
Net.Data
Language Environment Reference

IBM

Net.Data
Language Environment Reference

IBM

Note
Be sure to read the information in “Appendix B. Notices” on page 85 before using this information and the product it supports.

Fourth Edition (June 1998)

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface . v
About Net.Data . v
About This Book . v

Who Should Read This Book vi
About Examples in This Book vi

About Net.Data Language Environments vii

Part 1. Net.Data-Supplied Language Environments 1

Chapter 1. Overview of Net.Data Supplied Language Environments . . . 3

Chapter 2. Using the Net.Data-Supplied Language Environments 5
Flat File Interface Language Environment. 5

Security Considerations . 5
The FFI Built-in Functions 6

IMS Web Language Environment 8
Java Applet Language Environment 9

Creating Java Applets . 9
Generating the Applet Tags 9
Java Applet Example . 13
Using the Net.Data Java Applet Interface 14

Java Application Language Environment 15
Java Language Environment File Structure 16
Creating the Java Function 16
Defining the Java Language Environment Cliette 17
Configuring Net.Data for the Java Language Environment. 17
Creating and Running the Macro File 18

ODBC Language Environment 18
Oracle Language Environment 19
Perl Language Environment . 21
REXX Language Environment 22
SQL Language Environment 23
Sybase Language Environment 24
System Language Environment 26
Web Registry Language Environment 26
Configuring Net.Data Language Environments 28

Part 2. Non-IBM Language Enviroments . 29

Chapter 3. Creating a New Language Environment 31
Designing a DLL or Shared Library 31

Which Language Environment Interfaces Should I Provide? 32
Processing Input Parameters 32
Processing User Requests 33
Processing Output Parameters. 33
Communicating Error Conditions 33

Language Environment Communication Structures 33
The dtw_lei Structure . 34
The dtw_parm_data Structure 35

Language Environment Interface Functions 36
dtw_initialize() . 37

© Copyright IBM Corp. 1997, 1998 iii

dtw_execute() . 38
dtw_getNextRow() . 38
dtw_cleanup() . 39

Designing the Language Environment Statement 39
ENVIRONMENT Statement Syntax 40
ENVIRONMENT Statement Examples 40

Chapter 4. The Language Environment Programming Interface Utility
Functions . 43

Language Environment Utility Functions 43
Utility Functions for Managing Memory 43
Utility Functions for Managing Configuration Variables 43
Utility Functions for Table Manipulation. 44
Utility Functions for Row Manipulation 45

Utility Functions Syntax Reference 45
dtw_free() . 46
dtw_getvar() . 47
dtw_malloc() . 48
dtw_row_SetCols() . 49
dtw_row_SetV() . 50
dtw_strdup() . 51
dtw_table_AppendRow() . 52
dtw_table_Cols() . 53
dtw_table_Delete() . 54
dtw_table_DeleteCol() . 55
dtw_table_DeleteRow() . 56
dtw_table_GetN() . 57
dtw_table_GetV(). 58
dtw_table_InsertCol() . 59
dtw_table_InsertRow() . 60
dtw_table_MaxRows() . 61
dtw_table_New() . 62
dtw_table_QueryColnoNj() 63
dtw_table_Rows() . 64
dtw_table_SetCols(). 65
dtw_table_SetN(). 66
dtw_table_SetV() . 67

Part 3. Appendixes . 69

Appendix A. Language Environment Template 71

Appendix B. Notices . 85
Trademarks . 86

Glossary . 87

Index . 89

iv Net.Data Language Environment Reference

Preface

Thank you for selecting Net.Data Version 2, IBM’s development tools for creating
dynamic Web pages! With Net.Data you can rapidly develop Web pages with a
dynamic content by incorporating data from a variety of data sources and by using
the power of programming languages you already know.

Net.Data Version 2 provides significantly improved performance along with new
features that give you the power to build and deploy your Internet business
solutions.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSs),
including DB2, IMS, and ODBC-enabled databases, and using applications written
in programming languages such as Java, JavaScript, Perl, C, C++, and REXX.

You can think of Net.Data as a macro processor that executes as middleware on a
Web server. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content based
on input from the user, the current state of your databases, existing business logic,
and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape or Internet Explorer, to a Web server that forwards the request to
Net.Data for execution. Net.Data locates and executes the macro, and builds a Web
page that it customizes based on functions that you write. These functions can:

v Encapsulate business logic within Perl scripts, C and C++ applications, or REXX
programs

v Access databases such as DB2

Net.Data supports industry-standard interfaces such as HyperText Transfer Protocol
(HTTP) and Common Gateway Interface (CGI). HTTP is used between the browser
and the Web server, and CGI is used between the Web server and Net.Data. This
lets you select your favorite browser or web server for use with Net.Data. Net.Data
also supports FastCGI and the major Web server APIs on multiple operating
systems.

About This Book

This book discusses Net.Data’s language environments, which are used when you
call programs or functions, or data sources like DB2, Oracle, or Sybase databases
from your Net.Data macro file. It describes each language environment supplied
with Net.Data, as well as describes the language environment interface that you
can use to design and build your own language environment.

This book might refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest copy of
this book, is available from the following World Wide Web sites:

v http://www.software.ibm.com/data/net.data

© Copyright IBM Corp. 1997, 1998 v

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

v http://www.as400.ibm.com/netdata

Who Should Read This Book

People writing Net.Data macros can use this information to learn about the
capabilities of the language environments that Net.Data provides. This book also
contains information for people who want to write their own language environments
for Net.Data.

To understand the concepts discussed in this book, you should be familiar with the
C programming language and the information in Net.Data Administration and
Programming Guide and Net.Data Reference.

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts and do
not consider every possible case. Some examples are fragments that do not work
alone.

vi Net.Data Language Environment Reference

About Net.Data Language Environments

Net.Data is designed to allow new programming language and database interfaces
to be added in a pluggable fashion. These interfaces are called language
environments and are accessed as DLLs or shared libraries. Language
environments provide access to applications and databases that support your
dynamic Web pages. By invoking language environments with function calls and
SQL statements, you can access the functions and utilities that these language
environments provide for use with your business application. For example, you can
directly access your ODBC database, use the Perl language environment to call
Perl scripts, or call the Java Applets language environment to run Java applets.

The Net.Data initialization file associates each language environment name with a
DLL or shared library. Each language environment must support a standard set of
interfaces defined by Net.Data. Net.Data loads the DLL or shared library specified in
the initialization file the first time that a function call for a FUNCTION block
specifying that language environment is encountered.

Net.Data parses the Net.Data macro, maintains the Net.Data variables,
communicates with the language environments, and formats the output according to
the REPORT and MESSAGE block specifications. The language environment
supports the interfaces defined to Net.Data, makes the Net.Data parameters
accessible to the language processor in some language-dependent manner, calls
the language interpreter, and receives the variables back from the language
interpreter in some language-dependent manner.

Figure 1 demonstrates Net.Data’s interaction with language environments.

Figure 1. Net.Data and Language Environments

© Copyright IBM Corp. 1997, 1998 vii

Working with language environments in a Net.Data application involves two kinds of
tasks.

v Using the Net.Data-supplied language environments to develop a Net.Data
application.

v Developing new language or database environments for other users to use when
developing Net.Data applications.

This book is organized to help you with both tasks:

v “Part 1. Net.Data-Supplied Language Environments” on page 1 describes the
Net.Data supplied language environments that you can use with your Net.Data
applications.

v “Part 2. Non-IBM Language Enviroments” on page 29 describes how to create
new language and database environments.

viii Net.Data Language Environment Reference

Part 1. Net.Data-Supplied Language Environments

Net.Data supplies several language environments that let you pass information to
and from data sources. For example, the language environment for SQL lets you
pass native SQL queries to a database. Likewise, the REXX language environment
lets you invoke REXX programs.

This section describes each language environment and how to configure language
environments in the Net.Data initialization file.

“Chapter 1. Overview of Net.Data Supplied Language Environments” on page 3

“Flat File Interface Language Environment” on page 5

“IMS Web Language Environment” on page 8

“Java Applet Language Environment” on page 9

“Java Application Language Environment” on page 15

“ODBC Language Environment” on page 18

“Oracle Language Environment” on page 19

“Perl Language Environment” on page 21

“REXX Language Environment” on page 22

“SQL Language Environment” on page 23

“Sybase Language Environment” on page 24

“System Language Environment” on page 26

“Web Registry Language Environment” on page 26

“Configuring Net.Data Language Environments” on page 28

© Copyright IBM Corp. 1997, 1998 1

2 Net.Data Language Environment Reference

Chapter 1. Overview of Net.Data Supplied Language
Environments

Net.Data provides a number of language environments, although some operating
systems do not support all environments. Table 1 lists the IBM-supplied language
environments. To determine whether a language environment is supported on your
operating systems, see the operating system reference appendix of Net.Data
Reference. See your Net.Data README file or Program Directory for details about
the language environment statements your operating system uses.

Table 1. Net.Data Language Environments

Language
Environment

Environment
Statement Description

Flat File
Interface

DTW_FILE The flat file interface (FFI) provides functions that
support text files as data sources.

IMS Web HWS_LE The IMS Web language environment lets you submit
an IMS transaction using IMS Web and receive the
output of the transaction at your Web browser.

Java Applet DTW_APPLET The Java applet language environment lets you use
Java applets in your Net.Data applications. To
generate an applet tag, you must provide the applet
tag’s qualifiers and the applet’s parameter list.

Java
Application

DTW_JAVAPPS Net.Data supports your existing Java applications with
the Java language environment.

ODBC DTW_ODBC The ODBC language environment executes SQL
statements through an ODBC interface for access to
multiple database management systems.

Oracle DTW_ORA The Oracle language environment lets you directly
access your Oracle data.

Perl DTW_PERL The Perl language environment interprets internal Perl
scripts that are specified in a FUNCTION block of the
Net.Data macro, or it executes external Perl scripts
stored in separate files.

REXX DTW_REXX The REXX language environment interprets internal
REXX programs that are specified in a FUNCTION
block of the Net.Data macro, or it can execute
external REXX programs stored in a separate file.

SQL DTW_SQL The SQL language environment executes SQL
statements through DB2. The results of the SQL
statement can be returned in a table variable.

Sybase DTW_SYB The Sybase language environment lets you directly
access your Sybase data.

System DTW_SYSTEM The System language environment supports calls to
external programs that are identified in an EXEC
statement in the FUNCTION block. The System
language environment interprets the EXEC statement
by passing the program name and its parameters to
the operating system for execution.

Web Registry DTW_WEBREG The Web Registry language environment provides
functions for the persistent storage of
application-related data.

© Copyright IBM Corp. 1997, 1998 3

|
|
||
|

|||
|
|

|||
|
|

Each language environment requires an ENVIRONMENT statement in the
initialization file and a shared library or DLL file in the server’s /lib or /dll
directory. See the configuring chapter in Net.Data Administration and Programming
Guide for more information.

Recommendation: Make a backup of your initialization file before making changes.

4 Net.Data Language Environment Reference

Chapter 2. Using the Net.Data-Supplied Language
Environments

The following sections describe the Net.Data-supplied language environments, as
well as steps for setting up and using them.

Flat File Interface Language Environment

If you choose to use flat files (or plain-text files) as your data source, use the flat
file interface (FFI) and its associated functions to open, close, read, write, and
delete files on the Web server. You must specify a path for the FFI_PATH variable
in the initialization file.

The file language support uses FFI functions to read from or write to files on the
Web server at the Web client’s request through the browser. FFI views the file as a
record file, each record equivalent to a row in a Net.Data macro table variable, and
each value in a record equivalent to a field value in a Net.Data macro table
variable. FFI reads records from a file into rows of a Net.Data macro table, and
writes rows from a table into records.

Security Considerations

You can specify which files FFI functions can access with the FFI_PATH statement
in the Net.Data initialization file. FFI only searches the paths listed in the statement,
so files in other directories are safe. This is an example statement:
FFI_PATH C:\public;.\;E:\WWW;E:\guest;A:

The paths listed in FFI_PATH are searched from first to last. Net.Data uses the first
copy that it finds. If the FFI_PATH is not in the initialization file, FFI attempts to find
the file in the current directory. The Net.Data initialization file is shipped without
FFI_PATH.

Recommendations:

v Choose which directories are appropriate to use for flat file operations. These
directories need to be added to the FFI_PATH to limit searching to those
directories.

v Use care letting people perform DTWF_REMOVE or other export operations in
the macro to prevent people from removing or altering files with extensions .dll
and .cmd that you might have in the current directory.

v Take appropriate steps to safeguard the files on the system by using reasonable
control over what macros are added to the system.

v Do not specify a path in FFI_PATH that lets anonymous FTP users write to the
path. If you do, somebody can put a Net.Data macro on the system that allows
actions that were not previously allowed.

v Do not add the path of the Net.Data initialization file to the FFI_PATH.

Authorization Tip: Ensure that the Web server has access rights to files used by
the FFI built-in functions. See the section on specifying Web server access rights to
Net.Data files in the configuration chapter of Net.Data Administration and
Programming Guide for more information.

© Copyright IBM Corp. 1997, 1998 5

|
|
|
|

|
|
|
|

The FFI Built-in Functions

This section describes usage tips and issues to consider when using the FFI built-in
functions

General considerations

v You can import any plain-text file, but Net.Data macro syntax is interpreted by
Net.Data and HTML tags that might be in the text are used to format the text by
the browser.

v The FFI parameters are case sensitive only if the operating system is case
sensitive.

Current directory

v The current directory for Net.Data depends on the configuration of your Web
server. If you are using CGI, the current directory is the directory that Net.Data is
running from, which is normally \www\cgi-bin. If you are using a Web server API,
the current directory can vary. To write to the current directory, Net.Data (or the
user ID associated with thread or process that is executing Net.Data) must have
write permission. If the server’s default request routing or resource mapping is
changed, the current directory might be changed also.

v The recommended way to specify the current directory is to use absolute paths
for the FFI_PATH statement and for the FILENAME parameter, especially if you
are using a Web server API. All directories and sub-directories listed in the path
must be defined in the FFI_PATH path statement in the initialization file, or
Net.Data will not be able to find the file. For example, the following path requires
that the directory and the sub-directories /u/user/mydir/ be listed in the
FFI_PATH.
filename="/u/user/mydir/myfile.txt"

If you specify just the file name, as in the following example.
filename="myfile.txt"

Then Net.Data concatenates all the directory names in the path for FFI_PATH
and searches for the file first. If it cannot find the file then, Net.Data assumes the
file is in the current directory. If the file is not in the current directory, a file with
the specified file name will be created in the current directory. If Net.Data does
not have write permission to the current directory, an error occurs. Do not use
the following syntax:
filename="/myfile.txt"

DELIMITER parameter

v The delimiter is the flag or separator that FFI uses when dividing the file into
parts (such as columns of a row) according to the requested transform.

v For read operations, the delimiter separates the contents of the file into rows and
columns of a table. For write operations, the delimiter indicates the end of a
value in a table row and column.

