Release statement

This is a 100% handmade demo. Code was developed manually (with hundreds of
hours of work), video backgrounds have been recorded with an actual camera, music
has been recorded with a Kramer Floyd Rose Sustainer guitar and a BOSS SY-200
effect pedal, etc.

Just like in the olden days when there was no alternative.

This demo is unfinished, the engine is unfinished too. So this is just a techdemo
introducing the current capabilities of the engine, which is:

pure Assembly engine
320x200 movie background
adaptive palette

8bit, 44100 Hz music

3D pointcloud rotation

| was in a rush, | had to release this demo now, because Al is coming. It is coming
and it is growing fast. One or two years from now everyone can generate an engine
like this in a moment. Future Al or LLM models can be used to solve super complex
problems like developing DOS demos (or DOS Assembly engines) based on a prompt
request.

Therefore | get ahead of things and | tried to think proactively. Eventhough | have
been developing this engine in my freetime for many years now and | have been
preparing a nice looking demo, | changed my mind and terminated the devlopment
process. | decided to release the product as is, in order to demonstrate my product
before Al becomes capable of doing demos (or demo engines) like this one (in a
moment) based on a promt request. | simply released this product in order to prove
that | was able to develop my own engine (on my own) with a tremendous amoun of
hard work without the help of any Al.

So, itis 2024 now, and Al simply cannot do demos or demo engines like this yet.
What about asking for parts of an engine? Al fails too.

Just for fun let's take a look at it and let's see what Al responds when we're asking
for an actual engine or its parts in 2024

ChatGPT 4o ~

Generate a DOS, pure assembly demascene demo engine for me,
which is capable of playing 8bit, 44100 Hz music, rotates 3D
pointclouds, the background is a movie, etc.

The dema engine should be ready ta receive WAV files, background
images and videos (for the background movie) and pointcloud files (in
PLY format). If we organize the above mentioned resources in the
correct order (in folders, etc), the engine should create an actual DOS
EXE from them so we can see these content running as a DOS
demoscene product.

Creating a fully-fledged DOS-based assembly demoscene dema engine capable of rendering such
features (8-bit, 44100 Hz music, 3D pointclouds, and background video) is a highly complex task.
However, | can outline the approach, provide key assembly routines, and explain the steps to build

this engine. Let's break it down:

1. Requirements and Tools

s Assembler: Use Turbo Assembler (TASM) or NASM.

* Sound Library: Implement or use a mixer for 8-bit PCM sound.

* Graphics Mode: Use Mode 13h (320x200, 256 colors) or higher for visuals.

* Video Decoding: Simplified custom playback mechanism for video backgrounds.
« Pointcloud Visualization: A 3D math engine for rotations and projections.

* Resource Management: Organize WAVs, images, and PLY files.

2. Resource Setup

Directory Structure:
=3 (9 Copy code

resources/
music/
track.wav
video/
background.raw (uncompressed frame-by-frame RGE data)
models/
pointcloud.ply

3. Core Engine Features
a) Sound Engine
Playback of 44100 Hz audio using the Sound Blaster DSP in pure assembly:
a=m P Copy code

; Initialize sound Blaster for 8-bit P(M

mov dx, ex22e Base port of Sound Blaster

mov al, exDL DSP reset

out dx, al

¢call delay 3 Small delay

in al, dx ; Acknowledge DSP

; Playback loop

b) Background Movie
Use pre-rendered raw frame data (320x200 or similar). Load each frame, write to the VGA buffer
asm (Y Copy code

; Set VGA Mode 13h
mov ax, exis
int ex1e

; Load frame from file
mov dx, frame_buffer

mov es, dx
mov si, [frame_data] ; Source in memory
mov di, exAese 3 VGA memory start

rep movsh ; Copy frame to video memory

=

) Pointcloud Renderer

Load PLY, apply rotation matrix, and project onto 2D screen:

am & Copy coda

; Rotate point
fld [angle]
fsincos

fstp [cos_angle]
fstp [sin_angle]

3 Transform vertices
mov ax, [x_coord]
imul ax, [cos_angle]

mov bx, [y_coord]

g8

imul bx, [sin_angle]
add ax, bx

mov [screen x], ax

; Plot pixel

mov ax, execee ; Set pixel interrupt
mov X, [screen_x]

mov dx, [screen_y]

int exie

d) Timing Control

Use the PIT for sync (vertical retrace or fixed intervals):

4.

