Net.Data Reference

<|II

Net.Data Reference

<|II

Note

Be sure to read the information in LAppendix C_Natices” an page 221 before using this information and the product it

supports.

Fourth Edition (June 1998)

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface

About Net.Data

About This Book . .
Who Should Read Th|s Book .
About Examples in This Book .
How to Read the Syntax Diagrams .

Chapter 1. Net.Data Macro Language Constructs
Net.Data Macro File Syntax .
Common Syntax Elements .
Variable Name.
Variable Reference .
Strings
Macro Language Constructs
Comment Block .
DEFINE Block or Statement
ENVVAR Statement.
EXEC Block or Statement
FUNCTION Block
Function Call (@)
HTML Block
IF Block .
INCLUDE Statement
INCLUDE_URL Statement
LIST Statement
MACRO_FUNCTION Block
MESSAGE Block.
REPORT Block
ROW Block .
TABLE Statement
WHILE Block .

Chapter 2. Variables

User-defined Variables.
Conditional Variables
Environment Variables.
Executable Variables
Hidden Variables .
List Variables .
Table Variables

Net.Data Table Processing Vanables
Nn . .
NLIST. .
NUM_COLUMNS
NUM_ROWS .
ROW_NUM.
TOTAL_ROWS
V_columnName .
VLIST .
Vn

Net.Data Report Vanables
ALIGN. .
DTW_DEFAULT _| REPORT .

© Copyright IBM Corp. 1997, 1998

Vii
Vii
Vii
viii
viii
viii

oO~NOOahrbS~DdpRpR

QOO AR BDBWWWWNNNERE
ANONNOOANOANOO MW

57
58
58
59
59
61
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

DTW_HTML_TABLE
RPT_MAX_ROWS .
START_ROW_NUM.

Net.Data Language Environment Varlables .

DATABASE .

DB_CASE .

DB2PLAN

DB2SSID . . .

DTW_APPLET . ALTTEXT

DTW_EDIT_CODES

DTW_MBMODE .

DTW_SAVE_TABLE_IN

DTW_SET TOTAL _ROWS .

LOCATION .

LOGIN

NULL _RPT | FIELD

PASSWORD

SHOWSQL .

SQL_STATE

TRANSACTION SCOPE
Net.Data Miscellaneous Variables

DTW_CURRENT_FILENAME . . .

DTW_CURRENT_LAST_MODIFIED.

DTW_DEFAULT MESSAGE

DTW_LOG_LEVEL .

DTW_MACRO_FILENAME . .

DTW_MACRO_LAST_MODIFIED

DTW_MP_PATH .

DTW_MP_VERSION

DTW_PRINT_HEADER

DTW_REMOVE_WS

RETURN_CODE.

Chapter 3. Net.Data Built-in Functions
Function Names . .
Input and Output Parameters .
Function Result Formatting .
Function Parameter Rules
General Functions
DTW_ADDQUOTE .
DTW_CACHE_PAGE .
DTW_DATE
DTW_EXIT. . . .
DTW_GETCOOKIE .
DTW_GETENV
DTW_GETINIDATA .
DTW_HTMLENCODE .
DTW_QHTMLENCODE
DTW_SENDMAIL .
DTW_SETCOOKIE .
DTW_SETENV
DTW_TIME.
DTW_URLESCSEQ.
Math Functions
DTW_ADD .
DTW_DIVIDE .

iV Net.Data Reference

76
77
78
81
82
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108
. 109
. 110

111
111
111
. 112
. 112
. 112
. 114
. 116
. 119
. 120
. 121
. 123
. 124
. 125
. 127
. 128
. 132
. 135
. 136
. 137
. 139
. 140
. 141

DTW_DIVREM
DTW_FORMAT
DTW_INTDIV . .
DTW_MULTIPLY .
DTW_POWER.
DTW_SUBTRACT
String Functions .
DTW_ASSIGN.
DTW_CONCAT
DTW_DELSTR
DTW_INSERT.
DTW_LASTPOS .
DTW_LENGTH
DTW_LOWERCASE
DTW_POS .
DTW_REVERSE.
DTW_STRIP
DTW_SUBSTR
DTW_TRANSLATE .
DTW_UPPERCASE.
Word Functions .
DTW_DELWORD
DTW_SUBWORD
DTW_WORD .
DTW_WORDINDEX
DTW_WORDLENGTH.
DTW_WORDPOS
DTW_WORDS
Table Functions .
DTW_TB_COLS .
DTW_TB_DLIST .
DTW_TB_DUMPH .
DTW_TB_DUMPV .
DTW_TB_GETN .
DTW_TB GETV
DTW_TB_HTMLENCODE

DTW_TB_INPUT_CHECKBOX

DTW_TB_INPUT_RADIO.
DTW_TB_INPUT_TEXT .
DTW_TB_LIST
DTW_TB_ROWS.
DTW_TB_SELECT .
DTW_TB_TABLE.
DTW_TB_TEXTAREA .
Flat File Interface Functions.

Flat File Interface Delimiters.
Flat File Interface Functions.

DTWF_APPEND .
DTWF_CLOSE
DTWF_DELETE .
DTWF_INSERT .
DTWF_OPEN .
DTWF_READ .
DTWF_REMOVE.
DTWF_SEARCH .
DTWF_UPDATE .

. 142
. 143
. 146
. 147
. 148
. 149
. 150
. 151
. 152
. 153
. 154
. 156
. 157
. 158
. 159
. 160
. 161
. 162
. 163
. 165
. 166
. 167
. 168
. 169
. 170
171
. 172
. 173
. 174
. 175
. 176
. 178
. 179
. 180
. 181
. 182
. 183
. 184
. 185
. 187
. 188
. 189
. 190
. 192
. 193
. 193
. 193
. 195
. 197
. 198
. 200
. 202
. 203
. 205
. 206
. 208

Contents

\Y

Vi

Net.Data Reference

DTWF_WRITE

Web Registry Functions .
DTWR_ADDENTRY
DTWR_CLEARREG
DTWR_CREATEREG .
DTWR_DELENTRY.
DTWR_DELREG.
DTWR_LISTREG
DTWR_LISTSUB.
DTWR_RTVENTRY .
DTWR_UPDATEENTRY .

Appendix A. DB2 WWW Connection
EXEC_SQL. Co
HTML_INPUT .

HTML_REPORT .

SQL .

SQL_MESSAGE .

SQL_REPORT

SQL_CODE

Appendix B. Net.Data Operating System Reference

Appendix C. Notices
Trademarks.

Glossary

Index .

. 210
. 212
. 213
. 214
. 215
. 216
. 217
. 218
. 219
. 220
. 221

. 223
. 223
. 223
. 223
. 223
. 224
. 224
. 224

. 225

. 231
. 232

. 233

. 235

Preface

Thank you for selecting Net.Data Version 2, IBM’s development tools for creating
dynamic Web pages! With Net.Data you can rapidly develop Web pages with a
dynamic content by incorporating data from a variety of data sources and by using
the power of programming languages you already know.

Net.Data Version 2 provides significantly improved performance along with new
features that give you the power to build and deploy your Internet business
solutions.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSSs),
including DB2, IMS, and ODBC-enabled databases, and using applications written
in programming languages such as Java, JavaScript, Perl, C, C++, and REXX.

You can think of Net.Data as a macro processor that executes as middleware on a
Web server. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content based
on input from the user, the current state of your databases, existing business logic,
and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape or Internet Explorer, to a Web server that forwards the request to
Net.Data for execution. Net.Data locates and executes the macro, and builds a Web
page that it customizes based on functions that you write. These functions can:

* Encapsulate business logic within Perl scripts, C and C++ applications, or REXX
programs

* Access databases such as DB2

Net.Data supports industry-standard interfaces such as HyperText Transfer Protocol
(HTTP) and Common Gateway Interface (CGI). HTTP is used between the browser
and the Web server, and CGl is used between the Web server and Net.Data. This
lets you select your favorite browser or web server for use with Net.Data. Net.Data
also supports FastCGIl and the major Web server APIs on multiple operating
systems.

About This Book

This book explains the syntax and usage of Net.Data language constructs,
variables, and functions in general.

This book might refer to products or features that are announced, but not yet
available.

More information, sample Net.Data macros, demos, and the latest copy of this
book, is available from the following World Wide Web sites:

* http://www.software.ibm.com/data/net.data
* http://www.as400.ibm.com/netdata

© Copyright IBM Corp. 1997, 1998 Vii

Who Should Read This Book

People involved in planning and writing Net.Data applications can use the
information in this book to understand what language constructs, variable, and
functions Net.Data provides.

To understand the concepts discussed in this book, you should be familiar with Web
servers, simple SQL statements, and HTML (including using HTML forms), and the
information in Net.Data Administration and Programming Guide and Net.Data
Language Environment Reference.

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts and do
not show every way Net.Data constructs can be used. Some examples are
fragments that do not work alone.

How to Read the Syntax Diagrams

viii

Net.Data Reference

The following rules apply to the syntax diagrams used in this book:

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

v
A

»>—required_item

Optional items appear below the main path.

Y
A

»>—required_item

l—optz’onal_item—l
If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optional_i tem—l
»>—required_item ><

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required_i tem—[requ ired_choicel
required_choi ceZ—l

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required_item
i:optional_choice]:‘
optional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

|—defaul t_choice—|
»>—required_item <
i:optiona Z_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item——repeatable item ><

If the repeat arrow contains punctuation, you must separate repeated items with
the specified punctuation.

s

v
A

»—required_item——repeatable item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Keywords appear in uppercase (for example, FROM). In Net.Data, keywords can
be in any case. Terms that are not keywords appear in lowercase letters (for
example, column-name). They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Preface IX

X Net.Data Reference

Chapter 1. Net.Data Macro Language Constructs

This chapter describes the Net.Data macro syntax and the language constructs
used in the Net.Data macro file. The language constructs consist of a keyword and
a statement or block in the Net.Data macro, specify different variable types, and
perform other special tasks such as including files.

This chapter describes:

Net.Data Macro File Syntax

A Net.Data macro is a plain text file consisting of a series of Net.Data macro
language constructs that:

» Specify the layout of Web pages
» Define variables and functions

» Call functions that are defined in the macro file or that Net.Data passes to
language environments for processing

* Format the processing output in HTML and return it to the Web browser
Each statement is composed of one or more language constructs, which in turn are

composed of keywords, special characters, strings, names, and variables. The
following diagram depicts the global structure of a syntactically valid Net.Data

macro. See EChapter 1 _Net Data Macra | anguage Caonstructs’ for detailed syntax

of each element in the global structure.

\
\

Y html block >

—comment block
—define statement
—define block
—function block
—macro if block
—macro_function block—
—include statement
—include_url statement—
message block

© Copyright IBM Corp. 1997, 1998 1

—comment block————— |—hth bZockJ
—define statement
—define block
—function block
—macro if block
—macro_function block—
—include statement
—include _url statement—
—message block

[The Net.Data macro contains two parts: the declaration part and the HTML part.
| You can use these parts multiple times and in any order.

» Declaration part contains the definitions of variables and functions in the macro
file.

* HTML part contains HTML blocks that contain HTML statements that specify the
layout of the Web page. This part includes the report section.

| m shows the declaration and HTML parts of the macro file.

Net.Data Macro File Structure

%{Comment %}

%Include...

%HTML(Input)

—HTML Part

%HTML(Output)

Figure 1. Macro File Structure

Variables and functions that are used in the declaration or HTML part must be
defined before being used by a variable reference or a function call.

[Eigure 2 on page 3 demonstrates the parts of a macro file. The declaration part
[contains the DEFINE and FUNCTION definition blocks. The HTML blocks act as
[input and output blocks.

2 Net.Data Reference

kkkkkkkhkkhkkhkhkkhkkhkk Define block ************************%}

{
DEFINE {
page_title="Net.Data macro Template"

9
%
9

%

N

kxkkkkkkxkkkkxkxkkxxx* Function Definition block ************************%}

{
FUNCTION(DTW_REXX) rexxl (IN input) returns(result)
{ %EXEC{ompsamp.cmd %}

9
%
9

%

N

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

0
%}

result = date()

%{ B HTML Block: Input ************************%}
SHTML (INPUT) {

<html>

<head>

<title>$(page_title)<title>

</head><body>

<hl>Input Form</hl>

Today is @today()

<FORM METHOD="post" ACTION="output">

Type some data to pass to a REXX program:
<INPUT NAME="input_data" TYPE="text" SIZE="30">
<p>

<INPUT TYPE="submit" VALUE="Enter">

<hr>
<p>[Home page]
</body></htm1>

0,
%}

%{ khkkkkkkhkkkkhhkkkhhkrk HTML Block: Output ************************%}
%HTML (OUTPUT) {

<htm1>

<head>
<title>§(page_title)</title>
</head><body>

<h1>Qutput Page</hl>
<p>@rexx1(input_data)

<p><hr>

<p>[Home page |

Previous page]
</body></htm1>

0,
%}

Figure 2. The Macro File Template Format

The Net.Data macro language is a free-form language, giving you flexibility for
writing your macros. Unless specifically noted, extra white space characters are
ignored. Each of the Net.Data macro language constructs is described in the
following section, along with several other elements that are used to define the
constructs. The Net.Data macro language supports DB2 WWW Connection
language elements for backward compatibility. Although these language elements

are described in tAppendix A_DR2 WWW Connection” an page 223, it is

recommended that you use the Net.Data language constructs.

The examples show some of the ways you can use the language constructs,
variables, functions, and other elements in your macro files. You can download the
samples and demos from the Net.Data Web pages for more extensive examples:

Chapter 1. Net.Data Macro Language Constructs 3

 http://www.software.ibm.com/data/net.data
* http://www.as400.ibm.com/net.data

Common Syntax Elements

Variable Name

The following syntax elements are used frequently in the language construct
descriptions:

o FVariahle Referencel

‘ H ”
.

Purpose:

Identifies one or more names; each subsequent name is concatenated by a period
(.). Aname is an alphabetic or numeric string beginning with an alphabetic
character or underscore and containing any combination of alphabetic, numeric, or
underscore characters.

Strings in quotes ("), can contain any character except the new-line character. If
the string is in brackets, ({ %}), it can contain any character including the new-line
character.

