The OCaml system
release 4.06

Documentation and user’s manual

Xavier Leroy,
Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy and Jérome Vouillon

November 3, 2017

Copyright () 2017 Institut National de Recherche en Informatique et en Automatique

Contents

I An introduction to OCaml

1

The core language

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Basics . ..o e
Data typeso
Functions as values e
Records and variants
Imperative features
Exceptions oL
Symbolic processing of expressionso oo
Pretty-printingo
Standalone OCaml programs Lo

The module system

2.1
2.2
2.3
24
2.5

Structures L e e e
SIgnatures oL e
Functors e
Functors and type abstraction oo Lo
Modules and separate compilationo

Objects in OCaml

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Classes and objects e
Immediate objects
Reference toself e
Initializers e e e
Virtual methods e
Private methods
Class interfaces e e
Inheritance e
Multiple inheritance
Parameterized classes
Polymorphic methods
USIng COErcions v v v v v v ittt e
Functional objects
Cloning objects e
Recursive classes e

11

13
13
14
15
16
19
21
22
23
24

27
27
30
31
32
35

11

3.16

Binary methods L

3.17 Friends oo

Labels and variants

4.1
4.2

Labels o o
Polymorphic variants L Lo

Polymorphism and its limitations

5.1
5.2
5.3

Weak polymorphism and mutation,
Polymorphic recursion00
Higher-rank polymorphic functions

Advanced examples with classes and modules

6.1
6.2
6.3

Extended example: bank accounts L L
Simple modules as classes
The subject/observer pattern

The OCaml language

The OCaml language

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Lexical conventions e
Values e e e
Names o e e e e
Type expressions e
Constants e e
Patterns e
Expressions e e
Type and exception definitionso
Classes v i e e
Module types (module specifications)
Module expressions (module implementations)
Compilation units

Language extensions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Integer literals for types int32, int64 and nativeint
Recursive definitions of values oL
Lazy patternso
Recursive modules
Private types. L
Local opens for patterns
Object copy short notations
Locally abstract types
First-class modules
Recovering the type of amodule L
Substituting inside a signatureo

67
67
73

77
7
82
85

87
87
93
98

103

105
105
109
111
114
117
118
122
135
138
144
149
152

8.12 Type-level module aliases 165
8.13 Overriding in open statements 166
8.14 Generalized algebraic datatypes L o 167
8.15 Syntax for Bigarray access e 172
8.16 Attributes L 173
8.17 Extension nodes 179
8.18 Quoted strings 181
8.19 Exception cases in pattern matching Lo oL 181
8.20 Extensible variant types L L L e 182
8.21 Generative functors L L 183
8.22 Extension-only syntax L L L e 184
8.23 Inlinerecords e 185
8.24 Local exceptions 186
8.25 Documentation comments Lo Lo 186
8.26 Extended indexing operators Lo e 189
IIT The OCaml tools 191
9 Batch compilation (ocamlc) 193
9.1 Overview of the compiler 193
9.2 Options. oL 194
9.3 Modules and the file system oL o o 205
9.4 COMIMON €ITOTS . « .« « v v v v v et et et e e e e e e e e 206
9.5 Warning reference 209
10 The toplevel system or REPL (ocaml) 213
10.1 Options. o e 214
10.2 Toplevel directives oL 221
10.3 The toplevel and the module system, 223
10.4 Common eITOTS« v v v v v et e e e e e e e e e 224
10.5 Building custom toplevel systems: ocamlmktop. 224
10.6 The native toplevel: ocamlnat (experimental) 225
11 The runtime system (ocamlrun) 227
111 OVerview o o o e 227
11.2 Options o o o e 228
11.3 Dynamic loading of shared libraries 230
11.4 Common €ITOTS . . . v v v v v v v vt et e e e e e e e e 231
12 Native-code compilation (ocamlopt) 233
12.1 Ovwerview of the compiler o 233
12.2 Options o e 234
12.3 Common €ITOTS« v v v v v e e e e e e e e e e 246
12.4 Running executables produced by ocamlopt 246
12.5 Compatibility with the bytecode compiler 246

13 Lexer and parser generators (ocamllex, ocamlyacc)
13.1 Overview of ocamllex o v i it e
13.2 Syntax of lexer definitions o oo
13.3 Overview of ocamlyacc v oo
13.4 Syntax of grammar definitions L Lo oo
13.5 Options o o
13.6 A complete example
13.7 Common eITOrS« o v v i i e e e e e e e e
13.8 Module Depend : Module dependencies. L.

14 The browser/editor (ocamlbrowser)

15 The documentation generator (ocamldoc)
15.1 Usage o o o o e
15.2 Syntax of documentation comments
15.3 Custom generators L e e
15.4 Adding command line options oL oL L

16 The debugger (ocamldebug)
16.1 Compiling for debugging
16.2 Invocation e
16.3 Commands e
16.4 Executing a programo e e e e
16.5 Breakpoints
16.6 The call stack L
16.7 Examining variable values oo oL
16.8 Controlling the debugger L o
16.9 Miscellaneous commandsl
16.10 Running the debugger under Emacs L.

17 Profiling (ocamlprof)
17.1 Compiling for profiling
17.2 Profiling an execution
17.3 Printing profiling information o 0oL
174 Time profiling

18 The ocamlbuild compilation manager

19 Interfacing C with OCaml
19.1 Overview and compilation information
19.2 The value type« o o
19.3 Representation of OCaml data types
19.4 Operations on values L L
19.5 Living in harmony with the garbage collector
19.6 A complete example
19.7 Advanced topic: callbacks from C to OCaml

249
249
250
255
255
258
259
260
261

263

265
265
272
282
285

287
287
287
288
289
292
292
293
294
297
297

299
299
300
300
301

303

19.8 Advanced example with callbacks
19.9 Advanced topic: custom blocks
19.10 Advanced topic: cheaper C call
19.11 Advanced topic: multithreading

19.12 Advanced topic: interfacing with Windows Unicode APIs
19.13 Building mixed C/OCaml libraries: ocamlmklib

20 Optimisation with Flambda
201 OVErvIew oL e e e e
20.2 Command-line flags L
20.3 Inlining oL e
20.4 Specialisation Lo

20.5 Default settings of parameters

20.6 Manual control of inlining and specialisation
20.7 Simplification e

20.8 Other code motion tr

20.9 Unboxing transformations
20.10 Removal of unused code and values
20.11 Other code transformations

ansformations e

20.12 Treatment of effects
20.13 Compilation of statically-allocated modules.

20.14 Inhibition of optimisation
20.15 Use of unsafe operations

20.16 Glossary oL

20.17 Module Spacetime :

21 Fuzzing with afl-fuzz

211 OVErVIEW . . . o v s

21.2 Generating instrumentation

21.3 Example

22 Compiler plugins

221 OVErvIeW e
22.2 Basicexample

IV The OCaml library

23 The core library

23.1 Built-in types and predefined exceptions
The initially opened module.

23.2 Module Pervasives :

24 The standard library

24.1 Module Arg : Parsing of command line arguments.

24.2 Module Array : Array operations
24.3 Module ArrayLabels :

Array operations

332
334
338
340
342
344

347
347
347
350
355
358
359
360
361
362
366
366
367
368
368
368
369
370

373
373
373
373

375
375
375

377

379
379
382

244

24.5

24.6

24.7

24.8

24.9

24.10
24.11
24.12
24.13
24.14
24.15
24.16
24.17
24.18
24.19
24.20
24.21
24.22
24.23
24.24
24.25
24.26
24.27
24.28
24.29

24.30
24.31
24.32
24.33
24.34
24.35
24.36
24.37
24.38
24.39
24.40
24.41
24.42
24.43
24.44

Module Buffer : Extensible buffers. o 419

Module Bytes : Byte sequence operations. L oL 422
Module BytesLabels : Byte sequence operations. 429
Module Callback : Registering OCaml values with the C runtime. 435
Module Char : Character operations. 435
Module Complex : Complex numbers. 436
Module Digest : MD5 message digest. oL 438
Module Ephemeron : Ephemerons and weak hash table 439
Module Filename : Operations on file names. 447
Module Format : Pretty-printing. o oL 450
Module Ge : Memory management control and statistics; finalised values. 469
Module Genlex : A generic lexical analyzer. 475
Module Hashtbl : Hash tables and hash functions. 476
Module Int32 : 32-bit integers. L 484
Module Int64 : 64-bit integers. L oL 487
Module Lazy : Deferred computations. 491
Module Lexing : The run-time library for lexers generated by ocamllex. 492
Module List : List operations. 495
Module ListLabels : List operations. 500
Module Map : Association tables over ordered types. 506
Module Marshal : Marshaling of data structures. 512
Module MoreLabels : Extra labeled libraries. 515
Module Nativeint : Processor-native integers. 521
Module Qo : Operations on objects 524
Module Parsing : The run-time library for parsers generated by ocamlyacc. 524
Module Printexc : Facilities for printing exceptions and inspecting current call

stack. . .o L 526
Module Printf : Formatted output functions. 531
Module Queue : First-in first-out queues.o 534
Module Random : Pseudo-random number generators (PRNG). 536
Module Scanf : Formatted input functions. 538
Module Set : Sets over ordered types. 548
Module Sort : Sorting and merging lists. L. 553
Module Spacetime : Profiling of a program’s space behaviour over time. 553
Module Stack : Last-in first-out stacks. L. 555
Module StdLabels : Standard labeled libraries. 556
Module Stream : Streams and parsers.l 556
Module String : String operations.o 558
Module StringLabels : String operations. 563
Module Sys : System interface. oo 568
Module Uchar : Unicode characters., 575

Module Weak : Arrays of weak pointers and hash sets of weak pointers. 576

25 The compiler front-end 581
25.1 Module Ast_mapper : The interface of a -ppx rewriter 581
25.2 Module Asttypes : Auxiliary AST types used by parsetree and typedtree. 585
25.3 Module Location : Source code locations (ranges of positions), used in parsetree. . 586
25.4 Module Longident : Long identifiers, used in parsetree.. 589
25.5 Module Parse : Entry points in the parser L. 589
25.6 Module Parsetree : Abstract syntax tree produced by parsing 589
25.7 Module Pprintast L e 598
25.8 Module Pparse : Driver for the parser, external preprocessors and ast plugin hooks 598
25.9 Module Typemod : Type-checking of the module language and typed ast plugin hooks599
25.10 Module Simplif : Lambda simplification and lambda plugin hooks 601
25.11 Module Clflags : Command line flags 601

26 The unix library: Unix system calls 609
26.1 Module Unix : Interface to the Unix system. 609
26.2 Module UnixLabels: labelized version of the interface 649

27 The num library: arbitrary-precision rational arithmetic 651

28 The str library: regular expressions and string processing 653
28.1 Module Str : Regular expressions and high-level string processing 653

29 The threads library 659
29.1 Module Thread : Lightweight threads for Posix 1003.1c and Win32. 660
29.2 Module Mutex : Locks for mutual exclusion. 662
29.3 Module Condition : Condition variables to synchronize between threads. 662
29.4 Module Event : First-class synchronous communication. 663
29.5 Module ThreadUnix : Thread-compatible system calls. 665

30 The graphics library 667
30.1 Module Graphics : Machine-independent graphics primitives. 668

31 The dynlink library: dynamic loading and linking of object files 677
31.1 Module Dynlink : Dynamic loading of object files. 677

32 The bigarray library 681
32.1 Module Bigarray : Large, multi-dimensional, numerical arrays. 682
32.2 Big arrays in the OCaml-C interface 700

V Appendix 703

Index to the library 705

Index of keywords 706

Foreword

This manual documents the release 4.06 of the OCaml system. It is organized as follows.
e Part I, “An introduction to OCaml”, gives an overview of the language.
e Part II, “The OCaml language”, is the reference description of the language.
e Part III, “The OCaml tools”, documents the compilers, toplevel system, and programming
utilities.
e Part IV, “The OCaml library”, describes the modules provided in the standard library.

e Part V, “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one
operating system are presented as shown below:

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright (©) 1996-2017 Institut National de Recherche en Informatique et
en Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the
distribution for licensing information.

