The Java
Language Specification

The Java* Series

Lisa Friendly, Series Editor
Bill Joy, Technical Advisor

The Java" Programming Language
Ken Arnold and James Gosling
ISBN 0-201-63455-4

The Java" Language Specification
James Gosling, Bill Joy, and Guy Steele
ISBN 0-201-63451-1

The Java" Virtual Machine Specification
Tim Lindholm and Frank Yellin
ISBN 0-201-63452-X

The Java" Application Programming Interface,
Volume 1: Core Packages

James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63453-8

The Java" Application Programming Interface,
Volume 2: Window Toolkit and Applets

James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63459-7

The Java" Tutorial: Object-Oriented Programming for the Internet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

The Java" Class Libraries: An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

The Java" FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2

The Java
Language Specification

James Gosling
Bill Joy
Guy Steele

A
vy

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusettslarlow, England Menlo Park, California
Berkeley, California Don Mills, Ontario- Sydney
Bonn. Amsterdam Tokyo. Mexico City

Copyrightd 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under SUN's
intellectual property rights that are essential to practice this specification. This license
allows and is limited to the creation and distribution of clean room implementations of this
specification that (i) include a complete implementation of the current version of this spec-
ification without subsetting or supersetting, (ii) implement all the interfaces and function-
ality of the standardava* packages as defined by SUN, without subsetting or
supersetting, (iii) do not add any additional packages, classes or methodgta.the
packages (iv) pass all test suites relating to the most recent published version of this spec-
ification that are available from SUN six (6) months prior to any beta release of the clean
room implementation or upgrade thereto, (v) do not derive from SUN source code or
binary materials, and (vi) do not include any SUN binary materials without an appropriate
and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun
Microsystems Computer Corporation logo, Java, JavaSoft, JavaScript and HotJava are
trademarks or registered trademarks of Sun Microsystems, Inc. &JISI4 registered
trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd. Apple and Dylan are trademarks of Apple Computer, Inc. All other prod-
uct names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS I1S” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Credits and permissions for quoted material appear in a separate section on page 823.

Text printed on recycled and acid-free paper

ISBN 0-201-63451-1
1234567 89-MA-99989796
First printing, August 1996

“When | use a word,” Humpty Dumpty said,
in rather a scornful tone, “it means just what |
choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether you
canmake words mean so many different things.

“The question is,” said Humpty Dumpty,
“which is to be master—that'’s all.”

—Lewis Carroll,Through the Looking Glass

Table of Contents

Series Foreword XXi
Preface XXili
INtroducCtion. 1
1.1 Example Programs 5
1.2 Referenceso e 6
GramMMaAlS . . .t e 7
2.1 Context-Free GrammarSo i e e 7
2.2 The Lexical Grammar.ottt ittt e e ettt e e e 7
2.3 TheSyntactic Grammarttt 8
2.4 Grammar NOtatioNot e 8
Lexical Structure. 11
3.1 UNICOE. . . . o 11
3.2 Lexical Translationso 12
3.3 Unicode ESCapesS. . .ot e 12
3.4 Line Terminatorsottt e e 13
3.5 Input Elements and TOKeNS. o 14
3.6 White Space 15
3.7 COMMENES. . ot e e e e 15
3.8 Identifierso e 17
3.9 KEYWOIAS . .ttt e e 18
310 Literalst 19
3.10.1 IntegerLiterals.o 19
3.10.2 Floating-Point Literals i 22
3.10.3 Boolean Literals. 23
3.10.4 Character Literals. i 24
3.10.5 StringlLiterals. e 25
3.10.6 Escape Sequences for Character and String Literals 26
3.10.7 The NullLiteral 27
311 SePAratOrS . . . 27
312 OPEIAtOrS . . v i 28

Vii

viii

4 Types, Values, and Variables. 29

41 TheKindsof TypesandValues., 30
4.2 Primitive Typesand Values i i 30
421 Integral TypesandValues 31
422 Integer Operations.ottt 31
4.2.3 Floating-Point Typesand Values. 33
4.2.4 Floating-Point Operations., 34
4.25 Theboolean Type anthoolean Values. 36
4.3 Reference Typesand Values 37
431 ObJeCtS. .t 38
432 TheClas®bject. 40
433 TheClasString i 41
4.3.4 When Reference Types Arethe Same. 42
44 WhereTypes Are Used i e e 42
45 Variables ... 43
45.1 Variables of Primitive Type. i 44
45.2 Variables of Reference Type i 44
453 Kindsof Variables. 44
45.4 Initial Values of Variables L 46
455 Variables Have Types, Objects Have Classes 47
5 Conversionsand Promotions 51
51 Kinds of Conversion e 54
5.1.1 Identity CONVEISIONSottt 54
5.1.2 Widening Primitive Conversions. 54
5.1.3 Narrowing Primitive Conversions. 55
5.1.4 Widening Reference Conversions.cvvvunn.. 58
5.1.5 Narrowing Reference Conversions 59
5.1.6 String CONVEISIONSottt 60
5.1.7 Forbidden Conversionsiiiiiiii .. 60
5.2 Assignment CONVErSION.o e 61
5.3 Method Invocation CONVEISIONttt e e 66
5.4 String CONVEISIONttt e e e 67
5.5 Casting ConNVErSIONottt e e e 67
5.6 Numeric Promotions 72
5.6.1 Unary Numeric Promotion 73
5.6.2 Binary Numeric Promotion. 74
B NAMES ... i e 77
6.1 Declarations. 78
6.2 Namesandldentifiers 79
6.3 ScopeofaSimple Name 81
6.3.1 HidingNames 83
6.4 Members and Inheritance 85
6.4.1 TheMembersofaPackage.............................. 85
6.4.2 TheMembersofaClassType..............c ... 86

6.4.3 The Members of an Interface Type 87

6.4.4 The Membersofan Array Type., 88
6.5 Determining the MeaningofaName............................. 89
6.5.1 Syntactic Classification of a Name According to Context. 90
6.5.2 Reclassification of Contextually Ambiguous Names. 91
6.5.3 Meaning of Package Names.ot 93
6.5.3.1 Simple Package Names 93
6.5.3.2 Qualified Package Names. 93
6.54 Meaningof TypeNames i, 93
6.54.1 SimpleTypeNamesccvvviinnn. 93
6.5.4.2 Qualified Type Names 94
6.5.5 Meaning of Expression Namescc..... 95
6.5.5.1 Simple ExpressionNames 95
6.5.5.2 Qualified Expression Names 96
6.5.6 Meaningof MethodNames 98
6.5.6.1 Simple Method Names........................ 98
6.5.6.2 Qualified MethodNames 98
6.6 Qualified Names and Access Control. 99
6.6.1 Determining Accessibility o L 99
6.6.2 Details oprotected ACCESSo vttt 100
6.6.3 An Example of AccessControl 100
6.6.4 Example: Access tublic and Nonpublic Classes. 101
6.6.5 Example: Default-Access Fields, Methods, and Constructors. . 102
6.6.6 Examplepublic Fields, Methods, and Constructors. 103
6.6.7 Exampleprotected Fields, Methods, and Constructors. 104
6.6.8 Exampleprivate Fields, Methods, and Constructors. 105
6.7 FullyQualified Names i e 105
6.8 Naming Conventionsii e 106
6.8.1 Package Names 107
6.8.2 Class and Interface Type Names 108
6.8.3 MethodNames. 108
6.84 FieldNames. 109
6.85 ConstantNames............... i 109
6.8.6 Local Variable and Parameter Names 110
Packages. 113
7.1 Package Members. 114
7.2 Host SupportforPackages 115
7.2.1 Storing PackagesinaFile System....................... 115
7.2.2 Storing PackagesinaDatabase 117
7.3 CompilationUnits e 117
7.4 Package Declarations 118
741 NamedPackages 118
7.4.2 Unnamed Packages i, 119
7.4.3 Scope and Hiding of a Package Name. 120
7.4.4 Accessto MembersofaPackage........................ 120
7.5 Import Declarations i e 120
7.5.1 Single-Type-lImport Declaration 121

7.5.2 Type-lImport-on-Demand Declaration. 122

7.5.3 Automatic Imports. 122
754 AStrangeExample....... 123
7.6 TypeDeclarations i 124
7.7 Unigue Package Names. 125
Classes. . .o 127
8.1 Class Declaration. e 128
8.1.1 ScopeofacClassTypeName............. oo, 130
8.1.2 ClassModifiers i 130
8.1.21 abstract Classes., 131
8122 final ClasSesS.couiiiiiiiiiiiiinn. 133
8.1.3 Superclassesand Subclasses. 133
8.1.4 Superinterfaces 135
8.1.5 Class Body and Member Declarations 138
8.2 ClassMembers. 138
8.2.1 Examplesofinheritance 139
8.2.1.1 Example: Inheritance with Default Access 140
8.2.1.2 Inheritance witlhublic andprotected......... 141
8.2.1.3 Inheritance withbrivate 141
8.2.1.4 Accessing Members of Inaccessible Classes. 142
8.3 FieldDeclarations 143
8.3.1 FieldModifiers 144
8.3.1.1 static Fields......... 145
83.1.2 final Fields............., 146
8.3.1.3 transient Fields........................... 147
8.3.1.4 wvolatile Fields.......... 147
8.3.2 Initializationof Fields 149
8.3.2.1 Initializers for Class Variables. 149
8.3.2.2 Initializers for Instance Variables 150
8.3.3 Examples of Field Declarations 151
8.3.3.1 Example: Hiding of Class Variables 151
8.3.3.2 Example: Hiding of Instance Variables. 152
8.3.3.3 Example: Multiply Inherited Fields. 153
8.3.3.4 Example: Re-inheritance of Fields 154
8.4 Method Declarations i e 155
8.4.1 Formal Parameters. 156
8.4.2 Method Signature 157
8.4.3 Method Modifiers 157
8.4.3.1 abstract Methods.......................... 158
8.4.3.2 static Methods............ 160
8433 final Methods............................. 160
8.4.3.4 native Methods. 161
8.4.3.5 synchronized Methods. 161
844 Method Throws. e 163
8.45 MethodBody............c i 164
8.4.6 Inheritance, Overriding, and Hiding 165