Variable names must begin with a letter or underscore (_) and contain any
alphanumeric characters or underscore. All variable names are case sensitive

except N_columnName and V_columnName (See [Net Data Table Pracessing
Mauables_an_page_ﬁ:-i for more information about these two exceptions.).

Syntax:

—

»»—Y name ><

Variable Reference

4

Net.Data Reference

Purpose:

Returns the value of a previously defined variable and is specified with $ and (). For
example: if VAR ="abc’, $(VAR) returns the value 'abc’. Variable references are
evaluated during run time. When a variable is defined for an EXEC statement or
block, Net.Data runs the specified action when it reads the variable reference.

The variable that is referenced must be defined in the Net.Data macro before being
referenced. If the variable is not defined, an empty string is returned.

Syntax:

| Strings

»»>—$—(—variable_name—)

v
A

Any sequence of alphabetic and numeric characters and punctuation. If the string
appears within double quotes, the new-line character is not allowed. See the string
parameter description in each language construct for restrictions when used with
the language construct.

Two pairs of double quotes ("""") inside a string are treated as one pair of double
quotes (""). To specify that a string contains double quotes, use two pairs of double
quotes. For example, if you define a string value as:

%DEFINE result = " ""Hello world!"" "

The value of result is:
"Hello world!"

A string used as function argument or as term in a comparison expression can
contain pairs of double quotes.

An HTML statement is a string.

Macro Language Constructs

This section describes the language constructs used in the Net.Data macro file.

Each language construct description can contain the following information:

Purpose
Defines why you use the language construct in the Net.Data macro.

Syntax
Provides a diagram of the language construct’s logical structure.

Parameters
Defines all the elements in the syntax diagram and provides cross
references to other language constructs’ syntax and examples.

Context
Explains where in the Net.Data macro structure the language construct can
be used.

Restrictions
Defines which elements it can contain and specifies any usage restrictions.

Examples
Provides simple examples and explanations for using the keyword
statement or block within the Net.Data macro.

The following constructs are used in the macro; please refer to each constructs
description for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs 5

6 Net.Data Reference

Comment Block

Purpose

Documents the functions of the Net.Data macro. Because the COMMENT block can
be used anywhere in the macro file, it is not documented in the other syntax
diagrams.

Syntax

»>—%{—text—%} ><

Values

text Any string on one or more lines. Net.Data ignores the contents of all
comments.

Context

Comments can be placed anywhere between Net.Data language constructs in a
Net.Data macro.

Restrictions
Any text or characters are allowed; however, comment blocks cannot be nested.
Examples

Example 1: A basic comment block

%{

This is a comment block. It can contain any number of lines

and contain any characters. Its contents are ignored by Net.Data.

0,
%}

Example 2: Comments in a FUNCTION block

%function(DTW_REXX) getAddress(IN name, %{ customer name %}
IN phone, %{ customer phone number %}
OUT address %{ customer address %}
)
{

[)
%}

Example 3: Comments in an HTML block
%htm1 (report) {

[

%{ run the query and save results in a table %}
@myQuery (resultTable)

%{ build a form to display a page of data %}
<form method="POST" action="report">

%{ send the table to a REXX function to send the data output %}
@displayRows (START _ROW_NUM, submit, resultTable, RPT_MAX ROWS)

[

%{ pass START_ROW_NUM as a hidden variable to the next invocation %}
<input name="START_ROW_NUM" type="hidden" value="§$(START_ROW_NUM)">

%{ build the next and previous buttons %}

Chapter 1. Net.Data Macro Language Constructs 7

8

Net.Data Reference

%if (submit == "both" || submit == "next_only")
<input name="submit" type="submit" value="next">
%endif

%if (submit == "both" || submit == "prev_only")
<input name="submit" type="submit" value="previous">
%endif

</form>

0,
%}

Example 4: Comments in a DEFINE block

%define {
START_ROW_NUM = "1" %{ starting row number for output table
RPT_MAX_ROWS = "25" %{ maximum number of rows in the table
resultTable = %table %{ table to hold query results

N O o°

—

N

}

DEFINE Block or Statement
Purpose

The DEFINE section defines variables hames in the declaration part of the macro
and can be either a statement or a block.

* Use statements to define one variable at a time
e Use blocks to define several variables

The variable definition can be on a single line, using double quotes (""), or can
span multiple lines, using brackets and a percent sign ({ %}). After the variable is
defined, you can reference it anywhere in the macro.

Syntax

»—%DEFINE~E! define entry i J
%}

v
A

Y _—define entry
L tement—)

include statement

define entry

f—-variable name—= Y 4 i
string

variable reference—
function call

string
variable reference—
function call
new_Tline
—exec Sstatement
—table statement
—envvar statement
conditional variable
:l abbreviated conditional variable |—

—list statement

conditional variable

Chapter 1. Net.Data Macro Language Constructs 9

10

| 2 o v " g

I—var‘iable name—I —string
—variable reference—
—function call

—string
—variable reference—
—function call

—string
—variable reference—
—function call

—string
—variable reference—
—function call

abbreviated conditional variable

|_? o " I
—string———
—variable reference—
—function call
{ v aﬂ}
—string
—variable reference—
—function call
Values
%DEFINE

A keyword that defines variables.
define entry:

variable name
One or more names, each additional name concatenated by a period (.).
See \Vari . for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

Net.Data Reference

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See

B\ariable Reference” on page 4 for syntax information.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks, or a Net.Data built-in function with specified

arguments. See LEu.ncuan_CaJ.l_(.@.)_an_pa.ge_zzl for syntax and examples.

exec statement
The EXEC statement. The name of an external program that executes
when a variable is referenced or a function is called. See

Btatement” an page 14 for syntax and examples.

table statement
The TABLE statement. Defines a collection of related data containing an
array of identical records, or rows, and an array of column names

describing the fields in each row. See LTARLE Statement” on page 52 for

syntax and examples.

envvar statement
The ENVVAR statement. Refers to environment variables. See FENVVAR

Btatement” on page 13 for syntax and examples.

conditional variable
Sets the value of a variable based on the value of another variable or
string.

abbreviated conditional variable
Sets the value of a variable based on the value of another variable or
string. A shorter form of the conditional variable.

list statement
The LIST statement. Defines variables that are used to build a delimited list

of values. See [LIST Statement” on page 36 for syntax and examples.

include statement

The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See [INCI UDF Statement” on page 32 for syntax and examples.

Context

The

DEFINE block or statement must be in an IF block or outside all other blocks in

the declaration part of the Net.Data macro.

Restrictions
* Can contain the following elements:

Comment block
Conditional variables
LIST statement
TABLE statement
Variable references
INCLUDE statement
EXEC statement
Function calls
ENVVAR statement

Chapter 1. Net.Data Macro Language Constructs 11

12

Net.Data Reference

* The conditional variable cannot have a result of NULL. See Example 5 for more
information.

* You cannot use a variable in its own definition. For example, the following
variable definition is not allowed:

%DEFINE var = "The value is $(var)."
Examples

Example 1 : Simple variable definitions

%DEFINE varl
%DEFINE var?2

"orders"
"$(varl).html"

During run time, the variable reference $(var2) is evaluated as orders.html.

Example 2 : Quotes inside a string

%DEFINE hi = ||sa.y "ihelloh !
%DEFINE empty = ""

When displayed, the variable hi has the value say "hello”. The variable empty is
null.

Example 3: Definition of multiple variables

%DEFINE{ DATABASE = "testdb"
home = "http://www.software.ibm.com"
SHOWSQL = "YES"
PI = "3.14150"

N

}

Example 4 : Multiple-line definition of a variable

%DEFINE text = {This variable definition
spans two Tines
}

o

Example 5 : This example of a conditional variable demonstrates how the variable
var takes the resulting value inside the quotations marks (*”) if the resulting value
does not contain any NULL values. In the example below, neither $(V) nor MyFunc
can have a result of NULL.

%DEFINE var = ? "Hello! $(V)@MyFunc()"

0,
%}

ENVVAR Statement

Purpose

Defines a variable as an environment variable in the DEFINE block. When the
ENVVAR variable is referenced, Net.Data returns the current value of the
environment variable by the same name. Using this method to reference
environment variables is more efficient than using DTW GETENV. For more
information about DTW_GETENYV, see EFDT\W_GETENV” on page 123.

Syntax

»>—%ENVVAR ><

Context
The ENVVAR statement can be in the DEFINE block or statement.

Values

%ENVVAR
The keyword for defining a variable as an environment variable in a DEFINE
block. This variable gets the value of an environment variable anywhere in the
macro file.

Restrictions
The ENVVAR statement can contain no other elements.
Examples

Example 1: In this example, ENVVAR defines a variable, which when referenced,
returns the current value for the environment variable SERVER_SOFTWARE, the
name of the Web server.

%DEFINE SERVER_SOFTWARE = %ENVVAR
%HTML (REPORT) {
The server is $(SERVER_SOFTWARE).

0
%}

Chapter 1. Net.Data Macro Language Constructs 13

EXEC Block or Statement

14

Net.Data Reference

Purpose

Specifies an external program to execute when a variable is referenced or a
function is called.

When a variable is referenced or a function called, Net.Data first looks up the
directories specified in the EXEC_PATH variable in the Net.Data initialization file
and, when not found there, passes the name of the executable to the system shell.

Authorization Tip: Ensure that the Web server has access rights to any files
referenced by the EXEC statement or block. See the section on specifying Web
server access rights to Net.Data files in the configuration chapter of Net.Data
Administration and Programming Guide for more information.

The EXEC statement and block are used in two different contexts and have
different syntax, depending where they are used. Use the EXEC statement in the
DEFINE block, and use the EXEC block in the FUNCTION block.

Syntax

The EXEC statement syntax when used in the DEFINE block:

»>—%EXEC—"— ’ >

string——
variable reference—

function call

The EXEC block syntax when used in the FUNCTION block:

»>—%EXEC—{—Y—string %} ><
i:var‘iable reference—|
function call

Values

%EXEC
The keyword that specifies the name of an external program to be executed
when a variable is referenced or when a function is called. When Net.Data
encounters a variable reference that is defined in an EXEC statement, it
processes what the EXEC statement declares for the variable.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $ (VAR) returns the value 'abc'. See

Reference” on page 4 for syntax information.

function call

Invokes one or more previously defined FUNCTION or MACRO_FUNCTION

blocks, or a Net.Data built-in function with specified arguments. See [Eunctiod

Call (@)" on page 24 for syntax and examples.

Context

The EXEC block or statement can be found in these contexts:
 DEFINE block
 FUNCTION block

Restrictions

The EXEC block or statement can contain these elements:
* Comment block

* String

» Variable references

* Function call

Examples

Example 1: Executable file referenced by a variable
%DEFINE mycall = %EXEC "MYEXEC.EXE $(empno)"

%HTML (report) {
<P>Here is the report you requested:
<HR>$ (mycall)

%}

This example executes MYEXEC.EXE on every reference to the variable, mycall.

Example 2 : Executable file referenced by a function

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN ¢, INOUT d){
%EXEC{ mypgm.cmd this is a test %}

[
%}

This example executes mypgm.cmd when the function my_rexx_pgm is called.

Chapter 1. Net.Data Macro Language Constructs

15

FUNCTION Block

16

Net.Data Reference

Purpose

Defines a subroutine that Net.Data invokes from the macro file. The executable
statements in a FUNCTION block can be inline statements directly interpreted by a
language environment, or they can be a call to an external program.

If you use the EXEC block within the FUNCTION block, it must be the only
executable statement in the FUNCTION block. Before passing the executable
statement to the language environment, Net.Data appends the file name of the
program in the EXEC block to a path name determined by the EXEC_PATH
configuration statement in the initialization file. The resulting string is passed to the
language environment to be executed.

The method that the language environment uses to process the EXEC block
depends on the particular language environment. Only the REXX, System, and Perl
Net.Data-provided language environments support the EXEC block.

Syntax
»—%FUNCTION—(—Zung_env—)—functz'on_name—| parm passing spec i >
>L‘ returns spec |—{—| function body i %} | ><

parm passing spec

—() |
F (1)

IN
v [name

Four
INOUT—

returns spec

| |
I—RETU RNS—(—name—)J

function body

Y _inline statement block

—exec block

\

(2)

report block
|—message blockJ

v

A,

—message block

(2)

L‘eport block

Notes:

1. The default parameter type of IN applies when no parameter type is specified at
the beginning of the parameter list. A parameter without a parameter type uses
the type most recently specified in the parameter list, or type IN if no type has
been specified. For example, in the parameter list (parml, INOUT parm2, parm3,
OUT parm4, parm5), parameters parml, parm3, and parm5 do not have
parameter types. The parameter parml has a type of IN because no initial
parameter type has been specified. The parameter parm3 has a type of INOUT
because it is the most recently specified parameter type. Similarly, the
parameter parm5 has a type of OUT because it is the most recently specified
type in the parameter list.

2. The repeated report block is only valid for database language environments
when processing stored procedures that return multiple result sets.

Values

%FUNCTION
The keyword that specifies a subroutine that Net.Data invokes from the macro
file.

lang_env
The language environment that processes the function body. See the Net.Data
Language Environment Reference for more information.

function_name
The name of the function being defined that can be an alphabetic or numeric
string that begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.
parm passing spec:
IN Specifies that Net.Data passes input data to the language environment. IN
is the default.

ouT
Specifies that the language environment returns output data to Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment and
the language environment returns output data to Net.Data.

returns spec:

Chapter 1. Net.Data Macro Language Constructs 17

18

Net.Data Reference

RETURNS
Declares the variable that contains the function value assigned by the
language environment, after the function completes.

function body:

inline statement block
Syntactically valid statements from the language environment specified in
the function definition, for example; REXX, SQL, or Perl. See Net.Data
Language Environment Reference for a description of the language
environment you are using. See the programming language’s programming
reference for syntax and usage. The string representing the inline statement
block can contain Net.Data variable references and function calls, which get
evaluated before execution of the inline statement block (program).
Restriction: The longest consecutive inline statement block string without
any Net.Data variable reference or function call is limited to the following
lengths:

* For OS/2 and NT: 64KB
* For AIX: 256KB

* For 0OS/390: 256KB

* For OS/400: 256KB

exec block
The EXEC block. The name of an external program that executes when a
variable is referenced or a function is called. See

Btatement” on page 14 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function call.
You can use header and footer information for the report. See

Block” on page 47 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages, and
the actions Net.Data takes when a function call is returned. See

[IMESSAGE Black” on page 43 for syntax and examples.