=m (9 Copy code

mov al, ex3e
out ex43, al
mov ax, 11932
out ex42, al ; 44180 Hz

Building the EXE

Bundling Resources into an EXE:

1. Write a rescurce packer (in C/ASM) that embeds WAV, raw video frames, and PLY data.

2. Engine loads resources dynamically from offsets in memory.

Makefile for Compilation:

5.

6.

makefile (9 Copycode

engine.exe: engine.asm resources.cbi
tasm engine.asm
tlink /3 engine.obj

Sample Main Loep
=m (P Copy cods

start:
call init_sound
¢all load_video
call load peintcloud
call main_leop

main_loop:
call render_frame
call play_audio
Jjmp main_loop

Notes

Implementing the full engine will require advanced knowledge of assembly and DOS

architecture,
Precompute video and organize resources for efficiency.

3D math can be optimized with fixed-point arithmetic.

Would you like code for any specific feature in more detail or guidance on setting up the

environment?

Now let’s give it a try and ask the Al to develop at least the 3D point rotating part, but instead of a
complex task like rotating a pointcloud, ask the Al to rotate only a cube.

ChatGPT 40

write an assembly (NASM, DOS) program that rotates a cube on the
320200 graphical screen (8 points/edges representing the cube).
make sure that the cube has a 256 color palette and also make sure
that scene doesn't blink, meaning that program properly changes

active and passive graphical pages

enin

Here is an example of a NASM program that rotates a 3D cube on the 3204200 graphics sc
mode 13h (256-color VGA mode). The program includes double-buffering to eliminate screen flicker

by drawing to an off-screen buffer and then swapping buffers.

Assembly Code (NASM, DOS):

asm

; Cube rotation in 32ex20@ VGA mode with double buffering

mbled using MASH

org exiea ; CoM

section .data
vertices dw -58, -58, -58, S8, -58, -58, 5@, 58, -58, -58, 5O, -58
w -58, -58, 58, S8, -58, 58, 5@, 58, 58, -58, 54, 58

edges dbe,1, 1,2, 2,3 3,80
db 4,5, 5,6 6 7, 7,4
dbe, 4, 1,5 2,6, 3,

palette times 256 db @ ; Palette storage (filled later)

.bss
fer resb 3207260 ; Off-screen buffer

angle_x resu 1
angle_y resw 1
angle_z resw 1

section .text
start:
5 set 13h graphics mode
mov ax, @xiz
int ex1e

5 Initislize varisbles
Xor 3K, 3%

mov [angle x], ax

mov [angle y1, ax

mov [angle z], ax

main_loop:
; Rotete and project cube
call clear_buffer
call rotate_cube
call drau_cube

; Swap buffers
mov GX, @XADDD
mov es, ax

mov si, zbuffer
xor di, di

mov Cx, 328*2e8/2

rep movsw

5 Updste angles
add word [angle x], 1
add word [angle y], 2
add word [angle z], 3

5 Check for ESC key press
mov ah, 1

int ox16

jz main_loop

mov ah, @

int ox16

amp al, ex18

jne main_loop

exit:
5 Restore text mode
mov ax, ex3
int ex1e
ret

clear_buffer:
5 Clesr the off-screen buffer
mov ax, @
mov di, zbuffer
mov Cx, 328*2e8/2
rep stosw
ret

rotate_cube:
; Rotete the cube in 30 space
; Uses simple fixed-point math
mov ax, [angle_x]
call sin_cos
mov si, cx ; cos(angle_x)

mov di, dx ; sin(angle_x)

