bind()

send()/recv()

sendto()/recvfrom()

socket(PF_INET)/bind()

socket(PF_INET)
bind()/connect()

socket(PF_UNIX)
bind()/connect()

socket(PF_INET)
bind()/connect()

The Socket API can be classified along three
dimensions

1. Connection role

2. Communication domain

3. Type of service

Vanderbilt University

Advanced ACE Tutorial Do

Solution: ACE Socket Wrapper Facades

XFER

LOCAL LOCAL/REMOTE

S
T

R
E

A
M

ACTIVE

PASSIVE

D
A

T
A

G
R

A
M

C
O

N
N

E
C

T
E

D
D

A
T

A
G

R
A

M

COMMUNICATION DOMAIN

LSOCK_Connector SOCK_Connector

SOCK_AcceptorLSOCK_Acceptor

SOCK_Dgram_Mcast

 LSOCK_Stream SOCK_Stream

 LSOCK_CODgram SOCK_CODgram

 SOCK_Dgram LSOCK_Dgram

 SOCK_Dgram

 SOCK_Dgram_Bcast

T
Y

P
E

 O
F

 C
O

M
M

U
N

IC
A

T
IO

N
 S

E
R

V
IC

E

CONNECTIO
N/

COMMUNICATIO
N

ROLE

 LSOCK_Dgram

The ACE C++ wrapper facades more explicitly
model the key socket components using OO
classes

Vanderbilt University

Advanced ACE Tutorial Do

The ACE Connection-Oriented
Socket Wrapper Facades

ACE_IPC_SAP ACE_Addr

ACE_SOCK_IO ACE_SOCK

ACE_SOCK_Acceptor ACE_INET_Addr

ACE_SOCK_Stream ACE_SOCK_Connector

Participants

� Passive and active connection factories
– ACE_SOCK_Acceptor and ACE_SOCK_Connector

� Streaming classes
– ACE_SOCK_Streamand ACE_SOCK_IO

� Addressing classes
– ACE_Addr and ACE_INET_Addr

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

The ACE Connection-Oriented Socket
Wrapper Facade Factories

class ACE_SOCK_Connector
{
public:

// Traits
typedef ACE_INET_Addr PEER_ADDR;
typedef ACE_SOCK_Stream PEER_STREAM;

int connect
(ACE_SOCK_Stream &new_sap,

const ACE_INET_Addr &raddr,
ACE_Time_Value *timeout,
const ACE_INET_Addr &laddr);

// ...
};

class ACE_SOCK_Acceptor
: public ACE_SOCK

{
public:

// Traits
typedef ACE_INET_Addr PEER_ADDR;
typedef ACE_SOCK_Stream PEER_STREAM;

ACE_SOCK_Acceptor (const ACE_INET_Addr &);
int open (const ACE_INET_Addr &addr);
int accept

(ACE_SOCK_Stream &new_sap,
ACE_INET_Addr *,
ACE_Time_Value *);

//...
};

Vanderbilt University 53

Advanced ACE Tutorial Douglas C. Schmidt

ACE Connection-Oriented Socket Wrapper Facade
Streaming and Addressing Classes

class ACE_SOCK_Stream
: public ACE_SOCK {

public:
// Trait.
typedef ACE_INET_Addr PEER_ADDR;
ssize_t send (const void *buf,

int n);
ssize_t recv (void *buf,

int n);
ssize_t send_n (const void *buf,

int n);
ssize_t sendv_n (const iovec *iov,

int n);
ssize_t recv_n (void *buf, int n);
int close (void);
// ...

};

class ACE_INET_Addr
: public ACE_Addr

{
public:

ACE_INET_Addr (u_short port,
const char host[]);

u_short get_port_number (void);
ACE_UINT_32 get_ip_addr (void);
// ...

};

Vanderbilt University 54

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Motivating the
Socket Wrapper Facade Structure

� Q: Why decouple the ACE_SOCK_Acceptor and the
ACE_SOCK_Connector from ACE_SOCK_Stream?

� A: For the same reasons that ACE_Acceptor and
ACE_Connector are decoupled from ACE_Svc_Handler , e.g.,

– An ACE_SOCK_Stream is only responsible for data transfer

� Regardless of whether the connection is established passively
or actively

– This ensures that the ACE_SOCK*components aren’t used
incorrectly...

� e.g., you can’t accidentally read() or write() on
ACE_SOCK_Connectors or ACE_SOCK_Acceptors , etc.

Vanderbilt University 55

Advanced ACE Tutorial Do

An Echo Server Written using
ACE C++ Socket Wrapper Facades

int echo_server (u_short port_num)
{

// Local server address.
ACE_INET_Addr my_addr (port_num);

// Initialize the acceptor mode server.
ACE_SOCK_Acceptor acceptor (my_addr);

// Data transfer object.
ACE_SOCK_Stream new_stream;

// Accept a new connection.
acceptor.accept (new_stream);

for (;;) {
char buf[BUFSIZ];
// Error caught at compile time!
ssize_t n =

acceptor.recv (buf, sizeof buf);
new_stream.send_n (buf, n);

}
}

Vanderbilt University

Advanced ACE Tutorial Do

A Generic Version of the Echo Server

template <class ACCEPTOR>
int echo_server (u_short port)
{

// Local server address (note traits).
typename
ACCEPTOR::PEER_ADDR my_addr (port);

// Initialize the acceptor mode server.
ACCEPTOR acceptor (my_addr);

// Data transfer object (note traits).
typename ACCEPTOR::PEER_STREAM stream;

// Accept a new connection.
acceptor.accept (stream);

for (;;) {
char buf[BUFSIZ];
ssize_t n =

stream.recv (buf, sizeof buf);
stream.send_n (buf, n);

}
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Scope of the ACE IPC Wrapper Facades

AACCEE
IIPPCC
SSAAPP

AA

SOCKET

API

SSOOCCKK
SSAAPP

TLI

API

TTLLII
SSAAPP

STREAM

PIPE API

SSPPIIPPEE
SSAAPP

NAMED

PIPE API

FFIIFFOO
SSAAPP

SSSSLL
SSAAPP

SSL

API

MMAP

 API

MMEEMM
SSAAPP

SYSTEM V

IPC API

SSyyssVV
IIPPCC

C++NPv1 (www.cs.wustl.edu/˜schmidt/ACE/book1/)

Vanderbilt University 58

Advanced ACE Tutorial Do

Using the Wrapper Facade Pattern
for the Logging Server

Note we haven’t improved the overall design (yet)

// ... Same as before ...

// Acceptor-mode socket handle.
static ACE_SOCK_Acceptor acceptor;

// Set of currently active handles
static ACE_Handle_Set activity_handles;

// Scratch copy of activity_handles
static ACE_Handle_Set ready_handles;

static void initialize_acceptor (u_short port)
{

// Set up address info. to become server.
ACE_INET_Addr saddr (port);

// Create a local endpoint of communication.
acceptor.open (saddr);

// Set the <SOCK_Acceptor> into non-blocking mode.
acceptor.enable (ACE_NONBLOCK);

activity_handles.set_bit (acceptor.get_handle ());
}

Vanderbilt University

Advanced ACE Tutorial Do

Main Event Loop of Logging Server

int main (int argc, char *argv[])
{

initialize_acceptor
(argc > 1 ? atoi (argv[1]) : PORT);

// Loop forever performing logging
// server processing.

for (;;) {
// object assignment.
ready_handles = activity_handles;

// Wait for client I/O events.
ACE::select (int (maxhp1),

// calls operator fd_set *().
ready_handles);

// First receive pending logging records.
handle_data ();

// Then accept pending connections.
handle_connections ();

}
}

Vanderbilt University

Advanced ACE Tutorial Do

Handling Connections and
Data Processing

static void handle_connections (void) {
if (ready_handles.is_set (acceptor.get_handle ()))

ACE_SOCK_Stream str;

// Handle all pending connection requests.
while (acceptor.accept (str) != -1)

activity_handles.set_bit (str.get_handle ());
}

}

static void handle_data (void) {
ACE_HANDLE h;
ACE_Handle_Set_Iterator iter (ready_handles);

while ((h = iter ()) != ACE_INVALID_HANDLE) {
ACE_SOCK_Stream str (h);
ssize_t n = handle_log_record (str, ACE_STDOUT);
if (n > 0) // Count # of logging records.

++request_count;
else if (n == 0) {

// Handle connection shutdown.
activity_handles.clr_bit (h);
s.close ();

}
}

Vanderbilt University

Advanced ACE Tutorial Do

Receive and Process Logging Records

static ssize_t handle_log_record (ACE_SOCK_Stream s,
ACE_HANDLE out_h)

ACE_UINT_32 len;
ACE_Log_Record lr;

// The first recv reads the length (stored as a
// fixed-size integer) of adjacent logging record.

ssize_t n = s.recv_n ((char *) &len, sizeof len);
if (n <= 0) return n;

len = ntohl (len); // Convert byte-ordering
// Perform sanity check!
if (len > sizeof (lr)) return -1;

// The second recv then reads <len> bytes to
// obtain the actual record.
s.recv_n ((char *) &lr, sizeof lr);

// Decode and print record.
decode_log_record (&lr);
if (ACE_OS::write (out_h, lr.buf, lr.size) == -1)

return -1;
else return 0;

}

Vanderbilt University

Advanced ACE Tutorial Do

OO Client Logging
Daemon Implementation

int main (int argc, char *argv[])
{

ACE_SOCK_Stream stream;
ACE_SOCK_Connector con; // Establish connection.
con.connect (stream, ACE_INET_Addr (argc > 1

? atoi (argv[1]) : PORT));
ACE_Log_Record lr;

// Loop forever performing client
// logging daemon processing.
for (;;) {

// ... get logging records from client
// application processes ...
ACE_UINT_32 size = lr.size;
lr.size = htonl (lr.size);
encode_log_record (&lr);
iovec iov[2];
iov[0].iov_len = sizeof (ACE_UINT_32);
iov[0].iov_base = &lr.size;
iov[1].iov_len = size;
iov[1].iov_base = &lr;
// Uses writev(2);
stream.sendv_n (iov, 2);

}
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Evaluating the Wrapper Facade Solution

Benefits

� More concise

� More robust

� More portable

� More maintainable

� More efficient

Liabilities

� Potentially more indirection

� Additional learning curve

� Still haven’t solved the overall
design problem

– i.e., the overall design is
still based on step-wise
refinement of functions

Vanderbilt University 64

Advanced ACE Tutorial Douglas C. Schmidt

ACE C++ Wrapper Facade
Design Refactoring Principles

� Enforce typesafety at compile-time

� Allow controlled violations of typesafety

� Simplify for the common case

� Replace one-dimensional interfaces with hierarchical class
categories

� Enhance portability with parameterized types

� Inline performance critical methods

� Define auxiliary classes to hide error-prone details

Vanderbilt University 65

Advanced ACE Tutorial Douglas C. Schmidt

Enforce Typesafety at Compile-Time

Sockets cannot detect certain errors at compile-time, e.g.,

int acceptor = socket (PF_INET, SOCK_STREAM, 0);
// ...
bind (acceptor, ...); // Bind address.
listen (acceptor); // Make a acceptor-mode socket.
HANDLE n_sd = accept (acceptor, 0, 0);
// Error not detected until run-time.
read (acceptor, buf, sizeof buf);

ACE enforces type-safety at compile-time via factories, e.g.:

ACE_SOCK_Acceptor acceptor (port);

// Error: recv() not a method of <ACE_SOCK_Acceptor>.
acceptor.recv (buf, sizeof buf);

Vanderbilt University 66

Advanced ACE Tutorial Douglas C. Schmidt

Allow Controlled Violations of Typesafety

Make it easy to use the C++ Socket wrapper facades correctly, hard to
use it incorrectly, but not impossible to use it in ways the class
designers did not anticipate

� e.g., it may be necessary to retrieve the underlying socket handle:

ACE_SOCK_Acceptor acceptor;

// ...

ACE_Handle_Set ready_handles;

// ...

if (ready_handles.is_set (acceptor.get_handle ())
ACE::select (acceptor.get_handle () + 1, ready_handles);

Vanderbilt University 67

Advanced ACE Tutorial Douglas C. Schmidt

Supply Default Parameters

ACE_SOCK_Connector (ACE_SOCK_Stream &new_stream,
const ACE_Addr &remote_sap,
ACE_Time_Value *timeout = 0,
const ACE_Addr &local_sap = ACE_Addr::sap_any,
int protocol_family = PF_INET,
int protocol = 0);

The result is extremely concise for the common case:

ACE_SOCK_Stream stream;

// Compiler supplies default values.
ACE_SOCK_Connector con (stream, ACE_INET_Addr (port, host));

Vanderbilt University 68

Advanced ACE Tutorial Do

Define Parsimonious Interfaces

e.g., use LSOCKto pass socket handles:

ACE_LSOCK_Stream stream;
ACE_LSOCK_Acceptor acceptor ("/tmp/foo");

acceptor.accept (stream);
stream.send_handle (stream.get_handle ());

versus the less parsimonious BSD 4.3 socket code

ACE_LSOCK::send_handle
(const ACE_HANDLE sd) const {

u_char a[2]; iovec iov; msghdr send_msg;

a[0] = 0xab, a[1] = 0xcd;
iov.iov_base = (char *) a;
iov.iov_len = sizeof a;
send_msg.msg_iov = &iov;
send_msg.msg_iovlen = 1;
send_msg.msg_name = (char *) 0;
send_msg.msg_namelen = 0;
send_msg.msg_accrights = (char *) &sd;
send_msg.msg_accrightslen = sizeof sd;
return sendmsg (this->get_handle (),

&send_msg, 0);

Note that SVR4 and BSD 4.4 APIs are different
than BSD 4.3!

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Combine Multiple Operations into One Operation

Creating a conventional acceptor-mode socket requires multiple calls:

int acceptor = socket (PF_INET, SOCK_STREAM, 0);
sockaddr_in addr;
memset (&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
addr.sin_addr.s_addr = INADDR_ANY;
bind (acceptor, &addr, addr_len);
listen (acceptor);
// ...

ACE_SOCK_Acceptor combines this into a single operation:

ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) port);

Vanderbilt University 70

Advanced ACE Tutorial Douglas C. Schmidt

Create Hierarchical Class Categories

AACCEE
LLSSOOCCKK

AACCEE
IIPPCC
SSAAPP

GGRROOUUPP

CCOOMMMM

DDAATTAAGGRRAAMM

CCOOMMMM

SSTTRREEAAMM

CCOOMMMM

CCOONNNNEECCTTIIOONN

EESSTTAABBLLIISSHHMMEENNTT

AACCEE
SSOOCCKK

AACCEE
SSOOCCKK

CCOODDggrraamm

 AACCEE
SSOOCCKK
DDggrraamm

ACE
SOCK
Dgram
Bcast

AACCEE
SSOOCCKK

AAcccceeppttoorr

AACCEE
SSOOCCKK

CCoonnnneeccttoorr

AACCEE
SSOOCCKK
SSttrreeaamm

AACCEE
LLSSOOCCKK
CCOODDggrraamm

AACCEE
LLSSOOCCKK
DDggrraamm

AACCEE
LLSSOOCCKK

CCoonnnneeccttoorr

AACCEE
LLSSOOCCKK

AAcccceeppttoorr

AACCEE
LLSSOOCCKK
SSttrreeaamm

ACE
SOCK
Dgram
Mcast

Vanderbilt University 71

Advanced ACE Tutorial Douglas C. Schmidt

Enhance Portability with Parameterized Types

OS KERNEL

PROTOCOL MECHANISMS

(TCP/IP, OSI, ETC.)

USER

SPACE

DISTRIBUTED

APPLICATION 1
APPLICATION1 DISTRIBUTED

APPLICATION 3
APPLICATION3DISTRIBUTED

APPLICATION 2
APPLICATION2

KERNEL

SPACE

BSD SOCKET

API

COMMON INTERFACE

(PARAMETERIZED TYPES)

SOCKET

API

SOCK_SAP

BSD SOCKET

API

SYSTEM V
TLI API

TLI_SAP

NETWORK

INTERFACE

// Conditionally select IPC mechanism.
#if defined (USE_SOCKETS)
typedef ACE_SOCK_Acceptor PEER_ACCEPTOR;
#elif defined (USE_TLI)
typedef ACE_TLI_Acceptor PEER_ACCEPTOR;
#endif // USE_SOCKETS.

int main (void)
{

// ...
// Invoke with appropriate
// network programming interface.
echo_server<PEER_ACCEPTOR> (port);

}

Switching wholesale between sockets and TLI simply requires
instantiating a different ACE C++ wrapper facade

Vanderbilt University 72

Advanced ACE Tutorial Douglas C. Schmidt

Inline Performance Critical Methods

Inlining is time and space efficient since key methods are very short:

class ACE_SOCK_Stream : public ACE_SOCK
{
public:

ssize_t send (const void *buf, size_t n)
{

return ACE_OS::send (this->get_handle (), buf, n);
}

ssize_t recv (void *buf, size_t n)
{

return ACE_OS::recv (this->get_handle (), buf, n);
}

};

Vanderbilt University 73

Advanced ACE Tutorial Douglas C. Schmidt

Define Auxiliary Classes to Hide Error-Prone Details

Standard C socket addressing is awkward and error-prone

� e.g., easy to neglect to zero-out a sockaddr_in or convert port
numbers to network byte-order, etc.

ACE C++ Socket wrapper facades define classes to handle details

class ACE_INET_Addr : public ACE_Addr { public:
ACE_INET_Addr (u_short port, long ip_addr = 0) {

memset (&this->inet_addr_, 0, sizeof this->inet_addr_);
this->inet_addr_.sin_family = AF_INET;
this->inet_addr_.sin_port = htons (port);
memcpy (&this->inet_addr_.sin_addr, &ip_addr, sizeof ip_addr);

}
// ...

private:
sockaddr_in inet_addr_;

};

Vanderbilt University 74

Advanced ACE Tutorial Douglas C. Schmidt

Demultiplexing and Dispatching Events

� Problem

– The logging server must process several different types of events
simultaneously from different sources of events

� Forces

– Multi-threading is not always available
– Multi-threading is not always efficient
– Multi-threading can be error-prone
– Tightly coupling event demuxing with server-specific logic is

inflexible

� Solution

– Use the Reactor pattern to decouple event demuxing/dispatching
from server-specific processing

Vanderbilt University 75

Advanced ACE Tutorial Douglas C. Schmidt

The Reactor Pattern
Reactor

handle_events()
register_handler(h)
remove_handler(h)

select (handles);
foreach h in handles loop
 table[h].handle_event(type)
end loop

Event Handler
handle_event(type)
get_handle()

handlers

Handle ownsuses

notifies

Concrete
Event

Handler

Synchronous Event
Demultiplexer

select()

1 N

www.cs.wustl.edu/˜schmidt/
POSA/

Intent

� Demuxes & dispatches
requests that are
delievered concurrency
to an application by one
or more clients

Forces Resolved
� Serially demux events

synchronously &
efficiently

� Extend applications
without changing
demuxing code

Vanderbilt University 76

Advanced ACE Tutorial Douglas C. Schmidt

Collaboration in the Reactor Pattern

main
program

INITIALIZE

REGISTER HANDLER

callback :
Concrete

Event_Handler

START EVENT LOOP

DATA ARRIVES

OK TO SEND

Reactor

handle_events()

FOREACH EVENT DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL ARRIVES

TIMER EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT HANDLE

REMOVE HANDLER
remove_handler(callback)

IN
IT

IA
L

IZ
A

T
IO

N

M
O

D
E

E
V

E
N

T
 H

A
N

D
L

IN
G

M
O

D
E

handle_close()
CLEANUP

� Note inversion of
control

� Also note how
long-running
event handlers
can degrade
quality of service
since callbacks
“steal” Reactor’s
thread of
control...