Context

The FUNCTION block can be found in these contexts:

IF block
Outside of any block or statement in the declaration part of the Net.Data macro.

Restrictions

The FUNCTION block can contain these elements:

Comment block

EXEC block
MESSAGE block
REPORT block

Inline statement blocks

Only the REXX, System, and Perl Net.Data-provided language environments
support the EXEC statement.

Examples

The following examples are general and do not cover all language environments.
See Net.Data Language Environment Reference for more information about using
FUNCTION blocks with a specific language environment.

Example 1: A REXX substring function

%DEFINE Tstring = "longstring"
%FUNCTION(DTW_REXX) substring(IN x, y, z) RETURNS(s) {
s = substr("$(x)", $(y), $(2));

}
DEFINE a = {@substring(1string, "1", "4")%} %{ assigns "long" to a %}

N o°

When a is evaluated, the @substring function call is found and the substring
FUNCTION block is executed. Variables are substituted in the executable
statements in the FUNCTION block, then the text string s = substr("longstring",
1, 4) is passed to the REXX interpreter to execute. Because the RETURNS clause
is specified, the value of the @substring function call in the evaluation of a is
replaced with “long”, the value of s.

Example 2 : Invoking an external REXX program
* Net.Data macro:

%FUNCTION (DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}
%}
SHTML (INPUT) {
<P> Original variable values: $(w) $(x) $(z)
<P> @my_rexx_pgm(w, X, y, z)
<P> Modified variable values: $(w) $(x) $(z)
%}

Variables w and x correspond to the INOUT parameters a and b in the function.
Their values and the value of y, which corresponds to the IN parameter ¢, should
already be defined from HTML form input or from a DEFINE statement. Variables
a and b are assigned new values when parameters a and b return values. The
variable z is defined when the OUT parameter d returns a value.

* REXX program mypgm.cmd:

/* Sample REXX Program for Example 2 */
/* Test arguments =/

num_args = arg();

say 'There are’ num_args 'arguments’;

do i =1 to num_args;

say 'arg’ i 'is "arg(i)'"
end;
/* Set variables passed from Net.Data */
d=a |l b || c; /* concatenate a, b, and c¢ forming d */
a="; /* reset a to null string */
b="; /* reset b to null string */
return;

* Output from mypgm. cmd:

There are 1 arguments
arg 1 is "this is a test"

The EXEC statement tells the REXX language environment to tell the REXX
interpreter to execute the external REXX program mypgm.cmd. Because the REXX
language environment can directly share Net.Data variables with the REXX
program, it assigns the REXX variables a, b, and c the values of the Net.Data
variables w, x and y before executing mypgm.cmd. mypgm.cmd can directly use the
variables a, b, and ¢ in REXX statements. When the program ends, the REXX

Chapter 1. Net.Data Macro Language Constructs 19

variables a, b, and d are retrieved from the REXX program, and their values are
assigned to the Net.Data variables w, x, and z. Because the RETURNS clause is
not used in the definition of the my_rexx_pgm FUNCTION block, the value of the
@my_rexx_pgm function call is the null string, *", (if the return code is 0) or the value
of the REXX program return code (if the return code is nonzero).

Example 3: An SQL query and report

%FUNCTION(DTW_SQL) query 1(IN x, INy) {
SELECT customer.num, order.num, part.num, status
FROM customer, order, shippingpart
WHERE customer.num = '$(x)’
AND customer.ordernumber = order.num
AND order.num = '$(y)’
AND order.partnumber = part.num
%REPORT {
<P>Here is the status of your order:
<P>$ (NLIST)

%ROW{
$ (V1) $(v2) $(v3) $(v4)
%}

%}
%}
%DEFINE customer_name="IBM"
%DEFINE customer_order="12345"
%HTML (REPORT) {
@query_1(customer name, customer order)

0,
%}

The @query 1 function call substitutes IBM for $(x) and 12345 for $(y) in the SELECT
statement. Because the definition of the SQL function query_1 does not identify an
output table variable, the default table is used (see the TABLE variables block for
details). The NLIST and Vi variables referenced in the REPORT block are defined
by the default table definition. The report produced by the REPORT block is placed
in the output HTML where the query_1 function is invoked.

Example 4 : A system call to execute a Perl script
* Net.Data macro:

%FUNCTION(DTW_SYSTEM) today() RETURNS(result) {
%exec{ perl "today.prl" %}

}
HTML(INPUT) {
@today()
%}
* Perl program today.prl:

$date = 'date’;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

N

The System language environment interprets the executable statements in a
FUNCTION block by passing them to the operating system through the C language
system() function call. This method does not allow Net.Data variables to be directly
passed or retrieved to the executable statements, as the REXX language
environment does, so the System language environment passes and retrieves
variables as described here:

* Input parameters are passed as system environment variables through the
putenv() function and can be retrieved by the executing program. Different
languages reference the variables differently. A UNIX cshell script refers to

20 Net.Data Reference

environment variables by preceding the environment variable name with a '$’,
such as $x. A Perl language script refers to them by referencing the associative
array %ENV, such as ENV{'x’}. A DOS batch (.BAT) file refers to the variable
name enclosed in percent signs, such as %x%.

* Output parameters are passed back to the language environment by writing to a
pipe whose name is passed in the environment variable DTWPIPE, except on
the OS/400 platform, where output parameters are passed back to the language
environment as system environment variables. The data that is written to the
named pipe has the form name="value", just as with DEFINE statements. If a
variable name corresponding to an output parameter is written this way, the new
value replaces the current value. If a variable name is written that does not
correspond to an output parameter, it is ignored.

When the @today function call is encountered, Net.Data performs variable
substitution on the executable statements. In this example, there are no Net.Data
variables in the executable statements, so no variable substitution is performed.
The executable statements and parameters are passed to the System language
environment, which creates a named pipe and sets the environment variable
DTWPIPE to the name of the pipe.

Then the external program is called with the C system() function call. The external
program opens the pipe as write-only and writes the values of output parameters to
the pipe as if it were a standard stream file. The external program generates HTML
output by writing to STDOUT. In this example, the output of the system date
program is assigned to the variable result, which is the variable identified in the
RETURNS clause of the FUNCTION block. This value of the result variable
replaces the @today () function call in the HTML block.

Example 5 : Perl language environment

%FUNCTION(DTW_PERL) today() RETURNS(result) {
$date = 'date’;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";
%}
SHTML (INPUT) {
@today()

0
%}

Compare this example with Example 4 to see how the EXEC block is used. In
Example 4, the System language environment does not understand how to interpret
Perl programs, but the language environment does know how to call external
programs. The EXEC block tells it to call a program called perl as an external
program. The actual Perl language statements are interpreted by the external Perl
program. Example 5 has no EXEC block, because the Perl language environment is
able to directly interpret Perl language statements.

Chapter 1. Net.Data Macro Language Constructs 21

Function Call (@)

22

Net.Data Reference

Purpose

Invokes a previously defined FUNCTION block, MACRO_FUNCTION block, or
built-in function with specified arguments. If the function is not a built-in function,
you must define it in the Net.Data macro before you specify a function call.

Syntax
»>—@function_name—() ><
Y —variable_name
"—string—"
variable reference—|
function call
Values

@function_name
The name of any existing function. An alphabetic or numeric string that begins
with an alphabetic character or underscore and contains any combination of
alphabetic, numeric, or underscore characters.

variable name
One or more names, each additional name concatenated by a period (.). See

[Variable Name” aon page 4 for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $(VAR) returns the value 'abc'. See

Reference” an page 4 for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments.

Context

Function calls can be found in these contexts:
e HTML block

* REPORT block

+ ROW block

* DEFINE block

* |IF block

* MACRO_FUNCTION block

* MESSAGE block

* WHILE block

* Function call statement

» Qutside of any block in the declaration part of the Net.Data macro

Restrictions

* Function calls can contain these elements:
Comment block

Strings

Function calls

Variable References

» Function calls cannot contain any variable references and function calls defined
for OUT or INOUT parameters in a function definition.

Examples

Example 1: A call to the SQL function formQuery

%FUNCTION(DTW_SQL) formQuery () {
SELECT $(queryVal) from $(tableName)

%}

SHTML (input) {

<P>Which columns of $(tableName) do you want to see?
<FORM METHOD="POST" ACTION="report">

<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="NAME">Name
<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="MAIL">E-mail
<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="FAX">FAX
<INPUT TYPE="SUBMIT" VALUE="Submit request">

0,
%}

%HTML (report) {
<P>Here are the columns you selected:
<HR>@formQuery ()

0,
%}

Example 2 : A call to a REXX function with input and output parameters

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}

%}

SHTML(INPUT) {

<P> Original variable values: $(w) $(x) $(z)

<P> @my_rexx_pgm(w, X, y, z)

<P> Modified variable values: $(w) $(x) $(z)

0,
%}

Example 3: A call to a REXX function, with input parameters, that uses variable
references and function calls

%FUNCTION(DTW_REXX) my_rexx_pgm(IN a, b, c, d, OUT e) {

N o°

}

HTML(INPUT) {

<p> @my_rexx_pgm($(myA), @getB(), @retrieveC(), $(myD), myE)
}

N

Chapter 1. Net.Data Macro Language Constructs 23

HTML Block

24

Net.Data Reference

Purpose

Contains any HTML tags or text to be processed by the client's Web browser or any
tool that understands HTML. The HTML block can also contain most Net.Data
macro language statements, which are evaluated and executed at run time.
Net.Data looks for Net.Data macro statements and executes them. Net.Data
assumes all other text is HTML and sends it to the Web browser.

Syntax

»>—%HTML— (—name—) —{— %} ><
—exec_sql statement
—variable reference
—if block
—function call
—HTML statement
—include statement
—include_url statement—
“while block

Values

%HTML

The keyword that specifies the block that contains HTML tags and text to be
displayed on the client’s browser.

name
An alphabetic or numeric string that begins with an alphabetic character or
underscore and contains any combination of alphabetic, numeric, or underscore
characters.

exec_sql statement
A DB2WWW Release 1 language element that is supported for compatibility.

See [Appendix A. DB2 WWW Connection” on page 223 or DB2 World Wide

Web Release 1 documentation.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See
! for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have a

single leading plus (+) or minus (-) sign. See LE Black” on page 26 for syntax

and examples.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments. See
! for syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See LNCLUDE Statement” on page 32 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data Web macro where the statement is specified. The specified file can

exist on a local or remote server. See L "
for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHIL E Black” on page 54 for syntax and examples.

Context

The HTML block can be found in these contexts:
* |IF block
» Qutside of any block in the declaration part of the Net.Data macro

Restrictions

The HTML block can contain these elements:
* Comment block

* EXEC_SQL statement

* IF block

* HTML statements

* INCLUDE statement

* INCLUDE_URL statement

* WHILE block

» Variable references

* Function calls

Examples

Example 1 : HTML block with include files for headings and footings

%HTML (examplel) {

%INCLUDE"header.html"

<P>You can put any HTML in an HTML block.
An SQL function call is made like this:

@xmp1()

%INCLUDE"footer.html"

0,
%}

Chapter 1. Net.Data Macro Language Constructs

25

IF Block

26

Net.Data Reference

Purpose

Performs conditional string processing. The IF block provides the ability to test one
or more conditions, and then to perform a block of statements based on the
outcome of the condition test. You can use the IF block in the declaration part of a
Net.Data macro, the HTML block, the MACRO_FUNCTION block, the REPORT
block, the WHILE block, and the ROW block, as well as nest it inside another IF
block.

String values in the condition list are treated as numeric for comparisons if they are
strings that represent integers and have no leading or trailing white space. They
can have a single leading plus (+) or minus (-) sign.

Restriction: Net.Data does not support numerical comparison of non-integer
numbers. For example, floating point numbers.

Nested IF blocks: The rules for IF block syntax are determined by the block’s
position in the macro file. If an IF block is nested within an IF block that is outside
of any other block in the declaration part, it can use any element that the outside
block can use. If an IF block is nested within another block that is in an IF block, it
takes on the syntax rules for the block it is inside.

In the following example, the nested IF block must follow the rules used when it is
inside an HTML block.

%IF block
%HTML block

%IF block
See the restrictions listed later in this section.
Syntax

>>—%IF—| condition list |-—-| statement_block |—| else_if spec '—%ENDIF—N

condition list

—((—condition list—)) }
condition list—&&—condition list—
condition list—||—condition list—
l—condition list

condition i
term i

statement_block

—term

(1)
—define block
(1)
—define statement
(2)

—exec_sql statement
(1)

—function block

—function call

(1)

—HTML block

(2)
—HTML statement

—if block
—include statement
—include_url statement

(1)
—macro_function block
(1)
—message block
(2)
—string
(2)

—variable reference

(2)

“while block

condition

term

variable reference
"—string—"
variable name
function call

Chapter 1. Net.Data Macro Language Constructs

27

28

Net.Data Reference

else_if spec

Y %ELIF—(—condition_ Zzst—)—| statement_block {
L. ! |
/ELSE—I statement_bTock i

Notes:

1.

This language construct is valid when the IF block is located outside of any
other block in the declaration part of the macro.

This language construct is valid when the IF block is located in an HTML block,
MACRO_FUNCTION block, REPORT block, or WHILE block.

Values
%IF

The keyword that specifies conditional string processing.

condition list

Compares the values of conditions and terms. Condition lists can be connected
using Boolean operators. A condition list can be nested inside another condition
list.

statement_block

The following valid Net.Data macro constructs. Please see diagram notes and
restrictions to determine the context in which the macro constructs are valid.

define statement
The DEFINE block or statement. Defines variables and sets configuration
variables. Variable names must begin with a letter or underscore () and
contain any alphanumeric characters or underscore. See LDEEINE Block o

Btatement” on page d for syntax and examples.

exec_sql statement
A DB2WWW Release 1 language element that is supported for

compatibility. See [Appendix A. DB2 WW\W Connection” on page 223 or

DB2 World Wide Web Release 1 documentation.

function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a FUNCTION block can
contain language statements that are directly interpreted by a language
environment, or they can indicate a call to an external program. See
i ” for syntax and examples.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks or a Net.Data built-in function with specified
arguments. See L z for syntax and examples.