The present documentation is copyright (C) 2017 Institut National de Recherche en Informatique
et en Automatique (INRIA). The OCaml documentation and user’s manual may be reproduced and
distributed in whole or in part, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

10 Foreword

e Any translation or derivative work of the OCaml documentation and user’s manual must be
approved by the authors in writing before distribution.

e If you distribute the OCaml documentation and user’s manual in part, instructions for ob-
taining the complete version of this manual must be included, and a means for obtaining a
complete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

Availability

The complete OCaml distribution can be accessed via the Web sites http://www.ocaml.org/ and
http://caml.inria.fr/. The former Web site contains a lot of additional information on OCaml.

http://www.ocaml.org/
http://caml.inria.fr/

Part 1

An introduction to OCaml

11

Chapter 1

The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with
programming in a conventional languages (say, Pascal or C) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the core language. Chapter 2 deals
with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to
the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced
examples.

1.1 Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the 0OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

142%3;;

- : int =7

let pi = 4.0 *. atan 1.0;;

val pi : float = 3.14159265358979312

let square x = X *. X;;
val square : float -> float = <fun>

square (sin pi) +. square (cos pi);;
- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

13

14

1.0 x 2;;
Error: This expression has type float but an expression was expected of type
int

Recursive functions are defined with the let rec binding:

let rec fib n =
if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>

fib 10;;
- : int = 55

1.2 Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:
booleans, characters, and immutable character strings.

(1 < 2) = false;;
- : bool = false

+H+

fals;
- : char = 'a’'

"Hello world";;
- : string = "Hello world"

Predefined data structures include tuples, arrays, and lists. General mechanisms for defining
your own data structures are also provided. They will be covered in more details later; for now, we
concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated
elements, or built from the empty list [1 (pronounce “nil”) by adding elements in front using the

: (“cons”) operator.

let 1 = ["is"; "a"; "tale"; "told"; "etc."];;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

"Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have the exact same shape as list expressions, with identifier representing
unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort 1lst =

match 1st with

1 ->1

| head :: tail -> insert head (sort tail)
and insert elt 1lst =

Chapter 1. The core language 15

match 1lst with

[1 -> [elt]

| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail
55

val sort : 'a list -> 'a list = <fun>

1

val insert : 'a -> 'a list -> 'a list = <fun>

sort 1;;
- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a 1list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type 'a is a type variable, and stands for
any given type. The reason why sort can apply to lists of any type is that the comparisons (=,
<=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This
makes sort itself polymorphic over all list types.

sort [6;2;5;3];;

- : int list = [2; 3; 5; 6]

sort [3.14; 2.718];;

- : float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in OCaml
to modify in-place a list once it is built: we say that lists are immutable data structures. Most
OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can
be passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

let sin' = deriv sin 1le-6;;

val sin' : float -> float = <fun>

sin' pi;;

- : float = -1.00000000013961143
Even function composition is definable:

let compose f g = function x > £ (g x);;
val compose : ('a -> 'b) -> ('c¢ -> 'a) -> 'c -> 'b = <fun>

let cos2 = compose square cos;;
val cos2 : float —-> float = <fun>

16

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard OCaml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

List.map (function n -> n *x 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

let recmap £ 1 =

match 1 with

(1 > 1

| hd :: t1 -> f hd :: map f t1;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }

let add_ratio rl r2 =
{num = rl1.num * r2.denom + r2.num * rl.denom;

denom = ril.denom * r2.denom};;
val add_ratio : ratio -> ratio -> ratio = <fun>

add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}

Record fields can also be accessed through pattern-matching;:

let integer_part r =

match r with

{num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r
in a record pattern:

let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Unneeded fields can be omitted:

let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Chapter 1. The core language 17

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard

let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by
eliding the =field part:

let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

#

let integer_product integer ratio = { ratio with num = integer * ratio.num };;
val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for
the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible shapes for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative

let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

let add_num nl n2 =

match (nl, n2) with

(Int i1, Int i2) —>

(* Check for overflow of integer addition *)

—
o

if sign_int il = sign_int i2 && sign_int (il + i2) <> sign_int il
then Float(float il +. float i2)
else Int(il + i2)

| (Int il, Float f2) -> Float(float il +. £2)

| (Float f1, Int i2) -> Float(fl +. float i2)

| (Float f1, Float f2) -> Float(f1 +. f2)

| (Error, _) -> Error

|

(_, Error) -> Error;;
val add_num : number -> number -> number = <fun>

add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

H OH O HF H H HF H H

Another interesting example of variant type is the built-in 'a option type which represents
either a value of type 'a or an absence of value:
type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None
This type is particularly useful when defining function that can fail in common situations, for
instance

let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is
either empty, or is a node containing one value of type 'a and two subtrees containing also values
of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

let rec member x btree =
match btree with

Empty -> false

| Node(y, left, right) ->

if x = y then true else

if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>

let rec insert x btree =

match btree with

Empty -> Node(x, Empty, Empty)

| Node(y, left, right) ->

if x <= y then Node(y, insert x left, right)
#

else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

Chapter 1. The core language 19

1.5 Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either given in extension between [| and |] brackets, or
allocated and initialized with the Array.make function, then filled up later by assignments. For
instance, the function below sums two vectors (represented as float arrays) componentwise.

let add_vect vl v2 =
let len = min (Array.length v1) (Array.length v2) in

#

#

let res = Array.make len 0.0 in
for i = 0 to len - 1 do
#

#

#

res. (i) <- vi.(1) +. v2.(1)
done;
res;;
val add_vect : float array -> float array -> float array = <fun>

add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 I]1;;
- : float array = [|4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

let translate p dx dy =
p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}

translate mypoint 1.0 2.0;;
- : unit = O

mypoint;;
- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable — identifiers whose current value can be changed by
assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells (or
one-element arrays), with operators ! to fetch the current contents of the reference and := to assign
the contents. Variables can then be emulated by let-binding a reference. For instance, here is an
in-place insertion sort over arrays:

let insertion_sort a =

for i = 1 to Array.length a - 1 do
let val_i = a.(i) in
let j = ref i in

#
#
#
while !j > 0 && val_i < a.(!j - 1) do

20

a.(1j) <= a.('j - 1;

jo:=1'j-1

done;

a.(!'j) <= val_i

done; ;

val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

let current_rand = ref O;;
val current_rand : int ref = {contents = O}

let random () =
current_rand := !current_rand * 25713 + 1345;

lcurrent_rand;;
val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable
record, as follows.

type 'a ref = { mutable contents: 'a };;
type 'a ref = { mutable contents : 'a; }

let (!) r = r.contents;;

val (!) : 'a ref -> 'a = <fun>
let (:=) r newval = r.contents <- newval;;
val (:=) : 'a ref -> 'a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Without user-provided type annotations, this is not allowed, as polymorphism

is only introduced on a global level. However, you can give explicitly polymorphic types to record
fields.

type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }

let r = {id = fun x —> x};;
val r : idref = {id = <fun>}

let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()

#gr;;

called id

called id

- : int * bool = (1, true)

Chapter 1. The core language 21

1.6 Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can
also be used as a general-purpose non-local control structure. Exceptions are declared with the
exception construct, and signalled with the raise operator. For instance, the function below for
taking the head of a list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list

let head 1 =
match 1 with

[1 -> raise Empty_list
| hd :: t1l -> hd;;

val head : 'a list -> 'a = <fun>
head [1;2];;

- : int =1

head []1;;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"

List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.

Exceptions can be trapped with the try...with construct:

let name_of_binary_digit digit =

try

List.assoc digit [0, "zero"; 1, "one"]
with Not_found ->

"not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

name_of_binary_digit O;;
- : string = "zero"

name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part is actually a regular pattern-matching on the exception value. Thus, several
exceptions can be caught by one try...with construct. Also, finalization can be performed by
trapping all exceptions, performing the finalization, then raising again the exception:

22

let temporarily_set_reference ref newval funct =
let oldval = !ref in
try

ref := newval;
let res = funct () in
ref := oldval;
res

with x ->

ref := oldval;

raise x;;

val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

1.7 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml
for symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

type expression =

Quot of expression * expression (* el / e2 %)

Const of float

| Var of string

| Sum of expression * expression (x el + e2 %)
| Diff of expression * expression (x el - e2 %)
| Prod of expression * expression (* el * e2 x)
|

#

)
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string

let rec eval env exp =
match exp with

Const ¢ -> ¢
| Var v ->

(try List.assoc v env with Not_found -> raise (Unbound_variable v))

| Sum(f, g) -> eval env f +. eval env g
| Diff(f, g) -> eval env f -. eval env g
| Prod(f, g) -> eval env f *. eval env g

H OH H H H H

Chapter 1. The core language 23

| Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>

eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

let rec deriv exp dv =

match exp with

Const ¢ -> Const 0.0

| Var v => if v = dv then Const 1.0 else Const 0.0

| Sum(f, g) -> Sum(deriv f dv, deriv g dv)

| Diff(f, g) -> Diff(deriv f dv, deriv g dv)

| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

| Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

#55

val deriv : expression -> string -> expression = <fun>

deriv (Quot(Const 1.0, Var "x")) "x";;

- : expression =

Quot (Diff (Prod (Const 0., Var "x"), Prod (Const 1., Comst 1.)),
Prod (Var "x", Var "x"))

1.8 Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence.

let print_expr exp =

(x Local function definitions x*)

let open_paren prec op_prec =

if prec > op_prec then print_string "(" in
let close_paren prec op_prec =

if prec > op_prec then print_string ")" in
let rec print prec exp = (* prec is the current precedence *)
match exp with

Const ¢ -> print_float c

| Var v -> print_string v

| Sum(f, g) ->

)
=~

open_paren prec O;
print O f; print_string " + "; print O g;
close_paren prec O
| Diff(f, g) —>
open_paren prec O;
print O f; print_string " - "; print 1 g;
close_paren prec 0O
| Prod(f, g) —>
open_paren prec 2;
print 2 f; print_string " * "; print 2 g;
close_paren prec 2
| Quot(f, g —->
open_paren prec 2;
print 2 f; print_string " / "; print 3 g;
close_paren prec 2
in print O exp;;
val print_expr : expression —> unit = <fun>

H OH HF OH H OH H HF H H HFH HH H K

let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)

print_expr e; print_newline ();;

2. *x x + 1.

- : unit = ()

print_expr (deriv e "x"); print_newline ();;
2. 1. +0. *xx + 0.