Vanderbilt University 77

Advanced ACE Tutorial Do

Structure and Implementations
of the ACE Reactor Framework

Reactor framework participants

ACE_Reactor

ACE_Event_HandlerACE_Timer_Queue

ACE_Time_Value
Application Event

Handler

0..1

Common Reactor implementations in ACE

ACE_Reactor_Impl

ACE_Select_Reactor_Impl

ACE_TP_Reactor

ACE_WFMO_Reactor

ACE_Select_Reactor_T

TOKEN

ACE_Reactor
1

ACE_Select_Reactor

«bind»

<ACE_Select_Reactor_Token>

Vanderbilt University

Advanced ACE Tutorial Do

Using the ACE Reactor Framework
in the Logging Server

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

1: handle_input()

5: handle_input()
6: recv(msg)
7:process(msg)

2: sh = new Logging_Handler
3: accept (sh->peer())
4: sh->open()

OS EVENT DEMULTIPLEXING INTERFACE

: Reactor:Timer
Queue

: Handle
Table

: Event
Handler

: Logging
Handler

: Event
Handler

: Logging
Handler

: Event
Handler

: Logging
Acceptor

Benefits

� Straightforward to
program

� Concurrency control
is easy

Liabilities

� Callbacks are “brittle”

� Can’t leverage
multi-processors

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Addressing Acceptor Endpoint Connection
and Initialization Challenges

� Problem

– The communication protocol used between applications is often
orthogonal to its connection establishment and service handler
initialization protocols

� Forces

– Low-level connection APIs are error-prone and non-portable
– Separating initialization from processing increases software reuse

� Solution

– Use the Acceptor pattern to decouple passive connection
establishment and connection handler initialization from the
subsequent logging protocol

Vanderbilt University 80

Advanced ACE Tutorial Do

The Acceptor-Connector Pattern
(Acceptor Role)

Svc
Handler

peer_stream_
open()

Acceptor
peer_acceptor_
accept()

Svc Handler

Reactor

APPLICATION-
DEFINED

APPLICATION-
INDEPENDENT

ACTIVATES

www.cs.wustl.edu/˜schmidt/POSA/

Intent of Acceptor Role

� Decouple the passive
connection and
initialization of a peer
service in a distributed
system from the
processing performed
once the peer service is
connected and
initialized

Forces resolved

� Reuse passive
connection setup
and service
initialization code

� Ensure that
acceptor-mode
handles aren’t used
to read/write data

Vanderbilt University

Advanced ACE Tutorial Do

Structure of the ACE
Acceptor-Connector Framework

ACE_Svc_Handler

PEER_STREAM,
SYNCH_STRATEGY

ACE_Acceptor

SVC_HANDLER,
PEER_ACCEPTOR

ACE_Connector

SVC_HANDLER,
PEER_CONNECTOR

Application
Service

«bind»

ACE_Event_Handler

ACE_Task

SYNCH_STRATEGY

Framework characteristics

� Uses C++ parameterized types to strategize IPC
and service aspects

� Uses Template Method pattern to strategize
creation, connection establishment, and
concurrency policies

Vanderbilt University

Advanced ACE Tutorial Do

Using the ACE_Acceptor
in the Logging Server

PASSIVE

LISTENER

ACTIVE

CONNECTIONS

1: handle_input()
2: sh = make_svc_handler()
3: accept_svc_handler(sh)
4: activate_svc_handler(sh)

: Reactor

: Acceptor

: Logging
Acceptor

: Svc
Handler

: Logging
Handler

: Svc
Handler

: Logging
Handler

: Svc
Handler

: Logging
Handler

: Svc
Handler

: Logging
Handler

� The ACE_Acceptor is a factory

– i.e., it creates, connects, and activates an
ACE_Svc_Handler

� There’s often one ACE_Acceptor
per-service/per-port

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Acceptor Class Public Interface

template <class SVC_HANDLER, // Service aspect
class PEER_ACCEPTOR> // IPC aspect

class ACE_Acceptor : public ACE_Service_Object
{

// Inherits indirectly from <ACE_Event_Handler>
public:

// Initialization.
virtual int open

(typename const PEER_ACCEPTOR::PEER_ADDR &,
ACE_Reactor * = ACE_Reactor::instance ());

// Template Method.
virtual int handle_input (ACE_HANDLE);

protected:
// Factory method creates a service handler.

virtual SVC_HANDLER *make_svc_handler (void);
// Accept a new connection.

virtual int accept_svc_handler (SVC_HANDLER *);
// Activate a service handler.

virtual int activate_svc_handler (SVC_HANDLER *);

private:
// Acceptor IPC connection strategy.

PEER_ACCEPTOR peer_acceptor_;
};

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Acceptor Class Implementation

// Shorthand names.
#define SH SVC_HANDLER
#define PA PEER_ACCEPTOR

// Template Method that creates, connects,
// and activates service handlers.

template <class SH, class PA> int
ACE_Acceptor<SH, PA>::handle_input (ACE_HANDLE)
{

// Factory method that makes a service handler.

SH *svc_handler = make_svc_handler ();

// Accept the connection.

accept_svc_handler (svc_handler);

// Delegate control to the service handler.

activate_svc_handler (svc_handler);
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

The Template Method Pattern

Concrete
Class

primitive_operation1()
primitive_operation2()

...
primitive_operation1()
...
primitive_operation2()
...

Abstract
Class

template_method()
primitive_operation1()
primitive_operation2()

Intent

� Define the skeleton of
an algorithm in an
operation, deferring
some steps to
subclasses

Gamma et al., Design
Patterns: Elements of
Reusable Object-Oriented
Software AW, ’94

Vanderbilt University 86

Advanced ACE Tutorial Douglas C. Schmidt

Using the Template Method Pattern in
the ACE Acceptor Implementation

Acceptor
handle_input()
make_svc_handler()
accept_svc_handler()
activate_svc_handler()

...
make_svc_handler()
...
accept_svc_handler()
...
activate_svc_handler()

My
Acceptor

make_svc_handler()
activate_svc_handler()

Benefits

� Straightforward to
program via inheritance
and dynamic binding

Liabilities
� Design is “brittle” and

can cause “explosion” of
subclasses due to
“whitebox” design

Vanderbilt University 87

Advanced ACE Tutorial Douglas C. Schmidt

The Strategy Pattern

Strategy
algorithm_interface()

Concrete
Strategy A

algorithm_interface()

STRATEGY

Concrete
Strategy B

algorithm_interface()

Concrete
Strategy C

algorithm_interface()

Context
context_interface()

Intent

� Define a family of
algorithms, encapsulate
each one, and make
them interchangeable

Gamma et al., Design
Patterns: Elements of
Reusable Object-Oriented
Software AW, ’94

Vanderbilt University 88

Advanced ACE Tutorial Douglas C. Schmidt

Using the Strategy Pattern in
the ACE Acceptor Implementation

Thread
Strategy

Process
Strategy

Reactive
Strategy

Acceptor
handle_input()

sh = create_svc_handler ()
...
accept_svc_handler (sh)
...
1: activate_svc_handler(sh)
...

2: activate_svc_handler(sh)

<<delegates>>

activate_svc_handler()

Concurrency
Strategy

Benefits

� More
extensible due
to “blackbox”
design

Liabilities

� More complex
and harder to
develop initially

Vanderbilt University 89

Advanced ACE Tutorial Do

ACE_Acceptor Template Method
Hook Implementations

Template method hooks can be overridden

// Factory method for creating a service handler.
template <class SH, class PA> SH *
ACE_Acceptor<SH, PA>::make_svc_handler (ACE_HANDLE)

return new SH; // Default behavior.
}

// Accept connections from clients.
template <class SH, class PA> int
ACE_Acceptor<SH, PA>::accept_svc_handler (SH *sh)
{

peer_acceptor_.accept (sh->peer ());
}

// Activate the service handler.
template <class SH, class PA> int
ACE_Acceptor<SH, PA>::activate_svc_handler (SH *sh)
{

if (sh->open () == -1)
sh->close ();

}

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Acceptor Initialization
Implementation

Note how the PEER_ACCEPTOR’s open() method
hides all the details associated with passively
initializing communication endpoints

// Initialization.

template <class SH, class PA> int
ACE_Acceptor<SH, PA>::open

(typename const PA::PEER_ADDR &addr,
ACE_Reactor *reactor)

{
// Forward initialization to the concrete
// peer acceptor.
peer_acceptor_.open (addr);

// Register with Reactor.
reactor->register_handler

(this, ACE_Event_Handler::ACCEPT_MASK);
}

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Svc_Handler Class Public
Interface

Note how IPC and synchronization aspects are
strategized

template <class PEER_STREAM, // IPC aspect
class SYNCH_STRAT> // Synch aspect

class ACE_Svc_Handler
: public ACE_Task<SYNCH_STRAT>

// Task is-a Service_Object,
// which is-an Event_Handler
{
public:

// Constructor.
ACE_Svc_Handler (Reactor * =

ACE_Reactor::instance ());
// Activate the handler (called by the

. // <ACE_Acceptor> or <ACE_Connector>).
virtual int open (void *);

// Return underlying IPC mechanism.
PEER_STREAM &peer (void);

// ...
private:

PEER_STREAM peer_; // IPC mechanism.
virtual ˜ACE_Svc_Handler (void);

};

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

ACE_Svc_Handler Implementation

#define PS PEER_STREAM
#define SS SYNCH_STRAT

template <class PS, class SS>
ACE_Svc_Handler<PS, SS>::ACE_Svc_Handler

(ACE_Reactor *r): ACE_Service_Object (r)
{}

template <class PS, class SS>
int ACE_Svc_Handler<PS, SS>::open

(void *) {
// Enable non-blocking I/O.
peer ().enable (ACE_NONBLOCK);

// Register handler with the Reactor.
reactor ()->register_handler

(this, ACE_Event_Handler::READ_MASK);
}

� By default, a
ACE_Svc_Handler
object is registered
with the singleton
ACE_Reactor

– This makes the
service “reactive”
so that no other
synchronization
mechanisms are
necessary

Vanderbilt University 93

Advanced ACE Tutorial Do

Object Diagram for OO Logging Server

 Service
Config

SERVER

SERVER
LOGGING
DAEMON

CONNECTION
REQUEST

REMOTE
CONTROL

OPERATIONS

CLIENT

LOGGING
RECORDS

CLIENT CLIENT
CLIENT

 Logging
Handler

 Logging
Handler

 Logging
Acceptor

 Service
Manager

 Service
Repository

 Reactor

Vanderbilt University

Advanced ACE Tutorial Do

The Logging_Handler and
Logging_Acceptor Classes

// Performs I/O with client logging daemons.

class Logging_Handler : public
ACE_Svc_Handler<ACE_SOCK_Acceptor::PEER_STREAM,

// Trait!
ACE_NULL_SYNCH>

{
public:

// Recv and process remote logging records.
virtual int handle_input (ACE_HANDLE);

};

// Logging_Handler factory.

class Logging_Acceptor : public
ACE_Acceptor<Logging_Handler, ACE_SOCK_Acceptor>

{
public:

// Dynamic linking hooks.
virtual int init (int argc, char *argv[]);
virtual int fini (void);

};

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Parameterizing IPC Mechanisms

� Q: How can you switch between different IPC mechanisms?

� A: By parameterizing IPC Mechanisms with C++ Templates, e.g.:

#if defined (ACE_USE_SOCKETS)
typedef ACE_SOCK_Acceptor PEER_ACCEPTOR;
#elif defined (ACE_USE_TLI)
typedef ACE_TLI_Acceptor PEER_ACCEPTOR;
#endif /* ACE_USE_SOCKETS */

class Logging_Handler : public
ACE_Svc_Handler<PEER_ACCEPTOR::PEER_STREAM, // Trait!

ACE_NULL_SYNCH>
{ /* ... /* };

class Logging_Acceptor : public
ACE_Acceptor <Logging_Handler, PEER_ACCEPTOR>

{ /* ... */ };

Vanderbilt University 96

Advanced ACE Tutorial Douglas C. Schmidt

Logging_Handler Input Method

Callback routine that receives logging records

int
Logging_Handler::handle_input (ACE_HANDLE)
{

// Call existing function to recv
// logging record and print to stdout.
ssize_t n =

handle_log_record (peer ().get_handle (),
ACE_STDOUT);

if (n > 0)
// Count the # of logging records
++request_count;

return n < = 0 ? -1 : 0;
}

� Implementation of
application-specific
logging method

� This is the main code
supplied by a
developer!

Vanderbilt University 97

Advanced ACE Tutorial Do

Logging_Acceptor Initialization
and Termination

// Automatically called when a Logging_Acceptor
// object is linked dynamically.

Logging_Acceptor::init (int argc, char *argv[])
{

ACE_Get_Opt get_opt (argc, argv, "p:", 0);
ACE_INET_Addr addr (DEFAULT_PORT);

for (int c; (c = get_opt ()) != -1;)
switch (c) {

case ’p’:
addr.set (atoi (getopt.optarg));
break;

default:
break;

}
// Initialize endpoint and register
// with the <ACE_Reactor>.
open (addr, ACE_Reactor::instance ());

}

// Automatically called when object is unlinked.

Logging_Acceptor::fini (void) { handle_close (); }

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Putting the Pieces Together at Run-time

� Problem

– Prematurely committing ourselves to a particular logging server
configuration is inflexible and inefficient

� Forces

– It is useful to build systems by “scripting” components
– Certain design decisions can’t be made efficiently until run-time
– It is a bad idea to force users to “pay” for components they do not

use

� Solution

– Use the Component Configurator pattern to assemble the desired
logging server components dynamically

Vanderbilt University 99

Advanced ACE Tutorial Douglas C. Schmidt

The Component Configurator Pattern

Reactor1n

Concrete
Component

R
E

A
C

T
IV

E
L

A
Y

E
R

C
O

N
F

IG
U

R
A

T
IO

N
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
L

A
Y

E
R

1 1

Component
Config

n

Component

A

suspend()
resume()
init()
fini()
info()

1

Component
Repository

1

Event
Handler

Intent

� Decouples the
implementation of services
from the time when they are
configured

Forces Resolved

� Reduce resource utilization
� Support dynamic

(re)configuration

www.cs.wustl.edu/
˜schmidt/POSA/

Vanderbilt University 100

Advanced ACE Tutorial Do

Structure of the ACE Service
Configurator Framework

ACE_Service_Object

ACE_Service_Config

ACE_Service_Repository

ACE_Service_Repository_Iterator

ACE_Event_Handler

Application Service

Framework characteristics

� ACE_Service_Config uses a variant of the
Monostate pattern

� Can be accessed either via a script or
programmatically

Vanderbilt University

Advanced ACE Tutorial Do

Using the ACE Service Configurator
Framework for the Logging Server

SERVICE

CONFIGURATOR

RUNTIME

 Service
Repository

Service
Object

 Thread
Pool

Logger

DLLS

Service
Object

 Thread
Logger

dynamic Logger Service_Object *
 logger:make_Logger() "-p 2001"

svc.conf
FILE

Service
Object

Reactive
Logger

Reactor
 Service
Config

� The existing Logging Server service is
single-threaded

� Other versions could be multi-threaded

� Note how we can script this via the svc.conf
file

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Dynamically Linking a Service

Dynamically linked factory function
that allocates a new
Logging_Acceptor

extern "C"
ACE_Service_Object *
make_Logger (void);

ACE_Service_Object *
make_Logger (void)
{

return new Logging_Acceptor;
// Framework automatically
// deletes memory.

}

� Application-specific factory
function used to dynamically
create a service

� The make_Logger() function
provides a hook between an
application-specific service
and the
application-independent ACE
mechanisms

– ACE handles all memory
allocation and deallocation

Vanderbilt University 103

Advanced ACE Tutorial Douglas C. Schmidt

Service Configuration

The logging service is configured
via scripting in a svc.conf file:

% cat ./svc.conf
Dynamically configure
the logging service
dynamic Logger
Service_Object *
logger:_make_Logger() "-p 2001"
Note, .dll or .so suffix
added to the logger
automatically

Generic event-loop to
dynamically configure service
daemons

int main (int argc, char *argv[])
{

// Initialize the daemon and
// configure services
ACE_Service_Config::open (argc,

argv);
// Run forever, performing the
// configured services
ACE_Reactor::instance ()->

run_reactor_event_loop ();
/* NOTREACHED */

}

Vanderbilt University 104

Advanced ACE Tutorial Douglas C. Schmidt

State Chart for the Service Configurator Framework

INITIALIZED

CONFIGURE/
Service_Config::process_directives()

NETWORK EVENT/
Reactor::dispatch()

RECONFIGURE/
Service_Config::process_directives()

SHUTDOWN/
Service_Config::close() AWAITING

EVENTS

CALL HANDLER/
Event_Handler::handle_input()

IDLE

PERFORM
CALLBACK

START EVENT LOOP/
Reactor::run_event_loop()

Vanderbilt University 105

Advanced ACE Tutorial Douglas C. Schmidt

Advantages of OO Logging Server

� The OO architecture illustrated thus far decouples
application-specific service functionality from:

– Time when a service is configured into a process
– The number of services per-process
– The type of IPC mechanism used
– The type of event demultiplexing mechanism used

� We can use the techniques discussed thus far to extend applications
without:

– Modifying, recompiling, and relinking existing code
– Terminating and restarting executing daemons

� The remainder of the Logging Server slides examine a set of
techniques for decoupling functionality from concurrency
mechanisms, as well

Vanderbilt University 106

Advanced ACE Tutorial Douglas C. Schmidt

Concurrent OO Logging Server

� The structure of the Logging Server can benefit from concurrent
execution on a multi-processor platform

� This section examines ACE C++ classes and patterns that extend
the logging server to incorporate concurrency

– Note how most extensions require minimal changes to the
existing OO architecture...

� This example also illustrates additional ACE components involving
synchronization and multi-threading

Vanderbilt University 107

Advanced ACE Tutorial Do

Concurrent OO Logging
Server Architecture

NETWORK

SERVER LOGGING SERVER

Logging
Handler

Logging
Handler

Logging
Acceptor

1: SOCK
 Acceptor
2: accept()
4: handle_input()
5: spawn()

3: connect()

6: send()

7: recv()
8: write()

CLIENT
A

CLIENT
B

6: send()

7: recv()
8: write()

Reactor

Runs each client connection in a separate thread

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Pseudo-code for Concurrent Server

� Pseudo-code for multi-threaded Logging_Handler factory
Logging Server

void handler_factory (void) {
initialize acceptor endpoint
foreach (pending connection event) {

accept connection
spawn a thread to handle connection and
run logging_handler() entry point

}
}

� Pseudo-code for logging_handler() function

void logging_handler (void) {
foreach (incoming logging records from client)

call handle_log_record()
exit thread

}

Vanderbilt University 109

Advanced ACE Tutorial Douglas C. Schmidt

Concurrency Overview

THREADS

PROCESS

SHARED ADDRESS SPACE

� A thread is a sequence of
instructions executed in one
or more processes

– One process !

stand-alone systems
– More than one process !

distributed systems

Traditional OS processes contain a single thread of control

� This simplifies programming since a sequence of execution steps is
protected from unwanted interference by other execution
sequences...

Vanderbilt University 110

Advanced ACE Tutorial Douglas C. Schmidt

Traditional Approaches to OS Concurrency

1. Device drivers and programs with signal handlers utilize a limited
form of concurrency

� e.g., asynchronous I/O

� Note that concurrency encompasses more than multi-threading...

2. Many existing programs utilize OS processes to provide
“coarse-grained” concurrency

� e.g.,
– Client/server database applications
– Standard network daemons like UNIX INETD

� Multiple OS processes may share memory via memory mapping
or shared memory and use semaphores to coordinate execution

� The OS kernel scheduler dictates process behavior

Vanderbilt University 111

Advanced ACE Tutorial Douglas C. Schmidt

Evaluating Traditional OS Process-based Concurrency

� Advantages

– Easy to keep processes from interfering

� A process combines security, protection, and robustness

� Disadvantages

– Complicated to program, e.g.,

– Signal handling may be tricky
– Shared memory may be inconvenient

� Inefficient

– The OS kernel is involved in synchronization and process
management

– Difficult to exert fine-grained control over scheduling and priorities

Vanderbilt University 112

Advanced ACE Tutorial Douglas C. Schmidt

Modern OS Concurrency

� Modern OS platforms typically provide a standard set of APIs that
handle

– Process/thread creation and destruction
– Various types of process/thread synchronization and mutual

exclusion
– Asynchronous facilities for interrupting long-running

processes/threads to report errors and control program behavior

� Once the underlying concepts are mastered, it’s relatively easy to
learn different concurrency APIs

– e.g., traditional UNIX process operations, Solaris threads, POSIX
pthreads, WIN32 threads, Java threads, etc.