2

; (similar rotation code for y and z aves)

ret

W edges of the cube onto the off-screen buffer
; (Includes 3D to 2D pri 1

ion and line-d
; Use the vertices and edges arrays
; Apply perspective pro;

2 code)

; Draw lines for each edge
ret

sin_cos:

; caleulste sine and

ne of ax (angle in degrees)

; (simplified example using precomputed table or algorithm)
; Returns o = cos(angle), DX = sin(angle)
ret

Features:

1. Double Buffering:

+ The off-screen buffer zbuffer is used to render the cube before copying it to video

memo

y (ex2e08), preventing flickering.
2. 3D Rotation:

o The cube rotates around the X, ¥, and Z axes using simple trigonometric functions
(sin_cos procedure).
3. Line Drawing:

+ Cube edges are drawn based on the edges array. The draw_cube procedure includes
Bresenham’s line algorithm or similar logic to render edges.
4. Keyboard Exit:

® Press ESC to exit the program and return to text mode.

Notes:

1. This program uses fixed-point arithmetic for efficiancy since the DOS environment lacks
floating-point suppart by default.

2. The sine and cosine functions can be implemented using 3 lookup table or approximati

3. The palett

up is omitted for simplicity, but you can initialize a gradient palette by writing to
VGA ports @x3¢8 and @x3c9 .

Let me know if you'd like further details on specific sections!

IO D

It seems that it provided some parts,

but the most important parts are missing (no sin/cos part, no
palette, no 3D->2D projection, etc.):

draw_cube:

; Draw edges of the cube onto the off-screen buffer

; (Includes 20 to 20 projection and line-dr

; Use the vertices and edges arrays
#pply perspective projection: x' =
or each edge

Let’s be fair and give it another try:

ChatGPT 40

write a dos, nasm assembly code that rotates a cube (8 points
representing the edges of the cube) on a 320x200 graphical screen.
use FPU commands for <in or cos calculations

Below is a basic example of a DOS assembly program in NASM that rotates a 3D cube on a 320x200
graphical screen. It uses the x86 FPU for trigonometric calculations to determine the rotation of the

cube.

Program Code

=m (P Copy code

; Rotate a cube in 32ex2ee mode using NasM
; Assemble with: nasm -f bin -0 cube.com cube.asm
3 Run in DOSBox or a similar emulator.

org exies

section .data
; Define the 30 points of the cube (x, y,)

cube_points dg -5, -5@, -5@ ; Point 1
dg 5@, -5@, -58 ; Point 2
dq 5@, 5@, -5 ; Point 3
dg -5@, 5@, -%@ ; Point 4
dq -58, -58, 58 ; Point §
dq 5@, 5@, 5B ; Point &
dg se, s, 5@ ; Point 7
dg -58, 5@, 58 ; Point 8

3 Projection scale and screen offset
scale dw 180

screen_center_x dw 168
screen_center_y dw 128

; Rotation angles (in radians)
angle x dg 2.8
angle_y dq 8.8
angle_z dg e.e

section .bss
rotated_points resd 24 ; 8 points * 3 coordinates (x, v,

section .text
start:
; Set video mode 13h (326208 with 256 colors)
moy ah, @xee
mov al, ex13
int ex1e

main_loop:
; Clear screen (fill with black)
xor di, di
mov cx, 328°280/4
*or esx, eax

rep stosd

; Rotate cube
call rotate_cube

3 Draw cube
call draw_cube

; Update rotation angles

£1d dword [angle x]

fldpi

fadd dword [e.82] 3 Increment X angle
#stp dword [angle_x]

fld dword [angle_y]

flépi

fadd dword [8.83] ; Increment Y angle
fstp dword [angle_y]

3 Delay loop (cheap way to control speed)
mov X, @XFFFF

.delay_loop:
loop .delay_loop

jmp main_loop

rotate_cube:
; Rotate each point and project to 20
lea si, [cube_points]
lea di, [rotated points]
mov cx, 8 ; 8 points