- : unit = ()

1.9 Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be com-
piled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions ex-
plicitly to produce some output. Here is a sample standalone program to print Fibonacci numbers:

(x File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib (n-1) + fib (n-2);;
let main () =
let arg = int_of_string Sys.argv.(l) in
print_int (fib arg);
print_newline ();
exit 0;;
main ();;

Chapter 1. The core language 25

Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus
the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o fib fib.ml
$./fib 10

89

$./fib 20

10946

More complex standalone OCaml programs are typically composed of multiple source files, and
can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers
ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-
party build systems, such as the ocamlbuild compilation manager.

https://github.com/ocaml/ocamlbuild/

26

Chapter 2

The module system

This chapter introduces the module system of OCaml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue =

if lprio <= rprio
then Node(lprio, lelt, remove_top left, right)

struct

type priority = int

type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
let empty = Empty

let rec insert queue prio elt =

match queue with

Empty -> Node(prio, elt, Empty, Empty)

| Node(p, e, left, right) ->

if prio <=p

then Node(prio, elt, insert right p e, left)

else Node(p, e, insert right prio elt, left)

exception Queue_is_empty

let rec remove_top = function

Empty -> raise Queue_is_empty

| Node(prio, elt, left, Empty) -> left

| Node(prio, elt, Empty, right) -> right

| Node(prio, elt, (Node(lprio, lelt, _, _) as left),

(Node(rprio, relt, _, _) as right)) ->
#

#

27

else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
end;;
module PrioQueue :
sig

type priority = int
type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception Queue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue.insert is the function insert defined
inside the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string Prio(ueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module
in the scope of the current structure.

open PrioQueue;;

insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to
identify in which module a identifier has been defined. In particular, opened modules can shadow
identifiers present in the current scope, potentially leading to confusing errors:

let empty = []
open PrioQueue;;
val empty : 'a list = []

let x =1 :: empty ;;
Error: This expression has type 'a Prio(lueue.queue
but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of
the module available only in the concerned expression. This can also make the code easier to read
— the open statement is closer to where it is used— and to refactor — the code fragment is more
self-contained. T'wo constructions are available for this purpose:

let open PrioQueue in
insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Chapter 2. The module system 29

and

PrioQueue. (insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or
bracket, the parentheses of the local open can be omitted. For instance,

PrioQueue. [empty] = PrioQueue. ([empty]l);;
- : bool = true

PrioQueue. [|emptyl] = PrioQueue. ([|emptyl]l);;
- : bool = true

PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty });;
- : bool = true

becomes

PrioQueue.[insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

It is also possible to copy the components of a module inside another module by using an
include statement. This can be particularly useful to extend existing modules. As an illustration,
we could add functions that returns an optional value rather than an exception when the priority
queue is empty.

module PrioQueueOpt =
struct
include PrioQueue
let remove_top_opt x =
try Some(remove_top x) with Queue_is_empty -> None
let extract_opt x =
try Some(extract x) with Queue_is_empty -> None
end;;
module PrioQueueOpt :
sig
type priority
type 'a queue
'a Prio(Jueue.queue =

int

Empty

| Node of priority * 'a * 'a queue * 'a queue
val empty : 'a queue
val insert : 'a queue -> priority -> 'a -> 'a queue
exception Queue_is_empty
val remove_top : 'a queue -> 'a queue
val extract : 'a queue -> priority * 'a * 'a queue
val remove_top_opt : 'a queue -> 'a queue option
val extract_opt : 'a queue -> (priority * 'a * 'a queue) option

end

30

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

module type PRIOQUEUE =

sig
type priority = int (* still concrete *)
type 'a queue (* now abstract *)
val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception Queue_is_empty
end;;
module type PRIOQUEUE =
sig

type priority = int
type 'a queue

val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

AbstractPrioQueue.remove_top ;;
Error: Unbound value AbstractPrioQueue.remove_top

AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:
module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current
signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:

Chapter 2. The module system 31

module type PRIOQUEUE_WITH_OPT =

sig
include PRIOQUEUE
val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end;;
module type PRIOQUEUE_WITH_OPT =
sig

type priority = int
type 'a queue

val empty : 'a queue

val insert : 'a queue -> int -> 'a -> 'a queue

val extract : 'a queue -> int * 'a * 'a queue

exception (ueue_is_empty

val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end

2.3 Functors

Functors are “functions” from structures to structures. They are used to express parameterized
structures: a structure A parameterized by a structure B is simply a functor F' with a formal
parameter B (along with the expected signature for B) which returns the actual structure A itself.
The functor F' can then be applied to one or several implementations B1 ... B, of B, yielding the
corresponding structures Ay ... A,.

For instance, here is a structure implementing sets as sorted lists, parameterized by a structure
providing the type of the set elements and an ordering function over this type (used to keep the
sets sorted):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

module type ORDERED_TYPE =

sig

type t

val compare: t -> t —-> comparison
end;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end

module Set =
functor (Elt: ORDERED_TYPE) ->
struct
type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with
0 -> [x]
| hd::tl ->
match Elt.compare x hd with

H OH HF H H HF H H H

w
[\)

Equal -> s (* x is already in s *)
| Less -> X :: s (* x is smaller than all elements of s *)
| Greater -> hd :: add x tl
let rec member x s =
match s with
[1 -> false
| hd::t1 ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (¥ x is smaller than all elements of s *)
| Greater -> member x tl
end;;
module Set :

functor (El1t : ORDERED_TYPE) ->

sig

type element = Elt.t

type set = element list

val empty : 'a list

val add : Elt.t -> EIt.t list -> Elt.t list

val member : Elt.t -> Elt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

module OrderedString =

struct
type t = string
let compare x y = if x = y then Equal else if x < y then Less else Greater
end;;
module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end

module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
type set = element list
val empty : 'a list
val add : OrderedString.t -> OrderedString.t list -> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool
end

StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to

Chapter 2. The module system 33

another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:

module type SETFUNCTOR =

functor (Elt: ORDERED_TYPE) ->

sig

type element = Elt.t (* concrete *)
type set (* abstract *)
val empty : set

val add : element -> set -> set

val member : element -> set -> bool

end;;

module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

AbstractStringSet.add '"gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SET =
sig

H OHF H OH OHF H H

34

type element

type set

val empty : set

val add : element -> set -> set

val member : element -> set -> bool
end

module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (Elt : ORDERED_TYPE) -> SET

module WrongStringSet = WrongSet(OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
type set = WrongSet (OrderedString).set
val empty : set
val add : element —-> set -> set
val member : element -> set —-> bool
end

WrongStringSet.add "gee" WrongStringSet.empty ;;
Error: This expression has type string but an expression was expected of type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET
is defined in a context where E1t does not exist. To overcome this difficulty, OCaml provides a
with type construct over signatures that allows enriching a signature with extra type equalities:

module AbstractSet2 =

(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet2 :
functor (E1t : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is

Chapter 2. The module system 35
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

module NoCaseString =
struct

type t = string
let compare sl s2 =
#

OrderedString.compare (String.lowercase_ascii s1) (String.lowercase_ascii s2)
end; ;
module NoCaseString :

sig type t = string val compare : string -> string -> comparison end

module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

NoCaseStringSet.add "FOO0" AbstractStringSet.empty ;;
Error: This expression has type
AbstractStringSet.set = AbstractSet (OrderedString).set
but an expression was expected of type
NoCaseStringSet.set = AbstractSet(NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), they are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship
between the units can be explained easily in terms of the module system. A compilation unit A
comprises two files:

e the implementation file A.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

36

e the interface file A.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

These two files together define a structure named A as if the following definition was entered at
top-level:

module A: sig (* contents of file A.mli *) end
= struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c
command (the —c option means “compile only, do not try to link”); this produces compiled interface
files (with extension .cmi) and compiled object code files (with extension .cmo). When all units
have been compiled, their .cmo files are linked together using the ocamlc command. For instance,
the following commands compile and link a program composed of two compilation units Aux and
Main:

$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end

= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end

= struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and
Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions
are exported in Aux.mli.

The order in which the .cmo files are given to ocamlc during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither
functors nor module types. However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type inside a structure, which can then
be mapped to a file.

Chapter 3

Objects in OCaml

(Chapter written by Jérome Vouillon, Didier Rémy and Jacques Garrigue)

This chapter gives an overview of the object-oriented features of OCaml. Note that the relation
between object, class and type in OCaml is very different from that in mainstream object-oriented
languages like Java or C++4, so that you should not assume that similar keywords mean the same
thing.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

class point =
object
val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.

let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

We now invoke some methods to p:

pHget_x;;
- :int =0

37

38

p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref O;;
val x0 : int ref = {contents = O}

class point =

object

val mutable x = incr x0; !x0
method get_x = x

method move d = x <- x + d

end;;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

new point#get_x;;
- :int =1
new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x +d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

Like in function definitions, the definition above can be abbreviated as:

class point x_init =
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

An instance of the class point is now a function that expects an initial parameter to create a point
object:

Chapter 3. Objects in OCaml 39

new point;;
- : int -> point = <fun>

let p = new point 7;;
val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x + d
end; ;
class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

class adjusted_point x_init =
let origin = (x_init / 10) * 10 in
object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
class adjusted_point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

40

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation function:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as described below in section 3.4.

3.2 Immediate objects

There is another, more direct way to create an object: create it without going through a class.
The syntax is exactly the same as for class expressions, but the result is a single object rather
than a class. All the constructs described in the rest of this section also apply to immediate objects.

object
val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
val p : < get_x : int; move : int -> unit > = <obj>
pHget_x;;
- : int =0
p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear
anywhere, using variables from their environment.

let minmax x y =
if x < y then object method min = x method max = y end

else object method min = y method max = x end;;
val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated,
and you cannot inherit from them. But these two weaknesses can be advantages in some situations,
as we will see in sections 3.3 and 3.10.

Chapter 3. Objects in OCaml 41

3.3 Reference to self

A method or an initializer can send messages to self (that is, the current object). For that, self
must be explicitly bound, here to the variable s (s could be any identifier, even though we will
often choose the name self.)

class printable_point x_init =
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x + d
method print = print_int s#get_x
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 7;;
val p : printable_point = <obj>

p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

A common problem with self is that, as its type may be extended in subclasses, you cannot fix
it in advance. Here is a simple example.

let ints = ref [];;
val ints : '_weakl list ref = {contents = []}

class my_int =
object (self)

method n =1

method register = ints := self :: !ints

end ;;

Error: This expression has type < n : int; register : 'a; .. >

but an expression was expected of type 'weakl
Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self
into an external reference would make it impossible to extend it through inheritance. We will see
in section 3.12 a workaround to this problem. Note however that, since immediate objects are not
extensible, the problem does not occur with them.

42

let my_int =
object (self)

method n = 1
method register = ints := self :: !ints
end;;

val my_int : < n : int; register : unit > = <obj>

3.4 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, it can access self and the instance
variables.

class printable_point x_init
let origin = (x_init / 10) * 10 in
object (self)
val mutable x = origin
method get_x = x
method move d = x <- x + d
method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline ()
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section 6.1.

3.5 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init =

Chapter 3. Objects in OCaml

object (self)
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
class virtual abstract_point :
int ->
object
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit

end
class point x_init =
object
inherit abstract_point x_init
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Instance variables can also be declared as virtual, with the same effect as with methods.

class virtual abstract_point2 =

object

val mutable virtual x : int
method move d = x <- x + d
end;;

class virtual abstract_point2 :
object val mutable virtual x : int method move : int -> unit end

class point2 x_init =
object
inherit abstract_point2
val mutable x = x_init
method get_offset = x - x_init
end;;
class point2 :
int ->
object
val mutable x : int
method get_offset : int

#
#
#
#
#
#

44

method move : int -> unit
end

3.6 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other methods of the same object.

class restricted_point x_init =
object (self)
val mutable x = x_init
method get_x = x
method private move d = x <- x + d
method bump = self#move 1
end;;
class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int -> unit
end

let p = new restricted_point O;;
val p : restricted_point = <obj>

p#move 10 ;;
Error: This expression has type restricted_point
It has no method move

p#bump; ;
- : unit = ()

Note that this is not the same thing as private and protected methods in Java or C++, which can
be called from other objects of the same class. This is a direct consequence of the independence
between types and classes in OCaml: two unrelated classes may produce objects of the same type,
and there is no way at the type level to ensure that an object comes from a specific class. However
a possible encoding of friend methods is given in section 3.17.

Private methods are inherited (they are by default visible in subclasses), unless they are hidden
by signature matching, as described below.

Private methods can be made public in a subclass.

class point_again x =
object (self)

inherit restricted_point x
method virtual move
end;;

class point_again :

Chapter 3. Objects in OCaml 45

int ->

object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit

end

The annotation virtual here is only used to mention a method without providing its definition.
Since we didn’t add the private annotation, this makes the method public, keeping the original
definition.

An alternative definition is

class point_again x =
object (self : < move : _; ..>)
inherit restricted_point x
end; ;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

The constraint on self’s type is requiring a public move method, and this is sufficient to override
private.