Vanderbilt University 113

Advanced ACE Tutorial Douglas C. Schmidt

Lightweight Concurrency

� Modern operating systems provide lightweight mechanisms that
manage and synchronize multiple threads within a process

– Some systems also allow threads to synchronize across multiple
processes

� Benefits of threads

1. Relatively simple and efficient to create, control, synchronize, and
collaborate
– Threads share many process resources by default

2. Improve performance by overlapping computation and
communication
– Threads may also consume less resources than processes

3. Improve program structure
– e.g., compared with using asynchronous I/O

Vanderbilt University 114

Advanced ACE Tutorial Do

Example: Single-threaded vs.
Multi-threaded Applications

MULTI-
THREADED RPC

CLIENT SERVERCLIENT

U
S

E
R

K
E

R
N

E
L

THREAD
BLOCKED

U
S

E
R

K
E

R
N

E
L

SERVICE
EXECUTES

REQUEST

RESPONSE

SERVER

CLIENT

U
S

E
R

K
E

R
N

E
L

U
S

E
R

K
E

R
N

E
L

SERVICE
EXECUTES

REQUEST

RESPONSE

SERVERU
S

E
R

K
E

R
N

E
L

SERVICE
EXECUTES

REQUEST

RESPONSE

SINGLE-
THREADED RPC

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Hardware and OS Concurrency Support

THREAD

PE

PROCESSING
ELEMENT

LIGHTWEIGHT
PROCESS

LWP
UNIX

PROCESS

PE PE PE PEPE PE PE PE

SHARED MEMORY

K
E

R
N

E
L
-L

E
V

E
L

U
S

E
R
-L

E
V

E
L

LWP LWP LWPLWP LWP LWP LWP

Four typical
abstractions

1. Application
threads

2. Lightweight
processes

3. Kernel threads

4. Processing
elements

Vanderbilt University 116

Advanced ACE Tutorial Douglas C. Schmidt

Application Threads
Most process resources are
equally accessible to all threads
in a process, e.g.,

� Virtual memory

� User permissions and access
control privileges

� Open files

� Signal handlers

Each thread also contains unique
information, e.g.,

� Identifier

� Register set (e.g., PC and SP)

� Run-time stack

� Signal mask

� Priority

� Thread-specific data (e.g.,
errno)

Note, there is no MMU protection for threads in a single process

Vanderbilt University 117

Advanced ACE Tutorial Douglas C. Schmidt

Kernel-level vs. User-level Threads

� Application and system characteristics influence the choice of
user-level vs. kernel-level threading

� A high degree of “virtual” application concurrency implies user-level
threads (i.e., unbound threads)

– e.g., desktop windowing system on a uni-processor

� A high degree of “real” application parallelism implies lightweight
processes (LWPs) (i.e., bound threads)

– e.g., video-on-demand server or matrix multiplication on a
multi-processor

Vanderbilt University 118

Advanced ACE Tutorial Douglas C. Schmidt

Overview of OS Synchronization Mechanisms

� Threads share resources in a process address space

� Therefore, they must use synchronization mechanisms to coordinate
their access to shared data

� Traditional OS synchronization mechanisms are very low-level,
tedious to program, error-prone, and non-portable

� ACE encapsulates these mechanisms with wrapper facades and
higher-level patterns/components

Vanderbilt University 119

Advanced ACE Tutorial Douglas C. Schmidt

Common OS Synchronization Mechanisms

� Mutual exclusion (mutex) locks

– Serialize thread access to a shared resource

� Counting semaphores

– Synchronize thread execution

� Readers/writer (R/W) locks

– Serialize resources that are searched more than changed

� Condition variables

– Used to block threads until shared data changes state

� File locks

– System-wide R/W locks accessed by processes

Vanderbilt University 120

Advanced ACE Tutorial Douglas C. Schmidt

Additional ACE Synchronization Mechanism

� Events

– Gates and latches

� Barriers

– Allows threads to synchronize their completion

� Token

– Provides FIFO scheduling order

� Task

– Provides higher-level “active object” for concurrent applications

� Thread-specific storage

– Low-overhead, contention-free storage

Vanderbilt University 121

Advanced ACE Tutorial Do

Concurrency Mechanisms in ACE

Token

ADVANCED SYNCH

Barrier
Condition

MUTEX

Null
Condition

CONDITIONS

Task

SYNCH

ACTIVE
OBJECTSThread

Manager

MANAGERS

Process
Manager

Guard

GUARDS

Read
Guard

Write
Guard

Atomic
Op

LOCK
TYPE

TSS

TYPE

Thread

Mutex Null
Mutex

RW
Mutex

Events

Semaphore

SYNCH WRAPPERS

File
LockProcess

Mutex

Thread
Mutex

Thread
Semaphore

Process
Semaphore

� All ACE Concurrency mechanisms are ported to
all OS platforms

� www.cs.wustl.edu/˜schmidt/ACE/
book1/

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Addressing Logger Server Concurrency Challenges

� Problem

– Multi-threaded logging servers may be necessary when
single-threaded reactive servers inefficient, non-scalable, or
non-robust

� Forces

– Multi-threading can be very hard to program
– No single multi-threading model is always optimal

� Solution

– Use the Active Object pattern to allow multiple concurrent logging
server operations using an OO programming style

Vanderbilt University 123

Advanced ACE Tutorial Do

The Active Object Pattern

Proxy

Future m1()
Future m2()
Future m3()

HIDDEN
FROM

CLIENTS

VISIBLE
TO

CLIENTS

2: enqueue(M1)

Activation
List

enqueue()
dequeue()

Servant
n

1

loop {
 m = act_list.dequeue()
 if (m.guard()) m.call()
 else act_list.enqueue (m);
}

Scheduler
dispatch()
enqueue()

m1()
m2()
m3() 4: m1()

1 1

1: enqueue(new M1)

3: dispatch()

Method
Request
guard()
call()

M1

M2

M3

www.cs.wustl.edu/˜schmidt/POSA/

Intent

� Decouples method
execution from method
invocation to enhance
concurrency and simplify
synchronized access to
an object that resides in
its own thread of control

Forces Resolved

� Allow blocking
operations

� Permit flexible
concurrency
strategies

Vanderbilt University

Advanced ACE Tutorial Do

ACE Support for Active Objects

: TASK

STATE

: Message
Queue

ACTIVE

t2 :

Task
2: enqueue (msg)

1: put (msg)

t1 :

Task

t3 :

Task

6: put (msg)

3: svc ()
4: dequeue (msg)
5: do_work(msg)

ACTIVE

ACTIVE

: TASK

STATE

: Message
Queue

: TASK

STATE

: Message
Queue

The ACE Task framework can be used to
implement the complete Active Object pattern or
lighterweight subsets

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

The ACE Task Framework

� An ACE_Task binds a separate thread of control together with an
object’s data and methods

– Multiple active objects may execute in parallel in separate
lightweight or heavyweight processes

� ACE_Task objects communicate by passing typed messages to
other ACE_Task objects

– Each ACE_Task maintains a queue of pending messages that it
processes in priority order

� ACE_Task is a low-level mechanism to support active objects

Vanderbilt University 126

Advanced ACE Tutorial Do

Structure of the ACE Task Framework

ACE_Thread_Manager ACE_Task
0..1 * SYNCH

ACE_Message_Queue

SYNCH

ACE_Message_Block
* 1

ACE_Service_ObjectACE_Event_Handler

Framework characteristics

1. ACE_Tasks can register with an ACE_Reactor

2. They can be dynamically linked

3. They can queue data

4. They can run as active objects in 1 or more
threads

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

The ACE_Task Class Public Interface

template <class SYNCH_STRAT>
// Synchronization aspect

class ACE_Task : public ACE_Service_Object {
public:

// Initialization/termination hooks.
virtual int open (void *args = 0) = 0;
virtual int close (u_long = 0) = 0;

// Transfer msg to queue for immediate processing.
virtual int put (ACE_Message_Block *, ACE_Time_Value * = 0) = 0;

// Run by a daemon thread for deferred processing.
virtual int svc (void) = 0;

// Turn task into active object.
int activate (long flags, int threads = 1);

Vanderbilt University 128

Advanced ACE Tutorial Douglas C. Schmidt

ACE_Task Class Protected Interface

Many of the following methods are used by put() and svc()

// Accessors to internal queue.
ACE_Message_Queue<SYNCH_STRAT> *msg_queue (void);
void msg_queue (ACE_Message_Queue<SYNCH_STRAT> *);

// Accessors to thread manager.
ACE_Thread_Manager *thr_mgr (void);
void thr_mgr (ACE_Thread_Manager *);

// Insert message into the message list.
int putq (ACE_Message_Block *, ACE_Time_Value *tv = 0);

// Extract the first message from the list (blocking).
int getq (ACE_Message_Block *&mb, ACE_Time_Value *tv = 0);

// Hook into the underlying thread library.
static void *svc_run (ACE_Task<SYNCH_STRAT> *);

Vanderbilt University 129

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Combining Threads & C++ Objects

� Q: What is the svc_run() function and why is it a static method?

� A: OS thread APIs require C-style functions as entry point

� The ACE Task framework encapsulates the svc_run() function
within the ACE_Task::activate() method:

template <class SYNCH_STRAT> int
ACE_Task<SYNCH_STRAT>::activate (long flags, int n_threads) {

if (thr_mgr () == NULL) thr_mgr (ACE_Thread_Manager::instance ());
thr_mgr ()->spawn_n (n_threads, &ACE_Task<SYNCH_STRAT>::svc_run,

(void *) this, flags);
}
11.. AACCEE__TTaasskk::::aaccttiivvaattee (())
22.. AACCEE__TThhrreeaadd__MMaannaaggeerr::::ssppaawwnn
 ((ssvvcc__rruunn,, tthhiiss));;
33.. __bbeeggiinntthhrreeaaddeexx
 ((00,, 00,,
 ssvvcc__rruunn,, tthhiiss,,
 00,, &&tthhrreeaadd__iidd));; RRUUNN--TTIIMMEE

TTHHRREEAADD SSTTAACCKK

44.. tteemmppllaattee <<SSYYNNCCHH__SSTTRRAATTEEGGYY>> vvooiidd **
 AACCEE__TTaasskk<<SSYYNNCCHH__SSTTRRAATTEEGGYY>>::::ssvvcc__rruunn
 ((AACCEE__TTaasskk<<SSYYNNCCHH__SSTTRRAATTEEGGYY>> **tt)) {{
 ////
 vvooiidd **ssttaattuuss == tt-->>ssvvcc (());;
 ////
 rreettuurrnn ssttaattuuss;; //// TThhrreeaadd rreettuurrnn..
 }}

Vanderbilt University 130

Advanced ACE Tutorial Douglas C. Schmidt

The svc_run() Adapter Function
ACE_Task::svc_run() is static method used as the entry point to
execute an instance of a service concurrently in its own thread

template <class SYNCH_STRAT> void *
ACE_Task<SYNCH_STRAT>::svc_run (ACE_Task<SYNCH_STRAT> *t)
{

// Thread added to thr_mgr() automatically on entry.

// Run service handler and record return value.
void *status = (void *) t->svc ();

t->close (u_long (status));

// Status becomes "return" value of thread...
return status;

// Thread removed from thr_mgr() automatically on return.
}

Vanderbilt University 131

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Motivation
for the ACE_Thread_Manager

� Q: How can groups of collaborating threads be managed atomically?

� A: Develop the ACE_Thread_Manager class that:

– Supports the notion of thread groups

� i.e., operations on all threads in a group
– Implements barrier synchronization on thread exits
– Shields applications from incompatibilities between different OS

thread libraries

� e.g., detached threads and thread joins

Vanderbilt University 132

Advanced ACE Tutorial Douglas C. Schmidt

Using ACE Task Framework for Logging Server

Process remote logging records
by looping until the client
terminates connection

int
Thr_Logging_Handler::svc (void)
{

while (handle_input () != -1)
// Call existing function
// to recv logging record
// and print to stdout.
continue;

return 0;
}

� The OO implementation localizes
the application-specific part of
the logging service in a single
point, while leveraging off
reusable ACE components

� Compare with original, which
borrow’s the Reactor thread

int
Logging_Handler::handle_input (void)
{

handle_log_record
(peer ().get_handle (),

ACE_STDOUT);
// ...

}

Vanderbilt University 133

Advanced ACE Tutorial Do

Class Diagram for Concurrent
OO Logging Server

Thr
Logging
Acceptor

Thr_Logging_Handler
SOCK_Acceptor

Thr
Logging
Handler

SOCK_Stream
NULL_Synch

Svc
Handler

Acceptor

SVC_HANDLER
PEER_ACCEPTOR PEER_STREAM

SYNCH

C
O

N
N

E
C

T
IO

N
-

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

A
C

E

F
R

A
M

E
W

O
R

K

C
O

M
P

O
N

E
N

T
S

Concurrency
global

Connection

Reactor

<<activates>>

1 n

PEER
ACCEPTOR

PEER
STREAM

IPC_SAP

Stream

Service
Configurator

Vanderbilt University

Advanced ACE Tutorial Do

Thr_Logging_Acceptor and
Thr_Logging_Handler Interfaces

Template classes that create, connect, and activate
a new thread to handle each client

class Thr_Logging_Handler
: public Logging_Handler
// Inherits <handle_input>

{
public:

// Override definition in <ACE_Svc_Handler>
// class to spawn a new thread! This method
// is called by the <ACE_Acceptor>.

virtual int open (void *);

// Process remote logging records.
virtual int svc (void);

};

class Thr_Logging_Acceptor : public
ACE_Acceptor<Thr_Logging_Handler,

ACE_SOCK_Acceptor>
{

// Same as <Logging_Acceptor>...
};

Vanderbilt University

Advanced ACE Tutorial Do

Thr_Logging_Handler
Implementation

Override definition in the ACE_Svc_Handler class
to spawn a new thread

int
Thr_Logging_Handler::open (void *)
{

// Spawn a new thread to handle
// logging records with the client.
activate (THR_DETACHED);

}

Process remote logging records by looping until
client terminates connection

int
Thr_Logging_Handler::svc (void)
{

while (handle_input () != -1)
// Call existing function to recv
// logging record and print to stdout.
continue;

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Dynamically Reconfiguring the Logging Server

The logging service is
configured via scripting in a
svc.conf file:

% cat ./svc.conf
Dynamically reconfigure
the logging service
remove Logger
dynamic Logger
Service_Object *
thr_logger:_make_Logger()

"-p 2002"
.dll or .so suffix added to
"thr_logger" automatically

Dynamically linked factory
function that allocates a new
threaded Logging_Acceptor
extern "C"
ACE_Service_Object *make_Logger (void);

ACE_Service_Object *
make_Logger (void)
{

return new Thr_Logging_Acceptor;
}

Logging service is reconfigured by changing the svc.conf file and
sending SIGHUP signal to server

Vanderbilt University 137

Advanced ACE Tutorial Douglas C. Schmidt

Caveats for the Concurrent Logging Server

� The concurrent Logging Server has several problems

– Output in the handle_log_record() function is not serialized
– The auto-increment of global variable request_count is also

not serialized

� Lack of serialization leads to errors on many shared memory
multi-processor platforms...

– Note that this problem is indicative of a large class of errors in
concurrent programs...

� The following slides compare and contrast a series of techniques
that address this problem

Vanderbilt University 138

Advanced ACE Tutorial Douglas C. Schmidt

Explicit Synchronization Mechanisms

� One approach for serialization uses OS mutual exclusion
mechanisms explicitly, e.g.,

// at file scope
mutex_t lock; // SunOS 5.x synchronization mechanism

// ...
handle_log_record (ACE_HANDLE in_h, ACE_HANDLE out_h)
{

// in method scope ...
mutex_lock (&lock);
if (ACE_OS::write (out_h, lr.buf, lr.size) == -1)

return -1;
mutex_unlock (&lock);
// ...

}

� However, adding these mutex calls explicitly causes problems...

Vanderbilt University 139

Advanced ACE Tutorial Douglas C. Schmidt

Problem: Explicit mutex_* Calls

� Inelegant ! “Impedance mismatch” with C/C++

� Obtrusive

– Must find and lock all uses of write()
– Can yield inheritance anomaly

� Error-prone

– C++ exception handling and multiple method exit points
– Thread mutexes won’t work for separate processes
– Global mutexes may not be initialized correctly

� Non-portable ! Hard-coded to Solaris 2.x

� Inefficient ! e.g., expensive for certain platforms/designs

Vanderbilt University 140

Advanced ACE Tutorial Do

Solution: Synchronization
Wrapper Facades

class ACE_Thread_Mutex
{
public:

ACE_Thread_Mutex (void) {
mutex_init (&lock_, USYNCH_THREAD, 0);

}
˜ACE_Thread_Mutex (void) { mutex_destroy (&lock_);
int acquire (void) { return mutex_lock (&lock_); }
int tryacquire (void)

{ return mutex_trylock (&lock_); }
int release (void) { return mutex_unlock (&lock_);

private:
// SunOS 5.x serialization mechanism.
mutex_t lock_;
void operator= (const ACE_Thread_Mutex &);
ACE_Thread_Mutex (const ACE_Thread_Mutex &);

};

Note how we prevent improper copying and
assignment by using C++ access control specifiers

Vanderbilt University

Advanced ACE Tutorial Do

Porting ACE_Thread_Mutex to
Windows NT

class ACE_Thread_Mutex
{
public:

ACE_Thread_Mutex (void) {
lock_ = CreateMutex (0, FALSE, 0);

}
˜ACE_Thread_Mutex (void) {

CloseHandle (lock_);
}
int acquire (void) {

return WaitForSingleObject (lock_, INFINITE);
}
int tryacquire (void) {

return WaitForSingleObject (lock_, 0);
}
int release (void) {

return ReleaseMutex (lock_);
}

private:
ACE_HANDLE lock_; // Windows locking mechanism.
// ...

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Using the C++ Mutex Wrapper Facade

� Using C++ wrapper facades improves portability and elegance
// at file scope.
ACE_Thread_Mutex lock; // Implicitly unlocked.

// ...
handle_log_record (ACE_HANDLE in_h, ACE_HANDLE out_h) {

// in method scope ...

lock.acquire ();
if (ACE_OS::write (out_h, lr.buf, lr.size) == -1)

return -1;
lock.release ();
// ...