8.4.6.1 Overriding (By Instance Methods) 165

9

8.4.6.2 Hiding (By Class Methods) 165

8.4.6.3 Requirements in Overriding and Hiding 166
8.4.6.4 Inheriting Methods with the Same Signature. 166
8.47 Overloadingc i 167
8.4.8 Examples of Method Declarations. 168
8.4.8.1 Example:Overriding 168
8.4.8.2 Example: Overloading, Overriding, and Hiding ... 168
8.4.8.3 Example: Incorrect Overriding. 169
8.4.8.4 Example: Overriding versus Hiding. 170
8.4.8.5 Example: Invocation of Hidden Class Methods. ... 171
8.4.8.6 Large Example of Overriding. 172
8.4.8.7 Example: Incorrect Overriding because of Throws . 174
8.5 Static Initializers. 175
8.6 Constructor Declarations 176
8.6.1 Formal Parameters.t 177
8.6.2 Constructor Signature 177
8.6.3 Constructor Modifiers i 177
8.6.4 Constructor ThrowSt e 178
8.6.5 ConstructorBody. 178
8.6.6 ConstructorOverloading, 180
8.6.7 Default Constructor 180
8.6.8 Preventing InstantiationofaClass. 180
Interfaces 183
9.1 Interface Declarations. 184
9.1.1 Scope of an Interface Type Name 184
9.1.2 Interface Modifiers. 184
9.1.2.1 abstract Interfaces 184
9.1.3 Superinterfaces. e 185
9.1.4 Interface Body and Member Declarations. 185
9.1.5 Access to Interface Member Names 186
9.2 Interface Members 186
9.3 Field (Constant) Declarations. i, 186
9.3.1 Initialization of Fields in Interfaces 187
9.3.2 Examples of Field Declarations. 188
9.3.2.1 Ambiguous Inherited Fields. 188
9.3.2.2 Multiply Inherited Fields 188
9.4 Abstract Method Declarations 189
9.4.1 Inheritanceand Overridingcoiiiio. ... 189
9.42 Overloadingci i 190
9.4.3 Examples of Abstract Method Declarations 190
9.4.3.1 Example:Overridingo.. ... 190
9.4.3.2 Example: Overloading 191
AT Y S, . o 193
101 AIAY TYPES . oo 194
10.2 Array Variables. 194

Xii

11

12

10.3 Array Creation. 195
104 AImAY ACCESS . o ittt ittt e e 195
10.5 Arrays: ASimple Example 196
10.6 Arrays Initializers e 196
10.7 Array Members 197
10.8 Class ObJects fOor Arrays e 199
10.9 An Array of Charactersis NoSaring. 199
10.10 Array Store EXCeption. 199
EXCEpLioNS. 201
11.1 The Causesof EXceptions 202
11.2 Compile-Time Checking of Exceptions 203
11.2.1 WhyErrorsare NotChecked 203
11.2.2 Why Runtime Exceptions are Not Checked 203
11.3 Handlingof an Exception 204
11.3.1 Exceptionsare Precise.ttt 205
11.3.2 Handling Asynchronous Exceptions. 205
11.4 AnExample of Exceptions 206
11.5 The Exception Hierarchy. i 208
11.5.1 The Classéception andRuntimeException 208
11.5.1.1 Standard Runtime Exceptions 208
11.5.1.2 Standard Checked Exceptions. 210
1152 The ClasBrror . ..ot e e s 211
11.5.2.1 Loading and Linkage Errors 211
11.5.2.2 Virtual Machine Errors 212
EXECUtiON 215
12.1 Virtual Machine Start-Up 215
12.1.1 Loadthe Clasest . ..ot vt 216
12.1.2 LinkTest: Verify, Prepare, (Optionally) Resolve 216
12.1.3 InitializeTest: Execute Initializers 217
12.1.4 InvokeTest.main.ttt 218
12.2 Loading of Classes and Interfaces. 218
12.2.1 ThelLoading ProCess.couuiiiiiinn 219
12.2.2 Loading: Implications for Code Generation 219
12.3 Linking of Classesand Interfaces 220
12.3.1 \Verification of the Binary Representation. 220
12.3.2 Preparation of a Class or Interface Type 221
12.3.3 Resolution of Symbolic References 221
12.3.4 Linking: Implications for Code Generation 222
12.4 Initialization of Classes and Interfaces 223
12.4.1 When Initialization OCcurs 223
12.4.2 Detailed Initialization Procedure. 225
12.4.3 Initialization: Implications for Code Generation 227
12,5 Creationof New ClassInstances.c ... 228
12.6 Finalization of Class Instances 231
12.6.1 Implementing Finalization 232

13

14

12.6.2 Finalizer Invocations are NotOrdered. 234

12.7 Finalization of Classes i 235
12.8 Unloading of Classes and Interfaces 235
12.9 Virtual Machine EXit e 235
Binary Compatibility 237
13.1 TheFormofaldavaBinary......... 238
13.2 What Binary Compatibility Isand IsNot. 240
13.3 Evolutionof Packages i 242
13.4 Evolution of ClasSes.o vt 242
13.4.1 abstract ClassSest 242
13.4.2 final Classest 242
13.4.3 public Classes 243
13.4.4 Superclasses and Superinterfaces. 243
13.4.5 Class Body and Member Declarations. 245
13.4.6 Access to Members and Constructors 248
13.4.7 Field Declarations 249
13.4.8 final Fieldsand Constants. 250
13.49 static Fields 253
13.4.10 transient Fields 253
13.4.11 volatile Fieldso i e 253
13.4.12 Method and Constructor Declarations. 253
13.4.13 Method and Constructor Parameters 254
13.4.14 Method Result Type. i e 254
13.4.15 abstract Methods 254
13.4.16 final Methods. s 255
13.4.17 native Methods e 256
13.4.18 static Methods i 256
13.4.19 synchronized Methods. 256
13.4.20 Method and Constructor Throws 256
13.4.21 Method and ConstructorBody. 257
13.4.22 Method and Constructor Overloading 257
13.4.23 Method Overriding. 258
13.4.24 Static Initializers 259
13.5 EvolutionofInterfaces. 259
13.5.1 publiclinterfaces 259
13.5.2 Superinterfaces. 260
13.5.3 ThelInterface Members 260
13.5.4 FieldDeclarations 260
13.5.5 Abstract Method Declarations.......................... 261
Blocks and Statements 263
14.1 Normal and Abrupt Completion of Statements 264
14.2 BIOCKS. . .o e 265
14.3 Local Variable Declaration Statementsc....... 265
14.3.1 Local Variable Declaratorsand Types 266
14.3.2 Scope of Local Variable Declarations 267

Xiv

15

14.3.3 Hiding of Names by Local Variables 268

14.3.4 Execution of Local Variable Declarations. 269
144 StalemMEeNtSo 269
145 The Empty Statement e 271
14.6 Labeled Statements e 271
14.7 EXpression Statements.t 272
14.8 Theif Statement. e 273
14.8.1 Theif-then Statement 273
14.8.2 Theif-then-else Statement 273
149 Theswitch Statement. 274
14.10 Thewhile Statement. 277
14.10.1 Abrupt Completion 278
14.11 Thedo Statement. e 278
14.11.1 Abrupt Completion 279
14.11.2 Example ofo statement. 280
14.12 Thefor Statement. 280
14.12.1 Initialization offor statement., 281
14.12.2 lteration ofor statement............. 281
14.12.3 Abrupt Completion dfor statement 282
14.13 Thebreak Statement. e 283
14.14 Thecontinue Statement.t 285
14.15 Thereturn Statement. i 286
14.16 Thethrow Statement. i 287
14.17 Thesynchronized Statement. 289
14.18 Thetry statement e e 290
14.18.1 Execution ofry-catch......... 291
14.18.2 Execution ofry-catch-finally................cco.... 292
14.19 Unreachable Statements. i 295
EXPreSSIONS . . . oot 301
15.1 Evaluation, Denotation,and Result. 301
15.2 VariablesasValues 302
15.3 Type of an EXPressiont 302
15.4 Expressions and Run-Time Checks. 302
15.5 Normal and Abrupt Completion of Evaluation 304
15.6 Evaluation Order 305
15.6.1 Evaluate Left-Hand Operand First 305
15.6.2 Evaluate Operands before Operation 307
15.6.3 Evaluation Respects Parentheses and Precedence. 308
15.6.4 Argument Lists are Evaluated Left-to-Right. 309
15.6.5 Evaluation Order for Other Expressions. 310
15.7 Primary EXPressions 311
15.7.1 Literals. oo e 312
15.7.2 this. .. 313
15.7.3 Parenthesized EXpressions 313
15.8 Class Instance Creation EXpressions. 314

15.8.1 Run-time Evaluation of Class Instance Creation Expressions . .314
15.8.2 Example: Evaluation Order and Out-of-Memory Detection. . . .315

15.9

15.10

15.11

15.12

15.13

15.14

15.15

15.16

15.17

Array Creation EXPressionso 315
15.9.1 Run-time Evaluation of Array Creation Expressions. 316
15.9.2 Example: Array Creation Evaluation Order. 318
15.9.3 Example: Array Creation and Out-of-Memory Detection. 319
Field Access EXpressions. 319
15.10.1 Field AccessUsinga Primary 320
15.10.2 Accessing Superclass Members usipgr 322
Method Invocation EXPressionsot 323
15.11.1 Compile-Time Step 1: Determine Class or Interface to Search. 324
15.11.2 Compile-Time Step 2: Determine Method Signature 325
15.11.2.1 Find Methods that are Applicable and Accessible. . 325
15.11.2.2 Choose the Most Specific Method 327
15.11.2.3 Example: Overloading Ambiguity 327
15.11.2.4 Example: Return Type Not Considered 328
15.11.2.5 Example: Compile-Time Resolution 329
15.11.3 Compile-Time Step 3: Is the Chosen Method Appropriate? ... 332
15.11.4 Runtime Evaluation of Method Invocation 333
15.11.4.1 Compute Target Reference (If Necessary)........ 333
15.11.4.2 Evaluate Arguments 334
15.11.4.3 Check Accessibility of Type and Method. 334
15.11.4.4 Locate MethodtolInvoke 335
15.11.4.5 Create Frame, Synchronize, Transfer Control 336
15.11.4.6 Implementation Note: Combining Frames. 337
15.11.4.7 Example: Target Reference and Static Methods. . .. 337
15.11.4.8 Example: EvaluationOrder 338
15.11.4.9 Example: Overriding, 338
15.11.4.10 Example: Method Invocation usinger. 340
Array ACCESS EXPressionSo vt e 341
15.12.1 Runtime Evaluation of Array Access. 341
15.12.2 Examples: Array Access EvaluationOrder 342
Postfix EXPressions. 344
15.13.1 NaAMES. . o oo 344
15.13.2 Postfix IncrementOperatar. 345
15.13.3 Postfix Decrement Operator.covivvennnn. 345
Unary Operatorsot 346
15.14.1 Prefix Increment Operater., 347
15.14.2 Prefix DecrementOperator., 348
15.14.3 Unary Plus Operater.ttt 348
15.14.4 Unary Minus Operater.ouviiiiinnennnnnn.. 349
15.14.5 Bitwise ComplementOperator. 349
15.14.6 Logical Complement Operator. 349
CaSt EXPreSSIONS.ttt e e 350
Multiplicative Operators.t 351
15.16.1 Multiplication Operator. 351
15.16.2 Division Operatofttt 352
15.16.3 Remainder Operamr.covvii it 353
Additive Operatorst 355
15.17.1 String Concatenation Operatar. 355