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible to pick its code and define a method of the
same name that runs that code, so yet another (heavier) solution would be:

class point_again x =

object
inherit restricted_point x as super
method move = super#move
end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.

46

3.7 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. Like class declarations, they also define a new type abbreviation.

class type restricted_point_type =

object

method get_x : int
method bump : unit
end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

fun (x : restricted_point_type) -> x;;
- : restricted_point_type —> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a
class. Both concrete instance variables and concrete private methods can be hidden by a class type
constraint. Public methods and virtual members, however, cannot.

class restricted_point' x = (restricted_point x : restricted_point_type);;
class restricted_point' : int -> restricted_point_type

Or, equivalently:

class restricted_point' = (restricted_point : int -> restricted_point_type);;
class restricted_point' : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

module type POINT = sig

class restricted_point' : int ->
object

method get_x : int

method bump : unit

end

end;;

module type POINT =

sig
class restricted_point'
int -> object method bump : unit method get_x : int end
end

module Point : POINT = struct

class restricted_point' = restricted_point
end;;

module Point : POINT

Chapter 3. Objects in OCaml 47

3.8 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable c
and a new method color.

class colored_point x (c : string) =
object

inherit point x
val c = ¢
method color = c
end;;
class colored_point :
int ->
string ->
object

val ¢ : string

val mutable x : int

method color : string

method get_offset : int

method get_x : int

method move : int -> unit
end

let p' = new colored_point 5 "red";;
val p' : colored_point = <obj>

p'#get_x, p'#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

let get_succ_x p = p#get_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

get_succ_x p + get_succ_x p';;
- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
val set_x : < set_x : 'a; .. > -> 'a = <fun>

let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>

3.9 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.

48

Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is a pseudo value identifier that can
only be used to invoke a super-class method, as in super#print.

class printable_colored_point y ¢ =
object (self)
val ¢ = ¢
method color = c
inherit printable_point y as super
method! print =
print_string "(";
super#print;
print_string ", ";
print_string (self#color);
print_string ")"
end;;
class printable_colored_point :
int ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

let p' = new printable_colored_point 17 "red";;
new point at (10, red)
val p' : printable_colored_point = <obj>

p'#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

Note that for clarity’s sake, the method print is explicitly marked as overriding another defi-
nition by annotating the method keyword with an exclamation mark !. If the method print were
not overriding the print method of printable_point, the compiler would raise an error

object
method! m = ()
end;;

Error: The method "m' has no previous definition
This explicit overriding annotation also works for val and inherit:

class another_printable_colored_point y c c' =

Chapter 3. Objects in OCaml 49

object (self)
inherit printable_point y
inherit! printable_colored_point y c
wval! ¢ = c'
end;;
class another_printable_colored_point :
int ->
string ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

3.10 Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

class oref x_init
object
val mutable x = x_init
method get = x
method set y = x <- y
__end;;
Error: Some type variables are unbound in this type:
class oref :

#
#
#
#

'a =>
object
val mutable x : 'a
method get : 'a
method set : 'a -> unit
end

The method get has type 'a where 'a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus either the class should be parametric, or the method type should
be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

class oref (x_init:int) =

object

val mutable x = x_init
method get = x

method set y = x <- y
end;;

class oref :

50
int ->
object val mutable x : int method get : int method set : int -> unit end
Note that since immediate objects do not define a class type, they have no such restriction.

let new_oref x_init =
object

val mutable x = x_init

method get = x

method set y = x <- y

end;;

val new_oref : 'a -> < get : 'a; set : 'a -> unit > = <fun>

On the other hand, a class for polymorphic references must explicitly list the type parameters in
its declaration. Class type parameters are listed between [and]. The type parameters must also
be bound somewhere in the class body by a type constraint.

class ['al oref x_init =
object
val mutable x = (x_init : 'a)
method get = x
method set y = x <- y
end;;
class ['a] oref :
'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end

#
#
#
#

let r = new oref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

class ['a] oref_succ (x_init:'a) =
object
val mutable x = x_init + 1
method get = x
method set y = x <- y
end;;
class ['a] oref_succ :
'a =>
object
constraint 'a = int
val mutable x : int
method get : int
method set : int -> unit
end

#
#
#
#

Let us consider a more complex example: define a circle, whose center may be any kind of point. We
put an additional type constraint in method move, since no free variables must remain unaccounted
for by the class type parameters.

Chapter 3. Objects in OCaml 51

class ['a] circle (c : 'a) =
object
val mutable center = c
method center = center
method set_center ¢ = center <- ¢
method move = (center#move : int -> unit)
end;;
class ['a] circle :
1a ->
object
constraint 'a = < move : int -> unit; .. >
val mutable center : 'a
method center : 'a
method move : int -> unit
method set_center : 'a -> unit
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below.
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.

class ['a] circle (c : 'a) =
object
constraint 'a = #point
val mutable center = c
method center = center
method set_center ¢ = center <- ¢
method move = center#move
end; ;
class ['a] circle :
'a =>
object
constraint 'a = #point
val mutable center : 'a
method center : 'a

method move : int -> unit
method set_center : 'a -> unit
end

The class colored_circle is a specialized version of class circle that requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written between [and].

class ['a] colored_circle c =
object

52

constraint 'a = #colored_point
inherit ['al circle c¢
method color = center#color
end;;
class ['a] colored_circle :
'a =>
object
constraint 'a = #colored_point
val mutable center : 'a
method center : 'a

method color : string

method move : int -> unit

method set_center : 'a -> unit
end

3.11 Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow
polymorphism of method use.
A classical example is defining an iterator.

List.fold_left;;
- :('a->"'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

class ['a] intlist (1 : int list) =

object

method empty = (1 = [])

method fold f (accu : 'a) = List.fold_left f accu 1
end;;

class ['a] intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end
At first look, we seem to have a polymorphic iterator, however this does not work in practice.

let 1 = new intlist [1; 2; 3];;

val 1 : '_weak2 intlist = <obj>

1#fold (fun x y —> x+y) 0;;

- : int =6

155

- : int intlist = <obj>

1#fold (fun s x -> s ~ string_of_int x =~ " ") ""

Error: This expression has type int but an expression was expected of type
string

Our iterator works, as shows its first use for summation. However, since objects themselves are not
polymorphic (only their constructors are), using the fold method fixes its type for this individual
object. Our next attempt to use it as a string iterator fails.

Chapter 3. Objects in OCaml 53

The problem here is that quantification was wrongly located: it is not the class we want to be
polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic type
in the method definition.

class intlist (1 : int list) =

object

method empty = (1 = [])

method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a =
fun f accu -> List.fold_left f accu l

end;;

class intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

let 1 = new intlist [1; 2; 3];;
val 1 : intlist = <obj>

1#fold (fun x y —> x+y) 0;;

- : int =6

1#fold (fun s x -> s ~ string_of_int x =~ " ") "";;
- : string = "1 23"

As you can see in the class type shown by the compiler, while polymorphic method types must be
fully explicit in class definitions (appearing immediately after the method name), quantified type
variables can be left implicit in class descriptions. Why require types to be explicit? The problem
is that (int -> int -> int) -> int -> int would also be a valid type for fold, and it happens
to be incompatible with the polymorphic type we gave (automatic instantiation only works for
toplevel types variables, not for inner quantifiers, where it becomes an undecidable problem.) So
the compiler cannot choose between those two types, and must be helped.

However, the type can be completely omitted in the class definition if it is already known,
through inheritance or type constraints on self. Here is an example of method overriding.

class intlist_rev 1 =

object

inherit intlist 1

method! fold f accu = List.fold_left f accu (List.rev 1)
end;;

The following idiom separates description and definition.

class type ['al iterator =
object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;

#
#
class intlist 1 =

object (self : int #iterator)

method empty = (1 = [])

method fold f accu = List.fold_left f accu 1
end; ;

54

Note here the (self : int #iterator) idiom, which ensures that this object implements the
interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should
be aware of some limitations of type inference. Namely, a polymorphic method can only be called
if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic,
and given an incompatible type.

let sum 1lst = lst#fold (fun x y -> x+y) 0;;
val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>

sum 1 ;;
Error: This expression has type intlist
but an expression was expected of type
< fold : (int -> int -> int) -> int -> 'a; .. >
Types for method fold are incompatible

The workaround is easy: you should put a type constraint on the parameter.

let sum (lst : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurences of quantified
variables are required.

let sum 1lst =
(st : < fold : 'a. (‘a -> _ -> 'a) -> 'a -> 'a; .. >)#fold (+) 0;;
val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>

Another use of polymorphic methods is to allow some form of implicit subtyping in method
arguments. We have already seen in section 3.8 how some functions may be polymorphic in the
class of their argument. This can be extended to methods.

class type pointO = object method get_x : int end;;
class type point0O = object method get_x : int end

class distance_point x =

object
inherit point x
method distance : 'a. (#pointO as 'a) -> int =
fun other -> abs (other#get_x - x)
end; ;
class distance_point :
int ->
object

val mutable x : int
method distance : #pointO -> int
method get_offset : int
method get_x : int
method move : int -> unit
end

let p = new distance_point 3 in

Chapter 3. Objects in OCaml 55

(p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
- : int * int = (5, 2)

Note here the special syntax (#pointO as 'a) we have to use to quantify the extensible part
of #point0. As for the variable binder, it can be omitted in class specifications. If you want
polymorphism inside object field it must be quantified independently.

class multi_poly =

object
method m1 : 'a. (< nl1 : 'b. 'b => 'b; .. > as 'a) -> _ =
fun o -> o#nl true, o#nl "hello"
method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) -> 'b > _ =
fun o x > o#n2 x
end;;
class multi_poly :
object
method m1 : < nl : 'b. 'b => 'b; .. > -> bool * string
method m2 : < n2 : 'b -> bool; .. > -> 'b => bool
end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2,
the argument of n2 and x must have the same type, which is quantified at the same level as 'a.

3.12 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>

let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

let 1 = [p; (colored_point_to_point q)l;;
val 1 : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t' only if t is a subtype of t'. For instance,
a point cannot be seen as a colored point.