� However, this doesn’t really solve the tedium or error-proneness
problems

– www.cs.wustl.edu/˜schmidt/PDF/ObjMan.pdf

Vanderbilt University 143

Advanced ACE Tutorial Douglas C. Schmidt

Automated Mutex Acquisition and Release

� To ensure mutexes are locked and unlocked, we’ll define a template
class that acquires and releases a mutex automatically

template <class LOCK>
class ACE_Guard
{
public:

ACE_Guard (LOCK &m): lock_ (m) { lock_.acquire (); }
˜ACE_Guard (void) { lock_.release (); }
// ... other methods omitted ...

private:
LOCK &lock_;

}

� ACE_Guard uses the Scoped Locking idiom whereby a constructor
acquires a resource and the destructor releases the resource

Vanderbilt University 144

Advanced ACE Tutorial Douglas C. Schmidt

The ACE_GUARDMacros

� ACE defines a set of macros that simplify the use of the
ACE_Guard, ACE_Write_Guard , and ACE_Read_Guard classes

– These macros test for deadlock and detect when operations on
the underlying locks fail

#define ACE_GUARD(MUTEX,OB,LOCK) \
ACE_Guard<MUTEX> OB (LOCK); if (OB.locked () == 0) return;

#define ACE_GUARD_RETURN(MUTEX,OB,LOCK,RET) \
ACE_Guard<MUTEX> OB (LOCK); if (OB.locked () == 0) return RET;

#define ACE_WRITE_GUARD(MUTEX,OB,LOCK) \
ACE_Write_Guard<MUTEX> OB (LOCK); if (OB.locked () == 0) return;

#define ACE_WRITE_GUARD_RETURN(MUTEX,OB,LOCK,RET) \
ACE_Write_Guard<MUTEX> OB (LOCK); if (OB.locked () == 0) return RET;

#define ACE_READ_GUARD(MUTEX,OB,LOCK) \
ACE_Read_Guard<MUTEX> OB (LOCK); if (OB.locked () == 0) return;

#define ACE_READ_GUARD_RETURN(MUTEX,OB,LOCK,RET) \
ACE_Read_Guard<MUTEX> OB (LOCK); if (OB.locked () == 0) return RET;

Vanderbilt University 145

Advanced ACE Tutorial Do

Thread-safe handle_log_record()
Function

template <class LOCK = ACE_Thread_Mutex> ssize_t
handle_log_record (ACE_HANDLE in, ACE_HANDLE out) {

// beware static initialization...
static LOCK lock;
ACE_UINT_32 len;
ACE_Log_Record lr;

// The first recv reads the length (stored as a
// fixed-size integer) of adjacent logging record.
ssize_t n = s.recv_n ((char *) &len, sizeof len);
if (n <= 0) return n;

len = ntohl (len); // Convert byte-ordering
// Perform sanity check!
if (len > sizeof (lr)) return -1;

// The second recv then reads <len> bytes to
// obtain the actual record.
s.recv_n ((char *) &lr, sizeof lr);

// Decode and print record.
decode_log_record (&lr);
// Automatically acquire mutex lock.
ACE_GUARD_RETURN (LOCK, guard, lock, -1);
if (ACE_OS::write (out, lr.buf, lr.size) == -1)

return -1; // Automatically release mutex lock.
return 0;

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Motivating the ACE_Guard Design

� Q: Why is ACE_Guard parameterized by the type of LOCK?

� A: since many different flavors of locking can benefit from the
Scoped Locking protocol

– e.g., non-recursive vs. recursive mutexes, intra-process vs.
inter-process mutexes, readers/writer mutexes, POSIX and
System V semaphores, file locks, and the null mutex

� Q: Why are templates used, as opposed to
inheritance/polymorphism?

� A: since they are more efficient and can reside in shared memory

� All ACE synchronization wrapper facades use the Adapter pattern to
provide identical interfaces to facilitate parameterization

Vanderbilt University 147

Advanced ACE Tutorial Douglas C. Schmidt

The Adapter Pattern

specific_request()

Adaptee1

client

1: request ()

2: specific_request()

Adapter
request()

Adaptee2
specific_request()Adaptee3

specific_request()

Intent

� Convert the interface
of a class into another
interface client
expects

Force resolved :
� Provide an interface

that captures
similarities between
different OS
mechanisms, e.g.,
locking or IPC

Vanderbilt University 148

Advanced ACE Tutorial Douglas C. Schmidt

Remaining Caveats

int Logging_Handler::handle_input (void)
{

ssize_t n = handle_log_record
(peer ().get_handle (), ACE_STDOUT);

if (n > 0)
// Count # of logging records.
++request_count;
// Danger, race condition!!!

return n < = 0 ? -1 : 0;
}

A more elegant solution incorporates
parameterized types, overloading, and the
Strategized Locking pattern, as discussed in
C++NPv1

� There is a race
condition when
incrementing the
request_count
variable

� Solving this problem
using the
ACE_Thread_Mutex
or ACE_Guard classes
is still tedious,
low-level, and
error-prone

Vanderbilt University 149

Advanced ACE Tutorial Do

Transparently Parameterizing
Synchronization Using C++

Use the Strategized Locking pattern, C++
templates, and operator overloading to define
“atomic operators”

template <class LOCK = ACE_Thread_Mutex,
class TYPE = u_long>

class ACE_Atomic_Op {
public:

ACE_Atomic_Op (TYPE c = 0) { count_ = c; }
TYPE operator++ (void) {

ACE_GUARD (LOCK, guard, lock_); return ++count_;
}
operator TYPE () {

ACE_GUARD (LOCK, guard, lock_); return count_;
}
// Other arithmetic operations omitted...

private:
LOCK lock_;
TYPE count_;

};

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Final Version of Concurrent Logging Server

� Using the Atomic_Op class, only one change is made

// At file scope.
typedef ACE_Atomic_Op<> COUNTER; // Note default parameters...
COUNTER request_count;

� request_count is now serialized automatically

for (; ; ++request_count) // ACE_Atomic_Op::operator++
handle_log_record (get_handle (), ACE_STDOUT);

� The original non-threaded version may be supported efficiently as
follows:

typedef ACE_Atomic_Op<Null_Mutex> COUNTER;
//...

for (; ; ++request_count)
handle_log_record<Null_Mutex>

(get_handle (), ACE_STDOUT);

Vanderbilt University 151

Advanced ACE Tutorial Douglas C. Schmidt

Concurrent Web Client/Server Example

� The following example illustrates a concurrent OO architecture for a
high-performance Web client/server

� Key functional and non-functional system requirements are:

– Robust implementation of HTTP 1.0 protocol

� i.e., resilient to incorrect or malicious Web clients/servers
– Extensible for use with other protocols

� e.g., DICOM, HTTP 1.1, CORBA Simple Flow Protocol (SFP)
– Leverage multi-processor hardware and OS software

� e.g., Support various concurrency patterns

Vanderbilt University 152

Advanced ACE Tutorial Do

General Web Client/Server Interactions

WWWWWW

SERVERSERVER
2: index.html2: index.html

1: GET ~schmidt1: GET ~schmidt

HTTP/1.0HTTP/1.0

COMMUNICATION PROTOCOLCOMMUNICATION PROTOCOL

((EE..GG.,., HTTP HTTP))

GUIGUI

HTMLHTML
PARSERPARSER

REQUESTERREQUESTER

GRAPHICSGRAPHICS
ADAPTERADAPTER

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

DISPATCHER

PROTOCOL

HANDLERS

WWW

CLIENTCLIENT

www.cs.wustl.edu/˜jxh/research/

Vanderbilt University

Advanced ACE Tutorial Do

Pseudo-code for Concurrent Web
Server

� Pseudo-code for master server

void master_server (void)
{

initialize queue and acceptor at port 80
spawn pool of worker threads
foreach (pending work request from clients) {

receive and queue request on queue
}
exit process

}

� Pseudo-code for thread pool workers

void worker (void)
{

foreach (work request on queue)
dequeue and process request

exit thread
}

� As usual, make sure to avoid the “grand mistake”

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Motivating a Request Queue

� Q: Why use a request queue to store messages, rather than directly
reading from I/O handles?

� A:

– Promotes more efficient use of multiple CPUs via load balancing
– Enables transparent interpositioning and prioritization
– Makes it easier to shut down the server correctly and portably
– Improves robustness to “denial of service” attacks
– Moves queueing into the application process rather than OS

� Drawbacks

– Using a message queue may lead to greater context switching
and synchronization overhead...

– Single point for bottlenecks

Vanderbilt University 155

Advanced ACE Tutorial Do

Thread Entry Point

typedef ACE_Unbounded_Queue<Message> MESSAGE_QUEUE;
typedef u_long COUNTER;
// Track the number of requests
COUNTER request_count; // At file scope.

// Entry point into the Web HTTP 1.0 protocol,
// which runs in each thread in the thread pool.
void *worker (MESSAGE_QUEUE *msg_queue)
{

Message mb; // Message containing HTTP request.

while (msg_queue->dequeue_head (mb)) > 0) {
// Keep track of number of requests.
++request_count;

// Print diagnostic
cout << "got new request"

<< ACE_OS::thr_self ()
<< endl;

// Identify and perform Web Server
// request processing here...

}
return 0;

}

Vanderbilt University

Advanced ACE Tutorial Do

Master Server Driver Function

// Thread function prototype.
typedef void *(*THR_FUNC)(void *);

int main (int argc, char *argv[]) {
parse_args (argc, argv);
// Queue client requests.
MESSAGE_QUEUE msg_queue;

// Spawn off NUM_THREADS to run in parallel.
for (int i = 0; i < NUM_THREADS; i++)

thr_create (0, 0,
THR_FUNC (&worker),
(void *) &msg_queue,
THR_BOUND, 0);

// Initialize network device and
// recv HTTP work requests.
thr_create (0, 0, THR_FUNC (&recv_requests),

(void *) &msg_queue,
THR_BOUND, 0);

// Wait for all threads to exit (BEWARE)!
while (thr_join (0, &t_id, (void **) 0) == 0)

continue; // ...
}

Vanderbilt University

Advanced ACE Tutorial Do

Pseudo-code for recv_requests()

void recv_requests (MESSAGE_QUEUE *msg_queue)
{

initialize socket acceptor at port 80

foreach (incoming request})
{

use select to wait for new
connections or data

if (connection)
establish connections using accept()

else if (data) {
use sockets calls to
read() HTTP requests into msg
msg_queue.enqueue_tail (msg);

}
}

}

This is the “supplier” thread

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Limitations with the Web Server

� The algorithmic decomposition tightly couples application-specific
functionality with various configuration-related characteristics, e.g.,

– The HTTP 1.0 protocol
– The number of services per process
– The time when services are configured into a process

� The solution is not portable since it hard-codes

– SunOS 5.x threading
– sockets and select()

� There are race conditions in the code

Vanderbilt University 159

Advanced ACE Tutorial Douglas C. Schmidt

Overcoming Limitations via OO

� The algorithmic decomposition illustrated above specifies too many
low-level details

– Moreover, the excessive coupling complicates reusability,
extensibility, and portability...

� In contrast, OO focuses on decoupling application-specific behavior
from reusable application-independent mechanisms

� The OO approach described below uses reusable framework
components and commonly recurring patterns

Vanderbilt University 160

Advanced ACE Tutorial Douglas C. Schmidt

Eliminating Race Conditions

� Problem

– A naive implementation of MESSAGE_QUEUEwill lead to race
conditions

� e.g., when messages in different threads are enqueued and
dequeued concurrently

� Forces

– Producer/consumer concurrency is common, but requires careful
attention to avoid overhead, deadlock, and proper control

� Solution

– Utilize the Monitor Object pattern and condition variables

Vanderbilt University 161

Advanced ACE Tutorial Douglas C. Schmidt

The Monitor Object Pattern

Intent

� Synchronizes method execution to ensure
only one method runs within an object at a
time. It also allows an object’s methods to
cooperatively schedule their execution
sequences.

Monitor Object
+ synchronized_method_1()
...
+ synchronized_method_m()
monitor_lock_
monotor_condition_1_
...
monitor_condition_n_

˜schmidt/POSA/
Forces Resolved

� Synchronization corresponds to methods

� Objects, not clients, are responsible for synchronization

� Cooperative method scheduling

Vanderbilt University 162

Advanced ACE Tutorial Douglas C. Schmidt

Overview of Condition Variables

� Condition variables (CVs) are used to “sleep/wait” until a particular
condition involving shared data is signaled

– CVs can wait on arbitrarily complex C++ expressions
– Sleeping is often more efficient than busy waiting...

� This allows more complex scheduling decisions, compared with a
mutex

– i.e., a mutex makes other threads wait, whereas a condition
variable allows a thread to make itself wait for a particular
condition involving shared data

Vanderbilt University 163

Advanced ACE Tutorial Douglas C. Schmidt

Condition Variable Usage Patterns

// Initially unlocked.
static ACE_Thread_Mutex lock;
static ACE_Condition_Thread_Mutex

cond (lock);

// synchronized
void acquire_resources (void) {

// Automatically acquire lock.
ACE_GUARD (ACE_Thread_Mutex, g, lock);

// Check condition in loop
while (condition expression false)

// Sleep.
cond.wait ();

// Atomically modify shared
// information.

// Destructor releases lock.
}

Note how the use of the Scoped
Locking idiom simplifies the
solution since we can’t forget to
release the lock!
// synchronized
void release_resources (void) {

// Automatically acquire lock.
ACE_GUARD (ACE_Thread_Mutex, g, lock);

// Atomically modify shared
// information...

cond.signal ();
// Could use cond.broadcast() here.

// guard automatically
// releases lock.

}

Vanderbilt University 164

Advanced ACE Tutorial Douglas C. Schmidt

ACE Condition Variable Interface
class ACE_Condition_Thread_Mutex
public:

// Initialize the CV.
ACE_Condition_Thread_Mutex

(const ACE_Thread_Mutex &);
// Implicitly destroy the CV.

˜ACE_Condition_Thread_Mutex (void);
// Block on condition, or until
// time passes. If time == 0 block.

int wait (ACE_Time_Value *time = 0);
// Signal one waiting thread.

int signal (void);
// Signal *all* waiting threads.

int broadcast (void) const;
private:

cond_t cond_; // Solaris CV.
const ACE_Thread_Mutex &mutex_;

};

The ACE_Condition_
Thread_Mutex class is
a wrapper for the native
OS condition variable
abstraction

� e.g., cond_t on
SunOS 5.x,
pthread_cond_t
for POSIX, and a
custom
implementation on
Windows and
VxWorks

Vanderbilt University 165

Advanced ACE Tutorial Douglas C. Schmidt

Overview of ACE_Message_Queue and
ACE_Message_Block

Message
Block

Message
Queue

head_
tail_

SYNCH
STRATEGY

Message
Block

next()
prev()
cont()Message

Block
next()
prev()
cont() Message

Block
next()
prev()
cont()

Data_Block

Data_Block

Data_Block

Data_Block

next()
prev()
cont()

� An ACE_Message_Queue is a list of
ACE_Message_Blocks

– Efficiently handles arbitrarily-large
message payloads

� An ACE_Message_Block is a
Composite

– Similar to BSD mbufs or SVR4
STREAMS m_blks

� Design parameterizes
synchronization and allocation
aspects

Vanderbilt University 166

Advanced ACE Tutorial Do

The ACE_Message_Block Class

base_ : char *
refcnt_ : int

ACE_Data_Block

ACE_Message_Block

+ init (size : size_t) : int
+ msg_type (type : ACE_Message_Type)
+ msg_type () : ACE_Message_Type
+ msg_priority (prio : u_long)
+ msg_priority () : u_long
+ clone () : ACE_Message_Block *
+ duplicate () : ACE_Message_Block *
+ release () : ACE_Message_Block *
+ set_flags (flags : u_long) : u_long
+ clr_flags (flags : u_long) : u_long
+ copy (buf : const char *,n : size_t) : int
+ rd_ptr (n : size_t)
+ rd_ptr () : char *
+ wr_ptr (n : size_t)
+ wr_ptr () : char *
+ length () : size_t
+ total_length () : size_t
+ size () : size_t

rd_ptr_ : size_t
wr_ptr_ : size_t
cont_ : ACE_Message_Block *
next_ : ACE_Message_Block *
prev_ : ACE_Message_Block *
data_block_ : ACE_Data_Block *

* 1

Class characteristics

� Hide messaging implementations from clients

ACE_Message
_Block

cont()
data_block()

wr_ptr()
rd_ptr()

PAYLOAD

ACE_Data
_Block

ACE_Message
_Block

cont()
data_block()

wr_ptr()
rd_ptr()

ACE_Data_Block

ACE_Message
_Block

cont()
data_block()
rd_ptr()
wr_ptr()

reference_count() = 2

((11)) SSIIMMPPLLEE MMEESSSSAAGGEE SSTTRRUUCCTTUURREE ((22)) CCOOMMPPOOSSIITTEE MMEESSSSAAGGEE SSTTRRUUCCTTUURREE

Vanderbilt University

Advanced ACE Tutorial Do

The ACE_Message_Queue Class

+ ACE_Message_Queue (high_water_mark : size_t = DEFAULT_HWM,
 low_water_mark : size_t = DEFAULT_LWM,
 notify : ACE_Notification_Strategy * = 0)
+ open (high_water_mark : size_t = DEFAULT_HWM,
 low_water_mark : size_t = DEFAULT_LWM,
 notify : ACE_Notification_Strategy * = 0) : int
+ flush () : int
+ notification_strategy (s : ACE_Notification_Strategy *) : void
+ is_empty () : int
+ is_full () : int
+ enqueue_tail (item : ACE_Message_Block *,
 timeout : ACE_Time_Value * = 0) : int
+ enqueue_head (item : ACE_Message_Block *,
 timeout : ACE_Time_Value * = 0) : int
+ enqueue_prio (item : ACE_Message_Block *,
 timeout : ACE_Time_Value * = 0) : int
+ dequeue_head (item : ACE_Message_Block *&,
 timeout : ACE_Time_Value * = 0) : int
+ dequeue_tail (item : ACE_Message_Block *&,
 timeout : ACE_Time_Value * = 0) : int
+ high_water_mark (new_hwm : size_t) : void
+ high_water_mark (void) : size_t
+ low_water_mark (new_lwm : size_t) : void
+ low_water_mark (void) : size_t
+ close () : int
+ deactivate () : int
+ activate () : int
+ pulse () : int
+ state () : int

head_ : ACE_Message_Block *
tail_ : ACE_Message_Block *
high_water_mark_ : size_t
low_water_mark_ : size_t

ACE_Message_Queue
SYNCH_STRATEGY

Class characteristics

� Note how the synchronization aspect can be
strategized!

Vanderbilt University

Advanced ACE Tutorial Do

The ACE_Message_Queue Public
Interface

template <class SYNCH_STRAT = ACE_MT_SYNCH>
// Synchronization aspect

class ACE_Message_Queue
{
public:

// Default high and low water marks.
enum {

DEFAULT_LWM = 0,
DEFAULT_HWM = 4096

};

// Initialize a Message_Queue.
Message_Queue (size_t hwm = DEFAULT_HWM,

size_t lwm = DEFAULT_LWM);
// Check if full or empty (hold locks)

int is_empty (void) const;
int is_full (void) const;

// Enqueue and dequeue Message_Block *’s.
int enqueue_prio (ACE_Message_Block *, ACE_Time_Value *);
int enqueue_tail (ACE_Message_Block *, ACE_Time_Value *);
int dequeue_head (ACE_Message_Block *&, ACE_Time_Value *);
int dequeue_tail (ACE_Message_Block *&, ACE_Time_Value *);

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Parameterizing
Synchronization Strategies

� Q: What is ACE_MT_SYNCHand
how does it work?

� A: ACE_MT_SYNCHprovides a
thread-safe synchronization strategy
for a ACE_Svc_Handler

– e.g., it ensures that an
ACE_Svc_Handler ’s
ACE_Message_Queue is
thread-safe

– Any ACE_Task that accesses
shared state can use the
ACE_MT_SYNCHtraits

Note the use of traits:
struct ACE_MT_SYNCH {

typedef ACE_Thread_Mutex
MUTEX;

typedef
ACE_Condition_Thread_Mutex
COND;

};

struct ACE_NULL_SYNCH {
typedef ACE_Null_Mutex

MUTEX;
typedef

ACE_Null_Condition COND;
};

Vanderbilt University 170

Advanced ACE Tutorial Do

ACE_Message_Queue Class Private
Interface

private:
// Check boundary conditions & don’t hold locks.

int is_empty_i (void) const;
int is_full_i (void) const;

// Routines that actually do the enqueueing
// and dequeueing and don’t hold locks.

int enqueue_prio_i (ACE_Message_Block *);
int enqueue_tail_i (ACE_Message_Block *);
int dequeue_head_i (ACE_Message_Block *&);
int dequeue_tail_i (ACE_Message_Block *&);

// ...
// Parameterized types for synchronization
// primitives that control concurrent access.
// Note use of C++ traits

typename SYNCH_STRAT::MUTEX lock_;
typename SYNCH_STRAT::COND not_empty_cond_;
typename SYNCH_STRAT::COND not_full_cond_;

size_t high_water_mark_;
size_t low_water_mark_;
size_t cur_bytes_;
size_t cur_count_;

};

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Tips for Intra-class Locking

� Q: How should locking be performed in an OO class?