XV

XVi

16

15.17.1.1 String CONVersiont 355

15.17.1.2 Optimization of String Concatenation. 356
15.17.1.3 Examples of String Concatenation 356
15.17.2 Additive Operators-@nd-) for Numeric Types 358
15.18 Shift Operators.o 359
15.19 Relational Operatorst 360
15.19.1 Numerical Comparison Operaters=, >, and>=. 361
15.19.2 Type Comparison Operaterstanceof 361
15.20 Equality Operators.o vttt e e 362
15.20.1 Numerical Equality Operaters and!=.................. 363
15.20.2 Boolean Equality Operaters and!=. 364
15.20.3 Reference Equality Operatessand!=.................. 364
15.21 Bitwise and Logical Operators, 365
15.21.1 Integer Bitwise Operatatisr, and| 365
15.21.2 Boolean Logical Operat&sr, and| 365
15.22 Conditional-And Operat@& oot 366
15.23 Conditional-Or Operatadn.t 366
15.24 Conditional Operat@r :t 367
15.25 Assignment Operatorso e 369
15.25.1 Simple Assignment Operatar.cov.... 369
15.25.2 Compound Assignment Operatorsc..vvuun. 374
15,26 EXPreSSION . vttt et 381
15.27 Constant EXPressiont 381
Definite Assignment. 383
16.1 Definite Assignment and EXpressions. 386
16.1.1 Boolean Constant EXpressionsccooo.... 386
16.1.2 Boolean-valued Expressions., 386
16.1.3 TheBooleanOperat®&, 386
16.1.4 The Boolean Operatdl, 387
16.1.5 The Boolean Operator. i, 387
16.1.6 The Boolean Operar.coiiiiininen... 387
16.1.7 The Boolean Operatpr. 388
16.1.8 The Boolean Operator., 388
16.1.9 TheBooleanOperatescoiiiieennnnnn.. 389
16.1.10 The Boolean Operatbst 389
16.1.11 The Boolean Operatdr:cuiiiniinee.nn. 389
16.1.12 The Conditional Operator:. 390
16.1.13 Boolean Assignment EXpressions.c... ... 390
16.1.14 Other Assignment EXpressions.cvuunn. 391
16.1.15 Operators+ and--ttt e 392
16.1.16 Other EXpressionst 392
16.2 Definite Assignment and Statements. 393
16.2.1 Empty Statements 393
16.2.2 BIOCKS . ..ot 393
16.2.3 Local Variable Declaration Statements. 393
16.2.4 Labeled Statements. 394
16.2.5 Expression Statements. 394

16.2.6 +if Statements. e 394

16.2.7 switch Statements. i e 395
16.2.8 while Statements. i 395
16.2.9 do Statements. e 395
16.2.10 for Statements. 396
16.2.10.1 InitializationPart 396
16.2.10.2 Incrementation Part. 397
16.2.11 break, continue, return, andthrow Statements.......... 397
16.2.12 synchronized Statements 397
16.2.13 try Statements. 398
17 Threadsand LOCKS 399
17.1 Terminology and Frameworkt 401
17.2 EXecution Order ot e 403
17.3 Rulesabout Variables. 404
17.4 Nonatomic Treatment dbubleandlong....................... 405
175 Rulesabout LoCksc i 406
17.6 Rules about the Interaction of Locks and Variables. 407
17.7 Rules for Volatile Variables 407
17.8 Prescient Store ACtIONS.ottt e e 408
17.9 DISCUSSION. . ot ittt et e e e e 408
17.10 Example: Possible Swap. 409
17.11 Example: Out-of-Order Writes. i e 413
17.12 Threads.o 415
17.13 Locks and Synchronization 415
17.14 Wait Sets and Notification 416
18 Documentation COmMmMENtS. 419
18.1 The Text of a Documentation Commentvu.... 419
18.2 HTML in a Documentation Comment.c ..., 420
18.3 Summary Sentence and General Description. 420
18.4 Tagged Paragraphs 420
1841 The@see Tagot vttt e e e e 421
18.4.2 ThelauthorTag.............. .. 421
18.4.3 Thedversion Tag., 422
18.4.4 Thea@param Tag.o vt e 422
1845 The@returnTag.ot 422
18.4.6 Theaexception Tag.c.vviiii . 422
185 Example 423
19 LALR(L) Grammaroiii i e e 433
19.1 Grammatical Difficulties0 433
19.1.1 Problem #1: Names Too Specific. 433
19.1.2 Problem #2: Modifiers Too Specific 435
19.1.3 Problem #3: Field Declaration versus Method Declaration. . .. 437
19.1.4 Problem #4: Array Type versus Array ACCESS. 438

XVviii

19.1.5 Problem #5: Cast versus Parenthesized Expression 438

19.2 Productions from 82.3: The Syntactic Grammar. 440
19.3 Productions from 83: Lexical Structure., 440
19.4 Productions from 84: Types, Values, and Variables. 440
19.5 Productions from 86: Names. i 441
19.6 Productions from 87: Packages. i 442
19.7 Productions Used Only in the LALR(1) Grammar 442
19.8 Productions from 88: Classesc.cciiiiiiii.. 443
19.8.1 Productions from 88.1: Class Declaration. 443
19.8.2 Productions from 88.3: Field Declarations 443
19.8.3 Productions from §8.4: Method Declarations. 444
19.8.4 Productions from 88.5: Static Initializers 444
19.8.5 Productions from 88.6: Constructor Declarations. 445
19.9 Productions from 89: Interfaces. 445
19.9.1 Productions from §9.1: Interface Declarations 445
19.10 Productions from 810: Arraysottt e 446
19.11 Productions from §14: Blocks and Statements 446
19.12 Productions from 815: EXPressions.o 450
20 The Packagejava.langouiiiiniunennn .. 455
20.1 The Clasgava.lang.Object........... ... 458
20.2 The Interfacgava.lang.Cloneable nnnn. 465
20.3 TheClasgava.1ang.Class . .o v it ittt e 466
20.4 The Clasgava.lang.Boolean., 469
20.5 The Clasgava.lang.Character..........c.uiiiinnnnnnnnnn... 471
20.6 The Clasgava.lang.Number 487
20.7 The Clasgava.lang.Integerouiiiee i, 488
20.8 The Clasgava.lang.Longttt 495
20.9 TheClasgava.lang.Floatovviiiinn i 503
20.10 The Clasgava.lang.Double. 510
20.11 TheClasgava.lang.Math......... i 517
20.12 The Clasgava.lang.String., 531
20.13 The Clasgava.lang.StringBuffer........................... 548
20.14 The Clasgava.lang.Classloader.c.viiiiinnnnnnn... 558
20.15 The Clasgava.lang.ProCesso ii ittt 561
20.16 The Clasgava.lang.Runtime., 563
20.17 The Clasgava.lang.SecurityManager................c.c.uuuun. 569
20.18 The Clasgava.lang.Systemttt 579
20.19 The Interfacgava.lang.Runnable 586
20.20 The Clasgava.lang.Threadttt 587
20.21 The Clasgava.lang.ThreadGroupoviiiiiinnnnnnn... 602
20.22 The Clasgava.lang.Throwable andits Subclasses 611

20.23 The Class
java.lang.ExceptionInInitializerError614

21 The Packagejava.utilciiiuiiun.... 615
21.1 The Interfacgava.util.Enumerationoovvun. 617

22

21.2
21.3
21.4
215
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14

The Packagejava. i

22.1

22.2

22.3

22.4

22.5

22.6

22.7

22.8

22.9

22.10
22.11
22.12
22.13
22.14
22.15
22.16
22.17
22.18
22.19
22.20
22.21
22.22
22.23
22.24
22.25
22.26
22.27
22.28
22.29
22.30
22.31

The Clasgava.
The Clasgava.
The Classava.
The Clasgava.
The Classava.
The Classava.
The Interfacgava.util.Observer
The Clasgava.
The Clas$ava.
The Classava.
The Clasgava.
The Clasgava.
The Clasgava.

The Interfacgava.
The Interfacgava.

The Classava.
The Classava.
The Clasgava.
The Clasgava.
The Clasgava.
The Classava.
The Classava.
The Clasgava.
The Clasgava.
The Clasgava.
The Classava.
The Classava.
The Clasgava.
The Clasgava.
The Clasgava.
The Clasgava.
The Classava.
The Classava.
The Clasgava.
The Clasgava.
The Clasgava.
The Clasgava.

The Interfacgava.

The Classava.
The Clasgava.
The Clasgava.
The Clasgava.
The Clasgava.
The Clas$ava.