Net.Data passes the delimiter to the FFI as a Net.Data macro string and does
not include a null character at the end of the characters unless explicitly listed in
the DELIMITER parameter. To use the null character in the delimiter, specify the
DELIMITER parameter a back slash and a zero in double quotes, “/0”, instead of
an empty string by using two double quotes, “″″”. If you specify the ASCIITEXT
transform, Net.Data uses the new-line character as the delimiter and ignores any
requested delimiter.

6 Net.Data Language Environment Reference

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|

v Undesirable changes to a file can occur if you use a different delimiter for write
operations than for read operations. If you use a different delimiter for a write
operation than you use for the read operation, Net.Data writes the file with the
new delimiter.

v The maximum length of a delimiter is 256 characters.

FFI_PATH

v Paths in FFI_PATH must contain valid printable characters. FFI does not allow
paths that include a question mark (?) or double quotes (“”).

v Sub-directories of the paths listed in FILENAME are not searched unless
explicitly specified in FFI_PATH. Specify all directories and sub-directories in the
FFI_PATH that you use with the filename parameter in the macro file. The
following examples show recommended path statements:

Example 1: Specifies an absolute path listing all directories and sub-directories
filename="/u/usr/mydir/myfile.txt"

Net.Data searches the allowed paths in the FFI_PATH; if the absolute path
assigned to the FILENAME parameter is wrong or not available, Net.Data
searches the current directory and if it does not fine the file name, issues a
warning.

Example 2: Specifies a file name in the current directory
filename="myfile".txt

Net.Data creates new files in the current directory. If Net.Data does not have
permission to create files in the directory, Net.Data (or the user ID associated
with the thread or process that is executing Net.Data) issues a warning.

DTWF_SEARCH function

v The table returned for DTWF_SEARCH has three columns. The first two columns
contain the row and the column number where the match was found; the last
column contains the column value that contains the characters specified in the
SearchFor parameter. For example, if the fourth row of the file contains matching
characters in column three, the returned table has a row with the number 4 in the
first column to indicate the row of the file that it came from; it has a number 3 in
the second column to indicate which column of the file contains a match; and it
has the complete column value in the third column.

v The SearchFor parameter cannot include the contents of the delimiter parameter.

STARTROW and ROWS parameters

v For the functions DTWF_DELETE, DTWF_INSERT, DTWF_UPDATE, and
DTWF_WRITE, if a StartRow value larger than the last row is specified, StartRow
is changed to indicate the last row and an error is returned.

v For the functions DTWF_READ and DTWF_SEARCH, the Rows value is
returned as the number of rows in the table.

TABLE parameter

v The maximum length of a row in an FFI table is 16383 characters. This limit
includes a null character for each column in the Net.Data macro table.

TRANSFORM parameter

v This parameter indicates how the file is divided into parts with respect to the
rows and columns of a Net.Data macro table. For example, ASCIITEXT transform

Chapter 2. Using the Net.Data-Supplied Language Environments 7

|
|
|
|

|

|

|
|
|
|

|

|

|
|
|

means that each line of the file corresponds with a row of a Net.Data macro table
and the Net.Data macro table has only one column. DELIMITED transform
means that the characters in the row are examined to find the DELIMITER and
after the DELIMITER is the content of the next column.

v A new-line character in a file indicates the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED transforms.

File locking

v Files are not locked unless you open them with DTWF_OPEN. If a file is not
locked, it can change between the time it is read and updated. This can result in
the loss of the previous changes. Using DTWF_OPEN opens the file during the
execution of the macro using the file system’s locking mechanism.

DTWF_APPEND

v The current contents of a file affect the results of using DTWF_APPEND,
especially the contents of the last column of the last row. If a new line follows the
last column value of the last row of the file, appended data is placed in a new
row. Otherwise, appended data becomes part of the last row of the file.

IMS Web Language Environment

The IMS Web language environment is part of a complete end-to-end solution for
running your IMS transactions in the World Wide Web environment. The IMS Web
language environment provides:

v A Net.Data macro with:

– The HTML used to enter the transaction input data

– A Net.Data FUNCTION block that invokes the IMS Web language
environment

– The HTML that displays the output of the transaction

v A transaction DLL or shared library that is invoked by the IMS Web language
environment

Restriction: The IMS Web language environment of Net.Data is only supported
when Net.Data runs as a CGI application. It is not supported by Net.Data with
ICAPI.

The IMS Web Studio tool generates code for the DLL and the macro, as well as a
MAK file for building the DLL or shared library, from the (Message Format Service)
MFS source for the transaction. After the executable form of the DLL has been built,
the DLL and the macro files are moved to the Web server that is running Net.Data.
The transaction is ready to run in the Web environment.

To use the IMS Web language environment:
1. Install the IMS Web Runtime component on the Web server running Net.Data.

For information about the IMS Web Runtime component, see IMS Web User’s
Guide:
http://www.software.ibm.com/data/ims/about/imsweb/document/index.html

2. Create the transaction DLL file.

a. Generate the C++, MAK, and Net.Data macro files for your transaction with
the IMS Web Studio tool.

b. If you are running Net.Data on an operating system that is different than the
operating system on which the IMS Web Studio tool is run, move the DLL
source files to an IMS Web development machine for the target operating

8 Net.Data Language Environment Reference

|
|
|

|
|
|
|
|

|

|
|

|
|
|

system. For example, if you run the IMS Web Studio tool on Windows NT
and the target platform is AIX or OS/390, move the source for the
transaction DLL to an IMS Web development machine running under AIX or
OS/390, respectively.

c. Build the executable form of the transaction DLL using the generated MAK
file.

3. Copy the transaction DLL file (DTWproj.dll) and Net.Data macro file
(DTWproj.d2w) to your Web server.

a. Place the macro in a directory from which Net.Data retrieves macros. (See
the MACRO_PATH statement in the configuring chapter of Net.Data
Administration and Programming Guide.)

b. Place the transaction DLL or shared library in a directory from which the
Web server retrieves DLLs or shared libraries.

4. Use the link in the sample file that is generated by the IMS Web Studio tool,
DTWproj.htm, to modify an HTML file in your Web server’s HTML tree. You can
then use the link to invoke Net.Data and display the input HTML form for the
transaction on a Web browser. Fill in the transaction input, and select the
SUBMIT push button on the form to run the transaction and receive its output at
the Web browser.

IMS Web uses the IMS TCP/IP Open Transaction Manager Access (OTMA)
Connection to communicate between the Web server and IMS environments. See
the IMS Web home page for more information:
http://www.software.ibm.com/data/ims/about/imsweb

Java Applet Language Environment

The Java applet language environment lets you easily generate HTML tags for Java
applets in your Net.Data applications. When you call the Java applet language
environment, you specify the name of your applet and pass any parameters that the
applet needs. The language environment processes the macro and generates the
HTML applet tags, which the Web browser uses to run the applet.

Additionally, Net.Data provides a set of interfaces your applet can use to access
table parameters. These interfaces are contained in the class, DTW_Applet.class.

The following sections describe how to use the Java applet language environment
to run your Java applets.

Creating Java Applets

Before using the Net.Data Java applet language environment, you need to
determine which applets you plan to use or which applets you need to write. See
your Java documentation for more information on creating applets.

Generating the Applet Tags

You specify a call to the applet language environment with a Net.Data function call.
No declaration is needed for the function call. The syntax for the function call is
shown here:
@DTWA_AppletName(parm1, parm2, ..., parmN)

v DTWA_ identifies the function call to the applet language environment.

v AppletName is the name of the applet for which tags are generated.

Chapter 2. Using the Net.Data-Supplied Language Environments 9

|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

v parm1 through parmN are parameters used to generate PARAM tags.

To write a macro file that generates applet tags:
1. Define any parameters required by the applet in the DEFINE section of the

macro file. These parameters include any applet tag attributes, Net.Data
variables, and Net.Data table parameters that you need as input for the applet.
For example:
%define{
DATABASE = "celdial" <=Net.Data variable: name of the database
MyGraph.codebase = "/netdata-java" <=Required applet parameter
MyGraph.height = "200" <=Required applet parameter
MyGraph.width = "400" <=Required applet parameter
MyTitle = "This is my Title" <=Net.Data variable: name of the Web page
MyTable = %TABLE(all) <=Table to store query results
%}

2. Optional: Specify a query to the database to generate a result set as input for
the applet. This is useful when you are using an applet that generates a chart or
table. For example:
%FUNCTION(DTW_SQL) mySQL(OUT table){
select name, age from ibmuser.guests
%}

3. Specify the function call in the Net.Data macro to call the Java applet language
environment and invoke the applet. The function call specifies the name of the
applet and the parameters you want to pass to the language environment.
These parameters include any Net.Data variables, and Net.Data table or column
parameters that you need as input for the applet.

For example:
%HTML(report){ <=The start of the HTML block
@mySQL(MyTable) <=A call to the SQL function

mySQL
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable) <=Applet function call
%}

4. Invoke Net.Data and run the macro file. See Net.Data Administration and
Programming Guide to learn how to invoke Net.Data.

Applet Tag Attributes

You can specify attributes for applet tags anywhere in your Net.Data macro.
Net.Data substitutes all variables that have the form AppletName.attribute into the
applet tag as attributes. The syntax for defining an attribute on an applet tag is
shown here:
%define AppletName.attribute = "value"

These attributes are required for all applets:

v codebase: The location of the applet, which is identified by a URL.

v height: The height of the applet in pixels.

v width: The width of the applet in pixels.

For example, if your applet is called MyGraph, you can define these required
attributes as shown here:
%DEFINE{
MyGraph.codebase = "/netdata-java/"
MyGraph.height = "200"
MyGraph.width = "400"
%}

10 Net.Data Language Environment Reference

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|

|
|

|
|
|
|
|

The actual assignment need not be in a DEFINE section. You can set the value
with the DTW_ASSIGN function. If you do not define a variable for
AppletName.code variable, Net.Data adds a default code parameter to the applet
tag. The value of the codeparameter is AppletName.class, where AppletName is the
name of your applet.

Applet Tag Parameters

You define a list of parameters to pass to the Java applet language environment in
the function call. You can pass parameters that include:

v Net.Data variables (including LIST variables)

v Net.Data tables

v Columns of Net.Data tables

When you pass a parameter, Net.Data creates a Java applet PARAM tag in the
HTML output with the name and value that you assign to the parameter. You cannot
pass string literals or results of function calls.

Net.Data Variable Parameters: You can use Net.Data variables as parameters. If
you define a variable in the DEFINE block of the macro and pass the variable value
in the DTWA_AppletName function call, Net.Data generates a PARAM tag that has
the same name and value as the variable. For example, given the following macro
statement:
%define{

...

MyTitle = "This is my Title"
%}

%HTML(report){
@DTWA_MyGraph(MyTitle, ...)
%}

Net.Data produces the following applet PARAM tag:
<param name = 'MyTitle' value = "This is my Title" >

Net.Data Table Parameters:

Net.Data automatically generates a PARAM tag with the name
DTW_NUMBER_OF_TABLES every time the Java applet language environment is
called, specifying whether the function call has passed any table variables. The
value is the number of table variables that Net.Data uses in the function. If no table
variables are specified in the function call, the following tag is generated:
<param name = "DTW_NUMBER_OF_TABLES" value = "0" >

You can pass one or more Net.Data table variables as parameters on the function
call. If you specify a Net.Data table variable on a DTWA_AppletName function call,
Net.Data generates the following PARAM tags:

Table name parameter tag:

This tag specifies the names of the tables to pass. The tag has the
following syntax:
<param name = 'DTW_TABLE_i_NAME' value = "tname" >

Where i is the number of the table based on the ordering of the function
call, and tname is the name of the table.

Chapter 2. Using the Net.Data-Supplied Language Environments 11

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

Row and column specification parameter tags:

PARAM tags are generated to specify the number of rows and columns a
particular table. This tag has the following syntax:
<param name = 'DTW_tname_NUMBER_OF_ROWS' value = "rows" >
<param name = 'DTW_tname_NUMBER_OF_COLUMNS' value = "cols" >

Where the name of the table is tname, rows is the number of rows in the
table, and cols is the number of columns in the table. This pair of tags is
generated for each unique table specified in the function call.

Column value parameter tags:

This PARAM tag specifies the column name of a particular column. This tag
has the following syntax:
<param name = 'DTW_tname_COLUMN_NAME_j' value = "cname" >

Where the table name is tname, j is the column number, and cname is the
name of the column in the table.

Row value parameter tags:

This PARAM tag specifies the values at a particular row and column. This
tag has the following syntax:
<param name = 'DTW_tname_cname_VALUE_k' value = "val" >

Where the table name is tname, cname is the column name, k is the row
number, and val is the value that matches the value in the corresponding
row and column.

Table Column Parameters: You can pass a table column as a parameter on a
function call to generate tags for a specific column. Net.Data generates the
corresponding applet tags only for the specified column. A table column parameter
uses the following syntax:
@DTWA_AppletName(DTW_COLUMN(x)Table)

Where x is the name or number of the column in the table.

Table column parameters use the same applet tags defined for the table
parameters.

Alternate Text for the Applet Tag on Browsers that are not
Java-Enabled

The variable DTW_APPLET_ALTTEXT specifies the text to display on browsers that
do no support Java or have turned Java support off. For example, the following
variable definition:
%define DTW_APPLET_ALTTEXT = "<P>Sorry, your browser is not Java-enabled."

produces the following HTML tag and text:
<P>Sorry, your browser is not Java-enabled.

If this variable is not defined, no alternate text is displayed.

12 Net.Data Language Environment Reference

|
|
|

|

|

|

|

Java Applet Example

The following example demonstrates a Net.Data macro file that calls the Java
applet language environment and the resulting applet tag that the language
environment generates.

The Net.Data macro file contains the following function calls to the Java applet
language environment:
%define{
DATABASE = "celdial"
DTW_APPLET_ALTTEXT = "<P>Sorry, your browser is not Java-enabled."
DTW_DEFAULT_REPORT = "no"
MyGraph.codebase = "/netdata-java/"
MyGraph.height = "200"
MyGraph.width = "400"
MyTitle = "This is my Title"
%}
%FUNCTION(DTW_SQL) mySQL(OUT table){
select name, age from ibmuser.guests
%}
%HTML(report){
@mySQL(MyTable)
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable)
%}

The Net.Data macro lines in the DEFINE section specify the first line of the applet
tag:
MyGraph.codebase = "/netdata-java/"
MyGraph.height = "200"
MyGraph.width = "400"

The language environment generates an applet tag with the following qualifiers:
<applet code = 'MyGraph.class'
codebase = '/netdata-java/' width = '400'
height = '200' >

Net.Data returns the SQL query results from the SQL section of the Net.Data macro
file in the output table, MyTable. This table is specified in the DEFINE section:
MyTable = %TABLE(all)

The call to the applet in the macro is specified in the HTML section:
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable)

Based on the parameters in the function call, Net.Data generates the complete
applet tag containing the information about the result table, such as the number of
columns, the number of rows returned, and the result rows. Net.Data generates one
parameter tag for each cell in the result table, as shown in the following example:
param name = 'DTW_MyTable_ages_VALUE_1' value = "35">

The parameter name, DTW_MyTable_ages_VALUE_1, specifies the table cell (row
1, column ages) in the table, MyTable, which has a value of 4. The keyword,
DTW_COLUMN, in the function call to the applet, specifies that you are interested
only in the column ages of the resulting table, MyTable, shown here:
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable)

The following output shows the complete applet tag that Net.Data generates for the
example:

Chapter 2. Using the Net.Data-Supplied Language Environments 13

<applet code = 'MyGraph.class'
codebase = '/netdata-java/' width = '400' height = '200' >
<param name = 'MyTitle' value = "This is my Title" >
<param name = 'DTW_NUMBER_OF_TABLES' value = "1" >
<param name = 'DTW_TABLE_1_NAME' value = "MyTable" >
<param name = 'DTW_MyTable_NUMBER_OF_ROWS' value = "5" >
<param name = 'DTW_MyTable_NUMBER_OF_COLUMNS' value = "1" >
<param name = 'DTW_MyTable_COLUMN_NAME_1' value = "ages" >
<param name = 'DTW_MyTable_ages_VALUE_1' value = "35">
<param name = 'DTW_MyTable_ages_VALUE_2' value = "32">
<param name = 'DTW_MyTable_ages_VALUE_3' value = "31" >
<param name = 'DTW_MyTable_ages_VALUE_4' value = "28" >
<param name = 'DTW_MyTable_ages_VALUE_5' value = "40" >
<P>Sorry, your browser is not Java-enabled.