� A: Apply the Thread-Safe Interface pattern:

– “Interface functions should lock and do no work – implementation
functions should do the work and not lock ”

� This pattern helps to avoid intra-class method deadlock
– This is actually a variant on a common OO pattern that “public

functions should check, private functions should trust”

� Naturally, there are exceptions to this rule...
– This pattern avoids the following surprises

� Unnecessary overhead from recursive mutexes

� Deadlock if recursive mutexes aren’t used

� www.cs.wustl.edu/˜schmidt/POSA/

Vanderbilt University 172

Advanced ACE Tutorial Do

ACE_Message_Queue Class
Implementation

template <class SYNCH_STRAT>
ACE_Message_Queue<SYNCH_STRAT>::ACE_Message_Queue

(size_t hwm, size_t lwm)
: not_empty_cond_ (lock_), not_full_cond_ (lock_),

... {}

template <class SYNCH_STRAT> int
ACE_Message_Queue<SYNCH_STRAT>::is_empty_i (void) const
{ return cur_bytes_ == 0 && cur_count_ == 0; }

template <class SYNCH_STRAT> int
ACE_Message_Queue<SYNCH_STRAT>::is_full_i (void) const
{ return cur_bytes_ > high_water_mark_; }

template <class SYNCH_STRAT> int
ACE_Message_Queue<SYNCH_STRAT>::is_empty (void) const
{

ACE_GUARD_RETURN (SYNCH_STRAT::MUTEX, g, lock_, -1);
return is_empty_i ();

}

template <class SYNCH_STRAT> int
ACE_Message_Queue<SYNCH_STRAT>::is_full (void) const
{

ACE_GUARD_RETURN (SYNCH_STRAT::MUTEX, g, lock_, -1);
return is_full_i ();

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

ACE_Message_Queue Operations

template <class SYNCH_STRAT> int
ACE_Message_Queue<SYNCH_STRAT>::
enqueue_tail (ACE_Message_Block *item,

ACE_Time_Value *tv) {
ACE_GUARD_RETURN (SYNCH_STRAT::MUTEX,

guard, lock_, -1);
// Wait while the queue is full.
while (is_full_i ()) {

// Release the <lock_> and wait
// for timeout, signal, or space
// to become available in the list.
if (not_full_cond_.wait (tv) == -1)

return -1;
}
// Actually enqueue the message at
// the end of the list.
enqueue_tail_i (item);

// Tell blocked threads that
// list has a new item!
not_empty_cond_.signal ();

}

template <class SYNCH_STRAT> int
ACE_Message_Queue<SYNCH_STRAT>::
dequeue_head (ACE_Message_Block *&item,

ACE_Time_Value *tv) {
ACE_GUARD_RETURN (SYNCH_STRAT::MUTEX,

guard, lock_, -1);
// Wait while the queue is empty.
while (is_empty_i ()) {

// Release lock_ and wait for timeout,
// signal, or a new message being
// placed in the list.
if (not_empty_cond_.wait (tv) == -1)

return -1;
}
// Actually dequeue the first message.
dequeue_head_i (item);

// Tell blocked threads that list
// is no longer full.
if (cur_bytes_ <= low_water_mark_)

not_full_cond_.signal ();
}

Vanderbilt University 174

Advanced ACE Tutorial Douglas C. Schmidt

Overcoming Algorithmic Decomposition Limitations

� Previous slides illustrate tactical techniques and patterns that:

– Reduce accidental complexity e.g.,

� Automate synchronization acquisition and release (Scoped
Locking idiom)

� Improve synchronization mechanisms (Adapter, Wrapper
Facade, Monitor Object, Thread-Safe Interface, Strategized
Locking patterns)

– Eliminate race conditions

� Next, we describe strategic patterns, frameworks, and components
to:

– Increase reuse and extensibility e.g.,

� Decoupling service, IPC, and demultiplexing
– Improve the flexibility of concurrency control

Vanderbilt University 175

Advanced ACE Tutorial Douglas C. Schmidt

Selecting the Server’s Concurrency Architecture

� Problem

– A very strategic design decision for high-performance Web
servers is selecting an efficient concurrency architecture

� Forces

– No single concurrency architecture is optimal
– Key factors include OS/hardware platform and workload

� Solution

– Understand key alternative concurrency patterns

Vanderbilt University 176

Advanced ACE Tutorial Douglas C. Schmidt

Concurrency Patterns in the Web Server

� The following example illustrates the patterns and framework
components in an OO implementation of a concurrent Web Server

� There are various architectural patterns for structuring concurrency
in a Web Server

– Reactive
– Thread-per-request
– Thread-per-connection
– Synchronous Thread Pool

� Leader/Followers Thread Pool

� Half-Sync/Half-Async Thread Pool
– Asynchronous Thread Pool

Vanderbilt University 177

Advanced ACE Tutorial Do

Reactive Web Server

SERVER

CLIENT
CLIENT CLIENT

6: PROCESS HTTP REQUEST

1: CONNECT

2: HANDLE INPUT
3: CREATE HANDLER
4: ACCEPT CONNECTION
5: ACTIVATE HANDLER

 HTTP
Handler

 HTTP
Handler Reactor

 HTTP
Acceptor

Vanderbilt University

Advanced ACE Tutorial Do

Thread-per-Request Web Server

SERVER

CLIENT
CLIENT CLIENT

6: PROCESS HTTP REQUEST

1: CONNECT

2: HANDLE INPUT
3: CREATE HANDLER
4: ACCEPT CONNECTION
5: SPAWN THREAD

HTTP
Handler

HTTP
Handler

HTTP
Handler

Reactor

 HTTP
Acceptor

Vanderbilt University

Advanced ACE Tutorial Do

Thread-per-Connection Web Server

SERVER
CLIENT

CLIENT CLIENT

 HTTP
Acceptor

Reactor

2: CREATE, ACCEPT,
 AND ACTIVATE
 HTTP_HANDLER

1: HTTP
 REQUEST

3: SPAWN THREAD
 PER CONNECTION

4: PROCESS HTTP REQUEST

 HTTP
Handler

 HTTP
Handler

 HTTP
Handler

Vanderbilt University

Advanced ACE Tutorial Do

Leader/Followers Synchronous Thread
Pool Web Server

4: PROCESS HTTP REQUEST

SERVER

CLIENT

CLIENT CLIENT

2: ACCEPT CONNECTION
3: MORPH INTO HANDLER

1: HTTP
 REQUEST

Event
DispatcherHTTP

Handler

HTTP
Handler

HTTP
Handler

HTTP
Acceptor HTTP

Acceptor

Vanderbilt University

Advanced ACE Tutorial Do

Half-Sync/Half-Async Synchronous
Thread Pool Web Server

SERVER

CLIENT

CLIENT CLIENT

4: DEQUEUE &
PROCESS
REQUEST

Message
Queue

1: HTTP
 REQUEST

5: PROCESS HTTP REQUEST

 Reactor

2: HANDLE INPUT
3: ENQUEUE REQUEST

 HTTP
Handler

 HTTP
Acceptor

 HTTP
Handler HTTP

Handler

Active
Object

Active
Object

Active
Object

Active
Object

Vanderbilt University

Advanced ACE Tutorial Do

Asynchronous Thread Pool Web Server

7: PROCESS HTTP REQUEST

SERVER

CLIENT

CLIENT CLIENT

6: DEQUEUE COMPLETION
& PROCESS

REQUEST

I/O
Completion

Port

3: HTTP
 REQUEST

1: INITIATE ASYNC ACCEPT
2: RUN EVENT LOOP
4: ACCEPT COMPLETES
5: QUEUE COMPLETION

Async
Read

Async
Read Async

Accept
Async
Accept

Proactor

HTTP
Handler

HTTP
Handler

HTTP
Handler

HTTP
Handler

Vanderbilt University

Advanced ACE Tutorial Do

Web Server Software Architecture

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

HTTP
Acceptor

Sock
Acceptor

Event
Dispatcher

� Event Dispatcher

– Encapsulates Web server concurrency and
dispatching strategies

� HTTP Handlers

– Parses HTTP headers and processes
requests

� HTTP Acceptor

– Accepts connections and creates HTTP
Handlers

Vanderbilt University

Advanced ACE Tutorial Do

Patterns in the Web
Server Implementation

Acceptor

Connector

Thread
Pool

Thread-per
Request

Thread-per
Connection

Half-Sync/
Half-Async

Strategy AdapterWrapper
Facade SingletonAbstract

Factory

TACTICAL PATTERNS
STRATEGIC PATTERNS

Double
Checked
Locking

Component
Configurator

Reactor/
Proactor

Asynchronous
Completion

Token

Active
Object

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Patterns in the Web Client/Server (cont’d)

� The Web Client/Server uses same patterns as distributed logger

– i.e., Reactor, Component Configurator, Active Object, and
Acceptor

� It also contains patterns with the following intents:

– Connector ! “Decouple the active connection and initialization of
a peer service in a distributed system from the processing
performed once the peer service is connected and initialized”

– Double-Checked Locking Optimization ! “Allows atomic
initialization, regardless of initialization order, and eliminates
subsequent locking overhead”

– Half-Sync/Half-Async ! “Decouples synchronous I/O from
asynchronous I/O in a system to simplify concurrent programming
effort without degrading execution efficiency”

Vanderbilt University 186

Advanced ACE Tutorial Do

Architecture of Our Web Server

svc_run

REQUEST PROCESSING LAYER

 Options
s

 HTTP
Handler

 HTTP
Handler

 HTTP
Handler

 HTTP
Acceptor Reactor

 HTTP
Processor

 Msg
Queue

s

svc_runsvc_run
svc_run

 QUEUEING
 LAYER

 I/O DEMUXING
 LAYER

www.cs.wustl.edu/˜schmidt/PDF/HPL.pdf

Vanderbilt University

Advanced ACE Tutorial Do

An Integrated Reactive/Active
Web Server

 : Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

OS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()

svc_run

4: getq(msg)
5:svc(msg)

2: recv_request(msg)
3: putq(msg)

 HTTP
Processor

: Handle
Table

svc_run

svc_run

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Acceptor

We’re focusing on the Reactive layer here

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

HTTP_Handler Public Interface
template <class ACCEPTOR>
class HTTP_Handler : public

ACE_Svc_Handler<ACCEPTOR::PEER_STREAM,
ACE_NULL_SYNCH> {

public:
// Entry point into <HTTP_Handler>,
// called by <HTTP_Acceptor>.

virtual int open (void *)
{

// Register with <ACE_Reactor>
// to handle input.
reactor ()->register_handler

(this, ACE_Event_Handler::READ_MASK);
// Register timeout in case client
// doesn’t send any HTTP requests.
reactor ()->schedule_timer

(this, 0, ACE_Time_Value (CLIENT_TIMEOUT));
}

The HTTP_Handler is
the Proxy for
communicating with
clients (e.g., Web
browsers like Netscape
or i.e.,)

� It implements the
asynchronous
portion of Half-
Sync/Half-Async
pattern

Vanderbilt University 189

Advanced ACE Tutorial Douglas C. Schmidt

HTTP_Handler Protected Interface
protected:

// Reactor dispatches this
// method when clients timeout.
virtual int handle_timeout

(const ACE_Time_Value &, const void *)
{

// Remove from the Reactor.
reactor ()->remove_handler

(this,
ACE_Event_Handler::READ_MASK);

}
// Reactor dispatches this method
// when HTTP requests arrive.

virtual int handle_input (ACE_HANDLE);
// Receive/frame client HTTP
// requests (e.g., GET).

int recv_request (ACE_Message_Block *&);
};

These methods are
invoked by callbacks
from ACE_Reactor

 Reactor

REGISTERED

OBJECTS

1: handle_timeout()

2: remove_handler(this)

 : Reactor: Timer
Queue

 Event
Handler

 HTTP
Handler

Vanderbilt University 190

Advanced ACE Tutorial Douglas C. Schmidt

Integrating Multi-threading

� Problem

– Multi-threaded Web servers are needed since Reactive Web
servers are often inefficient and non-robust

� Forces

– Multi-threading can be very hard to program
– No single multi-threading model is always optimal

� Solution

– Use the Active Object pattern to allow multiple concurrent server
operations in an OO-manner

Vanderbilt University 191

Advanced ACE Tutorial Do

Using the Active Object Pattern and
ACE Task Framework in the Web Server

 : Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

OS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()

svc_run

4: getq(msg)
5:svc(msg)

2: recv_request(msg)
3: putq(msg)

 HTTP
Processor

: Handle
Table

svc_run

svc_run

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Acceptor

We’re focusing on the Active Object layer here

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

The HTTP_Processor Class

class HTTP_Processor
: public ACE_Task<ACE_MT_SYNCH> {

private: HTTP_Processor (void);
public:

// Singleton access point.
static HTTP_Processor *instance (void);

// Pass a request to the thread pool.
virtual int put (ACE_Message_Block *,

ACE_Time_Value *);
// Entry point into a pool thread.

virtual int svc (void)
{

ACE_Message_Block *mb = 0;

// Wait for messages to arrive.
for (;;) {

getq (mb); // Inherited from <ACE_Task>
// Identify and perform HTTP
// Server request processing...

� Processes HTTP
requests using the
“Thread-Pool”
concurrency model

� This method
implements the
synchronous task
portion of the Half-
Sync/Half-Async
pattern

Vanderbilt University 193

Advanced ACE Tutorial Do

Using the Singleton Pattern

// Singleton access point.

HTTP_Processor *
HTTP_Processor::instance (void)
{

// Beware of race conditions!
if (instance_ == 0)

// Create the Singleton "on-demand."
instance_ = new HTTP_Processor;

return instance_;
}

// Constructor creates the thread pool.

HTTP_Processor::HTTP_Processor (void)
{

// Inherited from class Task.
activate (THR_BOUND,

Options::instance ()->threads ());
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Subtle Concurrency Woes with the Singleton Pattern

� Problem

– The canonical Singleton implementation has subtle “bugs” in
multi-threaded applications

� Forces

– Too much locking makes Singleton too slow...
– Too little locking makes Singleton unsafe...

� Solution

– Use the Double-Checked Locking optimization pattern to minimize
locking and ensure atomic initialization

Vanderbilt University 195

Advanced ACE Tutorial Douglas C. Schmidt

The Double-Checked Locking Optimization Pattern

HTTP
Processor

static instance()
static instance_

if (instance_ == NULL) {
 mutex_.acquire ();
 if (instance_ == NULL)
 instance_ = new HTTP_Processor;
 mutex_.release ();
}
return instance_;

Mutex

www.cs.wustl.edu/
˜schmidt/POSA/

Intent

� Allows atomic initialization,
regardless of initialization order,
and eliminates subsequent
locking overhead

Forces Resolved :

� Ensures atomic object
initialization

� Minimizes locking overhead

Caveat!

� This pattern assumes atomic
memory access

Vanderbilt University 196

Advanced ACE Tutorial Douglas C. Schmidt

The ACE Singleton Template
template <class TYPE, class LOCK>
class ACE_Singleton : public ACE_Cleanup {
public:

static TYPE *instance (void) {
// Memory barrier could go here...
if (s_ == 0) {

ACE_GUARD_RETURN (LOCK, g,
ACE_Object_Manager
::get_singleton_lock (), -1);

if (s_ == 0)
s_ = new ACE_Singleton<TYPE>;
// Memory barrier could go here.

ACE_Object_Manager::at_exit (s_);
}
return s_->instance_;

}
virtual void cleanup (void *param = 0);

protected:
ACE_Singleton (void);
TYPE instance_;
static ACE_Singleton<TYPE, LOCK> *s_;

};

Features

� Turns any class into
a singleton

� Automates
Double-Checked
Locking Optimization

� Ensures automatic
cleanup when
process exits

www.cs.wustl.edu/
˜schmidt/PDF/
ObjMan.pdf

Vanderbilt University 197

Advanced ACE Tutorial Douglas C. Schmidt

Integrating Reactive and Multi-threaded Layers

� Problem

– Justifying the hybrid design of our Web server can be tricky

� Forces

– Engineers are never satisfied with the status quo ;-)
– Substantial amount of time is spent re-discovering the intent of

complex concurrent software design

� Solution

– Use the Half-Sync/Half-Async pattern to explain and justify our
Web server concurrency architecture

Vanderbilt University 198

Advanced ACE Tutorial Douglas C. Schmidt

The Half-Sync/Half-Async Pattern
Q

U
E

U
E

IN
G

L
A

Y
E

R

A
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

 L
A

Y
E

R

S
Y

N
C

H
R

O
N

O
U

S

 T
A

S
K

 L
A

Y
E

R

SYNC

TASK 2

1, 4: read(data)

3: enqueue(data)

2: interrupt

MESSAGE QUEUES

SYNC

TASK 1
SYNC

TASK 3

ASYNC

TASK

EXTERNAL

EVENT SOURCES

Intent

� Decouples synchronous I/O
from asynchronous I/O in a
system to simplify concurrent
programming effort without
degrading execution efficiency

Forces Resolved :

� Simplify programming

� Ensure efficient I/O

www.cs.wustl.edu/
˜schmidt/POSA/

Vanderbilt University 199

Advanced ACE Tutorial Do

Using the Half-Sync/Half-Async
Pattern in the Web Server

A
S

Y
N

C
 T

A
S

K

LE
V

E
L

S
Y

N
C

 T
A

S
K

LE
V

E
L

Q
U

E
U

E
IN

G

LE
V

E
L

 : Reactor

1: handle_input()
2: recv_request(msg)
3: putq(msg)

: Handle
Table

 Event
Handler

 HTTP
Acceptor

svc_run

4: getq(msg)
5:svc(msg)

 HTTP
Processor

svc_run

svc_run

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Handler

 Event
Handler

 HTTP
Handler

Vanderbilt University

Advanced ACE Tutorial Do

Joining Async and Sync Tasks
in the Web Server

// The following methods form the boundary
// between the Async and Sync layers.

template <class PA> int
HTTP_Handler<PA>::handle_input (ACE_HANDLE h)
{

ACE_Message_Block *mb = 0;

// Try to receive and frame message.
if (recv_request (mb) == HTTP_REQUEST_COMPLETE) {

reactor ()->remove_handler
(this, ACE_Event_Handler::READ_MASK);

reactor ()->cancel_timer (this);
// Insert message into the Queue.
HTTP_Processor<PA>::instance ()->put (mb);

}
}

int HTTP_Processor::put (ACE_Message_Block *msg,
ACE_Time_Value *timeout)

{
// Insert the message on the Message_Queue
// (inherited from class Task).
putq (msg, timeout);

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Optimizing Our Web Server for
Asynchronous Operating Systems

� Problem

– Synchronous multi-threaded solutions are not always the most
efficient

� Forces

– Purely asynchronous I/O is quite powerful on some OS platforms

� e.g., Windows NT 4.x or UNIX with aio_()* calls
– Good designs should be adaptable to new contexts

� Solution

– Use the Proactor pattern to maximize performance on
Asynchronous OS platforms

Vanderbilt University 202

Advanced ACE Tutorial Douglas C. Schmidt

The Proactor Pattern

Intent

� Demultiplexes and
dispatches service
requests that are
triggered by the
completion of
asynchronous
operations

Resolves same forces
as Reactor

HTTP
Acceptor

Proactor

handle_events()

handle_accept()
handle_read_file()
handle_write_file()
handle_timeout()
get_handle()

Timer_Queue
schedule_timer(h)
cancel_timer(h)

1

overlapped_result =
 GetQueuedCompleteStatus();
overlapped_result->complete()

1

APPLICATION-
DEPENDENT

APPLICATION-
INDEPENDENT

n

A

Async
Op

open()
cancel()

Completion
Handler

HTTP
Handler

Async
Write

Async
Accept

Handles

www.cs.wustl.edu/˜schmidt/POSA/

Vanderbilt University 203

Advanced ACE Tutorial Do

Structure of the ACE Proactor
Framework

ACE_Asynch_Read_Stream ACE_Asynch_Write_Stream

ACE_Proactor

ACE_Handler

ACE_Service_Handler

ACE_Asynch_Acceptor

ACE_Asynch_Result

ACE_Timer_Queue

ACE_Asynch_Connector

Framework characteristics

� Similar to the ACE Reactor framework, except
behavior is “inverse”

� Portable to Windows and various UNIX
platforms that support aio_*() family of
methods

Vanderbilt University

Advanced ACE Tutorial Do

Using the ACE Proactor Framework for
the Web Server

Connection Setup Phase

4: connect

Web Server

Web
Browser

Acceptor

Completion
Dispatcher

HTTP
Handler

Operating
System

3: handle
events

5: accept
complete

1: accept
connections

2: accept
(Acceptor,
Dispatcher)

6:
accept

complete

7: create

8: read (Handler,
Dispatcher)

Data Transfer Phase
Web Server

Web
Browser

File
System

Completion
Dispatcher

HTTP
Handler

Operating
System

1: GET
/etc/passwd

2: read complete

3: read
complete

4: parse request

6: write (File, Conn.,
Handler, Dispatcher)

7: write
complete

8: write
complete5: read (File)

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Structuring Service Initialization

� Problem

– The communication protocol used between clients and the Web
server is often orthogonal to the initialization protocol

� Forces

– Low-level connection establishment APIs are tedious, error-prone,
and non-portable

– Separating initialization from use can increase software reuse
substantially

� Solution

– Use the Acceptor and Connector patterns to decouple passive
service initialization from run-time protocol

Vanderbilt University 206

Advanced ACE Tutorial Do

Using the ACE_Acceptor
in the Web Server

PASSIVE

LISTENER

ACTIVE

CONNECTIONS

1: handle_input()
2: sh = make_svc_handler()
3: accept_svc_handler(sh)
4: activate_svc_handler(sh)

: Reactor

: Acceptor

: HTTP
Acceptor

: Svc
Handler

: HTTP
Handler

: Svc
Handler

: HTTP
Handler

: Svc
Handler

: HTTP
Handler

: Svc
Handler

: HTTP
Handler

The HTTP_Acceptor is a factory that creates,
connects, and activates an HTTP_Handler

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

HTTP_Acceptor Class Interface

template <class ACCEPTOR>
class HTTP_Acceptor :

public ACE_Acceptor<HTTP_Handler<
ACCEPTOR::PEER_STREAM>,
// Note use of a "trait".

