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“When | use a word,” Humpty Dumpty said,
in rather a scornful tone, “it means just what |
choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether you
canmake words mean so many different things.

“The question is,” said Humpty Dumpty,
“which is to be master—that'’s all.”

—Lewis Carroll,Through the Looking Glass
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Preface

JAVA was originally called Oak, and designed for use in embedded consumer-
electronic applications by James Gosling. After several years of experience with
the language, and significant contributions by Ed Frank, Patrick Naughton,
Jonathan Payne, and Chris Warth it was retargeted to the Internet, renamed Java,
and substantially revised to be the language specified here. The final form of the
language was defined by James Gosling, Bill Joy, Guy Steele, Richard Tuck,
Frank Yellin, and Arthur van Hoff, with help from Graham Hamilton, Tim Lind-
holm and many other friends and colleagues.

Java is a general-purpose concurrent class-based object-oriented program-
ming language, specifically designed to have as few implementation dependencies
as possible. Java allows application developers to write a program once and then
be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantics of
the Java language and the core packages. 1ang, java.io, andjava.util of
its Application Programming Interface. We intend that the behavior of every lan-
guage construct is specified here, so that all implementations of Java will accept
the same programs. Except for timing dependencies or other non-determinisms
and given sufficient time and sufficient memory space, a Java program should
compute the same result on all machines and in all implementations.

We believe that Java is a mature language, ready for widespread use. Never-
theless, we expect some evolution of the language in the years to come. We intend
to manage this evolution in a way that is completely compatible with existing
applications. To do this, we intend to make relatively few new versions of the lan-
guage, and to distinguish each new version with a different filename extension.
Java compilers and systems will be able to support the several versions simultan-
nously, with complete compatibility.

Much research and experimentation with Java is already underway. We
encourage this work, and will continue to cooperate with external groups to
explore improvements to Java. For example, we have already received several
interesting proposals for parameterized types. In technically difficult areas, near
the state of the art, this kind of research collaboration is essential.
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CHAPTER 1

Introduction

If I have seen further it is by standing upon the shoulders of Giants.
—Sir Isaac Newton

JAVA is a general-purpose, concurrent, class-based, object-oriented language. It
is designed to be simple enough that many programmers can achieve fluency in
the language. Java is related to C and C++ but is organized rather differently, with
a number of aspects of C and C++ omitted and a few ideas from other languages
included. Java is intended to be a production language, not a research language,
and so, as C. A. R. Hoare suggested in his classic paper on language design, the
design of Java has avoided including new and untested features.

Java is strongly typed. This specification clearly distinguishes between the
compile-time errorghat can and must be detected at compile time, and those that
occur at run time. Compile time normally consists of translating Java programs
into a machine-independent byte-code representation. Run-time activities include
loading and linking of the classes needed to execute a program, optional machine
code generation and dynamic optimization of the program, and actual program
execution.

Java is a relatively high-level language, in that details of the machine repre-
sentation are not available through the language. It includes automatic storage
management, typically using a garbage collector, to avoid the safety problems of
explicit deallocation (as in C'éree or C++'sdelete). High-performance gar-
bage-collected implementations of Java can have bounded pauses to support sys-
tems programming and real-time applications. Java does not include any unsafe
constructs, such as array accesses without index checking, since such unsafe con-
structs would cause a program to behave in an unspecified way.

Java is normally compiled to a bytecoded instruction set and binary format
defined inThe Java Virtual Machine Specificati¢hddison-Wesley, 1996). Most
implementations of Java for general-purpose programming will support the addi-
tional packages defined in the series of books under the generdhtti@ava
Application Programming Interfac@ddison-Wesley).
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This Java Language Specification is organized as follows:

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for Java.

Chapter 3 describes the lexical structure of Java, which is based on C and
C++. Java is written in the Unicode character set. Java supports the writing of
Unicode characters on systems that support only ASCII.

Chapter 4 describes Java’s types, values, and variables. Java’s types are the
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two’s-complement integers, single- and
double-precision IEEE 754 standard floating-point numbesspaean type, and
a Unicode charactethar type. Values of the primitive types do not share state.

Java’'s reference types are the class types, the interface types, and the array
types. The reference types are implemented by dynamically created objects that
are either instances of classes or arrays. Many references to each object can exist.
All objects (including arrays) support the methods of the standardatiasst,
which is the (single) root of the class hierarchy. A predefiw@dng class sup-
ports Unicode character strings. Standard classes exist for wrapping primitive val-
ues inside of objects.