UtiT.BitSeto 618
UET T DAt ottt e 622
util.Dictionaryuiiniiinnnn.. 633
util.Hashtable oo, 635
util.Properties 639
util.Observable 643
............................ 645
util.Randomt 646
util.StringTokenizer 651
UtTiT.VeCtor 654
util.Stack. 661
util.EmptyStackException 663
util.NoSuchETementException................ 664
0. 665
io.Datalnput.o 667
io.Datalutput. i 674
io.InputStream 680
io.FileInputStream 684
io.PipedInputStream 687
i0.ByteArrayInputStream 689
i0.StringBufferInputStream................. 692
io.SequencelnputStreamuvun... 694
io.FilterInputStreamco.... 696
io.BufferedInputStream 699
io.DatalnputStreamciiiiin.. 703
io.LineNumberInputStream 707
io0.PushbackInputStream 710
io.StreamTokenizer, 712
i0.0utputStream 720
io.FileQutputStream 722
i0.PipedOutputStream 725
i0.ByteArrayOQutputStream 727
io.FilterOutputStream 730
io.BufferedOutputStream 732
io.DataOutputStream, 734
i0.PrintStream 738
io.RandomAccessFile i, 743
T0.FiTe. 752
io.FilenameFilter............. 759
i0.FileDescriptor 760
10.T0EXCEPLION ..ottt 761
10.EOFEXCeption vt 762
io.FileNotFoundException 763
io.InterruptedIOException 764
io.UTFDataFormatException 765

XiX

XX

CreditsS

Colophon

Series Foreword

T HE Java Series books provide definitive reference documentation for Java pro-
grammers and end users. They are written by members of the Java team and pub-
lished under the auspices of JavaSoft, a Sun Microsystems business. The World-
Wide-Web allows Java documentation to be made available over the Internet,
either by downloading or as hypertext. Nevertheless, the world-wide interest in
Java technology led us to write and publish these books to supplement all of the
documentation at our Web site

To learn the latest about the Java Platform and Environment or download the
latest Java release, visit our World Wide Web sitetap: //java.sun.com. For
updated information about the Java Series, including sample code, errata, and pre-
views of forthcoming books, visitttp://java.sun.com/Series.

We would like to thank the Corporate and Professional Publishing Group at
Addison-Wesley for their partnership in putting together the Series. Our editor
Mike Hendrickson and his team have done a superb job of navigating us through
the world of publishing. Within Sun Microsystems, the support of James Gosling,
Jon Kannegaard, and Bill Joy ensured that this series would have the resources it
needed to be successful. In addition to the tremendous effort by individual
authors, many members of the JavaSoft team have contributed behind the scenes
to bring the highest level of quality and engineering to the books in the Series. A
personal note of thanks to my children Christopher and James for putting a posi-
tive spin on the many trips to my office during the development of the Series.

Lisa Friendly
Series Editor

XXi

Preface

JAVA was originally called Oak, and designed for use in embedded consumer-
electronic applications by James Gosling. After several years of experience with
the language, and significant contributions by Ed Frank, Patrick Naughton,
Jonathan Payne, and Chris Warth it was retargeted to the Internet, renamed Java,
and substantially revised to be the language specified here. The final form of the
language was defined by James Gosling, Bill Joy, Guy Steele, Richard Tuck,
Frank Yellin, and Arthur van Hoff, with help from Graham Hamilton, Tim Lind-
holm and many other friends and colleagues.

Java is a general-purpose concurrent class-based object-oriented program-
ming language, specifically designed to have as few implementation dependencies
as possible. Java allows application developers to write a program once and then
be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantics of
the Java language and the core packages. 1ang, java.io, andjava.util of
its Application Programming Interface. We intend that the behavior of every lan-
guage construct is specified here, so that all implementations of Java will accept
the same programs. Except for timing dependencies or other non-determinisms
and given sufficient time and sufficient memory space, a Java program should
compute the same result on all machines and in all implementations.

We believe that Java is a mature language, ready for widespread use. Never-
theless, we expect some evolution of the language in the years to come. We intend
to manage this evolution in a way that is completely compatible with existing
applications. To do this, we intend to make relatively few new versions of the lan-
guage, and to distinguish each new version with a different filename extension.
Java compilers and systems will be able to support the several versions simultan-
nously, with complete compatibility.

Much research and experimentation with Java is already underway. We
encourage this work, and will continue to cooperate with external groups to
explore improvements to Java. For example, we have already received several
interesting proposals for parameterized types. In technically difficult areas, near
the state of the art, this kind of research collaboration is essential.

XXxiii

XXiV

PREFACE

We acknowledge and thank the many people who have contributed to this
book through their excellent feedback, assistance and encouragement:

Particularly thorough, careful, and thoughtful reviews of drafts were provided
by Tom Cargill, Peter Deutsch, Paul Hilfinger, Masayuki Ida, David Moon, Steven
Muchnick, Charles L. Perkins, Chris Van Wyk, Steve Vinoski, Philip Wadler,
Daniel Weinreb, and Kenneth Zadeck. We are very grateful for their extraordinary
volunteer efforts.

We are also grateful for reviews, questions, comments, and suggestions from
Stephen Adams, Bowen Alpern, Glenn Ammons, Leonid Arbuzov, Kim Bruce,
Edwin Chan, David Chase, Pavel Curtis, Drew Dean, William Dietz, David Dill,
Patrick Dussud, Ed Felten, John Giannandrea, John Gilmore, Charles Gust,
Warren Harris, Lee Hasiuk, Mike Hendrickson, Mark Hill, Urs Hoelzle, Roger
Hoover, Susan Flynn Hummel, Christopher Jang, Mick Jordan, Mukesh Kacker,
Peter Kessler, James Larus, Derek Lieber, Bill McKeeman, Steve Naroff,
Evi Nemeth, Robert O’Callahan, Dave Papay, Craig Partridge, Scott Pfeffer,
Eric Raymond, Jim Roskind, Jim Russell, William Scherlis, Edith Schonberg,
Anthony Scian, Matthew Self, Janice Shepherd, Kathy Stark, Barbara Steele, Rob
Strom, William Waite, Greg Weeks, and Bob Wilson. (This list was generated
semi-automatically from our E-mail records. We apologize if we have omitted
anyone.)

The feedback from all these reviewers was invaluable to us in improving the
definition of the Java language as well as the form of the presentation in this book.
We thank them for their diligence. Any remaining errors in this book—we hope
they are few—are our responsibility and not theirs.

We thank Francesca Freedman and Doug Kramer for assistance with matters
of typography and layout. We thank Dan Mills of Adobe Systems Incorporated for
assistance in exploring possible choices of typefaces.

Many of our colleagues at Sun Microsystems have helped us in one way or
another. Lisa Friendly, our series editor, managed our relationship with Addison-
Wesley. Susan Stambaugh managed the distribution of many hundreds of copies
of drafts to reviewers. We received valuable assistance and technical advice from
Ben Adida, Ole Agesen, Ken Arnold, Rick Cattell, Asmus Freytag, Norm Hardy,
Steve Heller, David Hough, Doug Kramer, Nancy Lee, Marianne Mueller, Akira
Tanaka, Greg Tarsy, David Ungar, Jim Waldo, Ann Wollrath, Geoff Wyant, and
Derek White. We thank Alan Baratz, David Bowen, Mike Clary, John Doerr, Jon
Kannegaard, Eric Schmidt, Bob Sproull, Bert Sutherland, and Scott McNealy for
leadership and encouragement.

PREFACE

The on-line Bartleby Library of Columbia University, at URL:
http://www.cc.columbia.edu/acis/bartleby/

was invaluable to us during the process of researching and verifying many of the
guotations that are scattered throughout this book. Here is one example:

They lard their lean books with the fat of others’ works.
—Robert Burton (1576—-1640)

We are grateful to those who have toiled on Project Bartleby, for saving us a great
deal of effort and reawakening our appreciation for the works of Walt Whitman.

We are thankful for the tools and services we had at our disposal in writing
this book: telephones, overnight delivery, desktop workstations, laser printers,
photocopiers, text formatting and page layout software, fonts, electronic mail, the
World Wide Web, and, of course, the Internet. We live in three different states,
scattered across a continent, but collaboration with each other and with our
reviewers has seemed almost effortless. Kudos to the thousands of people who
have worked over the years to make these excellent tools and services work
quickly and reliably.

Mike Hendrickson, Katie Duffy, Simone Payment, and Rosa Aimée Gonzalez
of Addison-Wesley were very helpful, encouraging, and patient during the long
process of bringing this book to print. We also thank the copy editors.

Rosemary Simpson worked hard, on a very tight schedule, to create the index.
We got into the act at the last minute, however; blame us and not her for any jokes
you may find hidden therein.

Finally, we are grateful to our families and friends for their love and support
during this last, crazy, year.

In their bookThe C Programming Languag®rian Kernighan and Dennis
Ritchie said that they felt that the C language “wears well as one’s experience with
it grows.” If you like C, we think you will like Java. We hope that Java, too, wears
well for you.

James Gosling
Cupertino, California

Bill Joy
Aspen, Colorado

Guy Steele
Chelmsford, Massachusetts

July, 1996

XXV

CHAPTER 1

Introduction

If I have seen further it is by standing upon the shoulders of Giants.
—Sir Isaac Newton

JAVA is a general-purpose, concurrent, class-based, object-oriented language. It
is designed to be simple enough that many programmers can achieve fluency in
the language. Java is related to C and C++ but is organized rather differently, with
a number of aspects of C and C++ omitted and a few ideas from other languages
included. Java is intended to be a production language, not a research language,
and so, as C. A. R. Hoare suggested in his classic paper on language design, the
design of Java has avoided including new and untested features.

Java is strongly typed. This specification clearly distinguishes between the
compile-time errorghat can and must be detected at compile time, and those that
occur at run time. Compile time normally consists of translating Java programs
into a machine-independent byte-code representation. Run-time activities include
loading and linking of the classes needed to execute a program, optional machine
code generation and dynamic optimization of the program, and actual program
execution.

Java is a relatively high-level language, in that details of the machine repre-
sentation are not available through the language. It includes automatic storage
management, typically using a garbage collector, to avoid the safety problems of
explicit deallocation (as in C'éree or C++'sdelete). High-performance gar-
bage-collected implementations of Java can have bounded pauses to support sys-
tems programming and real-time applications. Java does not include any unsafe
constructs, such as array accesses without index checking, since such unsafe con-
structs would cause a program to behave in an unspecified way.

Java is normally compiled to a bytecoded instruction set and binary format
defined inThe Java Virtual Machine Specificati¢hddison-Wesley, 1996). Most
implementations of Java for general-purpose programming will support the addi-
tional packages defined in the series of books under the generdhtti@ava
Application Programming Interfac@ddison-Wesley).