ACCEPTOR>
{
public:

// Called when <HTTP_Acceptor> is
// dynamically linked.

virtual int init (int argc, char *argv[]);
// Called when <HTTP_Acceptor> is
// dynamically unlinked.

virtual int fini (void);
// ...

};

The HTTP_Acceptor
class implements the
Acceptor role

� i.e., it accepts
connections/initializes
HTTP_Handlers

Vanderbilt University 208

Advanced ACE Tutorial Do

HTTP_Acceptor Class Implementation

// Initialize service when dynamically linked.

template <class PA> int
HTTP_Acceptor<PA>::init (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

// Initialize the communication endpoint and
// register to accept connections.
peer_acceptor ().open (typename

PA::PEER_ADDR (Options::instance ()->port ()),
Reactor::instance ());

}

// Terminate service when dynamically unlinked.

template <class PA> int
HTTP_Acceptor<PA>::fini (void)
{

// Shutdown threads in the pool.
HTTP_Processor<PA>::instance ()->

msg_queue ()->deactivate ();

// Wait for all threads to exit.
HTTP_Processor<PA>::instance ()->

thr_mgr ()->wait ();
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Using the ACE Service Configurator
Framework in the Web Server

SERVICE

CONFIGURATOR

RUNTIME

 Service
Repository

Service
Object

 TPR
Web

Server

DLLS

Service
Object

 Reactive
Web

Server

svc.conf
FILE

Service
Object

TP Web
Server

Reactor
 Service
Config

dynamic Web_Server Service_Object *
 web_server:make_Web_Server() "-port 80"

Vanderbilt University 210

Advanced ACE Tutorial Douglas C. Schmidt

Component Configurator Implementation in C++

The concurrent Web Server is
configured and initialized via a
configuration script

% cat ./svc.conf
dynamic Web_Server

Service_Object *
web_server:_make_Web_Server()
"-p 80 -t $THREADS"

.dll or .so suffix added to
"web_server" automatically

Factory function that dynamically
allocates a Half-Sync/Half-Async
Web Server object

extern "C" ACE_Service_Object *
make_Web_Server (void);

ACE_Service_Object *
make_Web_Server (void)
{

return new
HTTP_Acceptor<ACE_SOCK_Acceptor>;

// ACE dynamically unlinks and
// deallocates this object.

}

Vanderbilt University 211

Advanced ACE Tutorial Douglas C. Schmidt

Main Program for the Web Server

int main (int argc, char *argv[])
{

// Initialize the daemon and
// dynamically configure services.
ACE_Service_Config::open (argc,

argv);
// Loop forever, running services
// and handling reconfigurations.
ACE_Reactor::instance ()->

run_reactor_event_loop ();
/* NOTREACHED */

}

� The main()
function is totally
generic!

� Dynamically
configure & execute
Web Server

� Make any
application
“Web-enabled”

Vanderbilt University 212

Advanced ACE Tutorial Douglas C. Schmidt

Optimizing the JAWS Framework

Protocol

Filter

Handler

Protocol

Framework
Strategy
Concurrency

Protocol Pipeline
Framework

Framework
I/O Strategy

Filesystem
Cached Virtual

Expander
Tilde ~

/home/...
Event Dispatcher

A
cceptor

A
ct

iv
e

O
bj

ec
t

Asynchronous Completion Token

Reactor/Proactor Singleton

Adapter

Streams

Strategy

Service Configurator

State

St
ra

te
gy

www.cs.wustl.edu/˜jxh/research/

� Use lightweight
concurrency

� Minimize locking

� Apply file caching
and memory
mapping

� Use “gather-write”
mechanisms

� Minimize logging

� Pre-compute HTTP
responses

� Avoid excessive
time() calls

� Optimize the
transport interface

Vanderbilt University 213

Advanced ACE Tutorial Douglas C. Schmidt

Application-level Telecom Gateway Example

WIDE AREA
NETWORK

SATELLITES
TRACKING
STATION
PEERS

STATUS INFO

COMMANDS BULK DATA

TRANSFER

LOCAL AREA NETWORK

GROUND
STATION
PEERS

GATEWAY
� This example explores the

patterns and reusable
framework components
for an application-level
Gateway

� The Gateway routes
messages between Peers

� Gateway and Peers are
connected via TCP/IP

Vanderbilt University 214

Advanced ACE Tutorial Do

OO Software Architecture
of the Gateway

CONNECTION
REQUEST

CONNECTION
REQUEST

OUTGOING
MESSAGES

INCOMING
MESSAGES GATEWAY

 Routing
Table

 Acceptor Connector

 Supplier
Handler

Consumer
Handler

 Supplier
Handler

Reactor

Consumer
Handler

www.cs.wustl.edu/˜schmidt/PDF/
TAPOS-00.pdf

All components in this architecture are based on
patterns from ACE

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Gateway Behavior

� Components in the Gateway behave as follows:

1. Gateway parses configuration files that specify which Peers to
connect with and which routes to use

2. Proxy_Handler_Connector connects to Peers, then creates
and activates Proxy_Handler subclasses
(Supplier_Handler or Consumer_Handler)

3. Once connected, Peers send messages to the Gateway
– Messages are handled by an Supplier_Handler
– Supplier_Handlers work as follows:

� Receive and validate messages

� Consult a Routing_Table

� Forward messages to the appropriate Peer(s) via
Consumer_Handler s

Vanderbilt University 216

Advanced ACE Tutorial Do

Patterns in the Gateway

Acceptor-
Connector

Component
Configurator

Non-blocking
Buffered I/O

Half-Sync/
Half-Async

TACTICAL
PATTERNS

STRATEGIC
PATTERNS Reactor

Active Object

Template
MethodIterator Factory

Method Proxy Wrapper
Facade

The Gateway components are based upon a
common pattern language

Vanderbilt University

Advanced ACE Tutorial Do

Class Diagram for Single-Threaded
Gateway

Proxy
Handler

Connector

Proxy_Handler
SOCK_Connector SOCK_Stream

Null_Synch

Svc
Handler

Connector

SVC_HANDLER
PEER_CONNECTOR

PEER_STREAM
SYNCH

C
O

N
N

E
C

T
IO

N
-

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

A
C

E

F
R

A
M

E
W

O
R

K

C
O

M
P

O
N

E
N

T
S

Stream

Service
Configurator

Concurrency
global

Connection

Reactor

1

<<activates>>

Supplier/Consumer
Handlern

IPC_SAP

PEER
CONNECTOR

PEER
STREAM

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

OO Gateway Architecture

� Application-specific components

– Proxy_Handler s route messages among Peers

� Connection-oriented application components

– ACE_Svc_Handler

� Performs I/O-related tasks with connected clients
– ACE_Connector factory

� Establishes new connections with clients

� Dynamically creates an ACE_Svc_Handler object for each
client and “activates” it

� Application-independent ACE framework components

– Perform IPC, explicit dynamic linking, event demultiplexing, event
handler dispatching, multi-threading, etc.

Vanderbilt University 219

Advanced ACE Tutorial Do

Using the ACE Reactor
Framework for the Gateway

CONCRETE EVENT

HANDLERS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

4: send(msg)

2: recv(msg)
3: route(msg)

OS EVENT DEMULTIPLEXING INTERFACE

Timer
Queue : Reactor

1: handle_input()

 Handle
Table

 Event
Handler

 Consumer
Handler

 Event
Handler

 Consumer
Handler

 Event
Handler

 Supplier
Handler

Benefits

� Straightforward to
program

� Concurrency control
is trivial

Liabilities

� Design is “brittle”

� Can’t leverage
multi-processors

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Addressing Active Endpoint Connection
and Initialization Challenges

� Problem

– Application communication protocols are often orthogonal to their
connection establishment and service initialization protocols

� Forces

– Low-level connection APIs are error-prone and non-portable
– Separating initialization from processing increases software reuse
– Asynchronous connections are important over long-delay paths

� Solution

– Use the Acceptor-Connector pattern to decouple connection and
initialization protocols from the Gateway routing protocol

Vanderbilt University 221

Advanced ACE Tutorial Do

The Acceptor-Connector Pattern
(Connector Role)

Svc
Handler

peer_stream_
open()

Connector
connect(sh, addr)
complete()

Svc Handler

Reactor

APPLICATION-
DEFINED

APPLICATION-
INDEPENDENT

ACTIVATES

HANDLE ASYNC

CONNECTION COMPLETION

www.cs.wustl.edu/˜schmidt/POSA/

Intent of Connector Role

� Decouple the active
connection and
initialization of a peer
service in a distributed
system from the
processing performed
once the peer service is
connected and initialized

Forces Resolved :

� Reuse connection
code

� Efficiently setup
connections with
many peers or over
long delay paths

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Structure of the Acceptor-Connector Pattern in ACE

ACE_Svc_Handler

PEER_STREAM,
SYNCH_STRATEGY

ACE_Acceptor

SVC_HANDLER,
PEER_ACCEPTOR

ACE_Connector

SVC_HANDLER,
PEER_CONNECTOR

Application
Service

«bind»

ACE_Event_Handler

ACE_Task

SYNCH_STRATEGY

Additional features of the
ACE_Connector

� Uses C++ parameterized
types to strategize IPC and
service aspects

� Uses Template Method
pattern to strategize
creation, connection
establishment, and
concurrency policies

Vanderbilt University 223

Advanced ACE Tutorial Do

Using the ACE_Connector
in the Gateway

PENDING

CONNECTIONS

ACTIVE

CONNECTIONS

 Svc
Handler

 Svc
Handler

 Svc
Handler

Hash_Map

 Connector

 Reactor

 Svc
Handler

 Svc
Handler

 Svc
Handler

� The ACE_Connector is a factory

– i.e., it connects and activates an
ACE_Svc_Handler

� There’s typically 1 ACE_Connector per-service

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Connector Class Public Interface

A reusable template factory class that establishes
connections with clients

template <class SVC_HANDLER,
// Type of service
class PEER_CONNECTOR>
// Connection factory

class ACE_Connector : public ACE_Service_Object
{
public:

// Initiate connection to Peer.
virtual int connect

(SVC_HANDLER *&svc_handler,
typename const PEER_CONNECTOR::PEER_ADDR &ra,
ACE_Synch_Options &synch_options);

// Cancel a <svc_handler> that was
// started asynchronously.

virtual int cancel (SVC_HANDLER *svc_handler);

Vanderbilt University

Advanced ACE Tutorial Do

Design Interlude: Motivation for the
ACE_Synch_Options Class

� Q: What is the ACE_Synch_Options class?

� A: This allows callers to define the
synchrony/asynchrony policies, e.g.,

class ACE_Synch_Options {
// Options flags for controlling
// synchronization.
enum { USE_REACTOR = 1, USE_TIMEOUT = 2 };

ACE_Synch_Options
(u_long options = 0,

const ACE_Time_Value &timeout
= ACE_Time_Value::zero,

const void *act = 0);
// This is the default synchronous setting.

static ACE_Synch_Options synch;
// This is the default asynchronous setting.

static ACE_Synch_Options asynch;
};

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Synch_Options and
ACE_Connector Semantics

Reactor Timeout Behavior
Yes 0,0 Return �1 with errno

EWOULDBLOCK; service handler
is closed via reactor event loop.

Yes time Return �1 with errno
EWOULDBLOCK; wait up to specified
amount of time for completion using
the reactor.

Yes NULL Return �1 with errno
EWOULDBLOCK; wait for completion
indefinitely using the reactor.

No 0,0 Close service handler directly; return

�1 with errno EWOULDBLOCK.
No time Block in connect_svc_handler()

up to specified amount of time for
completion; if still not completed,
return�1 with errno ETIME.

No NULL Block in connect_svc_handler()
indefinitely for completion.

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Connector Class Protected
Interface

protected:
// Make a new connection.
virtual SVC_HANDLER *make_svc_handler (void);
// Accept a new connection.
virtual int connect_svc_handler

(SVC_HANDLER *&sh,
typename const PEER_CONNECTOR::PEER_ADDR &addr,
ACE_Time_Value *timeout);

// Activate a service handler.
virtual int activate_svc_handler (SVC_HANDLER *);

// Demultiplexing hooks.
virtual int handle_output (ACE_HANDLE);// Success.
virtual int handle_input (ACE_HANDLE); // Failure.
virtual int handle_timeout (ACE_Time_Value &,

const void *);
// Table maps I/O handle to an ACE_Svc_Tuple *.
Hash_Map_Manager<ACE_HANDLE, ACE_Svc_Tuple *,

ACE_Null_Mutex> handler_map_;

// Factory that establishes connections actively.
PEER_CONNECTOR connector_;

};

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Connector Class Implementation

// Initiate connection using specified
// blocking semantics.
template <class SH, class PC> int
ACE_Connector<SH, PC>::connect

(SH *&sh,
const PC::PEER_ADDR &r_addr,
ACE_Synch_Options &options)

{
ACE_Time_Value *timeout = 0;
int use_reactor =

options[ACE_Synch_Options::USE_REACTOR];
if (use_reactor)

timeout = &ACE_Time_Value::zero;
else

timeout =
options[ACE_Synch_Options::USE_TIMEOUT]
? (Time_Value *) &options.timeout () : 0;

// Hook methods.
if (sh == 0)

sh = make_svc_handler ();
if (connect_svc_handler (sh, raddr,

timeout) != -1)
activate_svc_handler (sh);

}

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Connector Hook Method
Implementations

template <class SH, class PC> SH *
ACE_Connector<SH, PC>::make_svc_handler (void) {

return new SH;
}

template <class SH, class PC> int
ACE_Connector<SH, PC>::connect_svc_handler (SH &*sh,

typename const PEER_CONNECTOR::PEER_ADDR &addr,
ACE_Time_Value *timeout) {

// Peer_Connector factory initiates connection.
if (connector_.connect (sh, addr, timeout) == -1)

// If the connection hasn’t completed, then
// register with the Reactor to call us back.
if (use_reactor && errno == EWOULDBLOCK)

// Create <ACE_Svc_Tuple> for <sh> & return -1
} else

// Activate immediately if we’re connected.
activate_svc_handler (sh);

}

template <class SH, class PC> int
ACE_Connector<SH, PC>::activate_svc_handler (SH *sh)
{ if (sh->open ((void *)this) == -1) sh->close (); }

Vanderbilt University

Advanced ACE Tutorial Do

Specializing ACE_Connector and
ACE_Svc_Handler

APPLICATION-
INDEPENDENT

APPLICATION-
SPECIFIC

Proxy
Handler

Supplier
HandlerConsumer

Handler

Svc
Handler

Message
Queue

� Producing an application that meets Gateway
requirements involves specializing ACE
components

– ACE_Connector !

ACE_Proxy_Handler_Connector
– ACE_Svc_Handler !

ACE_Proxy_Handler !

ACE_Supplier_Handler and
ACE_Consumer_Handler

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Proxy_Handler Class Public
Interface

// Determine the type of threading mechanism.
#if defined (ACE_USE_MT)
typedef ACE_MT_SYNCH SYNCH;
#else
typedef ACE_NULL_SYNCH SYNCH;
#endif /* ACE_USE_MT */

// Unique connection id that denotes Proxy_Handler.
typedef short CONN_ID;

// This is the type of the Routing_Table.
typedef ACE_Hash_Map_Manager <Peer_Addr,

Routing_Entry,
SYNCH::MUTEX>

ROUTING_TABLE;

class Proxy_Handler
: public ACE_Svc_Handler<ACE_SOCK_Stream, SYNCH> {

public:
// Initialize the handler (called by the
// <ACE_Connector> or <ACE_Acceptor>).

virtual int open (void * = 0);

// Bind addressing info to Router.
virtual int bind (const ACE_INET_Addr &, CONN_ID);

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Parameterizing Synchronization
into the ACE_Hash_Map_Manager

� Q: What’s a good technique to implement a Routing Table?

� A: Use a ACE_Hash_Map_Manager container

– ACE provides a ACE_Hash_Map_Manager container that
associates external ids with internal ids, e.g.,

� External ids (keys) ! URI

� Internal ids (values) ! pointer to memory-mapped file

� Hashing provides O(1) performance in the average-case

Vanderbilt University 233

Advanced ACE Tutorial Douglas C. Schmidt

Applying the Strategized Locking pattern
to the ACE_Hash_Map_Manager Class

template <class EXT_ID, class INT_ID,
class LOCK>

class ACE_Hash_Map_Manager { public:
bool bind (EXT_ID, INT_ID *);
bool unbind (EXT_ID);
bool find (EXT_ID ex, INT_ID &in)
{ // Exception-safe code...

ACE_READ_GUARD (LOCK, g,
lock_, false);

// lock_.read_acquire ();
if (find_i (ex, in)) return true;
else return false;
// lock_.release ();

}
private:

LOCK lock_;
bool find_i (EXT_ID, INT_ID &);
// ...

};

ACE_Hash_Map_Manager
uses the template-based
Strategized Locking pattern
to

� Enhance reuse
� Parameterize different

synchronization
strategies, e.g.:

– ACE_Null_Mutex ,
ACE_Thread_Mutex ,
ACE_RW_Mutex, etc.