Variables are typed storage locations. A variable of a primitive type holds a
value of that exact primitive type. A variable of a class type can hold a null refer-
ence or a reference to an object whose type is that class type or any subclass of
that class type. A variable of an interface type can hold a null reference or a refer-
ence to an instance of any class that implements the interface. A variable of an
array type can hold a null reference or a reference to an array. A variable of class
typeObject can hold a null reference or a reference to any object, whether class
instance or array.

Chapter 5 describes Java’s conversions and numeric promotions. Conversions
change the compile-time type and, sometimes, the value of an expression.
Numeric promotions are used to convert the operands of a numeric operator to a
common type where an operation can be performed. There are no loopholes in the
language; casts on reference types are checked at run time to ensure type safety.

Chapter 6 describes declarations and names, and how to determine what
names mean (denote). Java does not require types or their members to be declared
before they are used. Declaration order is significant only for local variables and
the order of initializers of fields in a class or interface.

Java provides control over the scope of names and supports limitations on
external access to members of packages, classes, and interfaces. This helps in
writing large programs by distinguishing the implementation of a type from its
users and those who extend it. Standard naming conventions that make for more
readable programs are described here.
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Chapter 7 describes the structure of a Java program, which is organized into
packages similar to the modules of Modula. The members of a package are com-
pilation units and subpackages. Compilation units contain type declarations and
can import types from other packages to give them short names. Packages have
names in a hierarchical namespace, and the Internet domain name system can be
used to form unique package names.

Chapter 8 describes Java'’s classes. The members of classes are fields (vari-
ables) and methods. Class variables exist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current abjestduring their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementa-
tion of each class is derived from that of a single superclass, and ultimately from
the clas®bject. Variables of a class type can reference an instance of that class
or of any subclass of that class, allowing new types to be used with existing meth-
ods, polymorphically.

Classes support concurrent programming wWi§nchronized methods.
Methods declare the checked exceptions that can arise from their execution, which
allows compile-time checking to ensure that exceptional conditions are handled.
Objects can declare fasinalize method that will be invoked before the objects
are discarded by the garbage collector, allowing the objects to clean up their state.

For simplicity, Java has neither declaration “headers” separate from the imple-
mentation of a class nor separate type and class hierarchies.

Although Java does not include parameterized classes, the semantics of arrays
are those of a parameterized class with some syntactic sugar. Like the program-
ming language Beta, Java uses a run-time type check when storing references in
arrays to ensure complete type safety.

Chapter 9 describes Java’s interface types, which declare a set of abstract
methods and constants. Classes that are otherwise unrelated can implement the
same interface type. A variable of an interface type can contain a reference to any
object that implements the interface. Multiple interface inheritance is supported.

Chapter 10 describes Java arrays. Array accesses include bounds checking.
Arrays are dynamically created objects and may be assigned to variables of type
Object. Java supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes Java’'s exceptions, which are nonresuming and fully
integrated with the language semantics and concurrency mechanisms. There are
three kinds of exceptions: checked exceptions, run-time exceptions, and errors.
The compiler ensures that checked exceptions are properly handled by requiring
that a method or constructor can result in a checked exception only if it declares it.
This provides compile-time checking that exception handlers exist, and aids

3



Introduction INTRODUCTION

programming in the large. Most user-defined exceptions should be checked excep-
tions. Invalid operations in the program detected by the Java Virtual Machine
result in run-time exceptions, such Bs$1T1PointerException. Errors result

from failures detected by the virtual machine, sucbhua®fMemoryError. Most

simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a Java program.
A Java program is normally stored as binary files representing compiled classes
and interfaces. These binary files can be loaded into a Java Virtual Machine,
linked to other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some
classes may be instantiated to create new objects of the class type. Objects that are
class instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the
object is reclaimed to give the object a last chance to clean up resources that
would not otherwise be released. When a class is no longer needed, it may be
unloaded; if a class finalizer is declared, it is given a chance to clean up first.
Objects and classes may be finalized on exit of the Java Virtual Machine.

Chapter 13 describes binary compatibility, specifying the impact of changes
to types on other types that use the changed types but have not been recompiled.
These considerations are of interest to developers of types that are to be widely
distributed, in a continuing series of versions, often through the Internet. Good
program development environments automatically recompile dependent code
whenever a type is changed, so most programmers need not be concerned about
these details.

Chapter 14 describes Java’'s blocks and statements, which are based on C and
C++. Java has ngoto, but includes labeledreak andcontinue statements.

Unlike C, Java requirdsoolean expressions in control-flow statements, and does
not convert types tboolean implicitly, in the hope of catching more errors at
compile time. Asynchronized statement provides basic object-level monitor
locking. A try statement can includeatch and finally clauses to protect
against non-local control transfers.