Introduction INTRODUCTION

This Java Language Specification is organized as follows:

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for Java.

Chapter 3 describes the lexical structure of Java, which is based on C and
C++. Java is written in the Unicode character set. Java supports the writing of
Unicode characters on systems that support only ASCII.

Chapter 4 describes Java’s types, values, and variables. Java’s types are the
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two’s-complement integers, single- and
double-precision IEEE 754 standard floating-point numbesspaean type, and
a Unicode charactethar type. Values of the primitive types do not share state.

Java’'s reference types are the class types, the interface types, and the array
types. The reference types are implemented by dynamically created objects that
are either instances of classes or arrays. Many references to each object can exist.
All objects (including arrays) support the methods of the standardatiasst,
which is the (single) root of the class hierarchy. A predefiw@dng class sup-
ports Unicode character strings. Standard classes exist for wrapping primitive val-
ues inside of objects.

Variables are typed storage locations. A variable of a primitive type holds a
value of that exact primitive type. A variable of a class type can hold a null refer-
ence or a reference to an object whose type is that class type or any subclass of
that class type. A variable of an interface type can hold a null reference or a refer-
ence to an instance of any class that implements the interface. A variable of an
array type can hold a null reference or a reference to an array. A variable of class
typeObject can hold a null reference or a reference to any object, whether class
instance or array.

Chapter 5 describes Java’s conversions and numeric promotions. Conversions
change the compile-time type and, sometimes, the value of an expression.
Numeric promotions are used to convert the operands of a numeric operator to a
common type where an operation can be performed. There are no loopholes in the
language; casts on reference types are checked at run time to ensure type safety.

Chapter 6 describes declarations and names, and how to determine what
names mean (denote). Java does not require types or their members to be declared
before they are used. Declaration order is significant only for local variables and
the order of initializers of fields in a class or interface.

Java provides control over the scope of names and supports limitations on
external access to members of packages, classes, and interfaces. This helps in
writing large programs by distinguishing the implementation of a type from its
users and those who extend it. Standard naming conventions that make for more
readable programs are described here.

INTRODUCTION Introduction 1

Chapter 7 describes the structure of a Java program, which is organized into
packages similar to the modules of Modula. The members of a package are com-
pilation units and subpackages. Compilation units contain type declarations and
can import types from other packages to give them short names. Packages have
names in a hierarchical namespace, and the Internet domain name system can be
used to form unique package names.

Chapter 8 describes Java'’s classes. The members of classes are fields (vari-
ables) and methods. Class variables exist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current abjestduring their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementa-
tion of each class is derived from that of a single superclass, and ultimately from
the clas®bject. Variables of a class type can reference an instance of that class
or of any subclass of that class, allowing new types to be used with existing meth-
ods, polymorphically.

Classes support concurrent programming wWi§nchronized methods.
Methods declare the checked exceptions that can arise from their execution, which
allows compile-time checking to ensure that exceptional conditions are handled.
Objects can declare fasinalize method that will be invoked before the objects
are discarded by the garbage collector, allowing the objects to clean up their state.

For simplicity, Java has neither declaration “headers” separate from the imple-
mentation of a class nor separate type and class hierarchies.

Although Java does not include parameterized classes, the semantics of arrays
are those of a parameterized class with some syntactic sugar. Like the program-
ming language Beta, Java uses a run-time type check when storing references in
arrays to ensure complete type safety.

Chapter 9 describes Java’s interface types, which declare a set of abstract
methods and constants. Classes that are otherwise unrelated can implement the
same interface type. A variable of an interface type can contain a reference to any
object that implements the interface. Multiple interface inheritance is supported.

Chapter 10 describes Java arrays. Array accesses include bounds checking.
Arrays are dynamically created objects and may be assigned to variables of type
Object. Java supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes Java’'s exceptions, which are nonresuming and fully
integrated with the language semantics and concurrency mechanisms. There are
three kinds of exceptions: checked exceptions, run-time exceptions, and errors.
The compiler ensures that checked exceptions are properly handled by requiring
that a method or constructor can result in a checked exception only if it declares it.
This provides compile-time checking that exception handlers exist, and aids

3

Introduction INTRODUCTION

programming in the large. Most user-defined exceptions should be checked excep-
tions. Invalid operations in the program detected by the Java Virtual Machine
result in run-time exceptions, such Bs$1T1PointerException. Errors result

from failures detected by the virtual machine, sucbhua®fMemoryError. Most

simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a Java program.
A Java program is normally stored as binary files representing compiled classes
and interfaces. These binary files can be loaded into a Java Virtual Machine,
linked to other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some
classes may be instantiated to create new objects of the class type. Objects that are
class instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the
object is reclaimed to give the object a last chance to clean up resources that
would not otherwise be released. When a class is no longer needed, it may be
unloaded; if a class finalizer is declared, it is given a chance to clean up first.
Objects and classes may be finalized on exit of the Java Virtual Machine.

Chapter 13 describes binary compatibility, specifying the impact of changes
to types on other types that use the changed types but have not been recompiled.
These considerations are of interest to developers of types that are to be widely
distributed, in a continuing series of versions, often through the Internet. Good
program development environments automatically recompile dependent code
whenever a type is changed, so most programmers need not be concerned about
these details.

Chapter 14 describes Java’'s blocks and statements, which are based on C and
C++. Java has ngoto, but includes labeledreak andcontinue statements.

Unlike C, Java requirdsoolean expressions in control-flow statements, and does
not convert types tboolean implicitly, in the hope of catching more errors at
compile time. Asynchronized statement provides basic object-level monitor
locking. A try statement can includeatch and finally clauses to protect
against non-local control transfers.

Chapter 15 describes Java’s expressions. Java fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable. Java
chooses which method or constructor by using the same basic algorithm used in
languages with richer dispatching, such as Lisp’s CLOS and Dylan, for the future.

Chapter 16 describes the precise way in which Java ensures that local vari-
ables are definitely set before use. While all other variables are automatically ini-

INTRODUCTION Example Programs 1.1

tialized to a default value, Java does not automatically initialize local variables in
order to avoid masking programming errors.

Chapter 17 describes the semantics of Java threads and locks, which are based
on the monitor-based concurrency originally introduced with the Mesa program-
ming language. Java specifies a memory model for shared-memory multiproces-
sors that supports high-performance implementations.

Chapter 18 describes the facilities for automatically generating documenta-
tion from special comments in Java source code.

Chapter 19 presents a LALR(1) syntactic grammar for Java, and describes the
differences between this grammar and the expository grammar used in the body of
the language specification that precedes it.

Chapters 20 through 22 are the reference manual for the core of the standard
Java Application Programming Interface. These packages must be included in all
general purpose Java systems.

Chapter 20 describes the packageva.lang. The types defined in
java.lang are automatically imported to be available without qualification in all
Java programs. They include the primordial ctasiect, which is a superclass of
all other classes; classes suchiaseger andFloat, which wrap the primitive
types inside objects; exceptions and errors defined by the language and the Java
Virtual Machine; Thread support; metalinguistic classes such @ass and
ClassLoader; and the clasSystem, which abstracts the host system.

Chapter 21 describes the packggea.util, which defines a few basic util-
ity classes, such as a hashtable class and a pseudo-random number generator.

Chapter 22 describes the packggea.io, which defines basic input/output
facilities, including random access files and streams of values of primitive types.

The book concludes with an index, credits for quotations used in the book,
and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed by a Java
system and are similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i]
System.out.println(Q);

+ args[il);

}
}

1.2

References INTRODUCTION

On a Sun workstation, this class, stored in theThlet. java, can be com-
piled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.2 References

Apple ComputerDylan™ Reference Manuahpple Computer Inc., Cupertino, California.
September 29, 1995. See atgap://www.cambridge.apple.com.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. MoonCommon Lisp Object System Specificatig8J13
Document 88-002R, June 1988; appears as Chapter 28 of Steel€oBumgon Lisp:

The Language2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770—864.

Ellis, Margaret A., and Bjarne Stroustruphe Annotated C++ Reference Manual
Addison-Wesley, Reading, Massachusetts, 1990, reprinted with corrections October
1992, ISBN 0-201-51459-1.

Harbison, SamueModula-3 Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. RHints on Programming Language Desid@tanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Associa-
tion for Computing Machinery, New York, October 1973.

IEEE Standard for Binary Floating-Point ArithmetiANSI/IEEE Std. 754-1985. Avail-
able from Global Engineering Documents, 15 Inverness Way East, Englewood, Colo-
rado 80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchiehe C Programming Languag2nd ed.
Prentice Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Mgller-Pedersen, and Kristen Nyga@aidct-Oriented
Programming in the Beta Programming Languageldison-Wesley, Reading, Mas-
sachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard SweEhe Mesa Programming
Language Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, BjarneThe C++ Progamming Languag@nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, TheThe Unicode Standard: Worldwide Character Encoding,
Version 1.0 Addison-Wesley, Reading, Massachusetts, Volume 1, 1991, ISBN 0-201-
56788-1, and Volume 2, 1992, ISBN 0-201-60845-6. (Version 2, forthcoming, 1996.)

CHAPTER2

Grammars

Grammar, which knows how to control even kings . . .
—Moliére, Les Femmes Savan{d$72), Act Il, scene vi

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a Java program.

2.1 Context-Free Grammars

A context-free grammaconsists of a number pfoductions Each production has
an abstract symbol calledr@nterminalas itsleft-hand sideand a sequence of
one or more nonterminal andrminal symbols as itsight-hand side For each
grammar, the terminal symbols are drawn from a spedafthbet

Starting from a sentence consisting of a single distinguished nonterminal,
called thegoal symbagl a given context-free grammar specifiedaaguage
namely, the infinite set of possible sequences of terminal symbols that can result
from repeatedly replacing any nonterminal in the sequence with a right-hand side
of a production for which the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammarfor Java is given in 83. This grammar has as its terminal sym-
bols the characters of the Unicode character set. It defines a set of productions,
starting from the goal symbdahput (83.5), that describe how sequences of Uni-
code characters (83.1) are translated into a sequence of input elements (83.5).
These input elements, with white space (83.6) and comments (83.7) dis-

carded, form the terminal symbols for the syntactic grammar for Java and are
called Javdokens(83.5). These tokens are the identifiers (83.8), keywords (§3.9),
literals (83.10), separators (83.11), and operators (83.11) of the Java language.