HTML block
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

HTML statement
Includes any alphabetic or numeric characters, and HTML tags to be
formatted for the client’'s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can
have a single leading plus (+) or minus (-) sign.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See HINCLUDE Statement” on page 32 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data Web macro where the statement is specified. The specified file

can exist on a local or remote server. See LUINCLUDE _UR| Statement” od

for syntax and examples.

macro_function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a MACRO_FUNCTION block
can contain Net.Data macro language source statements. See

IMACRQ _EUNCTION Rlock” on page 34 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages, and
the actions Net.Data takes when a function call is returned. See

IMESSAGE Block” on page 43 for syntax and examples.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string is in the term of the condition list, it can contain any character except
the new-line character. If the string is in the executable block of code, it can
contain any character, including the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See

[\ariable Reference” on page 4 for syntax information.

while block
The WHILE block. Performs looping with conditional string processing. See

IWHII F Block” on page 54 for syntax and examples

condition
A comparison between two terms using comparison operators. An IF condition
is treated as a numeric comparison if both of the following conditions are true:

* The condition operator is one of the following operators: <,<=,>>=== 1=

* Both terms are strings representing valid integers, where a valid integer is a
string of digits, optionally preceded by a plus (+) or minus (-) sign, and no
other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, or function call.

%ELIF
A keyword that starts the alternative processing path and can contain condition
lists and most Net.Data macro statements.

%ENDIF
A keyword that closes the %IF block.

Chapter 1. Net.Data Macro Language Constructs 29

%ELSE
A keyword that executes associated statements if all other condition lists are not
satisfied.

Context

The IF block can be found in these contexts:

» OQutside of any other block in the declaration part of a Net.Data macro
* HTML block

* IF block

* MACRO_FUNCTION block

* REPORT block

* ROW block

* WHILE block

Restrictions

The IF block can contain these elements when located outside of any other block in
the declaration part of the Net.Data macro:

* Comment block

* DEFINE block

* DEFINE statement

* FUNCTION block

* Function call

* HTML block

* |F block

* INCLUDE statement

* INCLUDE_URL statement
* MACRO_FUNCTION block
* MESSAGE block

* Variable reference

The IF block can contain these elements when located in the HTML block,
MACRO_FUNCTION block, REPORT block, ROW block, or WHILE block of the
Net.Data macro:

* Comment block

* EXEC_SQL statement

* Function calls

* |F block

* INCLUDE statement

* INCLUDE_URL statement
e HTML statement

* String

* Variable reference

* WHILE block

Examples

Example 1: An IF block in the declaration part of a Net.Data macro

30 Net.Data Reference

%DEFINE a = "1"
%DEFINE b = "2"

%IF ($(DTW_HTML_TABLE) == "YES")
%define OUT_FORMAT = "HTML"
%ELSE
%define OUT_FORMAT = "CHARACTER"
%ENDIF

%HTML (REPORT) {

0,
%}

Example 2 : An IF block inside an HTML block

%HTML (REPORT) {
@myFunctionCall()
%IF ($RETURN_CODE) == $(fa1"|ur‘e_r‘c))

<P> The function call failed with failure code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(warning rc))

<P> The function call succeeded with warning code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(success_rc))

<P>The function call was successful.
%ELSE

P>The function call returned with unknown return code $(RETURN_CODE).

ENDIF
}

N o°

Example 3: A numeric comparison

%IF (ROW_NUM < "100")

<p>The table is not full yet...
%ELIF (ROW_NUM == "100")

<p>The table is now full...
%ELSE

<p>The table has overflowed...
%ENDIF

A numeric comparison is done because the implicit table variable ROW_NUM
always returns an integer value, and the value that is being compared is also an
integer.

Example 4: Nested IF blocks

%IF (MONTH == "January")
%IF (DATE = "1")
HAPPY NEW YEAR!
%ELSE
Ho hum, just another day.
%ENDIF
%ENDIF

Chapter 1. Net.Data Macro Language Constructs

31

INCLUDE Statement

32

Net.Data Reference

Purpose

Reads and incorporates a file into the Net.Data macro in which the statement is
specified.

Net.Data searches the directories specified in the INCLUDE_PATH statement in the
initialization file to find the include file.

You can use include files the same way you can in most high-level languages. They
can insert common headings and footings, define common sets of variables, or
incorporate a common subroutine library of FUNCTION block definitions into a
Net.Data macro.

Net.Data executes an INCLUDE statement only once when processing the macro
and inserts the content of the included file at the location of the INCLUDE
statement in the macro file. Any variable references in the name of the included file
are resolved at the time the INCLUDE statement is first executed, not when the
content of the included file is to be executed.

When an INCLUDE statement is in a ROW or WHILE block, Net.Data does not
repeatedly execute the INCLUDE statement. Net.Data executes the INCLUDE
statement the first time it executes the ROW or WHILE block, incorporates the
content of the included file into the block, and then repeatedly executes the ROW or
WHILE block with the content of the included file.

Authorization Tip: Ensure that the Web server has access rights to any files
referenced by the INCLUDE statement. See the section on specifying Web server
access rights to Net.Data files in the configuration chapter of Net.Data
Administration and Programming Guide for more information.

Tip: If you want to include an HTML file from a local Web server, use the
INCLUDE_URL construct as shown in Example 3 for INCLUDE_URL. By using the
demonstrated syntax, you do not have to update the INCLUDE_PATH in the
Net.Data initialization file to specify directories that are already known to the Web
server.

Syntax

»»—%INCLUDE—"—Y——string " >«
l—var‘iable r'eference—l

Values

%INCLUDE

The keyword that indicates a file is to be read and incorporated into the
Net.Data macro.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

string

Any sequence of alphabetic and numeric characters and punctuation, except

the new-line character.

variable reference

Returns the value of a previously defined variable and is specified with $ and ().

For example: if VAR="abc', then $(VAR) returns the value 'abc'. See

Reference” on page 4l for syntax information.

Context

The INCLUDE statement can be found in these contexts:

* DEFINE block

* HTML block

* REPORT block

* ROW block

* IF block

* MESSAGE block

* MACRO_FUNCTION block

* WHILE block

» OQutside of any block in the declaration part of the Net.Data macro

Restrictions

The INCLUDE statement can contain these elements:
* Comment block

* Strings

» Variable references

Examples

Example 1: An INCLUDE statement in an HTML block
SHTML (start) {
%INCLUDE "header.hti"

0,
%}

Example 2 : An INCLUDE statement in a REPORT block

%REPORT {
%INCLUDE "report_header.txt"
%ROW {
%INCLUDE "row_include.txt"
}
I

N oF

NCLUDE "report_footer.txt"

0,
%}

Example 3: Variable references in an INCLUDE statement

%define Tibrary = "/qgsys.lib/mylib.1ib/"
%define filename = "macros.file/incfile.mbr"

%include "$(1ibrary)$(filename)"

Chapter 1. Net.Data Macro Language Constructs

33

INCLUDE_ URL Statement

34

Net.Data Reference

Purpose

Reads and incorporates another file into the Net.Data generated output in which the
statement is specified. The specified file can exist on a local or remote server.

Using the INCLUDE_URL statement, you can invoke one macro from another
macro without requiring the application user to select a Submit button.

Net.Data executes an INCLUDE_URL statement only once when processing the
macro and inserts the content of the included file at the location of the
INCLUDE_URL statement in the macro file. Any variable references in the name of
the included file are resolved at the time the INCLUDE_URL statement is first
executed, not when the content of the included file is to be executed.

When an INCLUDE_URL statement is in a ROW or WHILE block, Net.Data does
not repeatedly execute the INCLUDE_URL statement. Net.Data executes the
INCLUDE_URL statement the first time it executes the ROW or WHILE block,
incorporates the content of the included file into the block, and then repeatedly
executes the ROW or WHILE block with the content of the included file.

Syntax

»»—%INCLUDE_URL—"—" Lstring i " >
variable reference

Values

%INCLUDE_URL
The keyword that indicates that a file is to be read and incorporated into the
Net.Data macro from the local or a remote server.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $(VAR) returns the value 'abc'. See [\Mariabld
! for syntax information.

Context

INCLUDE_URL statements can be found in these contexts:

* HTML block

* REPORT block

* ROW block

* WHILE block

*+ MACRO_FUNCTION block

* OQutside any block in the declaration part of the Net.Data macro

Restrictions

INCLUDE_URL statements can contain these elements:
« Comment block

* Strings

» Variable references

The INCLUDE_URL file has the following file size limitations:
* 0OS/2 and Windows NT: 64 KB

+ AIX: 256 KB

* 0S/390: 256 KB

INCLUDE_URL is not supported in the OS/400 environment.
Examples

Example 1 : Including an HTML file from another server
%include_url "http://www.ibm.com/path/myfile.html"

Example 2 : Including an HTML file from a remote server by calling the server name
%include_url "myserver/path/myfile.html"

Where myserver is the server name.

Example 3: Including an HTML file from the local Web server
%include_url "/path/myfile.html"

Tip: By using this method, you do not have to update the INCLUDE_URL path in
the Net.Data configuration file to specify directories that are already known to the
Web server. If the string does not begin with a slash, Net.Data assumes the string
is a server name and attempts to retrieve the file from the server with the
corresponding name.

Example 4 : Including other Net.Data macros from a remote server

%REPORT{
<P>Current hot pick as of @DTW_rTIME():
%include_url "http://www.ibm.com/cgi-bin/db2www/hotpic.mac/report?custno=$(custno)"

In this example, the macro file hotpic.mac is called and custno is sent as a

variable. If the string begins with a slash, Net.Data retrieves the INCLUDE file from
the local Web server.

Chapter 1. Net.Data Macro Language Constructs 35

LIST Statement
Purpose
Builds a delimited list of values. You can use the LIST statement when you

construct SQL queries with multiple items like those found in some WHERE or
HAVING clauses.

Syntax
5L IST—"—Y " variable name ><
string
variable reference—
function call
Values
%LIST
The keyword that specifies that variables are to be used to build a delimited list
of values.
string

Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $(VAR) returns the value 'abc'. See

Reference” on page 4l for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments. See

Call (@)” on page 24 for syntax and examples.

variable name
One or more names, each additional name concatenated by a period (.). See

[\Variable Name” an page 4 for syntax information.

Context

The LIST statement can be found in these contexts:
* DEFINE statement

Restrictions

The LIST statement can contain these elements:
* Comment block

» Variable references

* Function calls

» Strings

36 Net.Data Reference

Examples

Example 1: A list of variables

%DEFINE{

DATABASE="custcity"

%LIST " OR " conditions

condl="condl="'Sao Paolo'"
cond2="cond2="'Seattle"'"

cond3="cond3="'Shanghai'"

whereClause=conditions ? "WHERE $(conditions)" :

0,
%}

Chapter 1. Net.Data Macro Language Constructs 37

MACRO_FUNCTION Block

38

Net.Data Reference

Purpose

Defines a subroutine that can be invoked from the Net.Data macro. The executable
statements in a MACRO_FUNCTION block must be Net.Data macro language
source statements.

Syntax
»—%MACRO_FUNCTION—function_name—| parm passing spec i >
>—{—| function body | %} ><

(3)

L
report block

parm passing spec

—() |

name
Four
INOUT—

function body

—exec_sql statement
—variable reference
—if block
—function call
—HTML statement
—include statement

(2)

—include_url statement
—while block

Notes:

1. The default parameter type of IN applies when no parameter type is specified at
the beginning of the parameter list. A parameter without a parameter type uses
the type most recently specified in the parameter list, or type IN if no type has
been specified. For example, in the parameter list (parml, INOUT parm2, parm3,
OUT parm4, parm5), parameters parml, parm3, and parm5 do not have
parameter types. The parameter parml has a type of IN because no initial
parameter type has been specified. The parameter parm3 has a type of INOUT
because it is the most recently specified parameter type. Similarly, the
parameter parm5 has a type of OUT because it is the most recently specified
type in the parameter list.

2. The INCLUDE_URL statement is not supported by OS/400.

3. The REPORT block is supported in the MACRO_FUNCTION block by O©S/400
only.

Values

%MACRO_FUNCTION
The keyword that specifies a subroutine that can be invoked from the Net.Data
macro. The executable statements in a MACRO_FUNCTION block must contain
language statements that Net.Data directly interprets.

function_name
The name of the function being defined. An alphabetic or numeric string that
begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

parm passing spec:

IN Specifies that Net.Data passes input data to the language environment. IN
is the default.

ouT
Specifies that the language environment returns output data to Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment and
the language environment returns output data to Net.Data.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

function body:

exec_sql
A DB2WWW Release 1 language element that is supported for
compatibility. See [Appendix A_DR2 WW\W Connection” an page 223 or
DB2 World Wide Web Release 1 documentation.

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See

[\Variable Reference” an page 4 for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent
integers and have no leading or trailing white space. They might have one
leading plus (+) or minus (-) sign.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks or a Net.Data built-in function with specified
arguments. See L - for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See EINCI LIDE Statement” an page 32 for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs 39

40

Net.Data Reference

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can
exist on a local or remote server. See LINCLUDE URL Statement” on

for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHILE Black” on page 54 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function call. You
can use header and footer information for the report. See LRERQRT Black” an
for syntax and examples.

Context

The MACRO_FUNCTION block can be found in these contexts:
* IF block
» Qutside of any block in the declaration part of the Net.Data macro

Restrictions
This construct is not available for the OS/390 operating system.

The MACRO_FUNCTION block can contain these elements:

* Comment block

* EXEC_SQL statement

* HTML statements

* |IF block

* INCLUDE statement

* INCLUDE_URL statement
Not supported for OS/400

* REPORT block
Support for OS/400 only

* WHILE block

* Variable references

* Function calls

Examples

Example 1: A macro function that specifies message handling

%MACRO_FUNCTION setMessage(IN rc, OUT message) {
%IF (rc == "0")
@dtw_assign(message, "Function call was successful.")