Chapter 15 describes Java’s expressions. Java fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable. Java
chooses which method or constructor by using the same basic algorithm used in
languages with richer dispatching, such as Lisp’s CLOS and Dylan, for the future.

Chapter 16 describes the precise way in which Java ensures that local vari-
ables are definitely set before use. While all other variables are automatically ini-
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tialized to a default value, Java does not automatically initialize local variables in
order to avoid masking programming errors.

Chapter 17 describes the semantics of Java threads and locks, which are based
on the monitor-based concurrency originally introduced with the Mesa program-
ming language. Java specifies a memory model for shared-memory multiproces-
sors that supports high-performance implementations.

Chapter 18 describes the facilities for automatically generating documenta-
tion from special comments in Java source code.

Chapter 19 presents a LALR(1) syntactic grammar for Java, and describes the
differences between this grammar and the expository grammar used in the body of
the language specification that precedes it.

Chapters 20 through 22 are the reference manual for the core of the standard
Java Application Programming Interface. These packages must be included in all
general purpose Java systems.

Chapter 20 describes the packageva.lang. The types defined in
java.lang are automatically imported to be available without qualification in all
Java programs. They include the primordial ctasiect, which is a superclass of
all other classes; classes suchiaseger andFloat, which wrap the primitive
types inside objects; exceptions and errors defined by the language and the Java
Virtual Machine; Thread support; metalinguistic classes such @ass and
ClassLoader; and the clasSystem, which abstracts the host system.

Chapter 21 describes the packggea.util, which defines a few basic util-
ity classes, such as a hashtable class and a pseudo-random number generator.

Chapter 22 describes the packggea.io, which defines basic input/output
facilities, including random access files and streams of values of primitive types.

The book concludes with an index, credits for quotations used in the book,
and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed by a Java
system and are similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i]
System.out.println(Q);

+ args[il);

}
}
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On a Sun workstation, this class, stored in theThlet. java, can be com-
piled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.
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Grammars

Grammar, which knows how to control even kings . . .
—Moliére, Les Femmes Savan{d$72), Act Il, scene vi

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a Java program.

2.1 Context-Free Grammars

A context-free grammaconsists of a number pfoductions Each production has
an abstract symbol calledr@nterminalas itsleft-hand sideand a sequence of
one or more nonterminal andrminal symbols as itsight-hand side For each
grammar, the terminal symbols are drawn from a spedafthbet

Starting from a sentence consisting of a single distinguished nonterminal,
called thegoal symbagl a given context-free grammar specifiedaaguage
namely, the infinite set of possible sequences of terminal symbols that can result
from repeatedly replacing any nonterminal in the sequence with a right-hand side
of a production for which the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammarfor Java is given in 83. This grammar has as its terminal sym-
bols the characters of the Unicode character set. It defines a set of productions,
starting from the goal symbdahput (83.5), that describe how sequences of Uni-
code characters (83.1) are translated into a sequence of input elements (83.5).
These input elements, with white space (83.6) and comments (83.7) dis-

carded, form the terminal symbols for the syntactic grammar for Java and are
called Javdokens(83.5). These tokens are the identifiers (83.8), keywords (§3.9),
literals (83.10), separators (83.11), and operators (83.11) of the Java language.
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2.3 The Syntactic Grammar

The syntactic grammarfor Java is given in Chapters 4, 6-10, 14, and 15. This
grammar has Java tokens defined by the lexical grammar as its terminal symbols.
It defines a set of productions, starting from the goal syr@oohpilationUnit
(87.3), that describe how sequences of tokens can form syntactically correct Java
programs.

A LALR(2) version of the syntactic grammar is presented in Chapter 19. The
grammar in the body of this specification is very similar to the LALR(1) grammar
but more readable.

2.4 Grammar Notation

Terminal symbols are shown frixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shownitalic type. The definition of a nonterminal
is introduced by the name of the nonterminal being defined followed by a colon.
One or more alternative right-hand sides for the nonterminal then follow on suc-
ceeding lines. For example, the syntactic definition:

IfThenStatement:
if ( Expression) Statement

states that the nonterminélrhenStatementpresents the tokeirf, followed by a
left parenthesis token, followed by Bmpressionfollowed by a right parenthesis
token, followed by &tatementAs another example, the syntactic definition:

ArgumentList:
Argument
ArgumentList, Argument

states that armArgumentListmay represent either a singkrgumentor an
ArgumentListfollowed by a comma, followed by argument This definition of
ArgumentLists recursive that is to say, it is defined in terms of itself. The result
is that anArgumentListmay contain any positive humber of arguments. Such
recursive definitions of nonterminals are common.