(p : point :> colored_point);;
Error: Type point = < get_offset : int; get_x : int; move : int -> unit >
is not a subtype of
colored_point =
< color : string; get_offset : int; get_x : int;
move : int -> unit >

56

Indeed, narrowing coercions without runtime checks would be unsafe. Runtime type checks might
raise exceptions, and they would require the presence of type information at runtime, which is
not the case in the OCaml system. For these reasons, there is no such operation available in the
language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of
colored points could have been defined directly, without inheriting from the class of points; the
type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can often be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is
not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:

class cO = object method m = {< >} method n = 0 end;;

class cO : object ('a) method m : 'a method n : int end

The object type cO is an abbreviation for <m : 'a; n : int> as 'a. Consider now the type
declaration:

class type cl = object method m : cl end;;

class type cl1 = object method m : c1 end

The object type c1 is an abbreviation for the type <m : 'a> as 'a. The coercion from an object
of type c0 to an object of type c1 is correct:

fun (x:c0) —> (x : cO > cl);;
- : c0 -> c1 = <fun>

However, the domain of the coercion cannot always be omitted. In that case, the solution is to use
the explicit form. Sometimes, a change in the class-type definition can also solve the problem

class type c2 = object ('a) method m : 'a end;;
class type c2 = object ('a) method m : 'a end

fun (x:c0) -> (x :> c2);;
- : ¢c0 -> c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object
type (same method names and types). Yet, when the domain of a coercion is left implicit and its
co-domain is an abbreviation of a known class type, then the class type, rather than the object
type, is used to derive the coercion function. This allows leaving the domain implicit in most cases
when coercing form a subclass to its superclass. The type of a coercion can always be seen as
below:

let to_cl x = (x :> cl);;
val to_cl : <m : #cl; .. > -> c1 = <fun>

let to_c2 x = (x :> c2);;
val to_c2 : #c2 -> c2 = <fun>

Chapter 3. Objects in OCaml 57

Note the difference between these two coercions: in the case of to_c2, the type
#c2 = <m : 'a; .. > as 'a is polymorphically recursive (according to the explicit re-
cursion in the class type of c2); hence the success of applying this coercion to an object of
class c0. On the other hand, in the first case, c1 was only expanded and unrolled twice to
obtain <m : <m : cl; .. >; .. > (remember #c1 = < m : cl; .. >), without introducing
recursion. You may also note that the type of to_c2 is #c2 -> c2 while the type of to_c1 is
more general than #c1 -> c1. This is not always true, since there are class types for which some
instances of #c are not subtypes of c, as explained in section 3.16. Yet, for parameterless classes
the coercion (_ :> c¢) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class ¢ while defining
class c. The problem is due to the type abbreviation not being completely defined yet, and so its
subtypes are not clearly known. Then, a coercion (_ :> c¢) or (_ : #c :> c) is taken to be the
identity function, as in

function x -> (x :> 'a);;
- : 'a -> 'a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type ¢ (a closed object type is an object type without ellipsis). This would
constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.

class ¢ = object method m = 1 end

and d = object (self)

inherit c

method n = 2

method as_c = (self :> c)

end;;

Error: This expression cannot be coerced to type ¢ = < m : int >; it has type

<as_c : ¢c; m : int; n : int; .. >
but is here used with type c
Self type cannot escape its class

However, the most common instance of this problem, coercing self to its current class, is detected
as a special case by the type checker, and properly typed.

class ¢ = object (self) method m = (self :> c) end;;
class ¢ : object method m : ¢ end

This allows the following idiom, keeping a list of all objects belonging to a class or its subclasses:

let all_c = ref []1;;
val all_c : '_weak3 list ref = {contents = []}

class ¢ (m : int) =
object (self)

method m = m
initializer all_c := (self :> c) :: l!all_c
end;;

class ¢ : int -> object method m : int end

58

This idiom can in turn be used to retrieve an object whose type has been weakened:

let rec lookup_obj obj = function [] -> raise Not_found

| obj' :: 1 —>
if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj 1 ;;
val lookup_obj : < .. > => (< .. > as 'a) list -> 'a = <fun>

let lookup_c obj = lookup_obj obj !'all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of c, due to the use of a reference; we have
succeeded in getting back an object of type c.

The previous coercion problem can often be avoided by first defining the abbreviation, using a

class type:

class type c' = object method m : int end;;
class type c¢' = object method m : int end

class ¢ : c' = object method m = 1 end

and d = object (self)

inherit c

method n = 2

method as_c = (self :> c')

end;;

class ¢ : c'

and d : object method as_c : c¢' method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously forces all methods
of ¢ to have the same type as the methods of c'.

class virtual c' = object method virtual m : int end;;
class virtual c' : object method virtual m : int end

class ¢ = object (self) inherit c' method m = 1 end;;
class ¢ : object method m : int end

One could think of defining the type abbreviation directly:
type ¢' = <m : int>;;

However, the abbreviation #c' cannot be defined directly in a similar way. It can only be defined
by a class or a class-type definition. This is because a #-abbreviation carries an implicit anonymous
variable .. that cannot be explicitly named. The closer you get to it is:

type 'a c'_class = 'a constraint 'a =< m : int; .. >;;

with an extra type variable capturing the open object type.

Chapter 3. Objects in OCaml 59

3.13 Functional objects

It is possible to write a version of class point without assignments on the instance variables.
The override construct {< ... >} returns a copy of “self” (that is, the current object), possibly
changing the value of some instance variables.

class functional_point y
object
val x = y
method get_x = x
method move d = {< x
end;;
class functional_point :
int ->
object ('a) val x : int method get_x : int method move : int -> 'a end

x +d >}

let p = new functional_point 7;;
val p : functional_point = <obj>

pHget_x;;
- :int =7

(p#move 3)#get_x;;

- : int = 10
pHget_x;;
- : int =7

Note that the type abbreviation functional_point is recursive, which can be seen in the class
type of functional_point: the type of self is 'a and 'a appears inside the type of the method
move.

The above definition of functional_point is not equivalent to the following:

class bad_functional_point y =
object
val x = y
method get_x = x
method move d = new bad_functional_ point (x+d)
end;;
class bad_functional_point :
int ->
object

val x : int

method get_x : int

method move : int -> bad_functional_point
end

While objects of either class will behave the same, objects of their subclasses will be different. In a
subclass of bad_functional_point, the method move will keep returning an object of the parent
class. On the contrary, in a subclass of functional_point, the method move will return an object
of the subclass.

60

Functional update is often used in conjunction with binary methods as illustrated in section
6.2.1.

3.14 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo . copy
makes a shallow copy of an object. That is, it returns a new object that has the same methods
and instance variables as its argument. The instance variables are copied but their contents are
shared. Assigning a new value to an instance variable of the copy (using a method call) will not
affect instance variables of the original, and conversely. A deeper assignment (for example if the
instance variable is a reference cell) will of course affect both the original and the copy.

The type of Do.copy is the following:

O0o.copy;;
- : (< .. > as 'a) -> 'a = <fun>

The keyword as in that type binds the type variable 'a to the object type < .. >. Therefore,
Oo.copy takes an object with any methods (represented by the ellipsis), and returns an object
of the same type. The type of Oo.copy is different from type < .. > -> < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

let p = new point 5;;
val p : point = <obj>

let q = Oo.copy p;;
val q : point = <obj>

q#tmove 7; (p#get_x, q#tget_x);;
- : int * int = (5, 12)

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are
equal if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val q : point = <obj>

#p =4 P =P;;

- : bool * bool = (false, true)

Other generic comparisons such as (<, <=, ...) can also be used on objects. The relation < defines an

unspecified but strict ordering on objects. The ordering relationship between two objects is fixed

once for all after the two objects have been created and it is not affected by mutation of fields.
Cloning and override have a non empty intersection. They are interchangeable when used within

an object and without overriding any field:

class copy =
object
method copy = {< >}

Chapter 3. Objects in OCaml 61

end;;
class copy : object ('a) method copy : 'a end

class copy =

object (self)

method copy = 0o.copy self

end;;

class copy : object ('a) method copy : 'a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be
used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup =
object (self : 'mytype)
val mutable copy = None
method save = copy <- Some {< copy = None >}
method restore = match copy with Some x -> x | None -> self
end;;
class backup :
object ('a)
val mutable copy : 'a option
method restore : 'a
method save : unit
end

The above definition will only backup one level. The backup facility can be added to any class by
using multiple inheritance.

class ['al backup_ref x = object inherit ['a] oref x inherit backup end;;
class ['al backup_ref :
'a =>
object ('b)
val mutable copy : 'b option

val mutable x : 'a

method get : 'a

method restore : 'b

method save : unit

method set : 'a —-> unit
end

let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 1; 1; 1]

We can define a variant of backup that retains all copies. (We also add a method clear to manually
erase all copies.)

62

class backup =
object (self : 'mytype)
val mutable copy = None
method save = copy <- Some {< >}
method restore = match copy with Some x -> x | None -> self
method clear = copy <- None
end;;
class backup :
object ('a)
val mutable copy : 'a option
method clear : unit
method restore : 'a
method save : unit
end

class ['al backup_ref x = object inherit ['al oref x inherit backup end;;
class ['al backup_ref :
'a ->
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method clear : unit
method get : 'a

method restore : 'b

method save : unit

method set : 'a -> unit
end

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 0; 0; 0]

3.15 Recursive classes
Recursive classes can be used to define objects whose types are mutually recursive.

class window =

object

val mutable top_widget = (None : widget option)
method top_widget = top_widget
end

and widget (w : window) =

object

val window = w

method window = window

end; ;

class window :

Chapter 3. Objects in OCaml 63

object
val mutable top_widget : widget option
method top_widget : widget option
end
and widget : window —-> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

3.16 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type 'a -> bool
where the type variable 'a is bound to the type of self. Therefore, #comparable expands to

< leq : 'a -> bool; .. > as 'a. We see here that the binder as also allows writing recursive
types.

class virtual comparable =

object (_ : 'a)

method virtual leq : 'a -> bool

end;;

class virtual comparable : object ('a) method virtual leq : 'a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. We have to use a type constraint on the
class parameter x because the primitive <= is a polymorphic function in OCaml. The inherit
clause ensures that the type of objects of this class is an instance of #comparable.

class money (x : float) =
object

inherit comparable
val repr = x
method value = repr
method leq p = repr <= p#value
end;;
class money :
float ->
object ('a)
val repr : float
method leq : 'a -> bool
method value : float
end

Note that the type money is not a subtype of type comparable, as the self type appears in con-
travariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m of
type comparable would allow a call to method leq on m with an argument that does not have a
method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

64

class money2 x =

object
inherit money x
method times k = {< repr = k *. repr >}
end;;
class money2 :
float ->
object ('a)

val repr : float
method leq : 'a —-> bool
method times : float -> 'a
method value : float

end

It is however possible to define functions that manipulate objects of type either money or money2:
the function min will return the minimum of any two objects whose type unifies with #comparable.
The type of min is not the same as #comparable -> #comparable -> #comparable, as the ab-
breviation #comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation
generates a new variable.

let min (x : #comparable) y =

if x#leq y then x else y;;
val min : (#comparable as 'a) -> 'a -> 'a = <fun>

This function can be applied to objects of type money or money?2.

(min (new money 1.3) (new money 3.1))#value;;
- : float = 1.3

(min (new money2 5.0) (new money2 3.14))#value;;
: float = 3.14

More examples of binary methods can be found in sections 6.2.1 and 6.2.3.

Note the use of override for method times. Writing new money2 (k *. repr) instead of
{< repr = k *. repr >} would not behave well with inheritance: in a subclass money3 of money?2
the times method would return an object of class money2 but not of class money3 as would be
expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x =
object (self : 'a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end;;
class money :
float ->

Chapter 3. Objects in OCaml 65

object ('a)
val repr : float
method leq : 'a —-> bool
method plus : 'a -> 'a
method print : unit
method times : float -> 'a
method value : float

end

3.17 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as soon as some binary method requires access to the representation of objects of the same
class (other than self).

class safe_money x =
object (self : 'a)
val repr = x
method print = print_float repr
method times k = {< repr = k *. x >}
end;;
class safe_money :
float ->
object ('a)
val repr : float
method print : unit
method times : float -> 'a
end

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

module type MONEY =
sig

type t

class ¢ : float ->

object ('a)

val repr : t

method value : t

method print : unit

method times : float -> 'a
method leq : 'a -> bool

method plus : 'a -> 'a

end

(=)
(=)

end;;

module Euro : MONEY =
struct
type t = float
class c x =
object (self : 'a)
val repr = x
method value

repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end

H OH HF OH OHF H OH HFH HH HEHE H

end;;

Another example of friend functions may be found in section 6.2.3. These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside the module.

Chapter 4

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in OCaml 3: labels, and polymorphic variants.

4.1 Labels

If you have a look at modules ending in Labels in the standard library, you will see that function
types have annotations you did not have in the functions you defined yourself.