</applet>

Using the Net.Data Java Applet Interface

Net.Data provides a set of interfaces in a class called DTW_Applet.class, which you
can use with your Java applets to help process the PARAM tags that are generated
for table variables. You can create an applet that extends this interface to call the
routines from your applet.

Net.Data provides these interfaces:

v int GetNumberOfTables() returns the number of tables found in the applet tag.

v String [] GetTableNames() returns a list of the table names found in the applet
tag.

v int GetNumberOfColumns(String table_name) returns the number of columns
in the table table_name.

v int GetNumberOfRows(String table_name) returns the number of rows in the
table table_name.

v String[] GetColumnNames(String table_name) returns the names of the
columns in the table table_name.

v String[][] GetTable(String table_name) returns a two-dimensional array of
strings containing the values of the table’s rows and columns.

To access the interfaces, use the EXTENDS keyword in your applet code to
subclass your applet from the DTW_APPLET class, as shown in the following
example:
import java.io.*;
import java.applet.Applet;

public class myDriver extends DTW_Applet
{
public void init()

{
super.init();

if (GetNumberOfTables() > 0)
{
String [] tables = GetTableNames();
printTables(tables);
}

}

private void printTables(String[] tables)
{
String table_name;

for (int i = 0; i < tables.length; i++)

14 Net.Data Language Environment Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

{
table_name = tables[i];
printTable(table_name);
}

}

private void printTable(String table_name)
{
int nrows = GetNumberOfRows(table_name);
int ncols = GetNumberOfColumns(table_name);

System.out.println("Table: " + table_name + " has " + ncols + " columns and
" + nrows + " rows.");

String [] col_names = GetColumnNames(table_name);

System.out.println("--");

for (int i = 0; i < ncols; i++)
System.out.print(" " + col_names[i] + " ");

System.out.println("\n--");

String [][] mytable = GetTable(table_name);

for (int j = 0; j < nrows; j++)
{
for (int i = 0; i < ncols; i++)

System.out.print(" " + mytable[i][j] + " ");

System.out.println("\n");
}

}
}

Java Application Language Environment

Net.Data supports your existing Java applications with the Java language
environment. With support for Java applets and Java methods (or applications), you
can access DB2 through the Java Database Connectivity (JDBC**) API.

Details about JDBC are available from these Web sites:

v IBM Software has JDK 1.1 or higher, which is required to use JDBC with
Net.Data:
http://www.software.ibm.com/data/db2/jdbc/

v JavaSoft has additional JDBC drivers, JDBC API documentation, and the latest
updates of JDBC:
http://splash.javasoft.com/jdbc/

The Java language environment provides a Remote Procedure Call (RPC)-like
interface. You can issue Java function calls from your Net.Data macro file with
Net.Data strings as parameters and your invoked Java function can return a string.
You must use the Net.Data Live Connection when you use the Java language
environment (see the performance chapter of Net.Data Administration and
Programming Guide for more information about Live Connection). In order to use
the Java language environment you must complete the following steps. These steps
are described in detail in subsequent sections.

1. Write your Java functions.

2. Create a Net.Data cliette for all your Java functions (Net.Data cliettes launch the
Java Virtual Machine where your Java function runs.

Chapter 2. Using the Net.Data-Supplied Language Environments 15

|
|

|

|

|
|
|
|
|
|
|
|

|

|
|

3. Define a cliette statement in the Live Connection configuration file.

4. Start Connection Manager.

5. Run the Net.Data macro file that invokes the Java language environment.

Each time you introduce new Java functions, you must recreate the Java cliette.

Java Language Environment File Structure

Net.Data creates several directories during the Net.Data installation. These
directories include the files you need to create your Java functions, define the
cliette, and run the macro with the Java language environment:

v A sample Java function called UserFunctions.java.

v A sample file called makeClas. When run, this file creates a Net.Data cliette class
for your Java function.

v A sample file called launchjv used by the Net.Data cliette to launch the Java
Virtual Machine and run your Java function.

Table 2 describes the directory and file names for the files on your operating
system.

Table 2. The Files Used for Creating Java Functions

Operating System File name Directory

OS/2 UserFunctions.java javaapps

launchjv.com connect

Windows NT UserFunctions.java javaclas

makeClas.bat javaclas

launchjv.bat connect

UNIX UserFunctions.java javaapps

launchjv javaapps

Creating the Java Function

Modify the Java function sample file UserFunctions.java, or create a new file
modeled on the following example file, called myfile.java:
====================myfile.java====================
import mypackage.* <=contain your functions
public String myfctcall(...parameters from macro file...)

{
return (mypackage.mymethod(...parameters...)); <=high-level call to your functions
}

public String lowlevelcall(...parameters...)
{
string result;
.......code using many functions of your package...
return(result)

}

16 Net.Data Language Environment Reference

|

|

|

|

|
|
|

|

|
|

|
|

|
|

||

|||

|||

||

|||

||

||

|||

||

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Defining the Java Language Environment Cliette

Modify the sample file, makeClas.bat, or create a new .bat file to generate a
Net.Data cliette class, called dtw_samp.class, for all your Java functions. The
following example shows how the batch file, CreateServer, processes three Java
functions:
rem Batch file to create dtw_samp for Net.Data
java CreateServer dtw_samp.java UserFunctions.java myfile.java
javac dtw_samp.java

The batch file processes the following files, along with the Net.Data-supplied stub
file called Stub.java to create dtw_samp.class.

v dtw_samp.java

v UserFunctions.java

v myfile.java

Writing a JDBC application or applet is very similar to writing a C application using
DB2 CLI or ODBC to access a database. The primary difference between
applications and applets is that an application might require special software to
communicate with DB2, for example, DB2 Client Application Enabler. The applet
depends on a Java-enabled Web browser, and does not require any DB2 code
installed on the client.

Your system requires some configuration before using JDBC. These considerations
are discussed at the DB2 JDBC Application and Applet Support Web site:
http://www.software.ibm.com/data/db2/jdbc/db2java.html

Configuring Net.Data for the Java Language Environment

To use the Java language environment, you must configure Net.Data. Use the
following steps to complete these configuration steps:

1. Create a batch file to launch the Java application because Net.Data cannot
directly start a Java application. Net.Data uses this file to launch the Java
Virtual Machine, which runs your Java function. The batch file must include the
java-classpath statement to ensure the required Java packages (the standard
and application-specific packages) can be found. For example, the batch file,
launchjv.bat, contains the following java-classpath:
java -classpath %CLASSPATH%;C:\DB2WWW\Javaclas dtw_samp %1 %2 %3 %4 %5 %6

2. Define a cliette to work with the Java language environment in the Live
Connection configuration file, dtwcm.cnf. Specify unique port numbers for the
cliette and the related batch file name with the EXEC_NAME configuration
variable. In the following example, the Java cliette name is defined as
DTW_JAVAPPS and the EXEC_NAME configuration variable is set to the name
of the batch file, launchjv.bat:
CLIETTE DTW_JAVAPPS{
MIN_PROCESS=1 <= Required: this value must be 1 because

the JAVAPPS cliette is multi-threaded.
MAX_PROCESS=1 <= Required: this value must be 1 because

the JAVAPPS cliette is multi-threaded.
START_PRIVATE_PORT=5100 <= Must be a unique port number
START_PUBLIC_PORT=5300 <= Must be a unique port number
EXEC_NAME=launchjv.bat <= The name of the batch file that includes the

classpath statements
}

Chapter 2. Using the Net.Data-Supplied Language Environments 17

|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

When you start the Net.Data Connection Manager, Net.Data starts the Java
cliette specified in the configuration file. The cliette becomes available to
process Java language environment requests from your Net.Data macro
applications.

3. Update the DTW_JAVAPPS ENVIRONMENT path statement in the Net.Data
initialization file, db2www.ini, by adding each cliette name to the statement. For
example:
ENVIRONMENT DTW_JAVAPPS (OUT RETURN_CODE) CLIETTE "DTW_JAVAPPS"

Creating and Running the Macro File

After you have created the Java function, defined the cliette class, and configured
Net.Data, you can run the macro file containing references to the Java function.

1. Create a macro file that calls your Java functions. For example, the function
call, myfctcall calls the sample function provided with Net.Data, using the cliette
DTW_JAVAPPS.
%function (DTW_JAVAPPS) myfctcall(....parameters from macro file)

%{ to call the sample provided with Net.Data %}
%function (DTW_JAVAPPS) reverse_linel(str);

%HTML_REPORT{
you should see the string "Hello World" in reverse.
@reverse_line("Hello World")
You should have the result of your function call.
@myfctcall(...)
%}

2. Start the Connection Manager. See the performance chapter of Net.Data
Administration and Programming Guide for more information about Connection
Manager.

3. Launch the macro and invoke Net.Data using an HTML link, HTML form, or URL
statement. For example, invoke the Net.Data macro file, mymacro.d2w, with the
following URL statement:
http://myserver/cgi-bin/dt2www/mymacro.d2w/report

ODBC Language Environment

The Open Database Connectivity (ODBC) language environment executes SQL
statements through an ODBC interface. ODBC is based on the X/Open SQL CAE
specification, which lets a single application access many database management
systems.

To use the ODBC language environment, you must have an ODBC driver and a
driver manager. Your ODBC driver documentation describes how to install and
configure your ODBC environment.

Sending SQL statements in an ODBC environment is similar to other Net.Data
functions. The following example is a Net.Data macro that sends multiple SQL
statements to the database that is your ODBC data source. Operating systems that
use the DATABASE variable must specify the same database as the data source in
the ODBC.INI file.
%DEFINE {

DATABASE="qesq1"
SHOWSQL="YES"
table="int_null"
LOGIN="netdata1"

18 Net.Data Language Environment Reference

|
|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

PASSWORD="ibmdb2"
%}

%function(dtw_odbc) sq1() {
create table int_null (int1 int, int2 int)
%}

%function(dtw_odbc) sql2() {
insert into $(table) (int1) values (111)
%}

%function(DTW_odbc) sql3() {
insert into $(table) (int2) values (222)
%}

%function(dtw_odbc) sql4() {
select * from $(table)
%}

%function(dtw_odbc) sql5() {
drop table $(table)
%}

%HTML(REPORT) {
@sql1()
@sql2()
@sql3()
@sql4()
%}

Oracle Language Environment

The Oracle language environment provides native access to your Oracle data. You
can access Oracle tables from Net.Data running in CGI, FastCGI, NSAPI, ISAPI, or
GWAPI mode. This language environment supports Oracle 7.2, 7.3, and 8.0.

Restrictions:

v Stored procedures are not supported through this language environment.

v The DATABASE variable is not used to access Oracle databases.

v The LOGIN variable must contain the Oracle database instance name. For
example, ora73 is the defined instance name in the following LOGIN variable:
LOGON=admin@ora73

To access Oracle from Net.Data
1. Verify that the ENVIRONMENT statement in the Net.Data initialization file is

correct for the Oracle language environment. See the configuration chapter in
Net.Data Administration and Programming Guide for steps and examples.

2. Ensure the appropriate components of Oracle are installed and working as
follows:

a. Install SQL*Net on the machine where Net.Data is installed, if it is not
already installed. For more information, see the following URL:
http://www.oracle.com/products/networking/html/stnd_sqlnet.html

b. Verify that the Oracle tnsping function can be used with the same security
authorization that your Web server uses. To verify, log on with your Web
server’s user ID and type:
tnsping oracle-instance-name

Chapter 2. Using the Net.Data-Supplied Language Environments 19

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|

|
|

|

|
|
|

|

Where oracle-instance-name is the name of the Oracle system that your
Net.Data macros access.

You might not be able to verify the tnsping function on Windows NT if your
Web server runs under system authority. If so, skip this step.

c. Verify that the Oracle tables can be accessed with the same security
authorization that your Web server uses. To verify, enter an SQL SELECT
statement, using the SQL*Plus line command tool, to access an Oracle table
with an SQL SELECT statement with the authority of your Web server. For
example:
SELECT * FROM tablename

You might not be able to verify table access on Windows NT if your Web
server runs under system authority. If so, skip this step.

Troubleshooting: Do not proceed if the above steps fail. If any of the steps fail,
check your Oracle configuration.

3. Ensure that the Oracle environment variables are set correctly in your Web
server process.

v For AIX, put the following lines in the /etc/environment file:
ORACLE_SID=oracle-instance-name
ORACLE_HOME=oracle-runtime-library-directory

v For Windows NT, use the System Properties Control panel to add the
following environment variables:
ORACLE_SID=oracle-instance-name
ORACLE_HOME=oracle-runtime-library-directory

Hint: You might require additional lines for other Oracle environment variables,
depending on the Oracle facilities you plan to use, such as national language
support and two phase commit. Consult the Oracle administration
documentation for more information on these environment variables.

4. Test the connection to Oracle from Net.Data. In your Net.Data macro file,
specify the appropriate values in the LOGIN and PASSWORD variables. Do not
define the DATABASE variable when accessing Oracle databases. The following
is an example of connect statement in a macro file:
%DEFINE LOGIN=user_ID@remote-oracle-instance-name
%DEFINE PASSWORD=password

Local Oracle instances:

If you access the local Oracle instance only, do not specify the
remote-oracle-instance name as part of the login user ID, as in the following
example:
%DEFINE LOGIN=user_ID
%DEFINE PASSWORD=password

Live Connection:

If you use Live Connection, then you can specify the LOGIN and PASSWORD
in the Live Connection configuration file, although it is not recommended for
security purposes. For example:
LOGIN=user_ID
PASSWORD=password

Hint: Do not specify the DATABASE variable for Oracle.