2.3

The Syntactic Grammar GRAMMARS

2.3 The Syntactic Grammar

The syntactic grammarfor Java is given in Chapters 4, 6-10, 14, and 15. This
grammar has Java tokens defined by the lexical grammar as its terminal symbols.
It defines a set of productions, starting from the goal syr@oohpilationUnit
(87.3), that describe how sequences of tokens can form syntactically correct Java
programs.

A LALR(2) version of the syntactic grammar is presented in Chapter 19. The
grammar in the body of this specification is very similar to the LALR(1) grammar
but more readable.

2.4 Grammar Notation

Terminal symbols are shown frixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shownitalic type. The definition of a nonterminal
is introduced by the name of the nonterminal being defined followed by a colon.
One or more alternative right-hand sides for the nonterminal then follow on suc-
ceeding lines. For example, the syntactic definition:

IfThenStatement:
if (Expression) Statement

states that the nonterminélrhenStatementpresents the tokeirf, followed by a
left parenthesis token, followed by Bmpressionfollowed by a right parenthesis
token, followed by &tatementAs another example, the syntactic definition:

ArgumentList:
Argument
ArgumentList, Argument

states that armArgumentListmay represent either a singkrgumentor an
ArgumentListfollowed by a comma, followed by argument This definition of
ArgumentLists recursive that is to say, it is defined in terms of itself. The result
is that anArgumentListmay contain any positive humber of arguments. Such
recursive definitions of nonterminals are common.

The subscripted suffixopt”, which may appear after a terminal or nontermi-
nal, indicates aoptional symbolThe alternative containing the optional symbol
actually specifies two right-hand sides, one that omits the optional element and
one that includes it. This means that:

GRAMMARS Grammar Notation 2.4

BreakStatement:
break ldentifiegy; ;

is a convenient abbreviation for:

BreakStatement:
break ;
break ldentifier ;

and that:

ForStatement
for (Forlnitey ; Expressiogy ; ForUpdatgy) Statement

is a convenient abbreviation for:

ForStatement
for (; Expressiogy ; ForUpdatey) Statement
for (Forlnit ; Expressiogy ; ForUpdatey) Statement

which in turn is an abbreviation for:

ForStatement
for (; ; ForUpdatgy) Statement
for (; Expression; ForUpdatg,) Statement
for (Forlnit ; ; ForUpdatgy) Statement
for (Forlnit ; Expression; ForUpdatey) Statement

which in turn is an abbreviation for:

ForStatement
for (; ;) Statement
for (; ; ForUpdate) Statement
for (; Expression;) Statement
for (; Expression; ForUpdate) Statement
for (Forlnit ; ;) Statement
for (Forlnit ; ; ForUpdate) Statement
(

for (Forlnit ; Expression;) Statement
for (Forlnit ; Expression; ForUpdate) Statement

so the nontermindiorStatemenactually has eight alternative right-hand sides.
A very long right-hand side may be continued on a second line by substan-
tially indenting this second line, as in:

ConstructorDeclaration
ConstructorModifiers, ConstructorDeclarator
Throws,,y ConstructorBody

2.4

10

Grammar Notation GRAMMARS

which defines one right-hand side for the nonterm@ahstructorDeclaration
(This right-hand side is an abbreviation for four alternative right-hand sides,
because of the two occurrences gf™)

When the words “one of” follow the colon in a grammar definition, they sig-
nify that each of the terminal symbols on the following line or lines is an alterna-
tive definition. For example, the lexical grammar for Java contains the production:

ZeroToThree: one of
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0
1
2
3

When an alternative in a lexical production appears to be a token, it represents
the sequence of characters that would make up such a token. Thus, the definition:

BooleanLiteral: one of
true false

in a lexical grammar production is shorthand for:

BooleanLiteral:
true
false

The right-hand side of a lexical production may specify that certain expan-
sions are not permitted by using the phrase “but not” and then indicating the
expansions to be excluded, as in the productionsnfartCharacter(83.4) and
Identifier (83.8):

InputCharacter:
UnicodelnputCharactebut notCR or LF

Identifier:
IdentifierNamebut not aKeywordor BooleanLiteralor NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phrase in
roman type in cases where it would be impractical to list all the alternatives:

RawlInputCharacter
any Unicode character

CHAPTER3

Lexical Structure

Lexicographer: A writer of dictionaries, a harmless drudge.
—Samuel Johnsomictionary (1755)

T HIS chapter specifies the lexical structure of Java.

Java programs are written in Unicode (83.1), but lexical translations are pro-
vided (83.2) so that Unicode escapes (83.3) can be used to include any Unicode
character using only ASCII characters. Line terminators are defined (83.4) to sup-
port the different conventions of existing host systems while maintaining consis-
tent line numbers.

The Unicode characters resulting from the lexical translations are reduced to a
sequence of input elements (83.5), which are white space (83.6), comments
(83.7), and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals
(83.10), separators (83.11), and operators (83.12) of the Java syntactic grammar.

3.1 Unicode

Java programs are written using the Unicode character set, version 2.0. Informa-
tion about this encoding may be found at:

http://www.unicode.org and ftp://unicode.org

Versions of Java prior to 1.1 used Unicode version 1.1.5T(sedJnicode Stan-
dard: Worldwide Character Encodin@l.2) and updates). See §20.5 for a discus-
sion of the differences between Unicode version 1.1.5 and Unicode version 2.0.

Except for comments (83.7), identifiers, and the contents of character and
string literals (83.10.4, 83.10.5), all input elements (83.5) in a Java program are
formed only from ASCII characters (or Unicode escapes (83.3) which result in
ASCII characters). ASCII (ANSI X3.4) is the American Standard Code for Infor-
mation Interchange. The first 128 characters of the Unicode character encoding
are the ASCII characters.

11

3.2

12

Lexical Translations LEXICAL STRUCTURE

3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of Java tokens, using
the following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (83.3) in the raw stream of Unicode charac-
ters to the corresponding Unicode character. A Unicode escape of the form
\uxxxx, wherexxxx is a hexadecimal value, represents the Unicode character
whose encoding isxxx. This translation step allows any Java program to be
expressed using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream of
input characters and line terminators (83.4).

3. A translation of the stream of input characters and line terminators resulting
from step 2 into a sequence of Java input elements (83.5) which, after white
space (83.6) and comments (83.7) are discarded, comprise the tokens (83.5)
that are the terminal symbols of the syntactic grammar (82.3) for Java.

Java always uses the longest possible translation at each step, even if the result
does not ultimately make a correct Java program, while another lexical translation
would. Thus the input characteas-b are tokenized (83.5) as --, b, which is
not part of any grammatically correct Java program, even though the tokenization
a, -, -, b could be part of a grammatically correct Java program.

3.3 Unicode Escapes

Java implementations first recognidaicode escapes their input, translating

the ASCII charactersu followed by four hexadecimal digits to the Unicode char-
acter with the indicated hexadecimal value, and passing all other characters
unchanged. This translation step results in a sequence of Unicode input charac-
ters:

UnicodelnputCharacter:
UnicodeEscape
RawlInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarkeru

LEXICAL STRUCTURE Line Terminators 3.4

RawlnputCharacter:
any Unicode character

HexDigit: one of
@ 1 2 3 456 7 8 9 abocdefABT CDTEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input char-
acter that is a backslaghinput processing must consider how many otherar-
acters contiguously precede it, separating it from a\nomaracter or the start of
the input stream. If this number is even, then\th® eligible to begin a Unicode
escape; if the number is odd, then this not eligible to begin a Unicode escape.
For example, the raw inpti\\u2297=\u2297" results in the eleven characters
"\\u2297=0"(\u2297 is the Unicode encoding of the charactét).

If an eligible\ is not followed byu, then it is treated asRawlnputCharacter
and remains part of the escaped Unicode stream. If an eligibliollowed byu,
or more than one, and the last is not followed by four hexadecimal digits, then
a compile-time error occurs.

The character produced by a Unicode escape does not participate in further
Unicode escapes. For example, the raw ihpa®d5cu@05a results in the six char-
acters\ u 0 0 5 a, becaus®05c is the Unicode value foy. It does not result in
the charactez, which is Unicode charactedsa, because thg that resulted from
the\u@o5c is not interpreted as the start of a further Unicode escape.

Java specifies a standard way of transforming a Unicode Java program into
ASCII that changes a Java program into a form that can be processed by ASCII-
based tools. The transformation involves converting any Unicode escapes in the
source text of the program to ASCII by adding an extrdor example \uxxxx
becomes uuxxxx—while simultaneously converting non-ASCII characters in the
source text to §uxxxx escape containing a singleThis transformed version is
equally acceptable to a Java compiler and represents the exact same program. The
exact Unicode source can later be restored from this ASCII form by converting
each escape sequence where multifdeare present to a sequence of Unicode
characters with one feweu, while simultaneously converting each escape
seguence with a singleto the corresponding single Unicode character.

Java systems should use thexxxx notation as an output format to display
Unicode characters when a suitable font is not available.

3.4 Line Terminators

Java implementations next divide the sequence of Unicode input characters into
lines by recognizindine terminators This definition of lines determines the line

13

35 Input Elements and Tokens LEXICAL STRUCTURE

numbers produced by a Java compiler or other Java system component. It also
specifies the termination of thi¢ form of a comment (83.7).

LineTerminator:
the ASCIILF character, also known as “newline”
the ASCIICR character, also known as “return”
the ASCIIcR character followed by the ASQIF character

InputCharacter:
UnicodelnputCharactebut notCR or LF

Lines are terminated by the ASCII characters or LF, or CR LF. The two
characters£r immediately followed byF are counted as one line terminator, not
two. The result is a sequence of line terminators and input characters, which are
the terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (83.3)

and then input line recognition (83.4) are reduced to a sequeimibélements

Those input elements that are not white space (83.6) or comments (83.7) are

tokens The tokens are the terminal symbols of the Java syntactic grammar (82.3).
This process is specified by the following productions:

Input:
InputElementg,; Sulypt

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

Token:
Identifier
Keyword
Literal
Separator
Operator

14

LEXICAL STRUCTURE Comments 3.7

Sub:
the ASCIIsuB character, also known as “control-Z”

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII charac-
ters- and= in the input can form the operator token(83.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the
ASCII suB character\u@ela, or control-Z) is ignored if it is the last character in
the escaped input stream.