+H+

ListLabels.map;;
- : f:('a -> 'b) -> 'a list -> 'b list = <fun>

+H+

Stringlabels.sub; ;
- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
allow more checking, and give more flexibility to function application. You can give such names to
arguments in your programs, by prefixing them with a tilde ~.

let £ "x "y =x - y;;
val f : x:int -> y:int -> int = <fun>
let x =3 and y = 2 in £ "x 7y;;

- : int =1

When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form “name:. This also applies when the argument is not a variable.

let £ "x:x1 "y:yl = x1 - yi;;
val f : x:int -> y:int -> int = <fun>

£ "x:3 Ty:2;;

- : int =1

67

68

Labels obey the same rules as other identifiers in OCaml, that is you cannot use a reserved
keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labels®, the absence
of label being interpreted as the empty label. This allows commuting arguments in applications.
One can also partially apply a function on any argument, creating a new function of the remaining
parameters.

let £ "x "y =x - y;;
val £ : x:int -> y:int -> int = <fun>

£ "y:2 "x:3;;
- : int =1

=+

ListLabels.fold_left;;
- : f:('a->'b -> 'a) -> init:'a -> 'b list -> 'a = <fun>

ListLabels.fold_left [1;2;3] ~init:0 ~“f:(+);;
- : int = 6

+H+

ListLabels.fold_left "init:0;;
- : f:(int -> 'a -> int) -> 'a list -> int = <fun>

If several arguments of a function bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

let hline "x:x1 "x:x2 7y = (x1, %2, y);;

val hline : x:'a -> x:'b -> y:'c -> 'a * 'b ¥ 'c = <fun>
hline "x:3 "y:2 "x:5;;

- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total (omitting all
optional arguments), labels may be omitted. In practice, many applications are total, so that labels
can often be omitted.

#f 3 2;;
- :int =1
ListLabels.map succ [1;2;3];;

: int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will
never be considered as totally applied.

ListLabels.fold_left (+) 0 [1;2;3];;
Error: This expression has type int -> int -> int
but an expression was expected of type 'a list

When a function is passed as an argument to a higher-order function, labels must match in
both types. Neither adding nor removing labels are allowed.

IThis correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexi-
bility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.

Chapter 4. Labels and variants 69

let h g =g "x:3 "y:2;;
val h : (x:int -> y:int -> 'a) -> 'a = <fun>
h f;;
- :int =1
#h (+) ;;
Error: This expression has type int -> int -> int
but an expression was expected of type x:int -> y:int -> 'a

Note that when you don’t need an argument, you can still use a wildcard pattern, but you must
prefix it with the label.

h (fun "x:_ "y -> y+1);;
- : int = 3

4.1.1 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional
parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also
prefixed by ? in the function type. Default values may be given for such optional parameters.

let bump 7(step = 1) x = x + step;;
val bump : 7step:int -> int -> int = <fun>

bump 2;;
- : int = 3
bump “step:3 2;;
- : int =5

A function taking some optional arguments must also take at least one non-optional argument.
The criterion for deciding whether an optional argument has been omitted is the non-labeled
application of an argument appearing after this optional argument in the function type. Note that
if that argument is labeled, you will only be able to eliminate optional arguments through the
special case for total applications.

let test ?7(x =0) ?(y=0) O ?(z=0) O = (x, 79, 2);;
val test : ?x:int -> ?y:int -> unit -> ?z:int -> unit -> int * int * int =
<fun>

HH*

test O3
- : ?z:int -> unit -> int * int * int = <fun>

test "x:2 O "z:3 O;;
: int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabeled ones, as long as they are
applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments
applied independently.

70

test "y:2 "x:3 O O;3;;
- : int * int * int = (3, 2, 0)

+H+

test () O “z:1 "y:2 "x:3;;
- : int * int * int = (3, 2, 1)
(test O) ~"z:1 ;;

Error: This expression has type int * int * int
This is not a function; it cannot be applied.

Here (test (O ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type 'a option = None | Some of 'a.
You can then provide different behaviors when an argument is present or not.

let bump 7step x =
match step with

| None —> x * 2
| Some y > x +y
#*55

val bump : ?step:int -> int -> int = <fun>

It may also be useful to relay an optional argument from a function call to another. This can
be done by prefixing the applied argument with ?. This question mark disables the wrapping of
optional argument in an option type.

let test2 7x 7y (O = test 7x 7y OO O;;
val test2 : 7x:int -> ?y:int -> unit -> int * int * int = <fun>

test2 7?x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following two examples.

let h' g =g "y:2 "x:3;;
val h' : (y:int -> x:int -> 'a) -> 'a = <fun>

#h' £ 53
Error: This expression has type x:int -> y:int -> int

but an expression was expected of type y:int -> x:int -> '

a

let bump_it bump x =
bump “step:2 x;;
val bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <fun>

bump_it bump 1 ;;
Error: This expression has type 7step:int -> int -> int
but an expression was expected of type step:int -> 'a -> 'b

Chapter 4. Labels and variants 71

The first case is simple: g is passed “y and then “x, but £ expects “x and then ~y. This is correctly
handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this
causes the above type clash. The simplest workaround is to apply formal parameters in a standard
order.

The second example is more subtle: while we intended the argument bump to be of type
?step:int -> int -> int, it is inferred as step:int -> int -> 'a. These two types being
incompatible (internally normal and optional arguments are different), a type error occurs when
applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of g or bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order, by looking only at how a function is applied. The strategy used by the compiler is to assume
that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the
argument bump.

let bump_it (bump : ?step:int -> int -> int) x =

bump “step:2 x;;

val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
bump_it bump 1;;

- : int = 3

In practice, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

let twice f (x : int) = £(f x);;
val twice : (int -> int) -> int -> int = <fun>

twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

4.1.3 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

e makes programs more readable,

e is easy to remember,

72

e when possible, allows useful partial applications.

We explain here the rules we applied when labeling OCaml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination
of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear from the function itself. The parameters are labeled with names reminding of their nature
or their role. The best labels combine nature and role. When this is not possible the role is to be
preferred, since the nature will often be given by the type itself. Obscure abbreviations should be
avoided.

ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list
UnixLabels.write : file_descr -> buf:bytes -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
ListLabels.iter2 : f:('a -> 'b => 'c) -> 'a list -> 'b list -> unit
When there is no preferable object, all arguments are labeled.

BytesLabels.blit
src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.
BytesLabels.create : int -> bytes

This principle also applies to functions of several arguments whose return type is a type variable,
as long as the role of each argument is not ambiguous. Labeling such functions may lead to
awkward error messages when one attempts to omit labels in an application, as we have seen with
ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

Label | Meaning

f: a function to be applied

pos: a position in a string, array or byte sequence
len: a length

buf: | a byte sequence or string used as buffer

src: the source of an operation

dst: the destination of an operation

init: | the initial value for an iterator

cmp: a comparison function, e.g. Pervasives.compare
mode: | an operation mode or a flag list

All these are only suggestions, but keep in mind that the choice of labels is essential for read-
ability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels should be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.

Chapter 4. Labels and variants 73

4.2 Polymorphic variants

Variants as presented in section 1.4 are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact that every constructor is assigned to a unique type when defined and used. Even if the same
name appears in the definition of multiple types, the constructor itself belongs to only one type.
Therefore, one cannot decide that a given constructor belongs to multiple types, or consider a value
of some type to belong to some other type with more constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character ~

["0On; "“0Off];;
: [> "0ff | "On] l1list = ["0On; ~Off]

“Number 1;;
- : [> “Number of int] = “Number 1
let f = function "On -> 1 | “0ff -> 0 | “Number n -> n;;

val f : [< “Number of int | “Off | “On] -> int = <fun>

List.map £ ["On; ~0ff];;
- : int list = [1; 0]

[>°0£ff | 0n] list means that to match this list, you should at least be able to match ~0ff and
“0On, without argument. [<*0On| 0ff | Number of int] means that £ may be applied to ~0ff, “0On
(both without argument), or ~Number n where n is an integer. The > and < inside the variant types
show that they may still be refined, either by defining more tags or by allowing less. As such, they
contain an implicit type variable. Because each of the variant types appears only once in the whole
type, their implicit type variables are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type an-
notations, one will most often describe fixed variant types, that is types that cannot be refined. This
is also the case for type abbreviations. Such types do not contain < or >, but just an enumeration
of the tags and their associated types, just like in a normal datatype definition.

type 'a vlist = [Nil | “Cons of 'a * 'a vlist];;
type 'a vlist = [“Cons of 'a * 'a vlist | "Nil]

let rec map £ : 'a vlist -> 'b vlist = function
| "Nil -> "Nil

| “Cons(a, 1) -> “Cons(f a, map f 1)

#55

val map : ('a -> 'b) -> 'a vlist -> 'b vlist = <fun>

74

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

let f = function A -> "C | "B -> "D | x -> x;;
val £ : ([> A | B | C| D] as 'a) -> 'a = <fun>
f "E;;

-:[>"A] 'B|] | D| E]="E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any
tag), we obtain the type [> “A | “B] rather than [< “A | “B] in a closed matching. Then, since
x is returned as is, input and return types are identical. The notation as 'a denotes such type
sharing. If we apply f to yet another tag “E, it gets added to the list.

let f1 = function A x > x =1 | "B -> true | “C -> false
let f2 = function A x -> x = "a" | B -> true ;;

val f1 : [< A of int | "B | “C] -> bool = <fun>

val f2 : [< A of string | "B] -> bool = <fun>

let £ x = f1 x && f2 x;;
val f : [< A of string & int | B] -> bool = <fun>

Here £1 and £2 both accept the variant tags ~A and B, but the argument of “A is int for £1 and
string for £2. In f’s type ~C, only accepted by f1, disappears, but both argument types appear
for A as int & string. This means that if we pass the variant tag ~A to £, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ~A, and ~B is the only
accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

type 'a wlist = ['Nil | “Cons of 'a * 'a wlist | “Smoc of 'a wlist * 'al;;
type 'a wlist = [“Cons of 'a * 'a wlist | "Nil | “Snoc of 'a wlist * 'a]

let wlist_of_vlist 1 = (1 : 'a vlist :> 'a wlist);;
val wlist_of_vlist : 'a vlist -> 'a wlist = <fun>

let open_vlist 1 = (1 : 'a vlist :> [> 'a vlist]);;
val open_vlist : 'a vlist -> [> 'a vlist] = <fun>

fun x > (x :> [TA|BI"C]);;
-:[<A| B|] ¢c]l]->1["A]| B| C] = <fun>

You may also selectively coerce values through pattern matching.

let split_cases = function

| "Nil | “Cons _ as x -> A x
| ~Snoc as x > B x

#

val split_cases :
[< “Cons of 'a | "Nil | “Snoc of 'b] ->
[> A of [> Cons of 'a | "Nil] | "B of [> “Snoc of 'b]] = <fun>

Chapter 4. Labels and variants 75

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms,
like incremental definition of functions.

let num x = "Num x

let evall eval (CNum x) = x

let rec eval x = evall eval x ;;

val num : 'a -> [> “Num of 'a] = <fun>

val evall : 'a -> [< “Num of 'b] -> 'b = <fun>
val eval : [< “Num of 'a] -> 'a = <fun>

let plus x y = “Plus(x,y)
let eval2 eval = function

| "Plus(x,y) -> eval x + eval y

| "Num _ as x -> evall eval x

let rec eval x = eval2 eval x ;;

val plus : 'a -> 'b -> [> “Plus of 'a * 'b] = <fun>

val eval2 : ('a -> int) -> [< “Num of int | “Plus of 'a * 'a] -> int = <fun>
val eval : ([< “Num of int | “Plus of 'a * 'a] as 'a) -> int = <fun>

To make this even more comfortable, you may use type definitions as abbreviations for or-
patterns. That is, if you have defined type myvariant = ["Tagl of int | “Tag2 of booll,
then the pattern #myvariant is equivalent to writing (*Tagl(_ : int) | “Tag2(_ : bool)).

Such abbreviations may be used alone,

let £ = function

| #myvariant -> "myvariant"

| “Tag3 -> "Tag3";;

val f : [< “Tagl of int | “Tag2 of bool | “Tag3] -> string = <fun>

or combined with with aliases.

let gl = function “Tagl _ -> "Tagl" | “Tag2 _ -> "Tag2";;
val g1 : [< "Tagl of 'a | Tag2 of 'b] -> string = <fun>

let g = function

| #myvariant as x -> gl x

| “Tag3 -> "Tag3";;

val g : [< "Tagl of int | “Tag2 of bool | “Tag3] -> string = <fun>

4.2.1 Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core
language variants, rather than replacing them.