20 Net.Data Language Environment Reference

|
|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|
|

|
|

|

5. Test your configuration by running a CGI shell script to ensure that the Oracle
instance can be accessed from your Web server, as in the following example:
#! /bin/sh
echo "content-type; text/html
echo
echo "< html>< pre>"
set
echo "</pre>< p>< pre>"
tnsping oracle-instance-name
echo

Alternatively, you can execute tnsping directly from a Net.Data macro, as in the
following example:
%DEFINE testora = %exec "tnsping oracle-instance-name"
%HTML (report){
< P>About to test Oracle access with tnsping.
< hr>
$(testora)
< hr>
< P>The Oracle test is complete.
%}

Troubleshooting:

If the verification step fails, check that all the preceding steps were successful
by verifying the following items:

v Check your Oracle configuration.

v Verify that the Oracle environment variable syntax is correct and that no
variables are missing.

v Check the Oracle connection, ensuring that you have entered the correct
user ID and password.

If the verification step still fails, contact IBM Service.

Example:

After you have completed the accessing verification steps, you can make calls to
the Oracle language environment with functions in the macro file, as in the following
example:
%FUNCTION(DTW_ORA) STL1() {
insert into $(tablename) (int1,int2) values (111,NULL)
%}

Perl Language Environment

The Perl language environment can interpret inline Perl scripts that you specify in a
FUNCTION block of the Net.Data macro, or it can process external Perl scripts that
are stored in separate files on the server. Calls to external Perl scripts are identified
in a FUNCTION block by an EXEC statement, for example:
%EXEC{ perl-script-name [optional parameters] %}

The Perl language environment cannot directly pass or retrieve Net.Data variables,
so they are made available to Perl scripts in this manner:

v Net.Data passes input parameters to the Perl script as environment variables.
The Perl script can retrieve the parameters by reading the Perl associative array.

Chapter 2. Using the Net.Data-Supplied Language Environments 21

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|
|

v The Perl script passes output parameters back to the language environment by
writing to a named pipe whose name Net.Data passes in the environment
variable, DTWPIPE. Use the DEFINE statement syntax to write data to the
named pipe:
name = value

For multiple data items, separate each item with a new-line or blank character.

If a variable name has the same name as an output parameter and uses the
above syntax, the new value replaces the current value. If a variable name does
not correspond to an output parameter, Net.Data ignores it.

The following example shows how Net.Data passes variables from a macro file.
%FUNCTION(DTW_PERL) today() RETURNS(result) {
$date = ′date′;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

%}
%HTML(INPUT) {
@today()

%}

If the Perl script is in an external file called today.prl, the same function can be
written as in the next example:
%FUNCTION(DTW_PERL) today() RETURNS(result) {
%EXEC { today.prl %}

%}

A Perl language environment program accesses the values of a table parameter by
their Net.Data name. The column headings for table T are T_N_i, and the field
values are T_V_i_j. The number of rows and columns in table T are T_ROWS and
T_COLS.

REPORT and MESSAGE blocks are permitted as in any FUNCTION section. They
are processed by Net.Data, not by the language environment. A Perl program can,
however, write text to the standard output stream and directly manipulate the output
HTML form.

Authorization Tip: Ensure that the Web server has access rights to any external
executable files referenced by this language environment, including the correct
version of the Perl interpreter. See the section on specifying Web server access
rights to Net.Data files in the configuration chapter of Net.Data Administration and
Programming Guide for more information.

REXX Language Environment

The REXX language environment can interpret inline REXX programs that are
specified in a FUNCTION block of the Net.Data macro, or it can execute external
REXX programs stored in separate files. Calls to external REXX programs are
identified in a FUNCTION block by a statement, for example:
%EXEC{ REXX-program-file-name [optional parameters] %}

The REXX language environment uses the RexxStart() API to tell the REXX
interpreter to execute the specified file, then passes the parameters following the

22 Net.Data Language Environment Reference

|
|
|
|

|

|

|
|
|

|
|
|
|
|

file name to the program as if they were entered on the command line. To the
REXX program, all of the parameters are received as ARG[1].

Authorization Tip: Ensure that the Web server has access rights to any external
executable files referenced language environments. See the section on specifying
Web server access rights to Net.Data files in the configuration chapter of Net.Data
Administration and Programming Guide for more information.

Variable Substitution:

Variable substitution is performed only on the executable-statements section of the
FUNCTION block. Parameters, however, are made accessible to the REXX
program whether the program is defined internally in a FUNCTION block or
externally in a separate file. The REXX language environment uses the REXX
language processors’ RexxVariablePool() function to share Net.Data variables with
the REXX program. This allows the REXX program to directly manipulate the
Net.Data variables identified in the parameter list.

A REXX program accesses the values of a table parameter as REXX stem
variables. To a REXX program, the column headings for table T are T_N.i and the
field values are T_V.i.j. The number of rows and columns in table T are T_ROWS
and T_COLS.

Improving Performance for the AIX operating system:

If you have many calls to the REXX language environment on your AIX system,
consider setting the RXQUEUE_OWNER_PID environment variable to 0. Macros
that make many calls to the REXX language environment can easily spawn many
processes, swamping system resources.

You can set the environment variable in one of three ways:

v In the macro file by using the DTW_SETENV built-in function:
@DTW_rSETENV("RXQUEUE_OWNER_PID", "0")

v In the AIX system environment file by inserting the following statement:
/etc/environment: RXQUEUE_OWNER_PID = 0

This method affects the behavior of REXX for the whole machine.

v In the HTTP Web server environment file; for example, for the Domino Go
Webserver, insert the following statement:
InheritEnv RXQUEUE_OWNER_PID = 0

This method affects the behavior of REXX for the Web server.

SQL Language Environment

The SQL language environment is used to execute SQL statements through DB2.
The results of the SQL statement can be returned in the Net.Data default table or in
a table specified by you.

Net.Data supports any SQL statement you authorize. You can connect to one
database for each HTML section when invoking Net.Data as a CGI application and
must specify the database name with the DATABASE variable (except with
OS/390). If your DB2 database is on the same machine as the Web server, no
additional setup is required. Otherwise, depending on the operating system you

Chapter 2. Using the Net.Data-Supplied Language Environments 23

|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|
|

|

|

|

use, you can access remote databases by using Client Application Enabler (CAE)
or use Database Connection Services (DDCS) to get all the transaction support
DB2 supports. You might also be able to use DataJoiner to access other databases.
Using DataJoiner lets you use two-phase commit with databases that support it.

Sybase Language Environment

The Sybase language environment provides native access to your Sybase data.
You can access Sybase tables from Net.Data running in CGI, FastCGI, NSAPI,
ISAPI, or GWAPI mode.

Restrictions:

v The Sybase language environment does not support large objects, such as
images and audio. Stored procedures are supported only for procedures without
a SELECT statement.

v The Sybase language environment requires Live Connection to use FastCGI.

To access Sybase from Net.Data
1. Verify that the ENVIRONMENT statement in the Net.Data initialization file is

correct for the Sybase language environment. See the configuration chapter in
Net.Data Administration and Programming Guide for steps and examples.

2. Ensure the appropriate components of Sybase are installed and working as
follows:

a. Install Sybase’s Open Client on the machine where Net.Data is installed, if it
is not already installed. For more information, see the Sybase Open Client
documentation for more information.

b. Verify that the Sybase ping function can be used with the same security
authorization that your Web server uses. To verify, log on with your Web
server’s user ID and type:
ping sybase-instance-name

Where sybase-instance-name is the name of the Sybase system that your
Net.Data macros access.

You might not be able to verify the ping function on Windows NT if your
Web server runs under system authority. If so, skip this step.

c. Verify that the Sybase tables can be accessed with the same security
authorization that your Web server uses. To verify, enter an SQL SELECT
statement, using the ISQL line command tool, to access an Sybase table
with the authority of your Web server. For example:
SELECT * FROM tablename

You might not be able to verify table access on Windows NT if your Web
server runs under system authority. If so, skip this step.

Troubleshooting: Do not proceed if the above steps fail. If any of the steps fail,
check your Sybase configuration.

3. Ensure that the Sybase environment variables are set correctly in your Web
server process.

v For AIX, put the following lines in the /etc/environment file:
DSQUERY=sybase-instance-name
SYBASE=sybase-runtime-library-directory

24 Net.Data Language Environment Reference

|
|
|

|

|

|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|

|
|

v For Windows NT, use the System Properties Control panel to add the
following environment variables:
DSQUERY=sybase-instance-name
SYBASE=sybase-runtime-library-directory

Hint: You might require additional lines for other Sybase environment variables,
depending on the Sybase facilities you plan to use, such as national language
support and two-phase commit. Consult the Sybase administration
documentation for more information on these environment variables.

4. Test the connection to Sybase from Net.Data. In your Net.Data macro file,
specify the appropriate values in the LOGIN, PASSWORD, and DATABASE
variables. The following is an example of connect statement in a macro file:
%DEFINE DATABASE=database-name
%DEFINE LOGIN=user_ID@remote-sybase-instance-name
%DEFINE PASSWORD=password

Live Connection: If you use Live Connection, then you can specify the LOGIN
and PASSWORD in the Live Connection configuration file, although it is not
recommend for security purposes. For example:
DATABASE=database-name
LOGIN=user_ID
PASSWORD=password

5. Test your configuration by running a CGI shell script to ensure that the Sybase
instance can be accessed from your Web server, as in the following example:
#! /bin/sh
echo "content-type; text/html
echo
echo "< html>< pre>"
set
echo "</pre>< p>< pre>"
isql -u user_ID -p password << EOFF
SELECT * FROM tablename
EOFF
echo

Troubleshooting:

If the verification step fails, check that all the preceding steps were successful
by verifying the following items:

v Check your Sybase configuration.

v Verify that the Sybase environment variable syntax is correct and that no
variables are missing.

v Check the Sybase connection, ensuring that you have entered the correct
user ID and password.

If the verification step still fails, contact IBM Service.

Example:

Once you have completed the accessing verification steps, you can make calls to
the Sybase language environment with functions in the macro file, as in the
following example:
%function(DTW_SYB) STL1() {
insert into $(tablename) (int1,int2) values (111,NULL)
%}

Chapter 2. Using the Net.Data-Supplied Language Environments 25

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|
|
|

|
|
|

System Language Environment

The System language environment is a Net.Data-defined environment that supports
calls to external programs identified in an EXEC statement in the FUNCTION block.

The System language environment interprets the EXEC statement by passing the
program name and parameters to the operating system for processing using the C
language system() function call. This method does not allow the external program to
directly pass variables to and from Net.Data, as the REXX language environment
does, so Net.Data processes the variables in the following method:

v Net.Data passes input parameters to the external program as environment
variables and the external program retrieves them:

– A UNIX CSHELL script refers to environment variables by preceding the
environment variable name with a dollar sign ($), such as $x.

– A Perl language script refers to them by referring to the associative array
ENV, such as %ENV{'x'}.

– A DOS batch file refers to the variable name enclosed in percent signs (%),
such as %x%.

v Most operating systems pass output parameters back to the language
environment by writing to a named pipe whose name Net.Data passes in the
environment variable, DTWPIPE. (Net.Data for OS/400 passes parameters back
to the language environment using environment variables.) Use the DEFINE
statement syntax to write the data to the named pipe:
name = value

For multiple data items, separate each item by a new-line or blank character.

If a variable name matches an output parameter, the new value replaces the
current value. Net.Data ignores variable names that do not match any output
parameters.

A system language environment program accesses the values of a table parameter
by the Net.Data name. The column headings for table T are T_N_i, and the field
values are T_V_i_j. The number of rows and columns in table T are T_ROWS and
T_COLS.

Authorization Tip: Ensure that the Web server has access rights to any external
executable files invoked from the System language environment. See the section on
specifying Web server access rights to Net.Data files in the configuration chapter of
Net.Data Administration and Programming Guide for more information.

Web Registry Language Environment

The Net.Data Web registry provides persistent storage for application-related data.
A Web registry can be used to store configuration information and other data that
can be accessed dynamically at run time by Web-based applications. You can
access Web registries only through Net.Data macros using Net.Data and the Web
registry built-in support and from CGI programs written for this purpose. The Web
registry available on a subset of operating systems. See the Net.Data operating
system reference appendix in Net.Data Reference

Standard Web page development requires that URLs be placed directly in the
HTML source for the page. This makes changing links difficult. The static nature

26 Net.Data Language Environment Reference

|

|
|

|
|
|
|

|
|
|
|

also limits the type of links that can be easily placed on a Web page. Using a Web
registry to store application-related data, for example URLs, can help in the creation
of HTML pages with dynamically set links.

Information can be stored and maintained in a registry by application developers
and Web administrators who have write access to the registry. Applications retrieve
the information from their associated registries at run time. This facilitates the
design of flexible applications and also allows movement of applications and
servers. You can use Net.Data macros to create HTML pages using dynamically set
links.

Information is stored in a Web registry in the form of registry entries. Each registry
entry consists of a pair of character strings: a RegistryVariable string and a
corresponding RegistryData string. Any information that can be represented by a
pair of strings can be stored as a registry entry. Net.Data uses the variable string as
a search key to locate and retrieve specific entries from a registry.

You can see sample contents of a Web registry in Table 3.

Table 3. Sample Web Registry

CompanyName WorldConnect

Server ftp.einet.net

JohnDoe/foreground Green

CompanyURL/IBM Corp. http://www.ibm.com

CompanyURL/Sun Microsystems Corp. http://www.sun.com

CompanyURL/Digital Equipment Corp. http://www.dec.com

JaneDoe/Home_page http://jane.info.net

Here are some reasons to consider using a Web registry:

v You can use a Web registry to store aliases for servers and URLs, facilitating the
relocation of applications and servers.

v Application developers can ship their Web-based applications with data, such as
URLs, predefined in the registry. The end user can modify the registry data to
change the behavior of the application.

v A Web registry can be used to perform URL searches based on product name,
national language, manufacturer, and so on.

Indexed entries in the Web Registry are entries whose RegistryVariable strings have
an additional Index string appended to them, using the following syntax:
RegistryVariable/Index

The user provides the value of the index string in a separate parameter to a built-in
function designed to work with indexed entries. Multiple indexed registry entries can
have the same RegistryVariable string value, but they can maintain their uniqueness
by having different Index string values.

Table 4. Sample Indexed Web Registry

Smith/Company_URL http://www.ibmlink.ibm.com

Smith/Home_page http://www.advantis.com

Even though the above two indexed entries have the same RegistryVariable string
value Smith, the index string is different in each case. They are treated as two
distinct entries by the Web registry functions.

Chapter 2. Using the Net.Data-Supplied Language Environments 27

Configuring Net.Data Language Environments

Before you can use the language environments with Net.Data, you must configure
Net.Data initialization file, and if you are using Live Connection, the Live Connection
configuration file.

The following is an overview of these tasks. See the configuring chapter in Net.Data
Administration and Programming Guide for detailed information about how to
configure the Net.Data language environments. Additionally, check the previous
language environment sections for special configuration instructions.

v Verify or update the ENVIRONMENT statement in the Net.Data initialization file,
db2www.ini. These statements are described in the “Configuring Net.Data”
chapter in Net.Data Administration and Programming Guide.

v Define cliettes for database or the Java applications language environments in
the Live Connection file, dtwcm.cnf. Defining cliettes is described in the
configuring chapter in Net.Data Administration and Programming Guide.