%ELIF (rc == "-1")

@dtw_assign(message, "Function failed, out of memory.")
%ELIF (rc == "-2")

@dtw_assign(message, "Function failed, invalid parameter.")
%ENDIF

0,
%}

Example 2: A macro function that specifies header information

%MACRO_FUNCTION setup(IN browserType) {
%{ call this function at the top of each HTML block in the macro %}
%INCLUDE "header_info.html"
@dtw_rdate()
%I1F (browserType == "IBM")
@setupIBM()
%ELIF (browserType == "MS")
@setupMS ()
%ELIF (browserType == "NS")
@setupNS()
%ELSE
@setupDefault()
%ENDIF

0
%}

Chapter 1. Net.Data Macro Language Constructs 41

MESSAGE Block
Purpose

Specifies messages to display and actions to take based on the return code from a
function.

Define the set of return codes, along with their corresponding messages and
actions in the MESSAGE block. When a function call completes, Net.Data
compares its return code with return codes defined in the MESSAGE block. If the
function’s return code matches one in the MESSAGE block, Net.Data displays the
message and evaluates the action to determine whether to continue processing or
exit the Net.Data macro.

A MESSAGE block can be global in scope, or local to a single FUNCTION block. If
the MESSAGE block is defined at the outermost macro layer, it is considered global
in scope. When multiple global MESSAGE blocks are defined, only the last block
processed is considered active. If the MESSAGE block is defined inside a
FUNCTION block, the block is local in scope to the FUNCTION block where it is
defined. See the MESSAGE block section in the Net.Data Administration and
Programming Guide for return code processing rules.

Syntax

»>—%MESSAGE—{ >

v

I_El return code spec :—| message text spec |—| action spec |—,

SQLSTATE

»—%—} ><

action spec

|
[|
L‘ action spec ’—/

return code spec

—-DEFAULT |

—+DEFAULT
— -DEFAULT
msg_code—

+.
1

—include statement—

42 Net.Data Reference

SQLSTATE

|—SQLSTATE—:—E;tate_id _|

Iphanumeric string

message text spec

—string

—variable reference—
—function call
—(new_line)

—string

action spec

EXIT——
I

—variable reference—
function call
—include statement

|
[
L CONTINUE-

include statementJ

Values
%MESSAGE

A keyword for the block that defines a set of return codes, the associated
messages, and the actions Net.Data takes when a function call is returned.

return code spec

A positive or negative integer. If the value of the Net.Data RETURN_CODE

variable matches the return code spec value, the remaining information in the

message statement is used to process the function call. You can also specify
messages for return codes not specifically entered in the MESSAGE block.

+DEFAULT

A keyword used to specify a default positive message code. Net.Data uses

the information in this message statement to process the function call if
RETURN_CODE is greater than zero (0) and an exact match is not

specified.
-DEFAULT

A keyword to specify a default negative message code. Net.Data uses the

information in this message statement to process the function call if

RETURN_CODE is less than zero (0) and an exact match is not specified.

Chapter 1. Net.Data Macro Language Constructs

43

44

DEFAULT
A keyword to specify the default message code. Net.Data uses the
information in this message statement to process the function call, if all of
the following conditions are met:

* If RETURN_CODE is greater or less than zero, but not zero
* If no exact match for the return code is specified

» If the +DEFAULT or -DEFAULT values are not specified for when
RETURN_CODE is greater or less than zero

msg_code
The message code that specifies errors and warnings that can occur during
processing. A string of numeric digits with values from 0 to 9.

SQLSTATE
A keyword that provides application programs with common codes for common
error conditions.The SQLSTATE values are based on the SQLSTATE
specification contained in the SQL standard and the coding scheme is the same
on all IBM implementations of SQL. Restriction: Not supported on the OS/400
platform.

state_id
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

alphanumeric string
An alphabetic or numeric string containing any combination of alphabetic or
numeric characters. It cannot contain punctuation.

message text spec
A string that is sent to the Web browser if the RETURN_CODE matches the
return_code value in the current message statement.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See
‘\ari ” for syntax information.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks, or a Net.Data built-in function with specified
arguments. See L i - for syntax and examples.

action spec
Determines what action Net.Data takes if the RETURN_CODE matches the
return_code value in the current message statement.

EXIT
A keyword that specifies to exit the macro immediately when the error or
warning corresponding to the specified message code occurs. This value is
the default.

CONTINUE
A keyword that specifies to continue processing when the error or warning
corresponding to the specified message code occurs.

Net.Data Reference

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. The INCLUDE statement can appear anywhere in the MESSAGE.

See LUNCLUDE Statement” on page 33 for syntax and examples.

Context

The MESSAGE block can be found in these contexts:

* FUNCTION block

* IF block

» Outside of all blocks or statements in the declaration part of the Net.Data macro

Restrictions

The MESSAGE block can contain these elements:
* Comment block

* Function calls

» Variable references

* HTML statements

* Strings

* INCLUDE statement

SQLSTATE is not supported on the OS/400 platform.
Examples

Example 1: A local MESSAGE block

%MESSAGE {

-601: {<H3>The table has already been created, please go back and enter your name.</H3>
<P>Return

%}

default: "<H3>Can't continue because of error $(RETURN_CODE)</H3>"

0,
%}

Example 2 : A global MESSAGE block

%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more
than one Tine. You can use HTML tags, including

links and forms, in this message. %} : continue

0,
%}

%{ Tocal message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my function() {

%EXEC { my_command.cmd %}

%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one Tine. You can use HTML tags, including

links and forms, in this message. %} : exit

%}
Example 3 : A MESSAGE block containing INCLUDE statements.

Chapter 1. Net.Data Macro Language Constructs 45

46

Net.Data Reference

smessage {
%include "rcl1000.msg"
%include "rc2000.msg"
%include "defaults.msg"

0,
%}

REPORT Block

Purpose

Formats output from a function call. You can enter a table name parameter to
specify that the report is to use the data in the named table. Otherwise, the report is
generated with the first output table found in the function parameter list, or with the
default table data if no table name is in the list.

Syntax
»»—%REPORT {(— >
|—(—name—)J —string
—if block
—variable reference
—function call
—HTML statements————
—include statement
—include_url statement—
“while block
A 9
"T] . g
row block —string
—if block
—variable reference
—function call
—HTML statements————
—include statement
—include_url statement—
while block
Values
%REPORT

The keyword for specifying formatting instructions for the output of a function
call. You can use header and footer information for the report.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent integers
and have no leading or trailing white space. They can have one leading plus (+)
or minus (-) sign. See L ” for syntax and examples.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().

Chapter 1. Net.Data Macro Language Constructs 47

48

Net.Data Reference

For example: if VAR="abc', then $(VAR) returns the value 'abc'. See [variabld

Reference” an page 4l for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments. See
z for syntax and examples. Restriction: The REPORT
block cannot include SQL function calls, except in the OS/400 environment.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See KINCI UDE Statement” on page 33 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can exist

on a local or remote server. See UNCILUDE LRI Statement” on page 34 for

syntax and examples.

row block
The ROW block. Displays HTML formatted data once for each row of data that

is returned from a function call. See ERQW Black” on page 50 for syntax and

examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHIIL E Block” an page 54 for syntax and examples.

Context

The REPORT block can be found in these contexts:
* FUNCTION statement or block

* MACRO_FUNCTION block

* SQL statement or block

Restrictions

The REPORT block can contain these elements:
* Comment block
* IF block
* INCLUDE statements
* INCLUDE_URL statements
* ROW blocks
* WHILE blocks
* Function calls
For OS/390 platform: SQL functions cannot be called from inside SQL functions.
* HTML statements
e Strings
» Variable references

Examples

Example 1: A two-column HTML table showing a list of names and locations

%REPORT{

<H2>Query Results</H2>

<P>Select a name for details.

<TABLE BORDER=1>

<TR><TD>Name</TD><TD>Location</TD>

%ROW{

<TR>

<TD>

$(V1)</TD>
<TD>$(V2)</TD>

%}
</TABLE>

%}
Selecting a name in the table calls the details HTML block of the name.mac

Net.Data macro and sends it the two values as part of the URL. In this example,
the values can be used in name.mac to look up additional details about the name.

Chapter 1. Net.Data Macro Language Constructs 49

ROW Block

50

Net.Data Reference

Purpose

Processes each table row returned from a function call. Net.Data processes the
statements within the ROW block once for each row.

Syntax

»>—%ROW—{— %} ><
—string
—if block
—variable reference
—function call
—HTML statements
—include statement
—include_url statement—
“while block

Values

%ROW

The keyword that specifies that HTML formatted data is to be displayed, once
for each row of data returned from a function call.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have a

single leading plus (+) or minus (-) sign. See LIE Black” on page 26 for syntax

and examples.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $ (VAR) returns the value 'abc'. See

Reference” an page 4 for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO FUNCTION
blocks, or built-in functions with specified arguments. See L i
W for syntax and examples. Restriction: ROW cannot include
function calls that are SQL function calls, except in the OS/400 environment.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See L ’ for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the

Net.Data macro in which the statement is specified. The specified file can exist

on a local or remote server. See [INCI UDE_URI Statement” on page 34 for

syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See
bwHILE Block” an page 54 for syntax and examples.

Context

The ROW block can be found in these contexts:
« REPORT block

Restrictions

The ROW block can contain these elements:
* Comment block
* |F blocks
* INCLUDE statements
* INCLUDE_URL statements
* WHILE blocks
* Function calls
For OS/390 platform: SQL functions cannot be called from inside SQL functions.
» Variable references
e HTML statements
» Strings

Examples

Example 1 : A two-column HTML table showing a list of names and locations

%REPORT {

<H2>Query Results</H2>

<P>Select a name for details.
<TABLE BORDER=1>
<TR><TD>Name</TD><TD>Location</TD>

SROW{

<TR>

<TD>

$(V1)</TD>
<TD>$(v2)</TD>

0,
%}

</TABLE>

0,
%}

Selecting a name in the table calls the details HTML block of the name.mac
Net.Data macro and sends it the two values as part of the URL. In this example,
the values can be used in name.mac to look up additional details about the name.

Chapter 1. Net.Data Macro Language Constructs 51

TABLE Statement

52

Net.Data Reference

Purpose

Defines a variable which is a collection of related data. It contains an array of
identical records, or rows, and an array of column names describing the fields in
each row. A table statement can only be in a DEFINE statement or block.

Syntax

»—%TABLE—' upper limit i ><

upper limit

I I
I—(number)J

_[ALL

Values

%TABLE
A keyword that specifies the definition of a collection of related data containing
an array of identical records, or rows, and an array of column names describing
the fields in each row.

upper limit
The number of rows that can be contained in the table.

number
A string of digits with values from 0 to 9. A value of 0 allows for unlimited
number of rows in the table.

ALL
A keyword that allows for an unlimited number of rows in the table.

Context

The TABLE statement can be found in these contexts:
 DEFINE statement

Restrictions

The TABLE statement can contain these elements:
¢ Comment block
¢ Numbers

Examples

Example 1: A Net.Data table with an upper limit of 30 rows
%DEFINE myTablel=%TABLE(30)

Example 2: A Net.Data table that uses the default of all rows
%DEFINE myTable2=%TABLE

Example 3: A Net.Data table that specifies all rows
%DEFINE myTable3=%TABLE (ALL)

Chapter 1. Net.Data Macro Language Constructs 53

WHILE Block

54 Net.Data Reference

Purpose

Provides a looping construct based on conditional string processing. You can use
the WHILE block in the HTML block, the REPORT block, the ROW block, the IF
block, and the MACRO_FUNCTION block. String values in the condition list are
treated as numeric for comparisons if they are strings that represent integers and
have no leading or trailing white space. They can have a single leading plus (+) or

minus (-) sign.

Syntax

»—"/MHILE—I condition 1ist |—{ A\

condition list

—exec_sql statement—
—function call
—HTML statement
—if block
—while block
—variable reference—

—string

—((—condition list—)

condition list—&&—condition list—
condition list—||—condition list—

I—condition list

condition i

term i

condition

term

—term

term

variable reference
"—string—"
variable name
function call

Values

%WHILE
The keyword that specifies loop processing.

condition list
Compares the values of conditions and terms. Condition lists can be connected
using Boolean operators. A condition list can be nested inside another condition
list.

condition
A comparison between two terms using comparison operators. An IF condition
is treated as a numeric comparison if both of the following conditions are true:
* The condition operator is one of the following operators: <,<=,>>=,==/I=
* Both terms are strings representing valid integers, where a valid integer is a
string of digits, optionally proceeded by a plus (+) or minus (-) sign, and no
other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, for function call.

exec_sql statement
A DB2WWW Release 1 language element that is supported for compatibility.

See Appendix A_DR2 WW\W Connection” an page 223 or DB2 World Wide

Web Release 1 documentation.

function call
Invokes one or more previously defined FUNCTION or MACRO FUNCTION
blocks, or built-in functions with specified arguments. See LEunction Call (@)1
for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent integers
and have no leading or trailing white space. They can have one leading plus (+)

or minus (-) sign. See EIE Black” on page 26 for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

[WHII F Block” on page 54 for syntax and examples.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See
! for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation. A string in
the term of the condition list can contain any character except the new-line
character.

variable name
One or more names, each additional name concatenated by a period (.). See

DZa.r.La.blP_Ikla.mxn_an_pa.gM for syntax information.

Chapter 1. Net.Data Macro Language Constructs 55

Context

The WHILE block can be found in these contexts:
e HTML block

* REPORT block

* ROW block

* MACRO_FUNCTION block

* |IF block

e WHILE block

Restrictions

The WHILE block can contain these elements:
* Comment block

« EXEC_SQL statement

* |F block

* WHILE block

e Strings

* HTML statements

* Function calls

» Variable references

* INCLUDE statements

Examples

Example 1: A WHILE block that generates rows in a table
%DEFINE ToopCounter = "1"

SHTML (build_table) {
%WHILE (ToopCounter <= "100") {
%{ generate table tag and column headings %}
%IF (loopCounter == "1")
<TABLE BORDER>
<TR>
<TH>Item #
<TH>Description
</TR>
%ENDIF

%{ generate individual rows %}
<TR>

<TD>

<TD>$ (1oopCounter)
<TD>@getDescription(loopCounter)
</TR>

{ generate end table tag %}

IF (loopCounter == "100")
</TABLE>

%ENDIF

)
%
o

%

0

%{ increment loop counter %}
@dtw_add(loopCounter, "1", loopCounter)

N o
—

56 Net.Data Reference

Chapter 2. Variables

Net.Data provides two types of variables: user-defined variables and Net.Data

variables.