The answer is twofold. One first aspect is that while being pretty efficient, the lack of static type
information allows for less optimizations, and makes polymorphic variants slightly heavier than core
language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker
type discipline. That is, core language variants do actually much more than ensuring type-safety,

76

they also check that you use only declared constructors, that all constructors present in a data-
structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic
variants. When you write a library, this is easy since you can describe exact types in interfaces,
but for simple programs you are probably better off with core language variants.

Beware also that some idioms make trivial errors very hard to find. For instance, the following
code is probably wrong but the compiler has no way to see it.

°B “Cl ;;

type abc = | |
‘B | C1]

A
type abc = ["A |
let £ = function
| “As -> "A"

| #abc -> "other" ;;
val £ : [< A | "4s | "B | *C] -> string = <fun>

let £ : abc -> string = f ;;
val £ : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

let £ : abc —-> string = function

| ﬂ > "An

| #abc -> "other" ;;

Error: This pattern matches values of type [? “As]
but a pattern was expected which matches values of type abc
The second variant type does not allow tag(s) “As

Chapter 5

Polymorphism and its limitations

This chapter covers more advanced questions related to the limitations of polymorphic functions and
types. There are some situations in OCaml where the type inferred by the type checker may be less
generic than expected. Such non-genericity can stem either from interactions between side-effect
and typing or the difficulties of implicit polymorphic recursion and higher-rank polymorphism.
This chapter details each of these situations and, if it is possible, how to recover genericity.

5.1 Weak polymorphism and mutation

5.1.1 Weakly polymorphic types

Maybe the most frequent examples of non-genericity derive from the interactions between polymor-
phic types and mutation. A simple example appears when typing the following expression

let store = ref None ;;
val store : '_weakl option ref = {contents = None}

Since the type of None is 'a option and the function ref has type 'b -> 'b ref, a natural
deduction for the type of store would be 'a option ref. However, the inferred type,
'_weakl option ref, is different. Type variables whose name starts with a _weak prefix like
' _weakl are weakly polymorphic type variables, sometimes shortened as weak type variables. A
weak type variable is a placeholder for a single type that is currently unknown. Once the specific
type t behind the placeholder type '_weakl is known, all occurrences of ' _weakl will be replaced
by t. For instance, we can define another option reference and store an int inside:

let another_store = ref None ;;
val another_store : '_weak2 option ref = {contents = Nonel}

another_store := Some O;

another_store ;;
- : int option ref = {contents = Some 0}

After storing an int inside another_store, the type of another_store has been updated from
' _weak2 option ref to int option ref. This distinction between weakly and generic polymor-
phic type variable protects OCaml programs from unsoundness and runtime errors. To understand

7

78

from where unsoundness might come, consider this simple function which swaps a value x with the
value stored inside a store reference, if there is such value:

let swap store x = match !store with

| None -> store := Some x; X
| Some y -> store := Some X; ¥;;
val swap : 'a option ref -> 'a -> 'a = <fun>

We can apply this function to our store

let one = swap store 1
let one_again = swap store 2

let two = swap store 3;;
val one : int =1

val one_again : int = 1

val two : int = 2

After these three swaps the stored value is 3. Everything is fine up to now. We can then try to
swap 3 with a more interesting value, for instance a function:

let error = swap store (fun x -> x);;
Error: This expression should not be a function, the expected type is
int

At this point, the type checker rightfully complains that it is not possible to swap an integer and a
function, and that an int should always be traded for another int. Furthermore, the type checker
prevents us to change manually the type of the value stored by store:

store := Some (fun x -> x);;
Error: This expression should not be a function, the expected type is
int

Indeed, looking at the type of store, we see that the weak type ' _weakl has been replaced by the
type int

store;;
- : int option ref = {contents = Some 3}

Therefore, after placing an int in store, we cannot use it to store any value other than an int.
More generally, weak types protect the program from undue mutation of values with a polymorphic
type.

Moreover, weak types cannot appear in the signature of toplevel modules: types must be known
at compilation time. Otherwise, different compilation units could replace the weak type with
different and incompatible types. For this reason, compiling the following small piece of code

let option_ref = ref None
yields a compilation error

Error: The type of this expression, '_weakl option ref,
contains type variables that cannot be generalized

Chapter 5. Polymorphism and its limitations 79

To solve this error, it is enough to add an explicit type annotation to specify the type at
declaration time:

let option_ref: int option ref = ref None

This is in any case a good practice for such global mutable variables. Otherwise, they will pick
out the type of first use. If there is a mistake at this point, this can result in confusing type errors
when later, correct uses are flagged as errors.

5.1.2 The value restriction

Identifying the exact context in which polymorphic types should be replaced by weak types in
a modular way is a difficult question. Indeed the type system must handle the possibility that
functions may hide persistent mutable states. For instance, the following function uses an internal
reference to implement a delayed identity function

let make_fake_id () =
let store = ref None in

fun x -> swap store x ;;
val make_fake_id : unit -> 'a -> 'a = <fun>

let fake_id = make_fake_id();;
val fake_id : '_weak3 -> '_weak3 = <fun>

It would be unsound to apply this fake_id function to values with different types. The function
fake_id is therefore rightfully assigned the type '_weak3 -> '_weak3 rather than 'a -> 'a. At
the same time, it ought to be possible to use a local mutable state without impacting the type of
a function.

To circumvent these dual difficulties, the type checker considers that any value returned by a
function might rely on persistent mutable states behind the scene and should be given a weak type.
This restriction on the type of mutable values and the results of function application is called the
value restriction. Note that this value restriction is conservative: there are situations where the
value restriction is too cautious and gives a weak type to a value that could be safely generalized
to a polymorphic type:

let not_id = (fun x -> x) (fun x -> x);;
val not_id : '_weak4 -> '_weak4 = <fun>

Quite often, this happens when defining function using higher order function. To avoid this problem,
a solution is to add an explicit argument to the function:

let id_again = fun x -> (fun x -> x) (fun x -> x) x;;
val id_again : 'a -> 'a = <fun>

With this argument, id_again is seen as a function definition by the type checker and can there-
fore be generalized. This kind of manipulation is called eta-expansion in lambda calculus and is
sometimes referred under this name.

80

5.1.3 The relaxed value restriction

There is another partial solution to the problem of unnecessary weak type, which is implemented
directly within the type checker. Briefly, it is possible to prove that weak types that only appear
as type parameters in covariant positions —also called positive positions— can be safely generalized
to polymorphic types. For instance, the type 'a 1list is covariant in 'a:

let £ O = [1;;
val f : unit -> 'a list = <fun>

let empty = £ O;;
val empty : 'a list = []

Remark that the type inferred for empty is 'a list and not '_weak5 list that should have
occurred with the value restriction since £ () is a function application.

The value restriction combined with this generalization for covariant type parameters is called
the relaxed value restriction.

5.1.4 Variance and value restriction

Variance describes how type constructors behave with respect to subtyping. Consider for instance
a pair of type x and xy with x a subtype of xy, denoted x :> xy:

type x=1["X 1;;
type x = ["X]

typexy=1[X1"Y1;;
type xy = ["X | "Y]

As x is a subtype of xy, we can convert a value of type x to a value of type xy:

let x:x = “X;;
val x : x = X

let x' = (x > xy);;
val x' : xy = X

Similarly, if we have a value of type x list, we can convert it to a value of type xy list, since we
could convert each element one by one:

let 1l:x list = ['X; “X1;;
val 1 : x list = ["X; ~X]

let 1' = (1 :> xy list);;
val 1' : xy list = [*X; "X]

In other words, x :> xy implies that x 1ist :> xy 1list, therefore the type constructor 'a list
is covariant (it preserves subtyping) in its parameter 'a.
Contrarily, if we have a function that can handle values of type xy

let f: xy -> unit = function
| "X >0

1Y > O35

val f : xy -> unit = <fun>

Chapter 5. Polymorphism and its limitations 81

it can also handle values of type x:

let £' = (f :> x -> unit);;
val f' : x -> unit = <fun>

Note that we can rewrite the type of £ and f£' as

type 'a proc = 'a -> unit

let f' = (f: xy proc :> x proc);;
type 'a proc = 'a -> unit

val f' : x proc = <fun>

In this case, we have x :> xy implies xy proc :> x proc. Notice that the second subtyping
relation reverse the order of x and xy: the type constructor 'a proc is contravariant in its parameter
'a. More generally, the function type constructor 'a -> 'b is covariant in its return type 'b and
contravariant in its argument type 'a.

A type constructor can also be invariant in some of its type parameters, neither covariant nor
contravariant. A typical example is a reference:

let x: x ref = ref “X;;
val x : x ref = {contents = "X}

If we were able to coerce x to the type xy ref as a variable xy, we could use xy to store the value
Y inside the reference and then use the x value to read this content as a value of type x, which
would break the type system.

More generally, as soon as a type variable appears in a position describing mutable state it
becomes invariant. As a corollary, covariant variables will never denote mutable locations and can
be safely generalized. For a better description, interested readers can consult the original article
by Jacques Garrigue on http://www.math.nagoya-u.ac. jp/~garrigue/papers/morepoly-long.
pdf

Together, the relaxed value restriction and type parameter covariance help to avoid
eta-expansion in many situations.

5.1.5 Abstract data types

Moreover, when the type definitions are exposed, the type checker is able to infer variance informa-
tion on its own and one can benefit from the relaxed value restriction even unknowingly. However,
this is not the case anymore when defining new abstract types. As an illustration, we can define a
module type collection as:

module type COLLECTION = sig

type 'a t

val empty: unit -> 'a t

end

module Implementation = struct

type 'at = 'a list

let empty O= []

end;;

module type COLLECTION = sig type 'a t val empty : unit -> 'a t end

http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf

82

module Implementation :
sig type 'a t = 'a list val empty : unit -> 'a list end

module List2: COLLECTION = Implementation;;
module List2 : COLLECTION

In this situation, when coercing the module List2 to the module type COLLECTION, the type
checker forgets that 'a List2.t was covariant in 'a. Consequently, the relaxed value restriction
does not apply anymore:

List2.empty O;;
- : '_weakb List2.t = <abstr>

To keep the relaxed value restriction, we need to declare the abstract type 'a COLLECTION.t
as covariant in 'a:

module type COLLECTION = sig
type +t'a t

val empty: unit -> 'a t

end

module List2: COLLECTION = Implementation;;
module type COLLECTION = sig type +'a t val empty : unit -> 'a t end
module List2 : COLLECTION

We then recover polymorphism:

List2.empty O;;
'a List2.t = <abstr>

5.2 Polymorphic recursion

The second major class of non-genericity is directly related to the problem of type inference for
polymorphic functions. In some circumstances, the type inferred by OCaml might be not general
enough to allow the definition of some recursive functions, in particular for recursive function acting
on non-regular algebraic data type.