.rotate_point:
; Load the point coordinates
fld guord [si] 3 2
f1d quord [si+*8] ; ¥
fld guord

=

asm (F Copy code
fld gword [si+18] ;X

3 Apply rotation around X-axis

fld dword [angle_x]

fsincos

; cos(angle x) -» st(@), sin(angle_x) -> st(1)

fxch st(1)

fmul st(e), st{2} 5 sin(angle_x) * Z

fld st(3)

fmul st(@), st(1l) ; cos(angle x) * Y

fsubp st(1), st(e) ; ¥' = cos{angle_x)*Y - sin(angle_x)*z
fst guord [di+g] 5 Store rotated v

3 Apply rotation around Y-axis

f1d dword [angle_y]

fsincos

fxch st(1)

fmul st(e), st{z) 5 sin{angle y} * X

fld st(3)

fmul st(e), st{1} ; cos{angle_y) * Z

faddp st(1), st(e) 3 Z' = cos{angle_y)*Z + sin{angle_y)*X
fst quord [di+1e] ; Store rotated 7

5 Apply rotation around Z-axis

f1d dword [angle_z]

feincos

fxch st(1)

fmul st(e), st(2) ; sin(angle_z) * X

fld st(3)

fmul st{e), st{1) ; cos(angle_z} * Y

faddp st(1), st(e) ; X' = cos{angle_z)*X + sin{angle_z)}*Y
fst quord [di] 5 Store rotated X

; Project 30 points to 20 screen space
fld dword [scale]

fmul st(e), st{2} ; scale * X'

fadd dword [screen_center_x]

fstp querd [di]

fld dword [scale]

fmul st{e), st{1) ; scale * ¥'
Ffadd dword [screen_center_y]
fstp quord [di+g]

3 Move to next peint
add si, 24

add di, 24

loop .rotate_point

ret

draw_cube:
; Draw lines connecting cube edges
mov si, rotated_points
; ToDO: Add drawing logic here (e.g., Bresenham's line algorithm)
ret

exit:
; Return to text mode
mov ah, exed
mov al, exe3
int exie

; Exit program

mov ax, 8x4Ced
int ex21

Notes:

. Rotation Logic: Uses the FPU fsincos to calculate sine and cosine of the angles for rotation.

]

. Projection: Scales the 3D coordinates and maps them to the 2D screen.

[

. Graphics: Implement a line-drawing algorithm (like Bresenham's) in the draw_cube procedure

to connect the cube's vertices.

4, DOS Environment: Assemble with NASM and run using DOSBox or a similar DOS emulator.

wn

. Optimization: This is 2 basic impler ion. Further optimization can be done for speed and

clarity.

Let me know if you'd like assistance with specific parts, like implementing the line-drawing function

or optimizing the rotation logic!

c o @0 PO

the code generated by the Al is just doesn’t execute:

fg: \deleteme\CTTNC IOV oooiiooiom. Cmme o \test>nasmw -f bin test.asm -o test.com
test.asm:54: expression syntax error
test.asm:59: expression syntax error
test.asm:79: expression syntax error
test.asm:86: comma or end of line expected
test.asm:87: comma or end of line expected
test.asm:87: comma or end of line expected
test.asm:88: comma or end of line expected
test.asm:89: comma or end of line expected
test.asm:89: comma or end of line expected
test.asm:90: comma or end of line expected
test.asm:90: comma or end of line expected
test.asm:96: comma or end of line expected
test.asm:97: comma or end of line expected
test.asm:97: comma or end of line expected
test.asm:98: comma or end of line expected
test.asm:99: comma or end of line expected
test.asm:99: comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected
test.asm: : comma or end of line expected

If we go ahead and fix above listed errors, then other errors occur.

And on top of that the main part is missing again:

Final conclusion

In 2024 Al tries its best, but it fails. Seemingly it doesn’t understand Assembly in general. Al cannot
be used to implement complex problems written in Assembly yet.