Variables that you define for your application. You can define the variables
that perform the following tasks:

Assign a variable value based on the value of another variable or string.

Use the ENVVAR language construct to reference environment variables.

‘ H ”

Use the EXEC language construct to invoke other programs from a
variable reference or function with executable variables.

Hide variable reference from HTML source.

oq H ”

Build a delimited string of values using the LIST language construct.

Pass an array of values to and from a function. Can be used for report
output.

Net.Data Variables

© Copyright IBM Corp. 1997, 1998

Variables that are for miscellaneous processing and file manipulation, table
processing, report formatting, and language environments.

Some variables have values that you can define or modify, others are
defined by Net.Data. The description for the variable specifies whether you
define a value or not. See the description of a variable to determine how
the value is defined.

The following variable types are provided by Net.Data:

Defined by Net.Data to let you process Net.Data tales. Use these
variables to access data from SQL queries and function calls. They are
only recognized inside a REPORT block, unless otherwise specified.

‘ H ”

Help you customize reports from a function. You must define these
variables before referencing them. You can define or reference report
variables in any Net.Data macro block.

Help you customize the way FUNCTION blocks are processed, using
language environments.

Defined by Net.Data to affect Net.Data processing, find out the status of
a function call, and obtain information about the result set of a database
query. Some miscellaneous variables are set by Net.Data and cannot be
changed.

57

The output for many Net.Data variables varies depending on the operating
system on which it runs.

Constants can be up to 256KB in a Net.Data macro. Thus, you cannot initialize a
variable or set a default value whose length is greater than 256 KB in a macro file.

In this chapter, operating system support for each variable is specified. The
following list defines operating system abbreviations:

HP-UX Hewlett Packard UNIX operating system
SCO Santa Cruz UNIX operating system

SUN Sun Solaris UNIX operating system

Win NT Microsoft's Windows NT operating system

User-defined Variables

This section describes the user-defined variables. You define these variables within
the macro file.

Conditional Variables

58

Net.Data Reference

AIX HP-UX 0S/2 0S/390 0S/400 SCO SUN Win NT

X X X X X X X X

The value of a conditional variable is conditionally set based on the value of
another variable or string. This is also called a ternary operation.

The syntax of conditional variable is:
test ? trueValue : falseValue

Where:
test Is a condition to test.

trueValue
Is the value to use if the test is true.

falseValue
Is the value to use if the test is false.

Example 1: A conditional variable defined with two possible values
varA = varB ? "value_1" : "value_2"

If varB exists, varA=value_1, otherwise varA=value_ 2.

Example 2 : A conditional variable defined with a variable reference
varname = ? "§(value_1)"

In this case, varname is null if value 1 is null, otherwise varname is set to value 1.

Example 3: A conditional variable used with a LIST statement and WHERE clause

%DEFINE{

%list " AND " where_list

where_Tist ? "custid = $(cust_inp)"

where_Tist ? "product_name LIKE '$(prod_inp)%""
where_clause ? "WHERE $(where Tist)"

0,
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT * FROM prodtable $(where_clause)

0,
%}

Conditional and LIST variables are most effective when used together. The above
example shows how to set up a WHERE clause in the DEFINE block. The variables
cust_inp and prod_inp are HTML input variables passed from the Web browser,
usually from an HTML form. The variable where_list is a LIST variable made of two
conditional statements, each statement containing a variable from the Web browser.

If the Web browser returns values for both variables cust _inp and prod_inp, for
example, IBM and 755C, the where_clause is:

WHERE custid = IBM AND product_name LIKE '755C%'

If either variable cust_inp or prod_inp is null or not defined, the WHERE clause
changes to omit the null value. For example, if prod_inp is null, the WHERE clause
is:

WHERE custid = IBM

If both values are null or undefined, the variable where_clause is null and no
WHERE clause appears in SQL queries containing $(where_clause).

Environment Variables

AIX HP-UX 0S/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X

Environment variables let you use the Net.Data ENVVAR language construct to
reference environment variables that exist in the process under which Net.Data is
running.

Example 1: A variable is assigned the value of an environment variable
%define SERVER_NAME=%ENVVAR

The server is $(SERVER_NAME)

The environment variable SERVER_NAME has the value of the current server
name, which, in this example, is www.software.ibm.com.

The server is www.software.ibm.com

See LENVVAR Statement” on page 13 for more information about the ENVVAR

statement.

Executable Variables

AIX

HP-UX

0S/2

0S/390

0S/400

SCO

SUN

Win NT

X

X

X

Chapter 2. Variables 59

60

Net.Data Reference

Executable variables allow you to invoke other programs from a variable reference
using the executable variable feature. An executable variable is defined in a
Net.Data macro using the EXEC language element. For more information about the

EXEC language element, see EEXEC Block or Statement” on page 14.

When Net.Data encounters an executable variable in a macro file, it looks for the
referenced executable program using the following method:

1. It searches the EXEC_PATH in the Net.Data initialization file. See the
configuration chapter in Net.Data Administration and Programming Guide for
more information about EXEC_PATH.

2. If Net.Data does not locate the program, it searches the directories defined by
the system PATH environment variable. If it locates the executable program,
Net.Data runs the program.

Example 1: An executable variable definition
%DEFINE runit=%exec "testProg"

The variable runit is defined to execute the executable program testProg; runit
becomes an executable variable.

Net.Data runs the executable program when it encounters a executable variable
reference in a Net.Data macro. For example, the program testProg is executed
when a executable variable reference is made to the variable runit in a Net.Data
macro.

A simple method is to reference an executable variable from another variable
definition. Example 2 demonstrates this method. The variable date is defined as an
executable variable and dateRpt is then defined as a variable reference, that
contains the executable variable.

Example 2: An executable variable as a variable reference

%DEFINE date=%exec "date"
%DEFINE dateRpt="Today is $(date)"

When Net.Data resolves the variable reference $(dateRpt), Net.Data searches for
the executable date, runs the program, and returns:

Today is Tue 11-07-1995

An executable variable is never set to the value of the output of the executable
program it calls. Using the previous example, the value of date is null. If you use it
in a DTW_ASSIGN function call to assign its value to another variable, the value of
the new variable after the assignment is null also. The only purpose of an
executable variable is to invoke the program it defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition.

Example 3: Executable variables with parameters
%DEFINE mph=%exec "calcMPH $(distance) $(time)"

The values of distance and time are passed to the program calcMPH.

Hidden Variables

AIX

HP-UX

0Ss/2

0S/390

0S/400

SCO

SUN

Win NT

X

X

X

X

X

X

X

X

List Variables

With hidden variables, you can reference variables while hiding the actual variable
value in your HTML source. To use hidden variables:

1. Define a variable for each string you want to hide.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of $(X).

Example 1 : Hidden variables in a HTML form
SHTML(INPUT) {

<FORM ...>

<pP>Select fields to view:

<SELECT NAME="Field">

<OPTION VALUE="$$(name)"> Name

<OPTION VALUE="$$(addr)"> Address

</FORM>

0,
%}

%DEFINE{
name="customer.name"
addr="customer.address"

0
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

0,
%}

When the HTML form is displayed on a Web browser, $$(name) and $$ (addr)are
replaced with $ (name) and $(addr) respectively, so the actual table and column
names never appear on the HTML form and no one can tell that the true variable
names are hidden. When the customer submits the form, the HTML(REPORT)
block is called. When @mySelect() calls the FUNCTION block, $(Field) is
substituted in the SQL statement with customer.name or customer.addr in the SQL

query.

AIX HP-UX 0Ss/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X

You can use list variables to build a delimited string of values. They are particularly
useful in helping you construct an SQL query with multiple items like those found in
some WHERE or HAVING clauses.

The blanks are significant. Usually you want to have a blank space on both sides of
the value. Most queries use Boolean or mathematical operators (for example, AND,
OR, and >). See Lt ! for syntax and more information.

Chapter 2. Variables 61

Table Variables

62

Net.Data Reference

Example 1: Use of conditional, hidden, and list variables

SHTML (INPUT) {

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/example2.max/report">
Select one or more cities:

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(condl)">Sao Paulo

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond2)">Seattle

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond3)">Shanghai

<INPUT TYPE="submit" VALUE="Submit Query">

</FORM>

0,
%}

%DEFINE{

DATABASE="custcity"

%LIST " OR " conditions

condl="condl="'Sao Paolo"'"
cond2="cond2="'Seattle"'"
cond3="cond3="'Shanghai'"

whereClause= ? "WHERE $(conditions)" : ""

0,
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$(whereClause)

0,
%}

%HTML (REPORT) {
GmySelect()
%}

If no boxes are checked in the HTML form, conditions is null, so whereClause is also
null in the query. Otherwise, whereClause has the selected values separated by the
Boolean operator OR. For example, if all three cities are selected, the SQL query is:

SELECT name, city FROM citylist
WHERE condl='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

Example 2 : Value separators

%DEFINE %LIST " | " VLIST
%REPORT{

%ROMW{

$ (ROW_NUM) : $(VLIST)
%}

0,
%}

The table processing variable VLIST uses two quotes and an OR bar, " | ", as a
value separator in this example. The string of values are separated by the value in
quotes.

AIX HP-UX 0Ss/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X

Table variables contain an array of values and the associated column names. Each
element in the array is a row. Use table variables to pass groups of values to a
function. You can refer to the individual elements of a table (the rows) in a REPORT
block of a function. Table variables are often used for output from an SQL function
and input to a report, but you can also pass them as IN, OUT, or INOUT
parameters to any non-SQL function. Tables can only be passed to SQL functions
as OUT parameters. See L " for syntax and more
information.

Example 1: A SQL result set that is passed to a REXX program

%DEFINE{

DATABASE = "iddata"
MyTable = %TABLE (ALL)
DTW_DEFAULT_REPORT = "NO"

0,
%}

%FUNCTION(DTW_SQL) Query(OUT table) {
select * from survey

[
%}

%FUNCTION(DTW_REXX) showTable(INOUT table) {
Say 'Number of Rows: 'table ROWS
Say 'Number of Columns: 'table_COLS
do j=1 to table_COLS
Say "Here are all of the values for column " table_N.j ":"
do i =1 to tabTe_ROWS
Say ""i": " table_V.i.j
end
end

0,
%}

%HTML (report) {
<HTML>

<PRE>
@Query(MyTable)

<p>
@showTable(MyTable)
</PRE>

</HTML>

0,
%}

The HTML REPORT block calls an SQL query, saves the result in a table variable
and then passes the variable to a REXX function.

Net.Data Table Processing Variables

Net.Data defines these variables for use in the REPORT and ROW blocks, unless
noted otherwise. Use these variables to reference values that your queries return.

Restriction: Do not define values for these variables in the DEFINE section.

« BLIST” on page 71

Chapter 2. Variables 63

Nn

64

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The column name returned by a function call or query for column n. Nn is valid in
REPORT and ROW blocks.

Net.Data assigns the variable for each column in the table; use the variable in a
variable reference, specifying the number of the column you want to reference.

Examples

Example 1 : A variable reference for a column name

The name of column 2 is $(N2).

Example 2 : Saves the value of a column name for use outside a REPORT block
using DTW_ASSIGN

%define coll=""

%function (DTW_SQL) myfunc() {
select * from atable
%report {

@dtw_assign(coll, N1)
srow{ %}

0
%}

N

}

%htm1 (report) {
@myfunc()
The column name for the first column is $(coll)

0,
%}

This example shows how you can use this variable outside the REPORT block by

using DTW_ASSIGN. For more information, see IDTW_ASSIGN” on page 151.

Example 3 : Nn within an HTML table to define column names

%REPORT{

<H2>Product directory</H2>

<TABLE BORDER=1 CELLPADDING=3>

<TR><TD>$ (N1)</TD><TD>$ (N2)</TD><TD>$ (N5)</TD>
%ROW{
<TR><TD>$(V1)</TD><TD>$(V2)</TD><TD>$ (V3)</TD>
%}

</TABLE>

}

N

NLIST

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Contains a list of all the column names from the result of a function call or query.
The default separator is a space.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1 : A list of column names with ALIGN
%DEFINE ALIGN="YES"

%FUNCTION (DTW_SQL) myfunc() {

select * from MyTable

%report {

Your query was on these columns: $(NLIST).
Srow {

-
}
}

AN O O° -

The list of column names uses a space between column names with ALIGN set to
YES.

Example 2 : A %LIST variable to change the separator to " | ”
%DEFINE %LIST " | " NLIST

%FUNCTION (DTW_SQL) myfunc() {

select * from MyTable

%report {

Your query was on these columns: $(NLIST).
Srow {

}
}
}

N O A°

Chapter 2. Variables 65

NUM_COLUMNS

66

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The number of table columns that Net.Data is processing in the report block; the
columns are returned by a function call or query.

This variable is a predefined variable and its value cannot be modified. Use the

variable as a variable reference.
Examples

Example 1: NUM_COLUMNS used as a variable reference with NLIST

%REPORT{
Your query result has $(NUM_COLUMNS) columns: $(NLIST).

-

AN .

| NUM_ROWS
|
0

AIX HP-UX 0Ss/2 0S/390 | 0OS/400 SCO SUN Win NT
X

Purpose

The number of rows in the table that Net.Data is processing in the REPORT block.
The number of rows is affected by the value of the upper limit parameter defined for
the Net.Data table holding the data. For example, if upper limit is set to 30, but the
SELECT statement returns 1000 rows, the value of NUM_ROWS is 30. Additionally,
if upper limitis set to 30 and the SELECT statement returns 20 rows, NUM_ROWS
equals 20. See L ! for more information about the
TABLE statement and the upper limit parameter.