Vanderbilt University 234

Advanced ACE Tutorial Do

Detailed OO Architecture
of the Gateway

CONNECTION
REQUEST

CONNECTION
REQUEST

OUTGOING
MESSAGES

INCOMING
MESSAGES GATEWAY

 Routing
Table

 Supplier
Handler

 SOCK
Stream

 Acceptor Connector

Reactor

Consumer
Handler

 SOCK
Stream

 Message
Queue

Consumer
Handler

 SOCK
Stream

 Message
Queue

 Supplier
Handler

 SOCK
Stream

Hash Map
Manager

Hash Map
Manager

SOCK
Connector

SOCK
Acceptor

Note the use of other ACE components, such as
the socket wrapper facades and the
ACE_Hash_Map_Manager

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Supplier_Handler Interface

class Supplier_Handler : public Proxy_Handler
{
public:

Supplier_Handler (void);

protected:
// Receive and process Peer messages.

virtual int handle_input (ACE_HANDLE);

// Receive a message from a Peer.
virtual int recv_peer (ACE_Message_Block *&);

// Action that routes a message from a Peer.
int route_message (ACE_Message_Block *);

// Keep track of message fragment.
ACE_Message_Block *msg_frag_;

};

Vanderbilt University

Advanced ACE Tutorial Do

ACE_Consumer_Handler Interface

class Consumer_Handler : public Proxy_Handler
{
public:

Consumer_Handler (void);

// Send a message to a Gateway
// (may be queued).

virtual int put (ACE_Message_Block *,
ACE_Time_Value * = 0);

protected:
// Perform a non-blocking put().

int nonblk_put (ACE_Message_Block *mb);

// Finish sending a message when
// flow control abates.

virtual int handle_output (ACE_HANDLE);

// Send a message to a Peer.
virtual int send_peer (ACE_Message_Block *);

};

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

ACE_Proxy_Handler_Connector Class Interface

class Proxy_Handler_Connector :
public ACE_Connector

<Proxy_Handler,
// Type of Svc Handler
ACE_SOCK_Connector>
// Connection factory

{
public:

// Initiate (or reinitiate)
// a connection on
// the Proxy_Handler.

int initiate_connection
(Proxy_Handler *);

}

� ACE_Proxy_Handler_
Connector is a concrete
factory class that:

– Establishes connections with
Peers to produce
ACE_Proxy_Handler s

– Activates
ACE_Proxy_Handler s,
which then route messages

� ACE_Proxy_Handler_
Connector also ensures
reliability by restarting failed
connections

Vanderbilt University 238

Advanced ACE Tutorial Do

ACE_Proxy_Handler_Connector
Implementation

// (re)initiate a connection to a Proxy_Handler
int
Proxy_Handler_Connector::initiate_connection

(Proxy_Handler *ph)
{

// Use asynchronous connections...
if (connect (ph,

ph->addr (),
ACE_Synch_Options::asynch) == -1) {

if (errno == EWOULDBLOCK)
// No error, we’re connecting asynchronously.
return -1;

else
// This is a real error, so reschedule
// ourselves to reconnect.
reactor ()->schedule_timer

(ph, 0, ph->timeout ());
}
else // We’re connected synchronously!

return 0;
}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

The Non-blocking Buffered I/O Pattern

Reactor1n

R
E

A
C

T
IV

E
L

A
Y

E
R Event

Handler

Routing
Table

find()

Supplier
Handler

handle_input()

1

n

R
O

U
T

IN
G

L
A

Y
E

R

Consumer
Handler

handle_output()
put()

Message
Queue

www.cs.wustl.edu/˜schmidt/PDF/

TAPOS-00.pdf

Intent

� Decouple multiple input
sources from multiple output
sources to prevent blocking

Forces Resolved :

� Keep misbehaving
connections from disrupting
the QoS for well-behaved
connections
� Different concurrency
strategies for
Supplier_Handlers and
Consumer_Handlers

Vanderbilt University 240

Advanced ACE Tutorial Do

Collaboration in Single-threaded
Gateway Routing

 Supplier
Handler

6: put (msg)

1: handle_input()
2: recv_peer(msg)

3: find()

ROUTE
ID

Consumer
Handlers

4:
 p

ut (
m

sg
)

7: send_peer(msg)
8: enqueue(msg)
9: schedule_wakeup()

10: handle_output()
11: dequeue(msg)
12: send_peer(msg)

Message
Queue

 Consumer
Handler

 Routing
Table

Message
Queue

 Consumer
Handler

5: send_peer(msg)

Note the complex cooperative scheduling logic
required to handle output flow control correctly

Vanderbilt University

Advanced ACE Tutorial Do

Supplier_Handler and
Consumer_Handler Implementations

int Supplier_Handler::handle_input (ACE_HANDLE) {
ACE_Message_Block *route_addr = 0;
int n = recv_peer (route_addr);
// Try to get the next message.
if (n <= 0) {

if (errno == EWOULDBLOCK) return 0;
else return n;

}
else

route_message (route_addr);
}

// Send a message to a Peer (queue if necessary).

int Consumer_Handler::put (ACE_Message_Block *mb,
ACE_Time_Value *) {

if (msg_queue_->is_empty ())
// Try to send the message *without* blocking!
nonblk_put (mb);

else // Messages are queued due to flow control.
msg_queue_->enqueue_tail

(mb, &ACE_Time_Value::zero);
}

Vanderbilt University

Advanced ACE Tutorial Do

Supplier_Handler Message Routing

// Route message from a Peer.
int Supplier_Handler::route_messages

(ACE_Message_Block *route_addr)
{

// Determine destination address.
CONN_ID route_id =

*(CONN_ID *) route_addr->rd_ptr ();
const ACE_Message_Block *const data =

route_addr->cont ();
Routing_Entry *re = 0;

// Determine route.
Routing_Table::instance ()->find (route_id, re);

// Initialize iterator over destination(s).
Set_Iterator<Proxy_Handler *>

si (re->destinations ());
// Multicast message.
for (Proxy_Handler *out_ph;

si.next (out_ph) != -1;
si.advance ()) {

ACE_Message_Block *newmsg = data->duplicate ();
if (out_ph->put (newmsg) == -1) // Drop message.

newmsg->release (); // Decrement ref count.
}
delete route_addr;

}

Vanderbilt University

Advanced ACE Tutorial Do

Peer_Message Schema

// Peer address is used to identify the
// source/destination of a Peer message.
class Peer_Addr {
public:

CONN_ID conn_id_; // Unique connection id.
u_char logical_id_; // Logical ID.
u_char payload_; // Payload type.

};

// Fixed sized header.
class Peer_Header { public: /* ... */ };

// Variable-sized message (sdu_ may be
// between 0 and MAX_MSG_SIZE).

class Peer_Message {
public:

// The maximum size of a message.
enum { MAX_PAYLOAD_SIZE = 1024 };
Peer_Header header_; // Fixed-sized header.
char sdu_[MAX_PAYLOAD_SIZE]; // Message payload.

};

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Tips on Handling Flow Control

� Q: What should happen if put() fails?

– e.g., if a queue becomes full?

� A: The answer depends on whether the error handling policy is
different for each router object or the same...

– Strategy pattern: give reasonable default, but allow substitution

� A related design issue deals with avoiding output blocking if a Peer
connection becomes flow controlled

Vanderbilt University 245

Advanced ACE Tutorial Do

Supplier Handler Message Reception

// Pseudo-code for recv’ing msg via non-blocking I/O

int Supplier_Handler::recv_peer
(ACE_Message_Block *&route_addr)

{
if (msg_frag_ is empty) {

msg_frag_ = new ACE_Message_Block;
receive fixed-sized header into msg_frag_
if (errors occur) cleanup
else

determine size of variable-sized msg_frag_
} else

determine how much of msg_frag_ to skip

non-blocking recv of payload into msg_frag_
if (entire message is now received) {

route_addr = new Message_Block
(sizeof (Peer_Addr), msg_frag_)

Peer_Addr addr (id (),
msg_frag_->routing_id_, 0);

route_addr->copy (&addr, sizeof (Peer_Addr));
return to caller and reset msg_frag_

}
else if (only part of message is received)

return errno = EWOULDBLOCK
else if (fatal error occurs) cleanup

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Design Interlude: Using the ACE_Reactor
to Handle Flow Control

� Q: How can a flow controlled Consumer_Handler know when to
proceed again without polling or blocking?

� A: Use the ACE_Event_Handler::handle_output()
notification scheme of the Reactor

– i.e., via the ACE_Reactor ’s methods schedule_wakeup() and
cancel_wakeup()

� This provides cooperative multi-tasking within a single thread of
control

– The ACE_Reactor calls back to the handle_output() hook
method when the Proxy_Handler is able to transmit again

Vanderbilt University 247

Advanced ACE Tutorial Douglas C. Schmidt

Performing a Non-blocking put() of a Message

int Consumer_Handler::nonblk_put
(ACE_Message_Block *mb) {
// Try sending message
// via non-blocking I/O
if (send_peer (mb) != -1

&& errno == EWOULDBLOCK) {
// Queue in *front* of the
// list to preserve order.
msg_queue_->enqueue_head

(mb, &ACE_Time_Value::zero);
// Tell Reactor to call us
// back it’s ok to send again.
reactor ()->schedule_wakeup

(this, ACE_Event_Handler::WRITE_MASK);
}

}

This method is called
in two situations:

1. When first trying
to send over a
connection

2. When flow control
abates

Vanderbilt University 248

Advanced ACE Tutorial Do

Sending a Message to a Consumer

int
Consumer_Handler::send_peer (ACE_Message_Block *mb)
{

ssize_t n;
size_t len = mb->length ();

// Try to send the message.
n = peer ().send (mb->rd_ptr (), len);

if (n <= 0)
return errno == EWOULDBLOCK ? 0 : n;

else if (n < len)
// Skip over the part we did send.
mb->rd_ptr (n);

else /* if (n == length) */ {
// Decrement reference count.
mb->release ();
errno = 0;

}
return n;

}

Vanderbilt University

Advanced ACE Tutorial Do

Finish Sending when
Flow Control Abates

// Finish sending a message when flow control
// conditions abate. This method is automatically
// called by the Reactor.

int
Consumer_Handler::handle_output (ACE_HANDLE)
{

ACE_Message_Block *mb = 0;

// Take the first message off the queue.
msg_queue_->dequeue_head

(mb, &ACE_Time_Value::zero);
if (nonblk_put (mb) != -1

|| errno != EWOULDBLOCK) {
// If we succeed in writing msg out completely
// (and as a result there are no more msgs
// on the <ACE_Message_Queue>), then tell the
// <ACE_Reactor> not to notify us anymore.

if (msg_queue_->is_empty ()
reactor ()->cancel_wakeup

(this, ACE_Event_Handler::WRITE_MASK);
}

}

Vanderbilt University

Advanced ACE Tutorial Do

The Gateway Class

SUPPLIER HANDLER
CONSUMER HANDLER

Service
Object

APPLICATION-
INDEPENDENT

APPLICATION-
SPECIFIC

Connector Hash Map
Manager

Config
Table

Proxy
Handler

Connector

Routing
Table

Gateway

This class integrates other application-specific and
application-independent components

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Dynamically Configuring Gateway into an Application

Parameterized by proxy handler
template

<class SUPPLIER_HANDLER,
class CONSUMER_HANDLER>

class Gateway
: public Service_Object

{
public:

// Perform initialization.
virtual int init

(int argc, char *argv[]);

// Perform termination.
virtual int fini (void);

Example of the Component
Configurator pattern
int main (int argc, char *argv[])
{

// Initialize the daemon and
// dynamically configure services.
ACE_Service_Config::open (argc,

argv);
// Run forever, performing the
// configured services.
ACE_Reactor::instance ()->

run_reactor_event_loop ();
/* NOTREACHED */

}

Vanderbilt University 252

Advanced ACE Tutorial Do

Using the ACE Service Configurator
Framework for the Gateway

dynamic Gateway Service_Object *
 gateway:make_Gateway() "-p 2001"

svc.conf
FILE

SERVICE

CONFIGURATOR

RUNTIME

 Service
Repository

Service
Object

 Thread
Pool

Gateway

DLLS

Service
Object

 Thread-per
Connection

Gateway

Service
Object

Reactive
Gateway

Reactor
 Service
Config

We can replace the single-threaded Gateway with
a multi-threaded Gateway

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Dynamic Linking a Gateway Service

The Gateway service is
configured via scripting in a
svc.conf file:

% cat ./svc.conf
static Svc_Manager

"-p 5150"
dynamic Gateway
Service_Object *
gateway:_make_Gateway()

"-d -p $PORT"
.dll or .so suffix
added to "gateway"
automatically

Dynamically linked factory function
that allocates a new
single-threaded Gateway
extern "C"
ACE_Service_Object *make_Gateway (void);

ACE_Service_Object *make_Gateway (void)
{

return new
Gateway<Supplier_Handler,

Consumer_Handler>;
// ACE automatically deletes memory.

}

Vanderbilt University 254

Advanced ACE Tutorial Douglas C. Schmidt

Concurrency Strategies for Patterns

� The Acceptor-Connector pattern does not constrain the concurrency
strategies of a ACE_Svc_Handler

� There are three common choices:

1. Run service in same thread of control
2. Run service in a separate thread
3. Run service in a separate process

� Observe how our patterns and ACE framework push this decision to
the “edges” of the design

– This greatly increases reuse, flexibility, and performance tuning

Vanderbilt University 255

Advanced ACE Tutorial Do

Using the Active Object Pattern
for the Gateway

CONCRETE
EVENT

HANDLERS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

1: handle_input()

4: send(msg)

2: recv(msg)
3: route(msg)

 Reactor

Timer
Queue

 Signal
Handlers

 Handle
Table

OS EVENT DEMULTIPLEXING INTERFACE

 Event
Handler

Supplier
Handler

 Event
Handler

Supplier
Handler

 Event
Handler

Supplier
Handler

 Event
Handler

 Consumer
Handler

 Event
Handler

 Consumer
Handler

Each Consumer_Handler is implemented as an
Active Object

Vanderbilt University

Advanced ACE Tutorial Do

Collaboration in Multi-threaded
Gateway Routing

 Supplier
Handler

6: put (msg)

1: handle_input()
2: recv_peer(msg)

3: find()

ROUTE
ID

Consumer
Handlers

4:
 p

ut (
m

sg
)

Message
Queue

 Consumer
Handler

 Routing
Table

Message
Queue

 Consumer
Handler

5: send_peer(msg)

5: send_peer(msg)

Note that this design is much simpler since the OS
thread scheduler handles blocking

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Using the Half-Sync/Half-Async Pattern in the Gateway
Q

U
E

U
E

IN
G

L
A

Y
E

R

A
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

 L
A

Y
E

R

S
Y

N
C

H
R

O
N

O
U

S

 T
A

S
K

 L
A

Y
E

R

1: dequeue(msg)
2: send(msg)

2: recv(msg)
3: get_route(msg)
4: enqueue(msg)

1: dispatch()

 Reactor

MESSAGE QUEUES

Consumer
Handler

Consumer
Handler

Consumer
Handler

 Supplier
Handler

 Supplier
Handler

 Supplier
Handler

� ACE_Reactor plays the
role of “async” layer

� ACE_Task active object
plays the role of “sync” layer

� This particular configuration
is a common variant of the
Half-Sync/Half-Async
pattern, as described in
POSA2

Vanderbilt University 258

Advanced ACE Tutorial Do

Class Diagram for Multi-Threaded
Gateway

Proxy
Handler

Connector

Proxy_Handler
SOCK_Connector SOCK_Stream

MT_Synch

Svc
Handler

Connector

SVC_HANDLER
PEER_CONNECTOR

PEER_STREAM
SYNCH

C
O

N
N

E
C

T
IO

N
-

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

A
C

E

F
R

A
M

E
W

O
R

K

C
O

M
P

O
N

E
N

T
S

Stream

Service
Configurator

Concurrency
global

Connection

Reactor

1

<<activates>>

Supplier/Thr_Consumer
Handlern

IPC_SAP

PEER
CONNECTOR

PEER
STREAM

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Thr_Consumer_Handler Class Interface
#define ACE_USE_MT
#include Proxy_Handler.h

class Thr_Consumer_Handler
: public Consumer_Handler

{
public:

// Initialize the object and
// spawn new thread.

virtual int open (void *);
// Send a message to a peer.

virtual int put
(ACE_Message_Block *,

ACE_Time_Value *);
// Transmit peer messages
// in separate thread.

virtual int svc (void);
};

New subclass of
Proxy_Handler uses the
Active Object pattern for the
Consumer_Handler

� Uses multi-threading and
synchronous I/O (rather than
non-blocking I/O) to transmit
message to Peers

� Transparently improve
performance on a
multi-processor platform and
simplify design

Vanderbilt University 260

Advanced ACE Tutorial Douglas C. Schmidt

Thr_Consumer_Handler Class Implementation

Override definition in the
Consumer_Handler class
int
Thr_Consumer_Handler::open (void *)
{

// Become an active object by
// spawning a new thread to
// transmit messages to Peers.

activate (THR_DETACHED);
}

� The multi-threaded version
of open() is slightly
different since it spawns a
new thread to become an
active object!

� activate() is a
pre-defined method on
ACE_Task

Vanderbilt University 261

Advanced ACE Tutorial Do

Thr_Consumer_Handler Class
Implementation

// Queue up a message for transmission.

int
Thr_Consumer_Handler::put (ACE_Message_Block *mb,

ACE_Time_Value *)
{

// Perform non-blocking enqueue.
msg_queue_->enqueue_tail (mb,

&ACE_Time_Value::zero);
}

// Transmit messages to the peer (note
// simplification resulting from threads...)

int
Thr_Consumer_Handler::svc (void)
{

ACE_Message_Block *mb = 0;

// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue_->dequeue_head (mb) != -1)
send_peer (mb);

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Dynamic Linking a Threaded Gateway Service

% cat ./svc.conf
remove Gateway
dynamic Gateway
Service_Object *
thr_gateway:_make_Gateway()

"-d"
.dll or .so suffix added
to "thr_Gateway"
automatically

Dynamically linked factory
function that allocates a
multi-threaded Gateway object
extern "C"
ACE_Service_Object *make_Gateway (void);

ACE_Service_Object *make_Gateway (void)
{

return new
Gateway<Supplier_Handler,

Thr_Consumer_Handler>;
// ACE automatically deletes memory.