Consider two tokeng andy in the resulting input stream. i precedey,
then we say that is to the left ofy and thaty is to the right ofx. For example, in
this simple piece of Java code:

class Empty {
3

we say that thg token is to the right of thg token, even though it appears, in this
two-dimensional representation on paper, downward and to the left ptdken.

This convention about the use of the words left and right allows us to speak, for
example, of the right-hand operand of a binary operator or of the left-hand side of
an assignment.

3.6 White Space

White spaces defined as the ASCII space, horizontal tab, and form feed charac-
ters, as well as line terminators (83.4).

WhiteSpace:
the ASClIspcharacter, also known as “space”
the ASCIIHT character, also known as “horizontal tab”
the ASCIIFF character, also known as “form feed”
LineTerminator

3.7 Comments

Java defines three kinds@dmments

/% text */ A traditional commentall the text from the ASCII
characterg* to the ASCII characters/ is ignored
(asin C and C++).

15

3.7 Comments LEXICAL STRUCTURE

// text A single-line commenall the text from the ASCII
characterg/ to the end of the line is ignored (as in
C++).

/** documentation*/ A documentation commerihe text enclosed by
the ASCII characterg** and*/ can be processed
by a separate tool to prepare automatically
generated documentation of the following class,
interface, constructor, or member (method or field)
declaration. See 818 for a full description of how
the suppliedlocumentations processed.

These comments are formally specified by the following productions:

Comment:
TraditionalComment
EndOfLineComment
DocumentationComment

TraditionalComment
/ * NotStar CommentTail

EndOfLineComment:
/ / CharactersinLingy; LineTerminator

DocumentationComment:
/ * * CommentTailStar

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:

/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacterbut not*
LineTerminator

NotStarNotSlash:
InputCharacterbut not* or /
LineTerminator

16

LEXICAL STRUCTURE Identifiers 3.8

CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These productions imply all of the following properties:
« Comments do not nest.
« /*and*/ have no special meaning in comments that begin xyith
» // has no special meaning in comments that begin Awitbr /.
As a result, the text:
/* this comment /* // /** ends here: */

is a single complete comment.

The lexical grammar implies that comments do not occur within character lit-
erals (83.10.4) or string literals (83.10.5).

Note that/**/ is considered to be a documentation comment, while:/
(with a space between the asterisks) is a traditional comment.

3.8 Identifiers

An identifieris an unlimited-length sequenceJaiva lettersandJava digits the

first of which must be a Java letter. An identifier cannot have the same spelling
(Unicode character sequence) as a keyword (83.9), Boolean literal (83.10.3), or
the null literal (83.10.7).

Identifier:
IdentifierCharsbut not aKeywordor BooleanLiteralor NullLiteral

IdentifierChars:
Javaletter
IdentifierChars JavaletterOrDigit

Javaletter:
any Unicode character that is a Java letter (see below)

Javal etterOrDigit:
any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows Java programmers to use identifiers in
their programs that are written in their native languages.

17

3.9

18

Keywords LEXICAL STRUCTURE

A Java letter is a character for which the metblogl-racter.isJavaletter
(820.5.17) returnsrue. A Java letter-or-digit is a character for which the method
Character.isJavalLetterOrDigit (§20.5.18) returnsrue.

The Java letters include uppercase and lowercase ASCII Latin l&Hers
(\u@o41-\u005a), anda—z (\u@061-\u007a), and, for historical reasons, the
ASCII underscore_(, or \u0o5sf) and dollar sign{, or\u024). The$ character
should be used only in mechanically generated Java code or, rarely, to access pre-
existing names on legacy systems.

The Java digits include the ASCII digés9 (\u0030—\u0039).

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit

Identifiers that have the same external appearance may yet be different. For
example, the identifiers consisting of the single lett@rsn CAPITAL LETTER A
(A, \u0@041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL LETTER ALPHA
(A, \u0391), andCYRILLIC SMALL LETTER A (a, \u0430) are all different.

Unicode composite characters are different from the decomposed characters.
For example, aATIN CAPITAL LETTER A ACUTE (A, \u@0c1) could be considered
to be the same asLATIN CAPITAL LETTER A (A, \u0041) immediately followed
by aNON-SPACING ACUTE(", \u@301) when sorting, but these are different in Java
identifiers. Seél'he Unicode Standard/olume 1, pages 412ff for details about
decomposition, and see pages 626—627 of that work for details about sorting.

Examples of identifiers are:

String i3 OpETN MAX_VALUE isLetterOrDigit

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved for
use akeywordsand cannot be used as identifiers (83.8):

Keyword: one of

abstract default if private throw
booTlean do implements protected throws
break doubTe import public transient
byte else instanceof return try

case extends int short void
catch final interface static volatile
char finally Tong super while
class float native switch

const for new synchronized

continue goto package this

LEXICAL STRUCTURE Integer Literals 3.10.1

The keywordsonst andgoto are reserved by Java, even though they are not
currently used in Java. This may allow a Java compiler to produce better error
messages if these C++ keywords incorrectly appear in Java programs.

While true and false might appear to be keywords, they are technically
Boolean literals (§3.10.3). Similarly, whitei11 might appear to be a keyword, it
is technically the null literal (83.10.7).

3.10 Literals

A literal is the source code representation of a value of a primitive type (84.2), the
String type (84.3.3, §20.12), or the null type (84.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

3.10.1 Integer Literals

See 84.2.1 for a general discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadecimal
(base 16), or octal (base 8):

IntegerLiteral:
DecimalintegerLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimallntegerLiteral:
DecimalNumeral IntegerTypeSuffix

HexIntegerLiteral:
HexNumeral IntegerTypeSuffix

OctallntegerLiteral:
OctalNumeral IntegerTypeSuffjx

IntegerTypeSuffix: one of
T L

19

3.10.1

20

Integer Literals LEXICAL STRUCTURE

An integer literal is of typdong if it is suffixed with an ASCII lettet or 1
(ell); otherwise it is of typént (84.2.1). The suffix is preferred, because the let-
ter1 (ell) is often hard to distinguish from the digi{one).

A decimal numeral is either the single ASCII charaeterepresenting the
integer zero, or consists of an ASCII digit frano 9, optionally followed by one
or more ASCII digits fron® to 9, representing a positive integer:

DecimalNumeral:

0

NonZeroDigit Digitg
Digits:

Digit

Digits Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of
123 456 7 89

A hexadecimal numeral consists of the leading ASCII charagxersoX fol-
lowed by one or more ASCII hexadecimal digits and can represent a positive,
zero, or negative integer. Hexadecimal digits with values 10 through 15 are repre-
sented by the ASCII letteks throughf or A throughF, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigit
0 X HexDigit
HexNumeral HexDigit

The following production from 83.3 is repeated here for clarity:

HexDigit: one of
1 2 3 4567 8 9 abocdefABTC CDTEF

An octal numeral consists of an ASCII digifollowed by one or more of the
ASCII digits @ through7 and can represent a positive, zero, or negative integer.

OctalNumeral:
0 OctalDigit
OctalNumeral OctalDigit

OctalDigit: one of
01 2 3 45 6 7

LEXICAL STRUCTURE Integer Literals 3.10.1

Note that octal numerals are always consist of two or more diggsalways
considered to be a decimal numeral—not that it matters much in practice, for the
numeral®, 00, andoxo all represent exactly the same integer value.

The largest decimal literal of typet is 2147483648 (231). All decimal liter-
als fromo to 2147483647 may appear anywhere ant literal may appear, but
the literal 2147483648 may appear only as the operand of the unary negation
operator-.

The largest positive hexadecimal and octal literals of type are
ox7fffffff and 017777777777, respectively, which equalk147483647
(2%1-1). The most negative hexadecimal and octal literals of type are
0x80000000 and020000000000, respectively, each of which represents the deci-
mal value-2147483648 (—2°1). The hexadecimal and octal literasf fffffff
ande37777777777, respectively, represent the decimal value

See alsdnteger.MIN_VALUE (820.7.1) andnteger.MAX_VALUE (820.7.2).

A compile-time error occurs if a decimal literal of typet is larger than
2147483648 (231), or if the literal2147483648 appears anywhere other than as
the operand of the unaryoperator, or if a hexadecimal or octalt literal does
not fit in 32 bits.

Examples ofint literals:

0 2 0372 OxDadaCafe 1996 Ox0Q0FFQOFF

The largest decimal literal of typkong is 9223372036854775808L (293).
All decimal literals fromoL t0 9223372036854775807L may appear anywhere a
Tong literal may appear, but the literg123372036854775808L may appear only
as the operand of the unary negation operator

The largest positive hexadecimal and octal literals of typeg are
Ox7TFFffffffffrffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (263—1). The literals0x8000000000000000L
and 01000000000000000000000L are the most negativiong hexadecimal and
octal literals, respectively. Each has the decimal vale#23372036854775808L
(—2%3). The hexadecimal and octal literalexffffffffffffffffL and
01777777777777777777777L, respectively, represent the decimal value.

See als@ong.MIN_VALUE (820.8.1) and.ong.MAX_VALUE (820.8.2).

A compile-time error occurs if a decimal literal of typeng is larger than
9223372036854775808L (263), or if the literal9223372036854775808L appears
anywhere other than as the operand of the unaperator, or if a hexadecimal or
octalTong literal does not fit in 64 bits.

Examples oflong literals:

01 0777L 0x100000000L 2147483648L 0xCoBOL

21

3.10.2 Floating-Point Literals LEXICAL STRUCTURE

22

3.10.2 Floating-Point Literals

See 84.2.3 for a general discussion of the floating-point types and values.

A floating-point literalhas the following parts: a whole-number part, a deci-
mal point (represented by an ASCII period character), a fractional part, an expo-
nent, and a type suffix. The exponent, if present, is indicated by the ASClkletter
or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and either a
decimal point, an exponent, or a float type suffix are required. All other parts are
optional.

A floating-point literal is of typéloat if it is suffixed with an ASCII letteF
or f; otherwise its type idouble and it can optionally be suffixed with an ASCII
letterD ord.