NUM_ROWS is not affected by the value of START_ROW_NUM as long as
START_ROW_NUM is not passed to the language environment. For example, if
START_ROW_NUM is set to 5 (specifying that the table displayed on the Web page
should be populated starting with row 5) and the SELECT statement returns 25
rows, NUM_ROWS is set to 25, not 21. The first four rows are discarded from the
table, but are included in the value of NUM_ROWS. However, if
START_ROW_NUM is passed to the language environment, then NUM_ROWS wiill
only contain the number of rows starting at the row specified by
START_ROW_NUM. In the example above, NUM_ROWS will be set to 21.

NUM_ROWS is valid in REPORT and ROW blocks.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1: Displays the number of names being processed in the REPORT block
%DEFINE DTW_SET TOTAL_ROWS="YES"

%REPORT {

<H2>E-mail directory</H2>

<yL>

%ROW {

Name: $(V2)

Location: $(V3)

%}

Names displayed: $(NUM_ROWS)

Names found: $(TOTAL_ROWS)

0,
%}

Chapter 2. Variables 67

ROW_NUM

68

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

A table variable whose value Net.Data increments each time a row is processed in
a Net.Data table. The variable acts as a counter and its value is the number of the
current row being processed.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

RPT_MAX_ROWS can affect the value of ROW_NUM. For example, if 100 rows
are in a table, and you have set RPT_MAX_ROWS to 20, the final value of
ROW_NUM is 20, because row 20 was the last row processed.

ROW_NUM is valid only within a ROW block.
Examples

Example 1 : Populates a column in the HTML output by using ROW_NUM to label
each row in the table

%REPORT{

<TABLE BORDER=1>

<TR><TD> Row Number </TD> <TD> Customer </TD>
%ROW{

<TR><TD> $(ROW_NUM) </TD> <TD> $(V_Custname) </TD>
%}
</TABLE>

0,
%}

The REPORT block produces a table like the one shown below.

Row Number Customer

1 Jane Smith

2 Jon Chiu

3 Frank Nguyen
4 Mary Nichols

TOTAL_ROWS

AIX HP-UX 0s/2 0S/390 | 0S/400 Sco SUN win NT
X X X X X X X
Purpose

The total number of rows a query returns, no matter what the value of upper_limit
for the TABLE language construct. For example, if RPT_MAX_ROWS is set to
display a maximum of 20 rows, but the query returns 100 rows, this variable is set
to 100 after ROW processing.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Operating system differences:

* On the OS/400 operating system, this variable can be referenced anywhere in a
REPORT or ROW block.

* On the 0S/2, Windows NT, and UNIX operating systems, this variable can be
reference in the REPORT footer, only.

Required: You must set DTW SET TOTAL ROWS to YES to use this variable.
See IDTW_SET_TQTAL_ROWS” an page 91| for more information.

Examples

Example 1: Displays the total number of names found
%DEFINE DTW_SET TOTAL_ROWS="YES"

%REPORT{

<H2>E-mail directory</H2>

SROW{

Name: $(V2)

Location: $(V3)

%}

Names displayed: $(NUM_ROWS)

Names found: $(TOTAL_ROWS)

0,
%}

Chapter 2. Variables 69

V_columnName

70

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The value for the specified column name for the current row. The variable is not set
for undefined column names. A query containing two column names with the same
name gives unpredictable results. Consider using an AS clause in your SQL to
rename duplicate column names. V_columnName is only valid in the ROW block.

Specify the value of this variable by using it as a variable reference, substituting in
the actual name of the column.

Values
V_columnName

Table 1. V_columnName Values

Values Description
columnName The column name in current row of the database table.
Examples

Example 1: Using V_columnName as a variable reference
You have selected $(V_destcity).

VLIST

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

A list of all the field values for the current row being processed in a ROW block.
VLIST is only valid in a ROW block. The default separator is a space.

This variable is a predefined variable and its value cannot be modified. Use the

variable as a variable reference.
Examples

Example 1 : Using list tags to display query results
%DEFINE ALIGN="YES"

%REPORT{

Here are the results of your query:
<QL>

%ROW{

$(VLIST)

%}

</0L>

0,
%}

Example 2: Using a list variable to change the separator to <P>
%DEFINE %LIST "<P>" VLIST

%REPORT{

Here are the results of your query:
%ROW {

<HR>$ (VLIST)

%}

0,
%}

Chapter 2. Variables 71

Vn

72

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

A field value for each row returned by a function call or SQL query for fields 1

through n. Vn is recognized only in a ROW block.

Net.Data assigns the variable for each field the table; use the variable in a variable
reference, specifying the number of the field you want to reference. To use this
variable outside the block, assign the value of Vn to a previously defined global

variable or an OUT or INOUT function parameter variable.
Examples

Example 1: Report displaying an HTML table

%REPORT{

<H2>E-mail directory</H2>

<TABLE BORDER=1 CELLPADDING=3>
<TR><TD>Name</TD><TD>E-mail address</TD><TD>Location</TD>
%ROW{

<TR><TD>$(V1)</TD>

<TD>$(v2)</TD>
<TD>$(V3)</TD>

%}

</TABLE>

Found $(NUM_ROWS) models matching your description.

0,
%}

The second column shows the e-mail address. You can send the person a message

by clicking on the link.

Net.Data Report Variables

These variables help you customize your reports. You must define these variables
before using them.

Chapter 2. Variables 73

ALIGN

74

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Controls leading and trailing spaces used with the table processing variables NLIST
and VLIST. When set to YES, ALIGN provides padding to align table processing
variables for display. If you want to embed query results in HTML links or form
actions, use the default value of NO to prevent Net.Data from surrounding report
variables with leading and trailing spaces.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
ALIGN="YES"|"NO"

Table 2. ALIGN Values

Values Description

YES Net.Data adds leading and trailing spaces to report variables
with spaces to align them for display.

NO Net.Data does not add leading or trailing spaces. NO is the
default.

Examples

Example 1: Using the ALIGN variable to separate each column by a space

%DEFINE ALIGN="YES"
<P>Your query was on these columns: $(NLIST)

DTW_DEFAULT_REPORT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Determines whether Net.Data generates a default report for functions that have no
REPORT block. When this variable is set to YES, Net.Data generates the default
report. When set to NO, Net.Data suppresses default report generation.
Suppressing the default report is useful, for example, if you receive the results of a
function call in a table variable and want to pass the results to a different function to
process.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_DEFAULT_REPORT="YES"|"NO"

Table 3. DTW_DEFAULT_REPORT Values

Values Description

YES Net.Data generates the default report for functions without
REPORT blocks and displays the results at the browser. YES is
the default.

NO Net.Data discards the default report for functions without
REPORT blocks.

Examples

Example 1 : Overriding the default report generated by Net.Data
%DEFINE DTW_DEFAULT_REPORT="NO"

Chapter 2. Variables 75

DTW_HTML_TABLE

76

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Displays results in an HTML table instead of displaying the table in a text-type
format (that is, using the TABLE tags rather than the PRE tags).

The generated TABLE tag includes a border and cell-padding specification:
<TABLE BORDER CELLPADDING=2>

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_HTML_TABLE="YES"|"NO"

Table 4. DTW_HTML_TABLE Values

Values Description

YES Displays table data using HTML table tags.

NO Displays table data in a text format, using PRE tags. NO is the
default.

Examples

Example 1: Displays results from an SQL function with HTML tags
%DEFINE DTW_HTML TABLE="YES"

%FUNCTION(DTW_SQL) {

SELECT NAME, ADDRESS FROM $(qTable)

0,
%}

RPT_MAX_ROWS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies the number of rows that are displayed in a table generated by a function
REPORT block.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

0S/400, Windows NT, OS/2, and UNIX users: To use this variable, ensure that
this variable is included as an IN variable in the ENVIRONMENT statement for the
database language environments you are using, in the initialization file. See the
configuration chapter of Net.Data Administration and Programming Guide to learn
more about the database language environment statement.

Values
RPT_MAX_ROWS="ALL"|"0"|"number"

Table 5. RPT_MAX_ROWS Values

Values Description

ALL Indicates that there is no limit on the number of rows to be
displayed in a table generated by a function call. All rows will be
displayed.

0 Specifies that all rows in the table will be displayed. This value

is the same as specifying ALL.

number A positive integer indicating the maximum number of rows to be
displayed in a table generated by a function call.

If the FUNCTION block contains a REPORT and ROW block,
this number specifies the number of times the ROW block is
executed.

Examples

Example 1 : Defines RPT_MAX_ROWS in a DEFINE statement
%DEFINE RPT_MAX_ROWS="20"

The above method limits the number of rows any function returns to 20 rows.
Example 2 : Uses HTML input to define the variable with an HTML form
Maximum rows to return (0 for no limit):

<INPUT TYPE="text" NAME="RPT_MAX_ROWS" SIZE=3>

The lines in the above example can be placed in a FORM tag to let the application
users set the number of rows they want returned from a query.

Chapter 2. Variables 77

Net.Data Reference

START_ROW_NUM

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Specifies the row number to begin displaying the results of a Net.Data table in a
report. Use this variable together with RPT_MAX_ROWS to break queries with
large result sets into smaller tables and use a Next button to navigate through the
result table.

Restriction: For performance reasons, Net.Data passes START _ROW_NUM to
database language environments so that the language environment does not return
the entire result set to Net.Data. To pass the variable automatically, include it as an
IN variable in the database language environment ENVIRONMENT statement in the
initialization file. If this variable is omitted from the ENVIRONMENT statement, the
starting row number to be retrieved is assumed to be the first row in the result set.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
START_ROW_NUM="number"

Table 6. START _ROW_NUM Values

Values Description

number A positive integer indicating the row number with which to begin
displaying a report.

If START_ROW_NUM is specified in a database language
environment’s environment statement in the initialization file, this
number specifies the row number of the result set processed by
the database language environment.

If START_ROW_NUM is not passed to the language
environment, this number specifies the row number of the
Net.Data table used to display a report.

Examples

Example 1: Scrolling with HTML form Next and Previous buttons
%define {

DTW_HTML TABLE = "YES"
START_ROW_NUM = "

RPT_MAX_ROWS = "10"
totalSize =

includeNext = "YES"
includePrev = "YES"
includelast = "YES"
includeFirst = "YES"

N

}

%function(DTW_SQL) myQuery () {
select * from NETDATADEV.CUSTOMER
1

%function(DTW_SQL) count (OUT size){
select count(*) from NETDATADEV.CUSTOMER
%report{

o

0,
%}

Srow{
@DTW_ASSIGN(size,V1)

0,
%}

o°

}

%html (report) {

%{ get the total number of records if we haven't already %}
%if (totalSize == "")

@count(totalSize)
%endif

%{ set START_ROW_NUM based on the button user clicked %}
%if (totalSize <= RPT_MAX_ROWS)
%{ there's only one page of data %}
@DTW_ASSIGN(START_ROW_NUM, "1")
@DTW_ASSIGN(includeFirst, "NO")
@DTW_ASSIGN(includelast, "NO")
@DTW_ASSIGN(includeNext, "NO")
@DTW_ASSIGN(includePrev, "NO")

%elif (submit == "First Page" || submit == "")
%{ first time through or user selected "First Page" button %}
@DTW_ASSIGN(START_ROW_NUM, "1")

@DTW_ASSIGN(includePrev, "NO")
@DTW_ASSIGN(includeFirst, "NO")
%elif (submit == "Last Page")
%{ user selected "Last Page" button %}
@DTW_SUBTRACT (totalSize, RPT_MAX_ROWS, START ROW_NUM)
@DTW_ADD(START _ROW_NUM, "1",” START_ROW_NUM)
@DTW_ASSIGN(includelast, "NO")
@DTW_ASSIGN(includeNext, "NO")
%e1if (submit == "Next")
%{ user selected "Next" button %}
@DTW_ADD(START _ROW_NUM, RPT_MAX_ROWS, START_ROW_NUM)
%if (eDTW_rADD(START ROW_NUM, RPT MAX ROWS) > totalSize)
@DTW_ASSIGN(includeNext,"NO")
@DTW_ASSIGN(includelast, "NO")
%endif

%elif (submit == "Previous")

%{ user selected "Previous" button %}

@DTW_SUBTRACT (START _ROW_NUM, RPT MAX_ROWS, START_ROW_NUM)

%if (START_ROW_NUM <= "1")
@DTW_ASSIGN(START_ROW_NUM,"1")
@DTW_ASSIGN(includePrev,"NO")
@DTW_ASSIGN(includeFirst,"NO")

%endif

%endif

%{ run the query to get the data %}
@myQuery ()

%{ output the correct buttons at the bottom of the report %}
<center>

<form method="POST" action="report">

<input name="START_ROW_NUM" type="hidden" value="$(START_ROW_NUM)">
<input name="totalSize" type="hidden" value="$(totalSize)">

%if (includeFirst == "YES")

<input name="submit" type="submit" value="First Page">

%endif

%if (includePrev == "YES")

<input name="submit" type="submit" value="Previous">

%endif

%if (includeNext == "YES")

<input name="submit" type="submit" value="Next'">

%endif

%if (includelLast == "YES")

<input name="submit" type="submit" value="Last Page">

Chapter 2. Variables

79

%endif
</form>
</center>

N

}

80 Net.Data Reference

Net.Data Language Environment Variables

Use these variables with functions to help you customize the way FUNCTION
blocks are processed by language environments. You might need to define these
variables before referencing them.

Chapter 2. Variables

81

DATABASE

82

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Specifies the database or ODBC data source to access when calling a database
function. This variable can be changed multiple times within a macro to access
multiple databases or ODBC data sources.

0OS/400 operating system: This variable is optional. Net.Data, by default, specifies
DATABASE="*LOCAL"; the DTW_SQL language environment uses the local
relational database directory entry.

Windows NT, OS/2, and UNIX operating systems: Define this variable before
calling any database function, except when using the DTW_ORA (Oracle) language
environment. Additionally, you must use Live Connection when accessing multiple
databases from the same HTML block and through the same language
environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DATABASE="dbname"

Table 7. DATABASE Values

Values Description
dbname The name of the database Net.Data connects to.
Examples

Example 1 : Specifies to connect to the CELDIAL database for any SQL operations
%DEFINE DATABASE="CELDIAL"

%FUNCTION (DTW_SQL) getRpt() {
SELECT * FROM customer

0,
%}

%HTML (report) {
%INCLUDE "rpthead.htm"
@getRpt()

%INCLUDE "rptfoot.htm"

%}
The database CELDIAL is accessed when the function getRpt is called.