}

Vanderbilt University 263

Advanced ACE Tutorial Do

Call Center Manager (CCM)
Event Server Example

EVENT
SERVER

SUPER
VISOR

CCM
Stream

ACE
RUN-TIME

TELECOM
SWITCHES

Session Router
Module

Event Filter
Module

Switch Adapter
Module

Event Analyzer
Module

SUPER
VISOR SUPER

VISOR

MIB

Vanderbilt University

Advanced ACE Tutorial Do

Patterns in the CCM Event Server

Component
Configurator

Pipes &
Filters

TACTICAL
PATTERNS

STRATEGIC
PATTERNS

Reactor

CompositeIterator Factory
Method Proxy Wrapper

Facade

Layers

Publisher
Subscriber

Acceptor-
Connector

� The Event Server components are based upon
a common pattern language

� www.cs.wustl.edu/˜schmidt/PDF/
DSEJ-94.pdf

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Overview of the ACE Streams Framework

� An ACE_Stream allows flexible configuration of layered processing
modules

� It is an implementation of the Pipes and Filters architecture pattern

– This pattern provides a structure for systems that process a
stream of data

– Each processing step is encapsulated in a filter ACE_Module
component

– Data is passed through pipes between adjacent filters, which can
be re-combined

� The CCM Event Server was design and implemented using ACE
Streams

Vanderbilt University 266

Advanced ACE Tutorial Do

Structure of the ACE Streams
Framework

ACE_Module ACE_StreamACE_Task

SYNCHSYNCH

2

SYNCH

2..*

Framework characteristics

� An ACE_Stream contains a stack of
ACE_Modules

� Each ACE_Module contains two ACE_Tasks

– i.e., a read task and a write task

� Each ACE_Task contains an
ACE_Message_Queue and a pointer to an
ACE_Thread_Manager

Vanderbilt University

Advanced ACE Tutorial Do

Implementing a Stream in ACE

NETWORK INTERFACE

OR PSEUDO-DEVICES

STREAM
Tail

Multiplexor

APPLICATION

Stream

STREAM
Head

APPLICATION

Stream

U
P

S
T

R
E

A
MD

O
W

N
S

T
R

E
A

M

MESSAGE WRITE
TASK

READ
TASK

MODULE

open()=0
close()=0
put()=0
svc()=0

Note similarities to System V STREAMS

Vanderbilt University

Advanced ACE Tutorial Do

Alternative Concurrency Models
for Message Processing

Module
A

PROCESS OR
THREAD

WRITE TASK
OBJECT

READ TASK
OBJECT

MODULE
OBJECT

Module
B

Module
C

Module
A

Module
B

Module
C

2: svc()

1: put()

4: svc()

3: put()

ACTIVE

ACTIVE

ACTIVE

ACTIVE

2: put()

1: put()

ACTIVEACTIVE

TASK-BASED
PROCESS ARCHITECTURE

MESSAGE-BASED
PROCESS ARCHITECTURE

MESSAGE
OBJECT

Task-based models are more intuitive but less
efficient than Message-based models

Vanderbilt University

Advanced ACE Tutorial Do

Using the ACE Streams Framework
for the CCM Event Server

Session Router
Module

Presentation
Module

Event Filter
Module

Event Analysis
Module

Presentation
Module

Switch Adapter
Module

MD110 ERICSSON

TELECOM

SWITCHES

SUPER

VISORS

MD110 ERICSSON

MD110 ERICSSON

SUPER

VISORS

SUPER

VISORS

Switch IO

Session IO

Reactor

www.cs.wustl.edu/˜schmidt/PDF/

DSEJ-94.pdf

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Broader Context: External OS for Telecom Switches

NETWORK
SWITCHES

SERVER

CLIENT

APPLICATION

FRAMEWORK

CALL CENTER
MANAGER

DIRECTORY
MANAGER

EXTENSION
MANAGER

CLIENT CLIENT

CLIENT

Features

� Allow clients to manage
various aspects of telecom
switches without modifying
the switch software

� Support reuse of existing
components based on a
common architectural
framework

Vanderbilt University 271

Advanced ACE Tutorial Douglas C. Schmidt

Applying ACE Streams to External OS

DATABASE

 Session
Router

 Event
Analyzer

 Reactor

 Switch
Adapter

SWITCHES

SERVER

CLIENT

CLIENT

CLIENT

CALL CENTER
MANAGER

DIRECTORY
MANAGER

EXTENSION
MANAGER

NETWORK

ACE
FRAMEWORK

Vanderbilt University 272

Advanced ACE Tutorial Douglas C. Schmidt

ACE Stream Example: Parallel I/O Copy

Consumer
Module

active 2: svc()

3: put()

active

Producer
Module

1: read()

4: svc()

5: write() � Program copies stdin
to stdout via the use of
a multi-threaded
ACE_Stream

� Stream implements a
“bounded buffer”

� Since the data flow is
uni-directional the
“read” ACE_Task is
always ignored

Vanderbilt University 273

Advanced ACE Tutorial Do

Producer Class Interface

typedef short-hands for templates

typedef ACE_Stream<ACE_MT_SYNCH> MT_Stream;
typedef ACE_Module<ACE_MT_SYNCH> MT_Module;
typedef ACE_Task<ACE_MT_SYNCH> MT_Task;

Define the Producer interface

class Producer : public MT_Task
{
public:

// Initialize Producer.
virtual int open (void *)
{

// activate() is inherited from class Task.
activate (THR_BOUND);

}

// Read data from stdin and pass to consumer.
virtual int svc (void);
// ...

};

Vanderbilt University

Advanced ACE Tutorial Do

Producer Class Implementation

Runs as an active object in a separate thread

int Producer::svc (void) {
for (;;) {

ACE_Message_Block *mb;
// Allocate a new message.
ACE_NEW_RETURN (mb,

ACE_Message_Block (BUFSIZ),
-1);

// Keep reading stdin, until we reach EOF.
ssize_t n = ACE_OS::read (ACE_STDIN,

mb->wr_ptr (),
mb->size ());

if (n <= 0) {
// Send shutdown message to other
// thread and exit.
mb->length (0);
this->put_next (mb);
break;

} else {
mb->wr_ptr (n); // Adjust write pointer.

// Send the message to the other thread.
this->put_next (mb);

}
}

}

Vanderbilt University

Advanced ACE Tutorial Do

Consumer Class Interface

Define the Consumer interface

class Consumer : public MT_Task
{
public:

// Initialize Consumer.
virtual int open (void *)
{

// <activate> is inherited from class Task.
activate (THR_BOUND);

}

// Enqueue the message on the Message_Queue
// for subsequent processing in <svc>.
virtual int put (ACE_Message_Block *,

ACE_Time_Value * = 0)
{

// <putq> is inherited from class Task.
return putq (mb, tv);

}

// Receive message from producer
// and print to stdout.
virtual int svc (void);

};

Vanderbilt University

Advanced ACE Tutorial Do

Consumer Class Implementation
Consumer dequeues a message from the
ACE_Message_Queue, writes the message to the
stderr stream, and deletes the message

int
Consumer::svc (void) {

ACE_Message_Block *mb = 0;

// Keep looping, reading a message from the queue,
// until we get a 0 length message, then quit.
for (;;) {

int result = getq (mb);

if (result == -1) break;
int length = mb->length ();

if (length > 0)
ACE_OS::write (ACE_STDOUT, mb->rd_ptr (),

length);
mb->release ();

if (length == 0) break;
}

}

The Producer sends a 0-sized message to inform
the Consumer to stop reading and exit

Vanderbilt University

Advanced ACE Tutorial Do

Main Driver Function for the Stream

Create Producer and Consumer Modules and
push them onto the Stream

int main (int argc, char *argv[])
{

// Control hierarchically-related
// active objects.
MT_Stream stream;

// All processing is performed in the
// Stream after <push>’s complete.
stream.push (new MT_Module

("Consumer", new Consumer);
stream.push (new MT_Module

("Producer", new Producer));

// Barrier synchronization: wait for
// the threads, to exit, then exit
// the main thread.
ACE_Thread_Manager::instance ()->wait ();

}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Evaluation of the ACE Stream Framework

� Structuring active objects via an ACE_Stream allows
“interpositioning”

– i.e., similar to adding a filter in a UNIX pipeline

� New functionality may be added by “pushing” a new processing
ACE_Module onto an ACE_Stream , e.g.:

stream.push (new MT_Module ("Consumer", new Consumer))
stream.push (new MT_Module ("Filter", new Filter));
stream.push (new MT_Module ("Producer", new Producer));

� Communication between ACE_Modules is typically anonymous

Vanderbilt University 279

Advanced ACE Tutorial Douglas C. Schmidt

Concurrency Strategies

� Developing correct, efficient, and robust concurrent applications is
challenging

� Below, we examine a number of strategies that addresses
challenges related to the following:

– Concurrency control
– Library design
– Thread creation
– Deadlock and starvation avoidance

Vanderbilt University 280

Advanced ACE Tutorial Douglas C. Schmidt

General Threading Guidelines

� A threaded program should not arbitrarily enter non-threaded (i.e.,
“unsafe”) code

� Threaded code may refer to unsafe code only from the main thread

– e.g., beware of errno problems

� Use reentrant OS library routines (‘ r’) rather than non-reentrant
routines

� Beware of thread global process operations, such as file I/O

� Make sure that main() terminates cleanly

– e.g., beware of pthread_exit() , exit() , and “falling off the
end”

Vanderbilt University 281

Advanced ACE Tutorial Douglas C. Schmidt

Thread Creation Strategies

� Use threads for independent jobs that must maintain state for the life
of the job

� Don’t spawn new threads for very short jobs

� Use threads to take advantage of CPU concurrency

� Only use “bound” threads when absolutely necessary

� If possible, tell the threads library how many threads are expected to
be active simultaneously

– e.g., use thr_setconcurrency()

Vanderbilt University 282

Advanced ACE Tutorial Douglas C. Schmidt

General Locking Guidelines

� Don’t hold locks across long duration operations (e.g., I/O) that can
impact performance

– Use ACE_Token instead...

� Beware of holding non-recursive mutexes when calling a method
outside a class

– The method may reenter the module and deadlock

� Don’t lock at too small of a level of granularity

� Make sure that threads obey the global lock hierarchy

– But this is easier said than done...

Vanderbilt University 283

Advanced ACE Tutorial Douglas C. Schmidt

Locking Alternatives

� Code locking

– Associate locks with body of functions

� Typically performed using bracketed mutex locks
– Often called a Monitor Object

� Data locking

– Associate locks with data structures and/or objects
– Permits a more fine-grained style of locking

� Data locking allows more concurrency than code locking, but may
incur higher overhead

Vanderbilt University 284

Advanced ACE Tutorial Douglas C. Schmidt

Single-lock Strategy

� One way to simplify locking is use a single, application-wide mutex
lock

� Each thread must acquire the lock before running and release it
upon completion

� The advantage is that most legacy code doesn’t require changes

� The disadvantage is that parallelism is eliminated

– Moreover, interactive response time may degrade if the lock isn’t
released periodically

Vanderbilt University 285

Advanced ACE Tutorial Douglas C. Schmidt

Monitor Object Strategy

� A more OO locking strategy is to use a Monitor Object

– www.cs.wustl.edu/˜schmidt/POSA/

� Monitor Object synchronization mechanisms allow concurrent
method invocations

– Either eliminate access to shared data or use synchronization
objects

– Hide locking mechanisms behind method interfaces

� Therefore, modules should not export data directly

� Advantage is transparency

� Disadvantages are increased overhead from excessive locking and
lack of control over method invocation order

Vanderbilt University 286

Advanced ACE Tutorial Douglas C. Schmidt

Active Object Strategy

� Each task is modeled as an active object that maintains its own
thread of control

� Messages sent to an object are queued up and processed
asynchronously with respect to the caller

– i.e., the order of execution may differ from the order of invocation

� This approach is more suitable to message passing-based
concurrency

� The ACE_Task class can be used to implement active objects

– www.cs.wustl.edu/˜schmidt/POSA/

Vanderbilt University 287

Advanced ACE Tutorial Douglas C. Schmidt

Invariants

� In general, an invariant is a condition that is always true

� For concurrent programs, an invariant is a condition that is always
true when an associated lock is not held

– However, when the lock is held the invariant may be false
– When the code releases the lock, the invariant must be

re-established

� e.g., enqueueing and dequeueing messages in the
ACE_Message_Queue class

Vanderbilt University 288

Advanced ACE Tutorial Douglas C. Schmidt

Run-time Stack Problems

� Most threads libraries contain restrictions on stack usage

– The initial thread gets the “real” process stack, whose size is only
limited by the stacksize limit

– All other threads get a fixed-size stack

� Each thread stack is allocated off the heap and its size is fixed
at startup time

� Therefore, be aware of “stack smashes” when debugging
multi-threaded code

– Overly small stacks lead to bizarre bugs, e.g.,

� Functions that weren’t called appear in backtraces

� Functions have strange arguments

Vanderbilt University 289

Advanced ACE Tutorial Douglas C. Schmidt

Deadlock

� Permanent blocking by a set of threads that are competing for a set
of resources

� Caused by “circular waiting,” e.g.,

– A thread trying to reacquire a lock it already holds
– Two threads trying to acquire resources held by the other

� e.g., T1 and T2 acquire locks L1 and L2 in opposite order

� One solution is to establish a global ordering of lock acquisition (i.e.,
a lock hierarchy)

– May be at odds with encapsulation...

Vanderbilt University 290

Advanced ACE Tutorial Douglas C. Schmidt

Avoiding Deadlock in OO Frameworks

� Deadlock can occur due to properties of OO frameworks, e.g.,

– Callbacks
– Inter-class method calls

� There are several solutions

– Release locks before performing callbacks

� Every time locks are reacquired it may be necessary to
reevaluate the state of the object

– Make private “helper” methods that assume locks are held when
called by methods at higher levels

– Use an ACE_Token or ACE_Recursive_Thread_Mutex

Vanderbilt University 291

Advanced ACE Tutorial Do

ACE_Recursive_Thread_Mutex
Implementation

Here is portable implementation of recursive thread
mutexes available in ACE:

class ACE_Recursive_Thread_Mutex
{
public:

// Initialize a recursive mutex.
ACE_Recursive_Thread_Mutex (void);

// Implicitly release a recursive mutex.
˜ACE_Recursive_Thread_Mutex (void);

// Acquire a recursive mutex.
int acquire (void);

// Conditionally acquire a recursive mutex.
int tryacquire (void);

// Releases a recursive mutex.
int release (void);

private:
ACE_Thread_Mutex nesting_mutex_;
ACE_Condition_Thread_Mutex mutex_available_;
ACE_thread_t owner_;
int nesting_level_;

};

Vanderbilt University

Advanced ACE Tutorial Do

Acquiring an
ACE_Recursive_Thread_Mutex

int ACE_Recursive_Thread_Mutex::acquire (void)
{

ACE_thread_t t_id = ACE_Thread::self ();
ACE_GUARD_RETURN (ACE_Thread_Mutex, guard,

nesting_mutex_, -1);
// If there’s no contention, grab mutex.
if (nesting_level_ == 0) {

owner_ = t_id;
nesting_level_ = 1;

}
else if (t_id == owner_)

// If we already own the mutex, then
// increment nesting level and proceed.
nesting_level_++;

else {
// Wait until nesting level drops
// to zero, then acquire the mutex.
while (nesting_level_ > 0)

mutex_available_.wait ();

// Note that at this point
// the nesting_mutex_ is held...

owner_ = t_id;
nesting_level_ = 1;

}
return 0;

Vanderbilt University

Advanced ACE Tutorial Do

Releasing and Initializing an
ACE_Recursive_Thread_Mutex

int ACE_Recursive_Thread_Mutex::release (void)
{

ACE_thread_t t_id = ACE_Thread::self ();

// Automatically acquire mutex.
ACE_GUARD_RETURN (ACE_Thread_Mutex, guard,

nesting_mutex_, -1);
nesting_level_--;

if (nesting_level_ == 0) {
// Put the mutex into a known state.
owner_ = ACE_OS::NULL_thread;
// Inform waiters that the mutex is free.
mutex_available_.signal ();

}
return 0;

}

ACE_Recursive_Thread_Mutex::
ACE_Recursive_Thread_Mutex (void)
: nesting_level_ (0),

owner_ (ACE_OS::NULL_thread),
mutex_available_ (nesting_mutex_){}

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Avoiding Starvation

� Starvation occurs when a thread never acquires a mutex even
though another thread periodically releases it

� The order of scheduling is often undefined

� This problem may be solved via:

– Use of “voluntary pre-emption” mechanisms

� e.g., thr_yield() or Sleep()
– Using an ACE “Token” that strictly orders acquisition and release

Vanderbilt University 295

Advanced ACE Tutorial Douglas C. Schmidt

Drawbacks to Multi-threading

� Performance overhead

– Some applications do not benefit directly from threads
– Synchronization is not free
– Threads should be created for processing that lasts at least

several 1,000 instructions

� Correctness

– Threads are not well protected against interference
– Concurrency control issues are often tricky
– Many legacy libraries are not thread-safe

� Development effort

– Developers often lack experience
– Debugging is complicated (lack of tools)

Vanderbilt University 296

Advanced ACE Tutorial Douglas C. Schmidt

Lessons Learned using OO Patterns

� Benefits of patterns

– Enable large-scale reuse of software architectures
– Improve development team communication
– Help transcend language-centric viewpoints

� Drawbacks of patterns

– Do not lead to direct code reuse
– Can be deceptively simple
– Teams may suffer from pattern overload

Vanderbilt University 297

Advanced ACE Tutorial Douglas C. Schmidt

Lessons Learned using OO Frameworks

� Benefits of frameworks

– Enable direct reuse of code (cf patterns)
– Facilitate larger amounts of reuse than stand-alone functions or

individual classes

� Drawbacks of frameworks

– High initial learning curve

� Many classes, many levels of abstraction
– The flow of control for reactive dispatching is non-intuitive
– Verification and validation of generic components is hard

Vanderbilt University 298

Advanced ACE Tutorial Douglas C. Schmidt

Lessons Learned using C++

� Benefits of C++

– Classes and namespaces modularize the system architecture
– Inheritance and dynamic binding decouple application policies

from reusable mechanisms
– Parameterized types decouple the reliance on particular types of

synchronization methods or network IPC interfaces

� Drawbacks of C++

– Some language features are not implemented
– Some development environments are primitive
– Language has many dark corners and sharp edges

� Purify helps alleviate many problems...

Vanderbilt University 299

Advanced ACE Tutorial Douglas C. Schmidt

Lessons Learned using OOD

� Good designs can be boiled down to a few key principles:

– Separate interface from implementation
– Determine what is common and what is variable with an interface

and an implementation
– Allow substitution of variable implementations via a common

interface

� i.e., the “open/closed” principle & Aspect-Oriented
Programming (AOP)

– Dividing commonality from variability should be goal-oriented
rather than exhaustive

� Design is not simply drawing a picture using a CASE tool, using
graphical UML notation, or applying patterns

– Design is a fundamentally creative activity

Vanderbilt University 300

Advanced ACE Tutorial Douglas C. Schmidt

Software Principles for Distributed Applications

� Use patterns/frameworks to decouple policies/mechanisms
– Enhance reuse of common concurrent programming components

� Decouple service functionality from configuration
– Improve flexibility and performance

� Use classes, inheritance, dynamic binding, and parameterized
types
– Improve extensibility and modularity

� Enhance performance/functionality with OS features
– e.g., implicit and explicit dynamic linking and multi-threading

� Perform commonality/variability analysis
– Identify uniform interfaces for variable components and support

pluggability of variation

Vanderbilt University 301

Advanced ACE Tutorial Douglas C. Schmidt

Conferences and Workshops on Patterns

� Pattern Language of Programs Conferences

– PLoP, September, 2002, Monticello, Illinois, USA
– OOPSLA, November, 2002, Seattle, USA
– hillside.net/patterns/conferences/

� Distributed Objects and Applications Conference

– Oct/Nov, 2002, UC Irvine
– www.cs.wustl.edu/˜schmidt/activities-chair.html

Vanderbilt University 302

Advanced ACE Tutorial Douglas C. Schmidt

Patterns, Frameworks, and ACE Literature

� Books

– Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software AW, ’94

– Pattern Languages of Program Design series by AW, ’95-’99.
– Siemens & Schmidt, Pattern-Oriented Software Architecture,

Wiley, volumes ’96 & ’00 (www.posa.uci.edu)
– Schmidt & Huston, C++ Network Programming: Mastering

Complexity with ACE and Patterns, AW, ’02
(www.cs.wustl.edu/˜schmidt/ACE/book1/)

– Schmidt & Huston, C++ Network Programming: Systematic
Reuse with ACE and Frameworks, AW, ’03
(www.cs.wustl.edu/˜schmidt/ACE/book2/)

Vanderbilt University 303

Advanced ACE Tutorial Do

How to Obtain ACE Software and
Technical Support

� All source code for ACE is freely available

– www.cs.wustl.edu/˜schmidt/ACE.
html

� Mailing lists

– ace-users@cs.wustl.edu
– ace-users-request@cs.wustl.edu
– ace-announce@cs.wustl.edu
– ace-announce-request@cs.wustl.edu

� Newsgroup

– comp.soft-sys.ace

� Commercial support from Riverace and OCI

– www.riverace.com
– www.theaceorb.com

Vanderbilt University

Advanced ACE Tutorial Douglas C. Schmidt

Concluding Remarks

� Developers of networked application software confront recurring
challenges that are largely application-independent

– e.g., service configuration and initialization, distribution, error
handling, flow control, event demultiplexing, concurrency,
synchronization, persistence, etc.

� Successful developers resolve these challenges by applying
appropriate patterns to create communication frameworks
containing components

� Frameworks and components are an effective way to achieve
systematic reuse of software

Vanderbilt University 305