With a regular polymorphic algebraic data type, the type parameters of the type constructor
are constant within the definition of the type. For instance, we can look at arbitrarily nested list
defined as:

type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list
let 1 = Nested[List [1]; Nested [List[2;3]]; Nested[Nested[]] 1;;
type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list
val 1 : int regular_nested =
Nested [List [1]; Nested [List [2; 3]]; Nested [Nested []]]

Note that the type constructor regular_nested always appears as 'a regular_nested in the
definition above, with the same parameter 'a. Equipped with this type, one can compute a maximal
depth with a classic recursive function

Chapter 5. Polymorphism and its limitations 83

let rec maximal_depth = function

| List _ -> 1

| Nested [1 -> 0

| Nested (a::q) -> 1 + max (maximal_depth a) (maximal_depth (Nested q));;
val maximal_depth : 'a regular_nested -> int = <fun>

Non-regular recursive algebraic data types correspond to polymorphic algebraic data types
whose parameter types vary between the left and right side of the type definition. For instance, it
might be interesting to define a datatype that ensures that all lists are nested at the same depth:

type 'a nested = List of 'a list | Nested of 'a list nested;;
type 'a nested = List of 'a list | Nested of 'a list nested

Intuitively, a value of type 'a nested is a list of list . .. of list of elements a with k nested list. We
can then adapt the maximal_depth function defined on regular_depth into a depth function that
computes this k. As a first try, we may define

let rec depth = function
| List _ > 1
| Nested n -> 1 + depth n;;
Error: This expression has type 'a list nested
but an expression was expected of type 'a nested

The type variable 'a occurs inside 'a list

The type error here comes from the fact that during the definition of depth, the type checker
first assigns to depth the type 'a -> 'b . When typing the pattern matching, 'a -> 'b becomes
'a nested -> 'b, then 'a nested -> int once the List branch is typed. However, when typing
the application depth n in the Nested branch, the type checker encounters a problem: depth n is
applied to 'a list nested, it must therefore have the type 'a 1list nested -> 'b. Unifying this
constraint with the previous one leads to the impossible constraint 'a 1list nested = 'a nested.
In other words, within its definition, the recursive function depth is applied to values of type 'a t
with different types 'a due to the non-regularity of the type constructor nested. This creates a
problem because the type checker had introduced a new type variable 'a only at the definition of
the function depth whereas, here, we need a different type variable for every application of the
function depth.

5.2.1 Explicitly polymorphic annotations

The solution of this conundrum is to use an explicitly polymorphic type annotation for the type
'a:

let rec depth: 'a. 'a nested -> int = function

| List _ > 1
| Nested n -> 1 + depth nj;;
val depth : 'a nested -> int = <fun>

depth (Nested(List [[7]1; [8] 1));;
- : int = 2

84

In the type of depth, 'a.'a nested -> int, the type variable 'a is universally quantified. In other
words, 'a.'a nested —-> int reads as “for all type 'a, depth maps 'a nested values to integers”.
Whereas the standard type 'a nested -> int can be interpreted as “let be a type variable 'a,
then depth maps 'a nested values to integers”. There are two major differences with these two
type expressions. First, the explicit polymorphic annotation indicates to the type checker that it
needs to introduce a new type variable every times the function depth is applied. This solves our
problem with the definition of the function depth.

Second, it also notifies the type checker that the type of the function should be polymorphic.
Indeed, without explicit polymorphic type annotation, the following type annotation is perfectly
valid

let sum: 'a -> 'b > 'c = funxy > x + y;;
val sum : int -> int -> int = <fun>

since 'a,'b and 'c denote type variables that may or may not be polymorphic. Whereas, it is an
error to unify an explicitly polymorphic type with a non-polymorphic type:

let sum: 'a 'b 'c. 'a > 'b > 'c=funxy -> x + y;;
Error: This definition has type int -> int -> int which is less general than
'a 'b 'c. 'a->'b > 'c

!

An important remark here is that it is not needed to explicit fully the type of depth: it is
sufficient to add annotations only for the universally quantified type variables:

let rec depth: 'a. 'a nested -> _ = function
| List _ -> 1

| Nested n -> 1 + depth nj;;

val depth : 'a nested -> int = <fun>

depth (Nested(List [[71; [8] 1));;
- : int = 2

5.2.2 More examples

With explicit polymorphic annotations, it becomes possible to implement any recursive function
that depends only on the structure of the nested lists and not on the type of the elements. For
instance, a more complex example would be to compute the total number of elements of the nested
lists:

let len nested =

let map_and_sum f = List.fold_left (fun acc x -> acc + £ x) 0 in
let rec len: 'a. ('a list -> int) -> 'a nested -> int =

fun nested_len n ->

match n with

| List 1 -> nested_len 1

| Nested n -> len (map_and_sum nested_len) n

in

len List.length nested;;

val len : 'a nested -> int = <fun>

Chapter 5. Polymorphism and its limitations 85

len (Nested(Nested(List [[[1;2]; [31 1; [[0; [41; [5;6;711; C[I1 1)));;
- : int =7

Similarly, it may be necessary to use more than one explicitly polymorphic type variables, like
for computing the nested list of list lengths of the nested list:

let shape n =

let rec shape: 'a 'b. ('a nested -> int nested) —>

('b 1list list -> 'a list) -> 'b nested -> int nested

= fun nest nested_shape ->

function

| List 1 -> raise

(Invalid_argument "shape requires nested_list of depth greater than 1")
| Nested (List 1) -> nest @@ List (nested_shape 1)

| Nested n ->

let nested_shape = List.map nested_shape in

let nest x = nest (Nested x) in

shape nest nested_shape n in

shape (fun n -> n) (fun 1 -> List.map List.length 1) n;;

val shape : 'a nested -> int nested = <fun>

shape (Nested(Nested(List [[[1;2]; [3] 1; [[1; [4]; [5;6;711; [[11 1)));;
- : int nested = Nested (List [[2; 1]; [0; 1; 3]; [0]11)

5.3 Higher-rank polymorphic functions

Explicit polymorphic annotations are however not sufficient to cover all the cases where the inferred
type of a function is less general than expected. A similar problem arises when using polymorphic
functions as arguments of higher-order functions. For instance, we may want to compute the
average depth or length of two nested lists:

let average_depth x y = (depth x + depth y) / 2;;
val average_depth : 'a nested -> 'b nested -> int = <fun>

let average_len x y = (len x + len y) / 2;;
val average_len : 'a nested -> 'b nested -> int = <fun>

let one = average_len (List [2]) (List [[11);;
val one : int =1

It would be natural to factorize these two definitions as:

let average f x y= (£ x + £ y) / 2;;
val average : ('a -> int) -> 'a -> 'a -> int = <fun>

However, the type of average len is less generic than the type of average_len, since it requires
the type of the first and second argument to be the same:

average_len (List [2]) (List [[11);;
- :int =1

86

average len (List [2]) (List [[11);;
Error: This expression has type 'a list
but an expression was expected of type int

As previously with polymorphic recursion, the problem stems from the fact that type variables
are introduced only at the start of the let definitions. When we compute both £ x and £ y, the
type of x and y are unified together. To avoid this unification, we need to indicate to the type
checker that f is polymorphic in its first argument. In some sense, we would want average to have

type
val average: ('a. 'a nested -> int) -> 'a nested -> 'b nested -> int

Note that this syntax is not valid within OCaml: average has an universally quantified type 'a
inside the type of one of its argument whereas for polymorphic recursion the universally quantified
type was introduced before the rest of the type. This position of the universally quantified type
means that average is a second-rank polymorphic function. This kind of higher-rank functions is
not directly supported by OCaml: type inference for second-rank polymorphic function and beyond
is undecidable; therefore using this kind of higher-rank functions requires to handle manually these
universally quantified types.

In OCaml, there are two ways to introduce this kind of explicit universally quantified types:
universally quantified record fields,

type 'a nested_reduction = { f:'elt. 'elt nested -> 'a };;
type 'a nested_reduction = { f : 'elt. 'elt nested -> 'a; }

let boxed_len = { f = len };;
val boxed_len : int nested_reduction = {f = <fun>}

and universally quantified object methods:

let obj_len = object method f:'a. 'a nested -> 'b = len end;;
val obj_len : < f : 'a. 'a nested -> int > = <obj>

To solve our problem, we can therefore use either the record solution:

let average nsm x y = (nsm.f x + nsm.f y) / 2 ;;
val average : int nested_reduction -> 'a nested -> 'b nested -> int = <fun>

or the object one:
let average (obj:<f:'a. 'a nested -> _ >) x y = (obj#f x + obj#f y) / 2 ;;

val average : < f : 'a. 'a nested -> int > -> 'b nested -> 'c nested -> int =
<fun>

Chapter 6

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern known as virtual types through the example of window managers.

6.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter 3.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

let zero = euro O.;;
val zero : Euro.c = <obj>

let neg x = x#times (-1.);;
val neg : < times : float -> 'a; .. > -> 'a = <fun>

class account =
object
val mutable balance = zero
method balance = balance
method deposit x = balance <- balance # plus x
method withdraw x =
if x#leq balance then (balance <- balance # plus (neg x); x) else zero
end;;
class account :
object

87

88

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests =
object (self)
inherit account
method private interest = self # deposit (self # balance # times 0.03)
end;;
class account_with_interests :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the
account.

We should soon fix a bug in the current definition: the deposit method can be used for with-
drawing money by depositing negative amounts. We can fix this directly:

class safe_account =

object
inherit account
method deposit x = if zero#leq x then balance <- balance#plus x
end;;
class safe_account :
object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

However, the bug might be fixed more safely by the following definition:

class safe_account =

object

inherit account as unsafe
method deposit x =

Chapter 6. Advanced examples with classes and modules 89

if zero#leq x then unsafe # deposit x
else raise (Invalid_argument "deposit")
end;;
class safe_account :

object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

In particular, this does not require the knowledge of the implementation of the method deposit.
To keep track of operations, we extend the class with a mutable field history and a private
method trace to add an operation in the log. Then each method to be traced is redefined.

type 'a operation = Deposit of 'a | Retrieval of 'a;;
type 'a operation = Deposit of 'a | Retrieval of 'a

class account_with_history =
object (self)

inherit safe_account as super
val mutable history = []
method private trace x = history <- x :: history
method deposit x = self#trace (Deposit x); super#deposit x
method withdraw x = self#trace (Retrieval x); super#withdraw x
method history = List.rev history
end;;
class account_with_history :
object

val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c —-> unit
method history : Euro.c operation list
method private trace : Euro.c operation —> unit
method withdraw : Euro.c -> Euro.c
end

One may wish to open an account and simultaneously deposit some initial amount. Although the
initial implementation did not address this requirement, it can be achieved by using an initializer.

class account_with_deposit x =

object
inherit account_with_history
initializer balance <- x
end;;
class account_with_deposit :
Euro.c ->
object

val mutable balance : Euro.c

90

val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c

end

A better alternative is:

class account_with_deposit x =
object (self)

inherit account_with_history
initializer self#deposit x
end; ;

class account_with_deposit :

Euro.c —->

object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c

end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks
and from the trace. Let’s test it:

let ccp = new account_with_deposit (euro 100.) in
let _balance = ccp#withdraw (euro 50.) in
ccp#history;;

- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

let close c = c#withdraw c#balance;;
val close : < balance : 'a; withdraw : 'a -> 'b; .. > -> 'b = <fun>

Of course, this applies to all sorts of accounts.
Finally, we gather several versions of the account into a module Account abstracted over some
currency.

let today () = (01,01,2000) (* an approximation *)
module Account (M:MONEY) =

struct

type m = M.c

let m = new M.c

let zero = m O.

Chapter 6. Advanced examples with classes and modules

class bank =
object (self)
val mutable balance = zero
method balance = balance
val mutable history = []
method private trace x = history <- x::history
method deposit x =
self#trace (Deposit x);
if zero#leq x then balance <- balance # plus x
else raise (Invalid_argument "deposit")
method withdraw x =
if x#leq balance then

else zero
method history = List.rev history
end
class type client_view =
object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
end
class virtual check_client x =
let y = if (m 100.)#leq x then x
else raise (Failure "Insufficient initial deposit") in
object (self)
initializer self#deposit y
method virtual deposit: m -> unit
end
module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit check_client x
end
let discount x =
let ¢ = new account x in
if today() < (1998,10,30) then c # deposit (m 100.); c
end

H OHF H OH OHF OH OH OHF H HHF H HH HEHHHHFHHHFHHHFHHEHHHEHHEHEH HEHH HHF H K H

end;;

(balance <- balance # plus (neg x); self#trace (Retrieval x); x)

91

This shows the use of modules to group several class definitions that can in fact be thought of as
a single unit. This unit would be provided by a bank for both internal and external