Example 2: Overrides previous DATABASE definitions with DTW_ASSIGN
%DEFINE DATABASE="DB2C1"

%HTML (monthRpt) {
@DTW_ASSIGN(DATABASE, "DB2D1")
%INCLUDE "rpthead.htm"
@getRpt()

%INCLUDE "rptfoot.htm"

0,
%}

The HTML block queries the database DB2D1, regardless of what the previous
value for DATABASE was.

Chapter 2. Variables 83

DB_CASE

84

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies which case to use for SQL commands and converts all characters to
either upper or lower case. If this variable is not defined, the default action is to not
convert the SQL command characters.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DB_CASE="UPPER" | "LOWER"

Table 8. DB_CASE Values

Values Description

UPPER Converts all SQL command characters to upper case.
LOWER Converts all SQL command characters to lower case.
Examples

Example 1 : Specifies upper case for all SQL commands
%DEFINE DB_CASE="UPPER"

DB2PLAN

AIX HP-UX 0Ss/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Allocates a plan for a connection to a local DB2 subsystem. The variable specifies
the name of a plan for the Net.Data SQL language environment at the local DB2
subsystem that Net.Data will access.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Requirement: This variable must be specified in the Net.Data initialization file on
the DTW_SQL ENVIRONMENT statement and optionally in the macro file. An error
occurs if the macro attempts to execute an SQL function when this variable is not
specified within the Net.Data for OS/390 initialization file or within a macro and not
in the initialization file.

Values
DB2PLAN="plan_name"

Table 9. DB2PLAN Values

Values Description

plan_name The name of the DB2 plan. The name can be eight characters
or less.

Examples

Example 1 : Specifies the plan in the DEFINE statement
%DEFINE DB2PLAN="DTWGAV21"

Chapter 2. Variables 85

DB2SSID

86

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Establishes a connection to a local DB2 subsystem. The variable specifies the
subsystem ID of the local DB2 subsystem that Net.Data will access. Only one local
database connection is allowed for each macro.

Requirement: This variable must be specified in the Net.Data initialization file and
optionally in the macro file. An error occurs if the macro attempts to execute an
SQL function when this variable is not specified within the Net.Data for OS/390
initialization file and also not defined within a macro.

Values
DB2PLAN="subsytem_id"

Table 10. DB2SSID Values

Values Description

subsystem_id The name of the DB2 subsytem. The name can be eight
characters or less.

Examples

Example 1 : Specifies a subsystem ID in the DEFINE statement
%DEFINE DB2SSID="DBNC"

DTW_APPLET_ALTTEXT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Displays HTML tags and text to browsers that do not recognize the APPLET tag
and is used with the the Applet language environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values

DTW_APPLET ALTTEXT="HTML_text_and_tags"

Table 11. DTW_APPLET_ALTTEXT Values

Values

Description

HTML_text_and_tags

HTML tags and text for browsers that do not recognize the
APPLET tag.

Examples

Example 1: Alternate text that indicates a Web browser restriction
%DEFINE DTW_APPLET_ALTTEXT="<P>Sorry, your browser is not java-enabled."

Chapter 2. Variables

87

| DTW_EDIT_CODES

88

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Converts NUMERIC, DECIMAL, INTEGER and SMALLINT data types that are
returned as a result of an SQL operation for the DTW_SQL language environment.
The variable DTW_EDIT_CODES is a string of characters that correspond to the
resulting columns of the table that DTW_SQL LE will build; for example, the fifth
character in DTW_EDIT_CODES will be applied to the fifth column of the result set
if that column is one of the supported types. This single character can be any of the
supported system supplied edit codes that are defined in Data Description
Specification Reference.

For example, a DECIMAL(6,0) field would normally be displayed as the character
string '112698'. By specifying an edit code of 'Y’ for that column in the variable
DTW_EDIT_CODES, 'Y’ is displayed as a character string that represents the date
of '11/26/98'.

Tip: Applying a user-supplied edit code to a column that results in a character string
with non-numeric characters (such as commas or currency symbols) can cause
syntax errors if the character string is sent back to the server for subsequent
processing within a Net.Data macro. For example, the non-numeric column value
might be used for numeric comparisons in subsequent DTW_SQL functions calls,
causing syntax errors.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_EDIT CODES="edit_code"

Table 12. DTW_EDIT_CODES Values

Values Description

edit_code Specifies a string of characters that correspond to the resulting
columns of the table that the SQL language environment builds.

Examples

Example 1:
@DTW_ASSIGN(DTW_EDIT_CODES "JJLJJ###xwwxY")

| DTW_MBMODE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Provides multiple-byte character set (MBCS) support for string and word functions
used by the Default language environment. You can set this variable in the Net.Data
initialization file, but you can use it in the macro file to set or override the current
setting.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

0S/400 users: Net.Data for OS/400 automatically enables functions for MBCS
support and does not need this variable. Net.Data for OS/400 ignores this variable
in macro files that are migrated to the OS/400 operating system.

Values
DTW_MBMODE="YES" | "NO"

Table 13. DTW_MBMODE Values

Values Description

YES Specifies MBCS support for string and word functions.

NO Specifies that string and word functions do not have MBCS
support. NO is the default.

Examples
<DTW_MBMODE="YES"

Chapter 2. Variables 89

DTW_SAVE_TABLE_IN

90

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Identifies a table variable that the SQL language environment uses to store table
data from a query. This table can then be used later, for example, in a REXX
program that analyzes table data.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values

DTW_SAVE_TABLE_IN="table_name_var"

Table 14. DTW_SAVE_TABLE_IN Values

Values

Description

table_name_var

The name of a table for the SQL language environment to store
table data from a query.

Examples

Example 1: A previously-defined table variable used in a REXX call

%DEFINE theTable = %TABLE(2)
%DEFINE DTW_SAVE_TABLE_IN = "theTable"

%FUNCTION(DTW_SQL) doQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE

WHERE TYPE='MONITOR'

0,
%}

%FUNCTION(DTW_REXX) analyze table(myTable) {

%EXEC{ anzTbl.cmd %}

N

}

%HTML (doTable) {
@doQuery ()
@analyze table(theTable)

%}

A REXX FUNCTION block calls the REXX program anzTb1.cmd, which uses the
table variable theTable to analyze data in the table. The variable theTable was
returned from a previous SQL function call.

DTW_SET TOTAL ROWS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Specifies to a database language environment that the total number of rows in the
result set for a query should be assigned to TOTAL_ROWS.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

To pass this variable automatically, include it as an IN variable in the database
language environment statement in the Net.Data initialization file. See the
configuration chapter of Net.Data Administration and Programming Guide to learn
more about the database language environment statement.

Values
DTW_SET_TOTAL_ROWS="YES"|"NO"

Table 15. DTW_SET_TOTAL_ROWS Values

Values Description

YES Assigns the value of the total number of rows to the
TOTAL_ROWS variable. Important: You must set this value if
you want to reference the variable TOTAL_ROWS to determine
the number of rows returned from a query.

NO Net.Data does not set the TOTAL_ROWS variable and
TOTAL_ROWS cannot be referenced in a macro file. NO is the
default.

Performance tip: Setting DTW_SET_TOTAL_ROWS to YES affects performance
because to determine the total rows, the database language environment requires
that all rows be retrieved.

Examples

Example 1: Defines DTW_SET_TOTAL_ROWS for using TOTAL_ROWS
%DEFINE DTW_SET_TOTAL_ROWS="YES"

%FUNCTION (DTW_SQL) myfunc() {
select * from MyTable
%report {

%row
%

<P>$(NUM_ROWS) returned. Your query is Timited to $(TOTAL_ROWS) rows.

%}
%)

Chapter 2. Variables 91

LOCATION

92

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Establishes a connection to a remote database server. The variable specifies the
name by which the remote server is known to the local DB2 subsystem. The value
of LOCATION must be defined in the SYSIBM.SYSLOCATIONS table of the
Communications Database (CDB). If this variable is not defined within a macro, any
SQL requests made by the macro are executed at the local DB2 subsystem.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOCATION="remote_dbase_name"

Table 16. LOCATION Values

Values Description

remote_dbase _name The name of a valid remote database server that is defined in
the SYSIBM.SYSLOCATIONS table of the CDB. The name can
be eight characters or less.

Examples

Example 1: Defines the remote database location in the DEFINE statement
%DEFINE LOCATION="QMFDJOO"

LOGIN

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Provides access to protected data by passing a user ID to the database language
environment. Use this variable with PASSWORD to incorporate the security
algorithms of DB2.

Security tip: While you can code this value in the Net.Data macro, it is preferable
to have the application user enter user IDs in an HTML form. Additionally, using the
default value of the Web server ID provides a level of access that might not meet
your security needs.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOGIN="database_user_id"
Table 17. LOGIN Values

Values Description

database_user_id A valid database user ID. The default is to use the user ID that
started the Web server.

Examples

Example 1 : Restricting access to the user ID, DB2USER
%DEFINE LOGIN="DB2USER"

Example 2 : Using an HTML form input line
USERID: <INPUT TYPE="text" NAME="LOGIN" SIZE=6>

This example shows a line you can include as part of an HTML form for application
users to enter their user IDs.

Chapter 2. Variables 93

| NULL_RPT_FIELD

. AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT
[| X

Purpose

[Specifies a string the user can provide to the DTW_SQL language environment to
[represent NULL values that are returned in an SQL result set.

[Specify the value of this variable using a DEFINE statement or with the
| @DTW_ASSIGN() function.

| Values
| NULL_RPT_FIELD="null_char"

Table 18. NULL_RPT_FIELD Values

null_char Specifies a character to represent NULL values that are

I
| Values Description
I
[returned in an SQL result set. The default is an empty string.

| Examples

| Example 1: Specifies a string representing NULL values in the SQL language
[environment

[%DEFINE NULL_RPT_FIELD = "++++"

94 Net.Data Reference

PASSWORD

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Provides access to protected data by passing a password to the database language
environment. Use this variable with LOGIN to incorporate the security algorithms of
DB2.

Security tip: While you can code this value in the Net.Data macro, it is preferable
to have application users enter passwords in an HTML form.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
PASSWORD="password"
Table 19. PASSWORD Values

Values Description

password Specifies a valid password to provide automatic access to the
database language environment.

Examples

Example 1 : Restricting access to application users with the password NETDATA
%DEFINE PASSWORD="NETDATA"

Example 2: HTML form input line
PASSWORD: <INPUT TYPE="password" NAME="PASSWORD" SIZE=8>

This example shows a line you can include as part of an HTML form for application
users to input their own passwords.

Chapter 2. Variables 95

SHOWSQL

96

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Hides or displays the SQL of the query used on the Web browser. Displaying the
SQL during testing is especially helpful when you are debugging your Net.Data
macros.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
SHOWSQL="YES" | "NO"

Table 20. SHOW _SQL Values

Values Description

YES Displays the SQL of the query sent to the database.

NO Hides the SQL of the query sent to the database. NO is the
default.

Examples

Example 1: Displays all SQL queries
%DEFINE SHOWSQL="YES"

Example 2 : Specifying whether to display SQL using HTML form input

SHOWSQL: <INPUT TYPE="radio" NAME="SHOWSQL" VALUE="YES"> Yes
<INPUT TYPE="radio" NAME="SHOWSQL" VALUE="" CHECKED> No

| SQL_STATE
|
0

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Accesses or displays the SQL state value returned from the database.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1: Displays the SQL state in the REPORT block

%FUNCTION (DTW_SQL) vall() {
select * from customer
%REPORT {

%ROW {

N
= .

SQLSTATE=$(SQL_STATE)

N
=

Chapter 2. Variables

97

TRANSACTION_SCOPE

98

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies the transaction scope for SQL commands, determining whether Net.Data
issues a COMMIT after each SQL command or after all SQL commands in an
HTML block complete successfully. When you specify that all SQL commands must
complete successfully before a commit, an unsuccessful SQL command causes all
previously executed SQL to the same database in that block to be rolled back.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Consistency considerations: ~ On operating systems other than OS/400 and
0S/390, updates to the database receiving unsuccessful responses might be rolled
back while the updates to the other databases accessed in the same HTML block
might be committed when all of the following conditions are true:

* TRANSACTION_SCOPE = "MULTIPLE" is specified

* Multiple databases are accessed in one HTML block (which is possible when
using Live Connection)

* An unsuccessful response is returned from an SQL request

If you access multiple databases from Net.Data using IBM’s DataJoiner, you can
achieve multiple database update coordination and consistency when updating from
Net.Data.

On OS/400 and OS/390, TRANSACTION_SCOPE = "MULTIPLE" causes all IBM database
updates issued from a single HTML block to be committed or rolled back together.

On operating systems other than 0S/400, the REXX, Perl, and Java language
environments run in their own separate operating system processes. Thus, any
database updates you issue from these language environments are committed or
rolled back separately from database updates issued from a Net.Data macro file,
regardless of the Net.Data TRANSACTION_SCOPE value.

Values
TRANSACTION_SCOPE="SINGLE"|"MULTIPLE"

Table 21. TRANSACTION_SCOPE Values

Values Description

SINGLE Net.Data issues a COMMIT after each SQL command in an
HTML block successfully completes.

MULTIPLE Specifies the Net.Data issues a COMMIT only after all SQL
commands in an HTML block complete successfully. MULTIPLE
is the default.

Examples

Example 1: Specifies to issue a COMMIT after each transaction
%DEFINE TRANSACTION_SCOPE="SINGLE"

Net.Data Miscellaneous Variables

These variables are Net.Data-defined variables that you can use to affect Net.Data
processing, find out the status of a function call, and obtain information about the
result set of a database query, as well as determine information about file locations
and dates. You might find these variables useful in functions you write or use them
when testing your Net.Data macros.

L] ¢ ”

Chapter 2. Variables 99

DTW_CURRENT_FILENAME

100

Net.Data Reference

AIX HP-UX | OS/