28 Net.Data Language Environment Reference

|
|
|
|

Part 2. Non-IBM Language Enviroments

In addition to supplying language environments, Net.Data enables you to add
language and database environments of your own. Net.Data accesses your
language environments as dynamic link libraries or shared libraries, separate from
the Net.Data executable file. Each language environment must support a set of
interfaces defined by Net.Data. The following chapters discuss how to create a new
language environment and describe the language environment programming
interface and environments.

“Chapter 3. Creating a New Language Environment” on page 31

“Designing the Language Environment Statement” on page 39

“Chapter 4. The Language Environment Programming Interface Utility Functions”
on page 43

© Copyright IBM Corp. 1997, 1998 29

|
|
|
|
|
|
|

30 Net.Data Language Environment Reference

Chapter 3. Creating a New Language Environment

Net.Data uses language environments as pluggable programming language and
database interfaces, accessed as DLL files or shared libraries. Net.Data provides a
set of language environments, but when these do not meet your applications needs,
you can create new language environments. Before you decide to create a new
language environment, determine if the IBM-supplied language environments that
are shipped with Net.Data satisfy your needs.

When you decide to create a new language environment, then you must complete
the following steps:

v Determine what interfaces and functions you must provide for the language
environment. The dtw_execute() interface must be provided, and all provided
interfaces must match exactly the prototypes that are defined in the dtwle.h C
language header.

v Create a makefile or JCL to build the DLL or shared library.

v Build a DLL or shared library that implements the set of language environment
interface routines you want to provide. See the C or C++ documentation for your
operating system to learn how to create makefiles and build DLLs or shared
libraries.

v Make all interfaces externally available from the DLL or shared library so
Net.Data can call them.

v Determine your ENVIRONMENT configuration statement, then add it to the
Net.Data initialization file. See “Designing the Language Environment Statement”
on page 39 for details.

v Add functions to the Net.Data macro file that uses the new language
environment.

This chapter describes how to design the language environment.

v “Designing a DLL or Shared Library”

v “Language Environment Communication Structures” on page 33

v “Language Environment Interface Functions” on page 36

v “Designing the Language Environment Statement” on page 39

Designing a DLL or Shared Library

When you build a language environment, you update the template provided in
“Appendix A. Language Environment Template” on page 71 to include the
environment interface functions and the communication structures used by Net.Data
to communicate with your language environment and to pass parameters to and
from the language environment.

The following sections describe concepts and design issues for the functions and
structures. The utilities provided in the language environment interface are
described in “Chapter 4. The Language Environment Programming Interface Utility
Functions” on page 43.

v “Which Language Environment Interfaces Should I Provide?” on page 32

v “Processing Input Parameters” on page 32

© Copyright IBM Corp. 1997, 1998 31

|

|
|
|
|

|
|

v “Processing User Requests” on page 33

v “Processing Output Parameters” on page 33

v “Communicating Error Conditions” on page 33

Which Language Environment Interfaces Should I Provide?

When you write a language environment, you must determine which interfaces to
provide. Your choices depend on what you intend the language environment to do.
For example, if the language environment will be accessing database data, you’ll
make different choices than if it is for a scripting language. The following section
describes the Net.Data language environment interfaces.

dtw_execute()
You must provide the dtw_execute() interface to pass input parameters from
the macro file; it is the only required interface for every language
environment. Net.Data passes all input parameters to dtw_execute()
through the language environment communication structure, dtw_lei .

dtw_initialize()
Provide the dtw_initialize() interface to allocate or initialize data. Net.Data
calls this interface only once for each macro invocation, before the first
function call to your language environment. If there are no function calls to
your language environment, Net.Data does not call the dtw_initialize()
interface.

dtw_cleanup()

Provide the dtw_cleanup() interface when you provide a dtw_initialize()
interface, and you want to allow for error handling when the macro
terminates abnormally. Net.Data calls this interface only once for each
macro invocation.

dtw_getNextRow()
Provide the dtw_getNextRow() interface as part of a database language
environment or a language environment that can process data a row at a
time. This interface is called if Net.Data is running on the OS/400 or OS/390
operating systems, only.

Processing Input Parameters

The Net.Data language environments use the dtw_execute() interface to receive
and process parameters. The dtw_execute() interface works with the dtw_lei
structure, which is used by Net.Data to communicate with the language
environment. Use the following recommendations for input parameter processing,
when writing your language environment.

v Specify any implicit parameters in the initialization file. Net.Data passes the
parameters specified here on all function calls to the language environment after
it passes the parameters specified by the macro writer on the FUNCTION block
being executed.

v Receive input parameters to the dtw_execute() interface as part of the dtw_lei
structure. The macro writer determines the order that Net.Data passes the
parameters when specifying them in the FUNCTION block definition of the
Net.Data macro.

The processInputParms() routine in the program template, in “Appendix A.
Language Environment Template” on page 71 shows one method of processing
input parameters.

32 Net.Data Language Environment Reference

|
|
|
|
|

|
|
|
|

Processing User Requests

How a language environment processes a user request depends on how the
language environment receives the request. Net.Data provides several different
ways for you to communicate a request to your language environment:

v Through the function name specified on a FUNCTION block. On every function
call, Net.Data passes the function name to the language environment in the
function_name field of the dtw_lei structure.

v Through the FUNCTION block parameter list. You can specify that a parameter in
the parameter list can indicate a user request. On every function call, Net.Data
passes parameters to the language environment in the parm_data_array field of
the dtw_lei structure.

v Through the executable-statements section of a FUNCTION block. On every
function call, Net.Data passes any executable statements specified in the
FUNCTION block to the language environment in the exec_statement field of the
dtw_lei structure.

Processing Output Parameters

The method you use to process output parameters depends entirely on your
language environment and how it processes user requests. However, once the
language environment has the data it needs to return to the Net.Data macro, you
can design the language environment to modify the values of parameters passed in
the parm_data_array field of the dtw_lei structure. The processOutputParms()
routine in the program template, in “Appendix A. Language Environment Template”
on page 71, shows one possible way of processing output parameters, as well as
examples of how to set both string and table parameter values.

Communicating Error Conditions

The success or failure of a function call can be communicated through the implicit
Net.Data macro variable, RETURN_CODE. This variable is set by Net.Data after
returning from a call to the dtw_execute() interface. Its value is set to the return
value of the dtw_execute() call itself. This value is then used by Net.Data to
process the Net.Data macro MESSAGE block, if one was specified for this function
call.

If you do not specify a MESSAGE block, or do not have an entry in a specified
MESSAGE block to handle the return code from dtw_execute(), Net.Data displays
the contents of the default_error_message field of the dtw_lei structure. This field
can be set by the language environment at any time in the dtw_execute() routine.
The setErrorMessage() routine in the program template, in “Appendix A. Language
Environment Template” on page 71, shows an example of how to set the
default_error_message field.

Language Environment Communication Structures

Net.Data uses two structures to communicate with your language environment. Your
language environment must work with these structures and set and pass
information within the structures.

v dtw_lei

v dtw_parm_data

Chapter 3. Creating a New Language Environment 33

|
|
|

Net.Data passes a language environment interface structure (for example, dtw_lei)
to the language environment function that it calls. The structure contains, among
other things, a parameter data array that contains a list of parameters to be passed
to the language environment function. The language environment function called by
Net.Data processes the request, updates the parameters in the parameter data
array (if applicable), and returns to Net.Data.

Net.Data then goes through the parameter data array, updates its copies of the
parameters to reflect the new values set by the language environment function, and
continues the processing of the Net.Data macro.

The dtw_lei Structure

The interface function of each language environment receives a pointer to the
dtw_lei structure. The dtw_lei structure has the following format:
typedef struct dtw_lei { /* Lang. Env. Interface */

char *function_name; /* Function block name */
int flags; /* Lang. Env. Interface flags */

char *exec_statement; /* Lang. Env. statement(s) */

dtw_parm_data_t *parm_data_array; /* Parameter array */
char *default_error_message; /* Default message */
void *le_opaque_data; /* Lang. Env. specific data */

void *row; /* For row-at-a-time processing*/

char reserved[64]; /* Reserved */
} dtw_lei_t;

Fields in the dtw_lei structure:

function_name
The function_name field contains a pointer to a string containing the name
of the function block. This can be useful to specify the FUNCTION block
name in error messages displayed by the language environment.

flags The flags field is used by Net.Data to communicate with the language
environment. Specify the flags field pointer by performing an OR operation
using the following constants:

v Net.Data sets DTW_STMT_EXEC to tell the dtw_execute() interface
function that the exec_statement field contains the file name and
parameters from an EXEC statement.

v DTW_END_ABNORMAL is set by Net.Data to tell the dtw_cleanup()
interface function that an abnormal or unexpected condition has occurred
and that the language environment should perform any cleanup
necessary (that is, free held resources) before Net.Data ends.

v DTW_LE_FATAL_ERROR is set by a language environment interface
function to tell Net.Data that a fatal error has occurred in the language
environment. If this flag is set, Net.Data stops processing the Net.Data
macro, calls all active language environment’s dtw_cleanup() interface
function with flags set to DTW_END_ABNORMAL, prints default
message, and exits. The flag is checked only if a non-zero return value is
returned on a language environment call.

v DTW_LE_MSG_KEEP is set by a language environment interface
function to tell Net.Data that the storage pointed to by
default_error_message should not be freed. If this constant is not set,
Net.Data attempts to free the storage.

34 Net.Data Language Environment Reference

|
|
|

v DTW_LE_CONTINUE is set by the dtw_execute() interface function to
tell Net.Data to call the dtw_getNextRow() interface function. Net.Data
calls dtw_getNextRow() only if the flag is set and the return value from
the call to the dtw_execute() interface function is zero.

exec_statement
The exec_statement field contains one of the following pointers:

v To a string containing the executable statements (after variable
substitution) from the FUNCTION block

v To the file name and parameters from an EXEC statement

parm_data_array
The parm_data_array field contains a pointer to an array of dtw_parm_data
structures. The array ends with a parm_data structure containing zeros. The
dtw_parm_data structure is used by Net.Data to pass variables and the
associated value to a language environment and to retrieve any changes to
the variable value that may be made by the language environment. See
“The dtw_parm_data Structure” for a description of the structure.

default_error_message
The default_error_message field is set by the language environment to a
character string that describes an error condition. If the return value from a
call to a language environment interface function is non-zero and the return
value does not match the value of a message in a MESSAGE block, the
default message is displayed. Otherwise, Net.Data displays the message
selected from the MESSAGE block.

le_opaque_data
The le_opaque_data field is set by any of the interface functions in the
language environment to pass parameters from one interface function to
another. Net.Data saves the pointer and passes it to another interface
function that Net.Data calls. After processing the Net.Data macro, and
before returning to the caller of Net.Data, Net.Data defines the pointer to
NULL. Because the field is thread-specific, language environments can
store data that is thread specific. Use this field only if you have a
dtw_cleanup() interface function, so that the function can free the storage
associated with the le_opaque_data field.

row The row field is set by Net.Data to a row object prior to calling a language
environment’s dtw_getNextRow() interface function. The dtw_getNextRow()
function inserts a row of table data in the object using the Net.Data row
utility interface functions. Net.Data then processes the row and calls
dtw_getNextRow() until there are no more rows to process.

The reserved field is reserved for IBM use.

The dtw_parm_data Structure

Net.Data uses the dtw_parm_data structure to pass parameters to a language
environment. Parameters are obtained from three sources:

v Explicit parameters that are specified on the FUNCTION block definition

v Parameters that are specified on the ENVIRONMENT configuration statement in
the Net.Data initialization file

v The return variable that is specified on the RETURNS keyword on a FUNCTION
block definition

Chapter 3. Creating a New Language Environment 35

Net.Data passes explicit parameters first, followed by parameters specified in the
ENVIRONMENT statement, and then the return variable.

The dtw_parm_data structure has the following format:
typedef struct dtw_parm_data { /* Parameter data */

int parm_descriptor; /* Parameter descriptor */
char *parm_name; /* Parameter name */
char *parm_value; /* Parameter value */
void *res1; /* Reserved */
void *res2; /* Reserved */

} dtw_parm_data_t;

Fields in the dtw_parm_data structure:

parm_descriptor
The parm_descriptor field describes the type and use of the parameter
being passed to the language environment. Net.Data sets the field by
performing an OR operation using the following constants:

v DTW_IN indicates that a parameter is an input-only parameter.

v DTW_OUT indicates that a parameter is an output-only parameter.

v DTW_INOUT indicates that a parameter is an input and output
parameter.

v DTW_STRING indicates that parameter value is a pointer to a string.

v DTW_TABLE indicates that the parameter value is a pointer to a table.

Net.Data always sets the parm_descriptor field to DTW_IN, DTW_OUT,
or DTW_INOUT and uses a logical OR with DTW_STRING and
DTW_TABLE.

parm_name
The parm_name field is a pointer to a string that contains the name of the
parameter. Net.Data sets this pointer NULL if the parameter is a literal
string.

parm_value
The parm_value field is a pointer to an object that contains the value of the
parameter. This pointer is set to NULL by Net.Data if the parameter is a
variable that is not already defined.

The res1 and res2 fields are reserved fields.

Both parm_name and parm_value point to an object allocated from the Net.Data
run-time heap, the area of memory used for dynamic memory allocation by
Net.Data. If parm_name or parm_value is replaced with another string, the original
string must be freed and replaced with a pointer to a character string allocated from
the Net.Data heap. Use the dtw_malloc() and dtw_free() utility functions to free the
original string.

Language Environment Interface Functions

Net.Data uses four interface functions with a language environment: you provide
one or more of these functions. Three of these functions are optional, but every
language environment must have a dtw_execute() interface function. If a Net.Data
macro references a language environment that does not have a dtw_execute()
interface function, Net.Data returns an error message and stops processing the
Net.Data macro.

36 Net.Data Language Environment Reference

|
|
|
|
|
|

To call a language environment, reference it on the FUNCTION block of the
Net.Data macro. The language environment interface functions must be called in
the following order:

1. dtw_initialize()

2. dtw_execute()

3. dtw_getNextRow()

4. dtw_cleanup()

The dtw_execute() function is the only interface function that you must provide in
the language environment.

When Net.Data encounters a call to a function that uses the language environment,
it uses the following steps to call the language environment:

1. Net.Data calls dtw_initialize() if it has been defined for this language
environment. The function performs any initialization tasks required by the
language environment, such as connecting to databases, or allocating variables.

2. Net.Data calls dtw_execute() to process the macro file FUNCTION block
containing statements that the language environment must process.

3. Net.Data calls dtw_getNextRow() if, on successful return, dtw_execute()
indicated that dtw_getNextRow() should be called.

4. When the Net.Data macro processing is complete, Net.Data calls dtw_cleanup()
to clean up the environment (for example, disconnecting from the database or
freeing variables) if this function has been defined for the language
environment, and then returns to the Web server.

The following sections describe the interface functions:

v “dtw_initialize()”

v “dtw_execute()” on page 38

v “dtw_getNextRow()” on page 38

v “dtw_cleanup()” on page 39

dtw_initialize()

The dtw_initialize() interface function performs any special initialization that the
language environment requires, such as connecting to a database or allocating
variables. This interface function is called once and is optional.

Net.Data calls a language environment’s dtw_initialize() interface function only once,
the first time Net.Data calls a FUNCTION block referencing that language
environment. Subsequent references to the language environment bypass the call
to the dtw_initialize() interface function.