FloatingPointLiteral:
Digits . Digitsy,r ExponentPag,; FloatTypeSuffig
. Digits ExponentPag FloatTypeSuffig,
Digits ExponentPart FloatTypeSuffjx
Digits ExponentPagy FloatTypeSuffix

ExponentPart:
Exponentindicator Signedinteger

Exponentindicator: one of
e E

Signedinteger:
Signypt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
fFdD

The Java typesloat anddouble are IEEE 754 32-bit single-precision and
64-bit double-precision binary floating-point values, respectively.

The details of proper input conversion from a Unicode string representation of
a floating-point number to the internal IEEE 754 binary floating-point representa-
tion are described for the methodslueOf of classFloat (§20.9.17) and class
Double (820.10.16) of the packagava.lang.

The largest positive finit€loat literal is 3.40282347e+38f. The smallest
positive finite nonzero literal of typ€loat is 1.40239846e-45f. The largest
positive finitedouble literal is1.79769313486231570e+308. The smallest posi-
tive finite nonzero literal of typdouble iS4.94065645841246544e-324.

LEXICAL STRUCTURE Boolean Literals3.10.3

SeeFloat.MIN_VALUE (820.9.1) andrloat.MAX_VALUE (820.9.2); see also
Double.MIN_VALUE (820.10.1) an@®ouble.MAX_VALUE (820.10.2).

A compile-time error occurs if a honzero floating-point literal is too large, so
that on rounded conversion to its internal representation it becomes an IEEE 754
infinity. A Java program can represent infinities without producing a compile-time
error by using constant expressions suchfa®f or -1d/0d or by using the pre-
defined constantBOSITIVE_INFINITY andNEGATIVE_INFINITY of the classes
Float (820.9) andouble (820.10).

A compile-time error occurs if a nonzero floating-point literal is too small, so
that, on rounded conversion to its internal representation, it becomes a zero. A
compile-time error does not occur if a nonzero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the
classesloat andDouble asFloat.NaN (820.9.5) andouble.NaN (820.10.5).

Examples off1oat literals:

lelf 2.f .3f of 3.14f 6.022137e+23f
Examples ofloube literals:
lel 2. .3 0.0 3.14 le-9d lel37

There is no provision for expressing floating-point literals in other than deci-
mal radix. However, methodntBitsToFloat (820.9.23) of clasFloat and
method TongBitsToDouble (820.10.22) of clas®ouble provide a way to
express floating-point values in terms of hexadecimal or octal integer literals. For
example, the value of:

DoubTe.longBitsToDoubTe(0x400921FB54442D18L)
is equal to the value ¢fath.PI (§20.11.2).

3.10.3 Boolean Literals

The boolean type has two values, represented by the literale andfalse,
formed from ASCII letters.
A boolean literalis always of typ&oolean.

BooleanLiteral: one of
true false

23

3.10.4 Character Literals LEXICAL STRUCTURE

24

3.10.4 Character Literals

A character literalis expressed as a character or an escape sequence, enclosed in
ASCII single quotes. (The single-quote, or apostrophe, charatig#da?.)
A character literal is always of typhar.

CharacterLiteral:
' SingleCharacter'
' EscapeSequence

SingleCharacter:
InputCharacterbut not' or\

The escape sequences are described in §3.10.6.

As specified in §83.4, the charactem andLF are never amnputCharacter
they are recognized as constitutingiae Terminator

It is a compile-time error for the character following SiagleCharacteror
EscapeSequende be other than a

It is a compile-time error for a line terminator to appear after the opéning
and before the closinyg

The following are examples ahar literals:

a
'\Ot'
Y

"\u@3a9'’

"\uFFFF'

"\177"'

1 Q L}

1 |:| L}

Because Unicode escapes are processed very early, it is not correct to write
'\u0ooa' for a character literal whose value is linefees);(the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (83.3) and the
linefeed becomes laneTerminatorin step 2 (83.4), and so the character literal is
not valid in step 3. Instead, one should use the escape seduend®3.10.6).
Similarly, it is not correct to writé\ueeed' for a character literal whose value is
carriage returndR). Instead, usé\r'.

In C and C++, a character literal may contain representations of more than
one character, but the value of such a character literal is implementation-defined.
In Java, a character literal always represents exactly one character.

LEXICAL STRUCTURE String Literals 3.10.5

3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quotes.
Each character may be represented by an escape sequence.

A string literal is always of typ&tring (84.3.3, §20.12). A string literal
always refers to the same instance (84.3.1) of Slasing.

StringLiteral:
" StringCharactergy "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacterbut not" or\
EscapeSequence

The escape sequences are described in §3.10.6.

As specified in 83.4, neither of the charactsandLF is ever considered to
be aninputCharacter each is recognized as constitutingime Terminator

It is a compile-time error for a line terminator to appear after the opé&ning
and before the closing matchifigA long string literal can always be broken up
into shorter pieces and written as a (possibly parenthesized) expression using the
string concatenation operato§15.17.1).

The following are examples of string literals:

// the empty string

"\ // astring containing" alone

"This is a string" // astring containing 16 characters

"This is a " + // actually a string-valued constant expression,
"two-Tine string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write
"\u00oa" for a string literal containing a single linefeed)(the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (83.3) and the
linefeed becomeslaneTerminatorin step 2 (83.4), and so the string literal is not
valid in step 3. Instead, one should wtite" (83.10.6). Similarly, it is not correct
to write "\u0ood" for a string literal containing a single carriage retwnR).(
Instead usé\r".

Each string literal is a reference (84.3) to an instance (84.3.1, 812.5) of class
String (84.3.3, 820.12)String objects have a constant value. String literals—
or, more generally, strings that are the values of constant expressions (815.27)—
are “interned” so as to share unique instances, using the ntathoeh.intern
(820.12.47).

25

3.10.6 Escape Sequences for Character and String Literals LEXICAL STRUCTURE

Thus, the test program consisting of the compilation unit (§7.3):

package testPackage;

class Test {
public static void main(String[] args) {
String hello = "Hello", To = "lo";
System.out.print((hello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"10")) + " ");
System.out.print((Chello == ("Hel"+10)) + " ");
System.out.printinChello == ("Hel"+1o).intern());
3
}

class Other { static String hello = "Hello"; }
and the compilation unit:

package other;
public class Other { static String hello = "Hello"; }
produces the output:

true true true true false true
This example illustrates six points:

« Literal strings within the same class (88) in the same package (87) represent
references to the sarSering object (84.3.1).

« Literal strings within different classes in the same package represent refer-
ences to the sansaring object.

« Literal strings within different classes in different packages likewise represent
references to the sarsering object.

» Strings computed by constant expressions (815.27) are computed at compile
time and then treated as if they were literals.

 Strings computed at run time are newly created and therefore distinct.

» The result of explicitly interning a computed string is the same string as any
pre-existing literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and striregcape sequencedow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
characters in character literals (83.10.4) and string literals (83.10.5).

26

LEXICAL STRUCTURE Separators 3.11

EscapeSequence:
b * \uQ0o8: backspacess */

* \u@009: horizontal tabHT */

* \u@ooa: linefeedLF */

* \u0ooc: form feedFr*/

* \u@ood: carriage returrcr */

* \u0022: double quote' */

* \u@027: single quote */

* \u@05c: backslash */

* \u0000 to \uooff: from octal value*/

PP A
S h S ot

A\
OctalEscape

SIS

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

It is a compile-time error if the character following a backslash in an escape is
not an ASClb, t,n, f, r,", ',\,0,1,2,3,4,5,6,0r7. The Unicode escapa is
processed earlier (83.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode valua®000 through\u@eFF, so Unicode escapes are
usually preferred.)

3.10.7 The Null Literal

The null type has one value, the null reference, represented by thenlit€tal
which is formed from ASCII characters.Alll literal is always of the null type.

NullLiteral:
null

3.11 Separators

The following nine ASCII characters are the Jsgparatorgpunctuators):

Separator: one of
() { 3 [] ;)

27

3.12 Operators LEXICAL STRUCTURE

3.12 Operators

The following 37 tokens are the Jayaerators formed from ASCII characters:

Operator: one of

= > < ! ~ ? :

= <= >= I= & || + --

+ - / & | A % << >> >>>
+= -= = [J= &= |= A= %= <<= >>= >>>=

Give her no token but stones; for she’s as hard as steel.
—William Shakespeardwo Gentlemen of VeropAct I, scene i

These lords are visited; you are not free;
For the Lord’s tokens on you do | see.

—William Shakespeard,ove’s Labour’s LostAct V, scene ii

Thou, thou, Lysander, thou hast given her rhymes,
And interchanged love-tokens with my child.

—William Shakespeard Midsummer Night's Dreajii\ct |, scene |

Here is a letter from Queen Hecuba,
A token from her daughter . . .

—William Shakespeardjoilus and CressidaAct V, scene i

Are there no other tokens . .. ?
—William Shakespeardfleasure for MeasureAct 1V, scene i

28

CHAPTER |

Types, Values, and Variables

| send no agent or medium,
offer no representative of value,
but offer the value itself.

—Walt Whitman,Carol of Occupation$1855),
in Leaves of Grass

JAVA is astrongly typedlanguage, which means that every variable and every
expression has a type that is known at compile time. Types limit the values that a
variable (84.5) can hold or that an expression can produce, limit the operations
supported on those values, and determine the meaning of the operations. Strong
typing helps detect errors at compile time.

The types of the Java language are divided into two categories: primitive types
and reference types. The primitive types (84.2) arebtitdean type and the
numeric types. The numeric types are the integral tgpes, short, int, long,
and char, and the floating-point typeSloat anddouble. The reference types
(84.3) are class types, interface types, and array types. There is also a special null
type. An object (84.3.1) in Java is a dynamically created instance of a class type or
a dynamically created array. The values of a reference type are references to
objects. All objects, including arrays, support the methods of dagsct
(84.3.2). String literals are representedShying objects (84.3.3).

Types are the same (84.3.4) if they have the same fully qualified names and
are loaded by the same class loader. Names of types are used (84.4) in declara-
tions, in casts, in class instance creation expressions, in array creation expressions,
and ininstanceof operator expressions.

A variable (84.5) is a storage location. A variable of a primitive type always
holds a value