This interface function does not affect message block processing. A positive or zero
return code means that processing continues; a negative return code means that
processing does not continue. If the return code is non-zero and there is a default
message defined in the default_error_message field, the default message is issued;
if there is no default message, Net.Data issues an error message.

Chapter 3. Creating a New Language Environment 37

|
|
|

|

|

|

|

|

|
|
|

dtw_execute()

The dtw_execute() interface function processes macro file FUNCTION blocks that
contain statements that must be processed by the language environment. For
example, a FUNCTION block that refers to a database language environment
contains SQL statements that language environment uses to query the database.

The dtw_execute() interface function is called whenever a Net.Data macro
processes a FUNCTION block that refers to the language environment. When the
dtw_execute() interface function completes, what happens next depends on whether
the language environment is processing table data a row at a time. If so, the
interface function sets DTW_LE_CONTINUE flag in the dtw_lei structure to tell
Net.Data to call the dtw_getNextRow() interface function. See “dtw_getNextRow()”
for more information about the dtw_getNextRow() interface function and its
processing steps.

You can optimize performance by having the dtw_execute() interface function do all
the processing necessary to produce the input for the report block processing. For
example, the SQL language environment’s dtw_execute interface function generates
the entire table to be processed during the report block phase.

dtw_getNextRow()

The dtw_getNextRow() interface function retrieves input for row-at-a-time
processing of Net.Data tables. It is called each time the DTW_LE_CONTINUE flag
is set, indicating that another row of data needs to be processed for the table. Use
dtw_getNextRow() for database language environments.

Restriction: This interface function is only called if Net.Data is running on the
OS/400 or OS/390 operating systems.

Net.Data calls dtw_getNextRow() when the following conditions are met:

v The call to the language environment’s dtw_execute() call completes successfully
(return value of zero)

v The dtw_execute() interface function has set the DTW_LE_CONTINUE flag in the
dtw_lei structure.

When the dtw_execute() function sets the DTW_LE_CONTINUE flag to on,
Net.Data performs the following steps:

1. Processes the message block for the return value of the dtw_execute() interface
function.

2. Calls language environment’s dtw_getNextRow() interface function and begins
row-at-a-time processing.

3. Processes the report block.

4. Processes the message block for the return value of the dtw_getNextRow()
interface function.

5. Determines whether dtw_getNextRow() has turned on the DTW_LE_CONTINUE
flag:

v If yes, processing continues with the dtw_getNextRow() interface function in
step 2.

v If no, row-at-a-time processing ends and Net.Data continues processing the
Net.Data macro.

38 Net.Data Language Environment Reference

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

When dtw_getNextRow() is called, the row field in the dtw_lei structure is set to
point to a row object. To manipulate the row object, use the Net.Data utility
functions, dtw_row_SetCols() and dtw_row_SetV(). Net.Data assumes that after the
first call to the dtw_getNextRow() interface function the row object contains the
column headings for the table. Subsequent calls contain the actual table data.

The dtw_getNextRow() function continues to get called (unless message block
processing indicates otherwise) as long as the DTW_LE_CONTINUE flag is set.

dtw_cleanup()

Use the dtw_cleanup() interface function to cleanup the language environment if
you use dtw_initialize() to initialize the language environment. For example,
disconnecting from a database or freeing variables. This interface function is
optional.

While handling a Net.Data request, Net.Data calls a language environment’s
dtw_cleanup() interface function once when either Net.Data processing ends or an
error stops Net.Data from processing the macro file.

Net.Data sets the flags field in the dtw_lei structure to DTW_END_ABNORMAL if
the cleanup processing is abnormal. The following abnormal conditions provide
examples of when to use dtw_cleanup():

v A language environment interface function indicates that a fatal error occurred by
setting the DTW_LE_FATAL_ERROR bit in the flags field in the dtw_lei structure.

v Net.Data encounters an unrecoverable error.

v The Net.Data macro message block processing results in an exit.

If a language environment’s interface function sets the le_opaque_data field with a
parameter to be passed between interface functions, use the dtw_cleanup() to free
the field when processing ends.

This interface function does not affect message block processing. If the return value
is non-zero, a default message is issued; if no default message exists, the macro
processor issues a warning message.

Designing the Language Environment Statement

Each language environment has an ENVIRONMENT statement in the initialization
file, DB2WWW.INI, that contains information specific to that language environment.
When you create a new language environment, you need to design an environment
statement for the initialization file and document how users should add it to the
initialization file.

The ENVIRONMENT statements specify information about the language
environment that Net.Data requires to call and load the language environment DLL
or shared library, such as the language environment name, the DLL or shared
library name, and the list of parameters to be passed to the language environment
for each function call.

Net.Data reads the configuration information when it is invoked, but does not load
language environment DLLs or shared libraries until a FUNCTION block identifying
that language environment is called from within the macro file. The DLL remains
loaded until Net.Data ends.

Chapter 3. Creating a New Language Environment 39

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

The following sections provide information about syntax, parameter descriptions,
and examples that you can use in your documentation.

ENVIRONMENT Statement Syntax

An ENVIRONMENT statement has the following format:
ENVIRONMENT(type) library-name ([usage parameter, ...)

Each ENVIRONMENT statement must be on a single line.

The following are the parameters you must specify for each language environment:

v type

The name that associates this language environment with a FUNCTION block
definition in a Net.Data macro. You must also specify the language environment
type on a FUNCTION block definition to tell Net.Data which language
environment processes the function call. The name cannot begin with the prefix
DTW_. This prefix is reserved for language environments shipped with Net.Data.
See the ″Function Block″ section in Net.Data Reference for more information
about the FUNCTION block.

v library_name

The name of the object containing the language environment interfaces that are
called by Net.Data. In Windows NT and OS/2, the DLL name is specified without
the .dll extension. In AIX, the name of the shared object is specified with the .o
extension, and in OS/400, the service program name is specified with the
.SRVPGM extension. OS/390 has no extensions for DLL files. Look at the
initialization file shipped with Net.Data for your operating system to see how to
specify this name. Consider using a fully qualified path name to make sure
Net.Data finds the DLL or shared library.

v parameter_list

The list of parameters that are passed to the language environment on each
function call, in addition to those parameters specified in the FUNCTION block
definition. They are passed in the parm_data_array field of the dtw_lei structure
following the parameters specified in the FUNCTION block definition. You must
define these parameters as variables in your Net.Data macro before the function
call is made. If a function modifies the value of these parameters, the parameters
retain the modified value once the function finishes processing.

ENVIRONMENT Statement Examples

The following examples show ENVIRONMENT statements for language
environments that Net.Data supplies. These examples illustrate how to specify
parameters. The variables you include in the ENVIRONMENT statements are ones
that you want to allow Net.Data macro writers to define or override in their macros.
See the operating system-specific information in the appendixes in Net.Data
Reference or in your Net.Data README file or Program Directory for additional
examples.

The following examples show syntax for OS/2, AIX, and Windows NT.
ENVIRONMENT (DTW_SQL) DTWSQL (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, SHOWSQL, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
ENVIRONMENT (DTW_SYB) DTWSYB (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, SHOWSQL, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
ENVIRONMENT (DTW_ORA) DTWORA (IN LOGIN, PASSWORD,
TRANSACTION_SCOPE, SHOWSQL, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)

40 Net.Data Language Environment Reference

|
|

|
|
|
|
|
|

ENVIRONMENT (DTW_ODBC) DTWODBC (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, SHOWSQL, ALIGN, DTW_SET_TOTAL_ROWS)
ENVIRONMENT (DTW_APPLET) DTWJAVA ()
ENVIRONMENT (DTW_JAVAPPS) (OUT RETURN_CODE) CLIETTE "DTW_JAVAPPS"
ENVIRONMENT (DTW_PERL) DTWPERL (OUT RETURN_CODE)
ENVIRONMENT (DTW_REXX) DTWREXX (OUT RETURN_CODE)
ENVIRONMENT (DTW_SYSTEM) DTWSYS (OUT RETURN_CODE)
ENVIRONMENT (HWS_LE) DTWHWS (OUT RETURN_CODE)

ENVIRONMENT statement can vary on each operating systems; for example
OS/390 differs slightly for SQL and ODBC access:
ENVIRONMENT (DTW_SQL) DTWSQL (IN LOCATION, DB2SSID, DB2PLAN,
TRANSACTION_SCOPE)

ENVIRONMENT (DTW_ODBC) DTWODBC (IN LOCATION, TRANSACTION_SCOPE)

Chapter 3. Creating a New Language Environment 41

|
|
|
|
|
|
|
|

42 Net.Data Language Environment Reference

Chapter 4. The Language Environment Programming Interface
Utility Functions

Net.Data provides a programming interface for you to use when designing a new
language environment. The language environment interface has utility functions that
access Net.Data services that manage memory and configuration variables, and
provide table and row manipulation features. “Appendix A. Language Environment
Template” on page 71 provides a template that you can use as a model when
designing your language environment.

The following section explains the Net.Data language environment interface utility
functions.

Language Environment Utility Functions

Language environments use utility functions to access Net.Data services. These
functions fall into four categories:

v “Utility Functions for Managing Memory”

v “Utility Functions for Managing Configuration Variables”

v “Utility Functions for Table Manipulation” on page 44

v “Utility Functions for Row Manipulation” on page 45

Utility Functions for Managing Memory

Language environments use the memory management utility functions to allocate
storage owned by Net.Data, and to free storage that it allocated using the Net.Data
run-time library.

The following example illustrates the need for these utility functions. Suppose that
Net.Data is written using compiler A, with its corresponding run-time library. A
programmer writes a new language environment, but uses compiler B, which has a
different run-time library. The language environment cannot free storage that
Net.Data allocated, and Net.Data cannot free storage that was allocated by the
language environment because of potential incompatibilities between the two
run-time libraries.

Table 5. Memory Management Utility Functions

Utility Function Description

“dtw_malloc()” on page 48 Allocate storage from Net.Data’s run-time heap using
dtw_malloc().

“dtw_free()” on page 46 Free storage allocated from Net.Data’s run-time heap using
dtw_malloc().

“dtw_strdup()” on page 51 Allocate storage from Net.Data’s run-time heap and copy the
specified string into the allocated storage using dtw_malloc().

Utility Functions for Managing Configuration Variables

The management utility functions for the configuration variables let language
environments access configuration information stored in the Net.Data initialization

© Copyright IBM Corp. 1997, 1998 43

|
|
|
|
|
|

|
|

file. Using these functions, all language environments can share the Net.Data
initialization file and use information in it for configuring language environments.

Table 6. Configuration Utility Functions

Utility Function Description

“dtw_getvar()” on page 47 Retrieve the value of a configuration variable from the Net.Data
initialization file.

Utility Functions for Table Manipulation

Use the table functions to manipulate any Net.Data macro table variables that are
passed to the language environment.

Row and column numbers begin with one (1).

Table 7. Table Utility Functions

Utility Function Description

“dtw_table_New()” on
page 62

Create a table object.

“dtw_table_Delete()” on
page 54

Delete a table object.

“dtw_table_SetCols()” on
page 65

Set the width of a table and allocate storage for the column
headers.

“dtw_table_GetV()” on
page 58

Retrieve a table value.

“dtw_table_SetV()” on
page 67

Set a table value.

“dtw_table_GetN()” on
page 57

Retrieve a table column heading.

“dtw_table_SetN()” on
page 66

Set a table column heading.

“dtw_table_Rows()” on
page 64

Retrieve the current number of rows in a table.

“dtw_table_Cols()” on
page 53

Retrieve the current number of columns in a table.

“dtw_table_MaxRows()” on
page 61

Retrieve the maximum allowable number of rows in a table.

“dtw_table_QueryColnoNj()”
on page 63

Retrieve the column number of a column.

“dtw_table_AppendRow()”
on page 52

Add one or more rows to the end of a table.

“dtw_table_InsertRow()” on
page 60

Insert one or more rows in a table.

“dtw_table_DeleteRow()”
on page 56

Delete one or more rows from a table.

“dtw_table_InsertCol()” on
page 59

Insert one or more columns in a table.

“dtw_table_DeleteCol()” on
page 55

Delete one or more columns from a table.

44 Net.Data Language Environment Reference

Utility Functions for Row Manipulation

The row utility functions manipulate the row object that is passed to a language
environment’s dtw_getNextRow() interface function during row-at-a-time processing.

Row numbers begin with one (1).

Table 8. Row Utility Functions

Utility Function Description

“dtw_row_SetCols()” on
page 49

Set the width of a row.

“dtw_row_SetV()” on
page 50

Set a table value.

Utility Functions Syntax Reference

This section describes each of the utility functions, their format, usage, and
parameters, as well as providing a simple example.

Chapter 4. The Language Environment Programming Interface Utility Functions 45

|

dtw_free()

Usage

Frees storage that was allocated from Net.Data’s run-time heap using dtw_malloc().
The buffer points to the allocated storage to free.

Format

void dtw_free(void *buffer)

Parameters

buffer A pointer to the allocated storage to free.

Examples
char *myBuf;
long nbytes = 8192;

myBuf = (char *)dtw_malloc(nbytes);

dtw_free((void *)myBuf);

46 Net.Data Language Environment Reference

dtw_getvar()

Usage

Retrieves the value of a configuration variable specified by var_name from the
Net.Data initialization file. Net.Data owns the memory returned by dtw_getvar(); do
not modify or free it.

Format

char *dtw_getvar(char *var_name)

Parameters

var_name The name of the configuration variable to retrieve.

Examples
char *myBindFile;

myBindFile = dtw_getvar("BIND_FILE");

Chapter 4. The Language Environment Programming Interface Utility Functions 47

|
|
|

dtw_malloc()

Usage

Returns a pointer to storage that was allocated from Net.Data’s run-time heap using
dtw_malloc(). The storage is nbytes long. If Net.Data cannot return the requested
storage, it returns a NULL pointer.

Format

void *dtw_malloc(long nbytes)

Parameters

nbytes The number of bytes to allocate.

Examples
char *myBuf;
long nbytes = 8192;

myBuf = (char *)dtw_malloc(nbytes);

48 Net.Data Language Environment Reference

dtw_row_SetCols()

Usage

Assigns the width of the row and allocates storage for the column headings. You
can use the dtw_row_SetCols() utility function once for each row.

Format

int dtw_row_SetCols(void *row, int cols)

Parameters

row A pointer to a newly created row which has not yet allocated
any columns.

cols The initial number of columns to allocate in the new row.

Examples
void *myRow;

rc = dtw_row_SetCols(myRow, 5);

Chapter 4. The Language Environment Programming Interface Utility Functions 49

dtw_row_SetV()

Usage

Assigns a table value. The caller of the dtw_row_SetV() utility function retains
ownership of the memory pointed to by src. To delete the current table value,
assign the value to NULL.

Format

int dtw_row_SetV(void *row, char *src, int col)

Parameters

row A pointer to the row to modify.

src A character string containing the new value to set.

col The column number of the value to set.

Examples
void *myTable;
char *myFieldValue = "newValue";

rc = dtw_row_SetV(myRow, myFieldValue, 3);

50 Net.Data Language Environment Reference

dtw_strdup()

Usage

Allocates storage from Net.Data’s run-time heap and copies the string specified by
string into the allocated storage using dtw_malloc(). If Net.Data cannot return the
requested storage, it returns a NULL pointer.

Format

char *dtw_strdup(char *string)

Parameters

string A pointer to the string value to copy into the storage
allocated.

Examples
char *myString = "This string will be duplicated.";
char *myDupString;

myDupString = dtw_strdup(myString);

Chapter 4. The Language Environment Programming Interface Utility Functions 51

dtw_table_AppendRow()

Usage

Adds one or more rows to the end of the table. Assign the table values of the new
rows with the dtw_table_SetV() utility after rows are appended to the table.

Format

int dtw_table_AppendRow(void *table, int rows)

Parameters

table A pointer to the table to be appended to.

rows The number of rows to append.

Examples
void *myTable;

rc = dtw_table_AppendRow(myTable, 10);

52 Net.Data Language Environment Reference

dtw_table_Cols()

Usage

Returns the current number of columns in the table.

Format

int dtw_table_Cols(void *table)

Parameters

table A pointer to the table whose current number of columns is
returned.

Examples
void *myTable;
int currentColumns;

currentColumns = dtw_table_Cols(myTable);

Chapter 4. The Language Environment Programming Interface Utility Functions 53

dtw_table_Delete()

Usage

Deletes all of the column headings, table values, and the table object.

Format

int dtw_table_Delete(void *table)

Parameters

table A pointer to the table to delete.

Examples
void *myTable;

rc = dtw_table_Delete(myTable);

54 Net.Data Language Environment Reference

dtw_table_DeleteCol()

Usage

Deletes one or more columns beginning at the column specified in start_col. To
delete all of the rows and columns of a table, substitute the utility function
dtw_table_Cols() for the cols parameter.
dtw_table_DeleteCol(table, 1, dtw_table_Cols());

Format

int dtw_table_DeleteCol(void *table, int start_col, int cols)

Parameters

table A pointer to the table to modify.

start_col The column number of the first column to delete.

rows The number of columns to delete.

Examples
void *myTable;

rc = dtw_table_DeleteCol(myTable, 1, 10);

Chapter 4. The Language Environment Programming Interface Utility Functions 55

dtw_table_DeleteRow()

Usage

Deletes one or more rows beginning at the row specified in start_row.

Format

int dtw_table_DeleteRow(void *table, int start_row, int rows)

Parameters

table A pointer to the table to modify.

start_row The row number of the first row to delete.

rows The number of rows to delete.

Examples
void *myTable;

rc = dtw_table_DeleteRow(myTable, 3, 10);

56 Net.Data Language Environment Reference

dtw_table_GetN()

Usage

Retrieves a column heading. Net.Data owns the memory pointed to by dest; do not
modify or free it.

Format

int dtw_table_GetN(void *table, char **dest, int col)

Parameters

table A pointer to the table from which a column heading is
retrieved.

dest A pointer to the character string to contain the column
heading.

col The column number of the column heading.

Examples
void *myTable;
char *myColumnHeading;

rc = dtw_table_GetN(myTable, &myColumnHeading, 5);

Chapter 4. The Language Environment Programming Interface Utility Functions 57

|
|

dtw_table_GetV()

Usage

Retrieves a value from a table. Net.Data owns the memory pointed to by dest; do
not modify or free it.

Format

int dtw_table_GetV(void *table, char **dest, int row, int col)

Parameters

table A pointer to the table from which a value is retrieved.

dest A pointer to the character string that is to contain the value.

row The row number of the value to retrieve.

col The column number of the value to retrieve.

Examples
void *myTable;
char *myTableValue;

rc = dtw_table_GetV(myTable, &myTableValue, 3, 5);

58 Net.Data Language Environment Reference

|
|

dtw_table_InsertCol()

Usage

Inserts one or more columns after the specified column.

Format

int dtw_table_InsertCol(void *table, int after_col, int cols)

Parameters

table A pointer to the table to modify.

after_col The number of the column after which the new columns are
to be inserted. To insert columns at the beginning of the
table, specify 0.

cols The number of columns to insert.

Examples
void *myTable;

rc = dtw_table_InsertCol(myTable, 3, 10);

Chapter 4. The Language Environment Programming Interface Utility Functions 59

dtw_table_InsertRow()

Usage

Inserts one or more rows after the specified row.

Format

int dtw_table_InsertRow(void *table, int after_row, int rows)

Parameters

table A pointer to the table to modify.

after_row The number of the row after which the new rows are
inserted. To insert rows at the beginning of the table, specify
0.

rows The number of rows to insert.

Examples
void *myTable;

rc = dtw_table_InsertRow(myTable, 3, 10);

60 Net.Data Language Environment Reference

dtw_table_MaxRows()

Usage

Returns the maximum number of rows allowed for the Net.Data table as defined by
the dtw_table_New() utility function’s parameter, row_lim.

Format

int dtw_table_MaxRows(void *table)

Parameters

table A pointer to the table from which the maximum number of
rows is returned.

Examples
void *myTable;
int maximumRows;

maximumRows = dtw_table_MaxRows(myTable);

Chapter 4. The Language Environment Programming Interface Utility Functions 61

|
|

dtw_table_New()

Usage

Creates a Net.Data table object and initializes all column headings and field values
to NULL. The caller specifies the initial number of rows and columns, and the
maximum number of rows. If the initial number of rows and columns is 0, you must
use the dtw_table_SetCols() function to specify the number of fields in a row before
any table function calls.

Format

int dtw_table_New(void **table, int rows, int cols, int row_lim)

Parameters

table The name of the new table.

rows The initial number of rows to allocate in the new table.

cols The initial number of columns to allocate in the new table.

row_lim The maximum number of rows this table can contain.

Examples
void *myTable;

rc = dtw_table_New(&myTable, 20, 5, 100);

62 Net.Data Language Environment Reference

|

dtw_table_QueryColnoNj()

Usage

Returns the column number associated with a column heading.

Format

int dtw_table_QueryColnoNj(void *table, char *name)

Parameters

table A pointer to the table to query.

name A character string specifying the column heading for which
the column number is returned. If the column heading does
not exist in the table, 0 is returned.

Examples
void *myTable;
int columnNumber;

columnNumber = dtw_table_QueryColnoNj(myTable, "column 1");

Chapter 4. The Language Environment Programming Interface Utility Functions 63

dtw_table_Rows()

Usage

Returns the current number of rows in the table.

Format

int dtw_table_Rows(void *table)

Parameters

table A pointer to the table whose current number of rows is
returned.

Examples
void *myTable;

int currentRows;

currentRows = dtw_table_Rows(myTable);

64 Net.Data Language Environment Reference

dtw_table_SetCols()

Usage

Sets the number of columns of the table and allocates storage for the column
headings. Specify the column headings when the table is created; otherwise, you
must specify them by calling this utility function before using any other table
functions. You can only use the dtw_table_SetCols() utility function once for a table.
Afterwards, use the dtw_table_DeleteCol() or dtw_table_InsertCol() utility functions.

Format

int dtw_table_SetCols(void *table, int cols)

Parameters

table A pointer to a new table that has no columns or rows
allocated.

cols The initial number of columns to allocate in the new table.

Examples
void *myTable;

rc = dtw_table_SetCols(myTable, 5);

Chapter 4. The Language Environment Programming Interface Utility Functions 65

dtw_table_SetN()

Usage

Assigns a name to a column heading. The caller of the dtw_table_SetN() utility
function retains ownership of the memory pointed to by the src parameter. To delete
the column heading, assign the column heading value to NULL.

Format

int dtw_table_SetN(void *table, char *src, int col)

Parameters

table A pointer to the table whose column heading is assigned.

src A character string being assigned to the new column
heading.

col The number of the column.

Examples
void *myTable;
char *myColumnHeading = "newColumnHeading";

rc = dtw_table_SetN(myTable, myColumnHeading, 5);

66 Net.Data Language Environment Reference

|
|
|

dtw_table_SetV()

Usage

Assigns a value in a table. The caller of the dtw_table_SetV() utility function retains
ownership of the memory pointed to by the src parameter. To delete the table value,
assign the value to NULL.

Format

int dtw_table_SetV(void *table, char *src, int row, int col)

Parameters

table A pointer to the table whose value is being assigned.

src A character string assigned to the new value.

row The row number of the new value.

col The column number of the new value.

Examples
void *myTable;
char *myTableValue = "newValue";

rc = dtw_table_SetV(myTable, myTableValue, 3, 5);

Chapter 4. The Language Environment Programming Interface Utility Functions 67

|
|
|

68 Net.Data Language Environment Reference

Part 3. Appendixes

© Copyright IBM Corp. 1997, 1998 69

70 Net.Data Language Environment Reference

Appendix A. Language Environment Template

Use this template to create your own language environments.

/**/
/* */
/* File Name */
/* */
/* Description */
/* */
/* Functions */
/* */
/* Entry Points */
/* */
/* Change Activity */
/* */
/* Flag Reason Date Developer Description */
/* ------ ---------- -------- ------------ ---------------------- */
/* */
/**/

/*--*/
/* Includes */
/*--*/
#include "dtwle.h"

Figure 2. Language Environment Template (Part 1 of 14)

© Copyright IBM Corp. 1997, 1998 71

#ifdef __MVS__
#pragma export(dtw_initialize)
#pragma export(dtw_execute)
#pragma export(dtw_getNextRow)
#pragma export(dtw_cleanup)
#endif

#ifdef _AIX_
//*--*/
/* Function */
/* dtw_getFp */
/* */
/* Purpose */
/* Set function pointers to all Language Environment Interface */
/* routines being provided by this Language Environment. If a */
/* routine in the structure is not being provided, set that field */
/* to NULL. */
/* */
/* Format */
/* int dtw_getFp(dtw_fp_t *func_pointer) */
/* */
/* Parameters */
/* func_pointer A pointer to a structure which will contain */
/* function pointers for all functions provided */
/* by this language environment. */
/* */
/* Returns */
/* Success 0 */
/* Failure -1 */
/*--*/
int dtw_getFp(dtw_fp_t *func_pointer)
{

func_pointer->dtw_initialize_fp = dtw_initialize;
func_pointer->dtw_execute_fp = dtw_execute;
func_pointer->dtw_getNextRow_fp = dtw_getNextRow;
func_pointer->dtw_cleanup_fp = dtw_cleanup;
return 0;

}
#endif

Figure 2. Language Environment Template (Part 2 of 14)

72 Net.Data Language Environment Reference

/*--*/
/* */
/* Function */
/* dtw_initialize */
/* */
/* Purpose */
/* */
/* Format */
/* int dtw_initialize(dtw_lei_t *le_interface) */
/* */
/* Parameters */
/* le_interface A pointer to a structure containing the */
/* following fields: */
/* */
/* function_name */
/* flags */
/* exec_statement */
/* parm_data_array */
/* default_error_message */
/* le_opaque_data */
/* row */
/* */
/* Returns */
/* Success 0 */
/* Failure 0 */
/*--*/
int dtw_initialize(dtw_lei_t *le_interface)
{

return rc;
}

Figure 2. Language Environment Template (Part 3 of 14)

Appendix A. Language Environment Template 73

/*--*/
/* */
/* Function */
/* dtw_execute */
/* */
/* Purpose */
/* */
/* Format */
/* int dtw_execute(dtw_lei_t *le_interface) */
/* */
/* Parameters */
/* le_interface A pointer to a structure containing the */
/* following fields: */
/* */
/* function_name */
/* flags */
/* exec_statement */
/* parm_data_array */
/* default_error_message */
/* le_opaque_data */
/* row */
/* */
/* Returns */
/* Success 0 */
/* Failure 0 */
/*--*/
int dtw_execute(dtw_lei_t *le_interface)
{

/*--*/
/* Determine if %exec statement was specified. */
/*--*/
if (le_interface->flags & DTW_STMT_EXEC) {

/*--*/
/* Parse the %exec statement */
/*--*/
rc = processExecStmt(le_interface->exec_statement);
if (rc)
{
}

}
else {

/*--*/
/* Parse the inline data */
/*--*/
rc = processInlineData(le_interface->exec_statement);
if (rc)
{
}

}

Figure 2. Language Environment Template (Part 4 of 14)

74 Net.Data Language Environment Reference

/*--*/
/* Parse the input parameters */
/*--*/
rc = processInputParms(le_interface->parm_data_array);
if (rc)
{
}

/*--*/
/* Process the request */
/*--*/
rc = processRequest();
if (rc)
{
}

/*--*/
/* Process the output data */
/*--*/
rc = processOutputParms(le_interface->parm_data_array);
if (rc)
{
}

/*--*/
/* Process the return code and default error message */
/*--*/
if (rc)
{
setErrorMessage(rc, &(le_interface->default_error_message));

}
/*--*/
/* Cleanup and exit program. */
/*--*/
return rc;

}

Figure 2. Language Environment Template (Part 5 of 14)

Appendix A. Language Environment Template 75

/*--*/
/* */
/* Function */
/* dtw_getNextRow */
/* */
/* Purpose */
/* */
/* Format */
/* int dtw_getNextRow(dtw_lei_t *le_interface) */
/* */
/* Parameters */
/* le_interface A pointer to a structure containing the */
/* following fields: */
/* */
/* function_name */
/* flags */
/* exec_statement */
/* parm_data_array */
/* default_error_message */
/* le_opaque_data */
/* row */
/* */
/* Returns */
/* Success 0 */
/* Failure 0 */
/*--*/
int dtw_getNextRow(dtw_lei_t *le_interface)
{

return rc;
}

Figure 2. Language Environment Template (Part 6 of 14)

76 Net.Data Language Environment Reference

/*--*/
/* */
/* Function */
/* dtw_cleanup */
/* */
/* Purpose */
/* */
/* Format */
/* int dtw_cleanup(dtw_lei_t *le_interface) */
/* */
/* Parameters */
/* le_interface A pointer to a structure containing the */
/* following fields: */
/* */
/* function_name */
/* flags */
/* exec_statement */
/* parm_data_array */
/* default_error_message */
/* le_opaque_data */
/* row */
/* */
/* Returns */
/* Success 0 */
/* Failure 0 */
/*--*/
int dtw_cleanup(dtw_lei_t *le_interface)
{

/*--*/
/* Determine if this is normal or abnormal termination. */
/*--*/
if (le_interface->flags & DTW_END_ABNORMAL) {

/*--*/
/* Do abnormal termination cleanup. */
/*--*/

}
else {

/*--*/
/* Do normal termination cleanup. */
/*--*/

}

return rc;
}

Figure 2. Language Environment Template (Part 7 of 14)

Appendix A. Language Environment Template 77

/*--*/
/* */
/* Function */
/* processInputParms */
/* */
/* Purpose */
/* */
/* Format */
/* unsigned long processInputParms(dtw_parm_data_t *parm__data) */
/* */
/* Parameters */
/* dtw_parm_data_t *parm_data */
/* */
/* Returns */
/* Success 0 */
/* Failure */
/* */
/*--*/
unsigned long processInputParms(dtw_parm_data_t *parm_data)
{

/*--*/
/* Loop through all the variables in the parameter data array. */
/* The array is terminated by a NULL entry, meaning the parm_name */
/* field is set to NULL, the parm_value field is set to NULL, and */
/* the parm_descriptor field is set to 0. However, the only valid */
/* check for the end of the parameter data array is to check */
/* parm_descriptor == 0, since the parm_name field is NULL when a */
/* literal string is passed in, and the parm_value field is set */
/* to NULL when an undeclared variable is passed in. */
/*--*/
for (; parm_data->parm_descriptor != 0; ++parm_data) {

Figure 2. Language Environment Template (Part 8 of 14)

78 Net.Data Language Environment Reference

/*--*/
/* Determine the usage of each input parameter. */
/*--*/
switch(parm_data->parm_descriptor & DTW_USAGE) {

case(DTW_IN):
/*--*/
/* Determine the type of each input parameter. */
/*--*/
switch (parm_data->parm_descriptor & DTW_TYPE) {

case DTW_STRING:
break;

case DTW_TABLE:
break;

default:
/*--*/
/* Internal error - unknown data type */
/*--*/
break;

}
break;

case(DTW_OUT):
break;

case(DTW_INOUT):
break;

default:
/*--*/
/* Internal error - unknown usage */
/*--*/
break;

}
}

return rc;
}

Figure 2. Language Environment Template (Part 9 of 14)

Appendix A. Language Environment Template 79

/*--*/
/* */
/* Function */
/* processOutputParms() */
/* */
/* Purpose */
/* */
/* Format */
/* unsigned long processOutputParms(dtw_parm_data_t *parm_data) */
/* */
/* Parameters */
/* dtw_parm_data_t *parm_data */
/* */
/* Returns */
/* Success 0 */
/* Failure -1 */
/* */
/*--*/
unsigned long processOutputParms(dtw_parm_data_t *parm_data) {

/*--*/
/* Get output data in some language environment-specific manner. */
/* This is entirely dependent on what the language environment */
/* is interfacing to, and how the LE chooses to interface to it. */
/*--*/

Figure 2. Language Environment Template (Part 10 of 14)

80 Net.Data Language Environment Reference

/ /*--*/
/* Loop through all the parms in the parameter data array, */
/* looking for output parameters. */
/*--*/
for (; parm_data->parm_descriptor != 0; ++parm_data) {

/*--*/
/* Determine usage of each parameter. */
/*--*/
if (pd_i->parm_descriptor & DTW_OUT) {

/*--*/
/* Determine the type of each input parameter. */
/*--*/
switch (pd_i->parm_descriptor & DTW_TYPE) {

case DTW_STRING:
/*--*/
/* Give a string parameter a new value. If the */
/* parameter value is not currently NULL, the */
/* storage must be freed using an LE interface */
/* utility function if it was allocated by */
/* Net.Data. */
/*--*/
if (parm_data->parm_value != NULL)

dtw_free(parm_data->parm_value);
parm_data->parm_value = dtw_strdup(newValue);
break;

case DTW_TABLE:
/*--*/
/* Change the size of a table parameter. Use the */
/* LE interface utility functions to modify the */
/* table object. */
/*--*/
/*--*/
/* First get the pointer to the table object. */
/*--*/
void *myTable = (void *) parm_data->parm_value;

Figure 2. Language Environment Template (Part 11 of 14)

Appendix A. Language Environment Template 81

/*--*/
/* Next get the current size of the table. */
/*--*/
cols = dtw_table_Cols(myTable);
rows = dtw_table_Rows(myTable);
/*--*/
/* Now set the new size (assumes the new size */
/* values are valid). */
/*--*/

/*--*/
/* Set the columns first. */
/*--*/
if (cols > newColValue)

{
dtw_table_DeleteCol(myTable,

newColValue + 1,
cols - newColValue);

}
else if (cols < new_col_value)

{
dtw_table_InsertCol(myTable,

cols,
newColValue - cols);

}

/*--*/
/* Now set the rows. */
/*--*/
if (newColValue > 0) {

if (rows > newRowValue)
{

dtw_table_DeleteRow(myTable,
newRowValue + 1,
rows - newRowValue);

}
else if (rows < new_row_value)

{
dtw_table_InsertRow(myTable,

rows,
newRowValue - rows);

}
}

Figure 2. Language Environment Template (Part 12 of 14)

82 Net.Data Language Environment Reference

/*--*/
/* Now get the last row/column value. */
/*--*/
dtw_table_GetV(myTable,

&myValue;,
newRowValue,
newColValue);

/*--*/
/* Delete the last row/column value. */
/*--*/
dtw_table_SetV(myTable,

NULL,
newRowValue,
newColValue);

/*--*/
/* Set the last row/column value. */
/*--*/
dtw_table_SetV(myTable,

dtw_strdup(myNewValue),
newRowValue,
newColValue);

break;
default:

/*--*/
/* Internal error - unknown data type */
/*--*/
break;

}
}

}

return 0;
}

Figure 2. Language Environment Template (Part 13 of 14)

Appendix A. Language Environment Template 83

/*--*/
/* */
/* Function */
/* setErrorMessage() */
/* */
/* Purpose */
/* */
/* Format */
/* unsigned long setErrorMessage(int returnCode, */
/* char **defaultErrorMessage) */
/* */
/* Parameters */
/* int returnCode */
/* char **defaultErrorMessage */
/* */
/* Returns */
/* Success 0 */
/* Failure -1 */
/* */
/*--*/
unsigned long setErrorMessage(int returnCode,

char **defaultErrorMessage)
{

/*--*/
/* Set the default error message based on the return code. */
/*--*/
switch(returnCode) {

case LE_SUCCESS:
break;

case LE_RC1:
*defaultErrorMessage = dtw_strdup(LE_RC1_MESSAGE_TEXT);
break;

case LE_RC2:
*defaultErrorMessage = dtw_strdup(LE_RC2_MESSAGE_TEXT);
break;

case LE_RC3:
*defaultErrorMessage = dtw_strdup(LE_RC3_MESSAGE_TEXT);
break;

case LE_RC4:
*defaultErrorMessage = dtw_strdup(LE_RC4_MESSAGE_TEXT);
rc = LE_RC1INTERNAL;
break;

}
return 0;

}

Figure 2. Language Environment Template (Part 14 of 14)

84 Net.Data Language Environment Reference

Appendix B. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation
555 Bailey Avenue, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1997, 1998 85

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
DataJoiner
DB2
Domino
IBM
IMS

Lotus
MVS
Net.Data
OS/2
OS/390
OS/400

The following terms are trademarks of other companies as follows:

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT®, and the Windows 95 logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

86 Net.Data Language Environment Reference

Glossary

API. Application programming interface.

applet. A Java program included in an HTML page.
Applets work with Java-enabled browsers, such as
Netscape, and are loaded when the HTML page is
loaded.

application programming interface (API). A
functional interface supplied by the operating system or
by a separately orderable licensed program that allows
an application program written in a high-level language
to use specific data or functions of the operating system
or licensed program. Net.Data supports the following
proprietary Web server APIs for improved performance
over CGI processes: ICAPI, GWAPI, ISAPI, and NSAPI.

BLOB. Binary large object.

cache. A type of memory that contains recently
accessed data, designed to speed up subsequent
access to the same data. The cache is often used to
hold a local copy of frequently-used data that is
accessible over a network.

caching. The processes of storing frequently-used
results from a request to the Web server locally for
quick retrieval, until it is time to refresh the information.

Cache Manager. The program that manages a cache
for one machine. It can manage multiple caches.

CGI. Common Gateway Interface.

cliette. A long-running process that serves requests
from the Web server. The Connection Manager
schedules cliette processes to serve these requests.

CLOB. Character large object.

Common Gateway Interface. A standardized way for
a Web server to pass control to an application program
and receive data back.

Connection Manager. An executable file, dtwcm, in
Net.Data that is needed to support Live Connection.

cookie. A packet of information sent by an HTTP
server to a Web browser and then sent back by the
browser each time it accesses that server. Cookies can
contain any arbitrary information the server chooses and
are used to maintain state between otherwise stateless
HTTP transactions. Free Online Dictionary of Computing

database. A collection of tables, or a collection of table
spaces and index spaces.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

data type. An attribute of columns and literals.

DBMS. Database management system.

firewall. A computer with software that guards an
internal network from unauthorized external access.

flat file interface. A set of Net.Data built-in functions
that let you read and write data from plain-text files.

HTML. Hypertext markup language.

HTTP. Hypertext transfer protocol.

hypertext markup language. A tag language used to
write Web documents.

hypertext transfer protocol. The communication
protocol used between a Web server and browser.

ICAPI. Internet Connection API.

ICS. Internet Connection Server.

ICSS. Internet Connection Secure Server.

Internet. An international public TCP/IP computer
network.

Internet Connection Server. IBM’s unsecure Web
server.

Internet Connection Secure Server. IBM’s secure
Web server.

Intranet. A TCP/IP network inside a company firewall.

ISAPI. Microsoft’s Internet Server API.

Java. An operating system-independent
object-oriented programming language especially useful
for Internet applications.

language environment. A module that provides
access from a Net.Data macro to an external data
source such as DB2 or a programming language such
as Perl. Some language environments are supplied with
Net.Data such as REXX, Perl, and Oracle. You can also
create your own language environments.

Live Connection. A Net.Data configuration that works
with the Connection Manager and Web server API. Live
Connection enables database connections to be reused.

LOB. Large object.

middleware. Software that mediates between an
application program and a network. It manages the
interaction between disparate applications across the
heterogeneous computing operating systems. Free
Online Dictionary of Computing

© Copyright IBM Corp. 1997, 1998 87

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

NSAPI. Netscape API.

null. A special value that indicates the absence of
information.

path. A search route used to locate files.

Perl. An interpreted programming language.

port. A 16-bit number used to communicate between
TCP/IP and a higher-level protocol or application.

TCP/IP. Transmission Control Protocol / Internet
Protocol.

Transmission Control Protocol / Internet Protocol.
A set of communication protocols that support
peer-to-peer connectivity functions for both local and
wide-area networks.

URL. Uniform resource locator.

uniform resource locator. An address that names a
HTTP server and optionally a directory and file name,
for example:
http://www.software.ibm.com/data/net.data/index.html.

Web server. A computer running http server software,
such as Internet Connection.

88 Net.Data Language Environment Reference

Index

A
abnormal conditions

dtw_lei flag 34, 39
error messages 35

C
cleaning up

after processing 37, 39
dtw_lei flag 34, 39
flag for abnormal conditions 34, 39

column headings
allocating storage 49, 65
assigning names 66
deleting 54, 57, 66
retrieving 57
returning column number 63

columns
deleting 55
determining total in table 53
inserting 59
specifying number of in a table 65

configuration variables
retrieving variable values 47
utility functions for managing 43

configuring environments 39
creating tables 62

D
DB2, SQL language environment 23
dtw_ interface functions 36
dtw_ structures 33
dtw_ utilities 43
DTW_APPLET 9
DTW_FFI 5
DTW_IMS 8
DTW_JAVAPPS 15
DTW_LE_CONTINUE 38
dtw_lei

fields
default_error_messages 35
exec_statement 35
flags 34
function name 34
le_opaque_data 35
parm_data_array 35
row 35

structure 34
DTW_ODBC 18
DTW_ORA 19
dtw_parm_data

fields
parm_descriptor 36
parm_name 36
parm_value 36

structure 35
DTW_PERL 21

DTW_REXX 22
DTW_SQL 23
DTW_SYB 24
DTW_SYSTEM 26
DTW_WEBREG 26
dynamic memory allocation 36

E
ENVIRONMENT statements

examples 41
for new language environments 39
syntax 39

error condition messages 35
error conditions 33
exec statements, dtw_lei flag 34
executing language environment statements 37

F
fatal errors, dtw_lei flag 34, 39
flat file interface

built-in functions 6
language environment 5
security considerations 5

FUNCTION block
executing statements 37
name 34

G
glossary 86

H
heap, Net.Data run-time 36

I
IMS Web

language environment 8
Studio tool 8

initializing tasks, language environments 37
interface functions

dtw_cleanup() 39
dtw_execute() 37
dtw_getNextRow() 38
dtw_initialize() 37
language environment, description 36
processing order 37

invoking applets 9

J
Java applets

classes 14
creating 9
example 13

© Copyright IBM Corp. 1997, 1998 89

Java applets (continued)
generating tags 9
invoking 9
language environment 9

Java applications
creating cliettes 17
creating functions 16
invoking 18
Language Environment 15
special configuration 17

L
language environments

clean up after processing 37, 39
configuring 39
creating 31
flat file interface 5
IMS Web 8
initializing 37
interface functions 36
interface template 71
introduction 43
Java applet 9
Java applications 15
ODBC 18
Oracle 19
Perl 21
REXX 22
SQL 23
statements, executing 37
structures 33
summary 3
Sybase 24
system 26
utility functions 43
Web registry 26

M
maximum number of rows 61
memory management utility functions 43

N
Notices 85

O
ODBC

language environment 18
SQL statements in macro file 18

Oracle
accessing 19
language environment 19
special configuration 19
stored procedures 19

P
parameters

naming 36

parameters (continued)
parm_name 36
passing 35, 36
specifying 36

parm_data_array structures, assigning names 35
passing

parameters 35
variables 35

Perl
language environment 21
Net.Data variables in scripts 21

pointing to storage 48

R
REXX

language environment 22
variable substitution 23

row-at-a-time processing
dtw_getNextRow() 37, 38
DTW_LE_CONTINUE 34
dtw_lei flag 34

row manipulation utility functions 45
rows

appending 52
assigning width 49
deleting 55, 56
dtw_getNextRow() interface function 35
inserting 60
retrieving current number of 64
returning 35, 37, 38
returning maximum allowed 61

S
SQL

language environment 23
supported statements 23
using DataJoiner 23

storage
allocating 48, 49, 51, 65
dtw_lei flag 34
freeing 34, 36, 46

structures, language environment
dtw_lei 34
dtw_parm_data 35

Sybase
accessing 24
language environment 24
large objects 24
special configuration 24

System
language environment 26
passing variables 26

T
table values

assigning 50, 67
deleting 54, 58, 67
retrieving 58

90 Net.Data Language Environment Reference

tables
appending rows 52
creating new 62
deleting 54
manipulation utility functions 44

template, language environement 71

U
utility functions

configuration variable 43
dtw_free() 46
dtw_getvar() 47
dtw_malloc() 48
dtw_row_SetCols() 49
dtw_row_SetV() 50
dtw_strdup() 51
dtw_table_AppendRow() 52
dtw_table_Cols() 53
dtw_table_Delete() 54
dtw_table_DeleteCol() 55
dtw_table_DeleteRow() 56
dtw_table_GetN() 57
dtw_table_GetV() 58
dtw_table_InsertCol() 59
dtw_table_InsertRow() 60
dtw_table_MaxRows() 61
dtw_table_New() 62
dtw_table_QueryColnoNj() 63
dtw_table_Rows() 64
dtw_table_SetCols() 65
dtw_table_SetN() 66
dtw_table_SetV() 67
language environment 43
memory management 43
row manipulation 45
table manipulation 44

V
variables

freeing 39
passing 35

W
Web registry

description 27
language environment 26

Index 91

92 Net.Data Language Environment Reference

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