The subscripted suffixopt”, which may appear after a terminal or nontermi-
nal, indicates aoptional symbolThe alternative containing the optional symbol
actually specifies two right-hand sides, one that omits the optional element and
one that includes it. This means that:
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BreakStatement:
break ldentifiegy; ;

is a convenient abbreviation for:

BreakStatement:
break ;
break ldentifier ;

and that:

ForStatement
for ( Forlnitey ; Expressiogy ; ForUpdatgy ) Statement

is a convenient abbreviation for:

ForStatement
for ( ; Expressiogy ; ForUpdatey ) Statement
for ( Forlnit ; Expressiogy ; ForUpdatey ) Statement

which in turn is an abbreviation for:

ForStatement
for ( ; ; ForUpdatgy ) Statement
for ( ; Expression; ForUpdatg, ) Statement
for ( Forlnit ; ; ForUpdatgy ) Statement
for ( Forlnit ; Expression; ForUpdatey ) Statement

which in turn is an abbreviation for:

ForStatement
for ( ; ; ) Statement
for ( ; ; ForUpdate) Statement
for ( ; Expression; ) Statement
for ( ; Expression; ForUpdate) Statement
for ( Forlnit ; ; ) Statement
for ( Forlnit ; ; ForUpdate ) Statement
(

for ( Forlnit ; Expression; ) Statement
for ( Forlnit ; Expression; ForUpdate ) Statement

so the nontermindiorStatemenactually has eight alternative right-hand sides.
A very long right-hand side may be continued on a second line by substan-
tially indenting this second line, as in:

ConstructorDeclaration
ConstructorModifiers, ConstructorDeclarator
Throws,,y ConstructorBody
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which defines one right-hand side for the nonterm@ahstructorDeclaration
(This right-hand side is an abbreviation for four alternative right-hand sides,
because of the two occurrences gf™)

When the words “one of” follow the colon in a grammar definition, they sig-
nify that each of the terminal symbols on the following line or lines is an alterna-
tive definition. For example, the lexical grammar for Java contains the production:

ZeroToThree: one of
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0
1
2
3

When an alternative in a lexical production appears to be a token, it represents
the sequence of characters that would make up such a token. Thus, the definition:

BooleanLiteral: one of
true false

in a lexical grammar production is shorthand for:

BooleanLiteral:
true
false

The right-hand side of a lexical production may specify that certain expan-
sions are not permitted by using the phrase “but not” and then indicating the
expansions to be excluded, as in the productionsnfartCharacter(83.4) and
Identifier (83.8):

InputCharacter:
UnicodelnputCharactebut notCR or LF

Identifier:
IdentifierNamebut not aKeywordor BooleanLiteralor NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phrase in
roman type in cases where it would be impractical to list all the alternatives:

RawlInputCharacter
any Unicode character
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Lexical Structure

Lexicographer: A writer of dictionaries, a harmless drudge.
—Samuel Johnsomictionary (1755)

T HIS chapter specifies the lexical structure of Java.

Java programs are written in Unicode (83.1), but lexical translations are pro-
vided (83.2) so that Unicode escapes (83.3) can be used to include any Unicode
character using only ASCII characters. Line terminators are defined (83.4) to sup-
port the different conventions of existing host systems while maintaining consis-
tent line numbers.

The Unicode characters resulting from the lexical translations are reduced to a
sequence of input elements (83.5), which are white space (83.6), comments
(83.7), and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals
(83.10), separators (83.11), and operators (83.12) of the Java syntactic grammar.

3.1 Unicode

Java programs are written using the Unicode character set, version 2.0. Informa-
tion about this encoding may be found at:

http://www.unicode.org and ftp://unicode.org

Versions of Java prior to 1.1 used Unicode version 1.1.5T(sedJnicode Stan-
dard: Worldwide Character Encodin@l.2) and updates). See §20.5 for a discus-
sion of the differences between Unicode version 1.1.5 and Unicode version 2.0.

Except for comments (83.7), identifiers, and the contents of character and
string literals (83.10.4, 83.10.5), all input elements (83.5) in a Java program are
formed only from ASCII characters (or Unicode escapes (83.3) which result in
ASCII characters). ASCII (ANSI X3.4) is the American Standard Code for Infor-
mation Interchange. The first 128 characters of the Unicode character encoding
are the ASCII characters.

11
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3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of Java tokens, using
the following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (83.3) in the raw stream of Unicode charac-
ters to the corresponding Unicode character. A Unicode escape of the form
\uxxxx, wherexxxx is a hexadecimal value, represents the Unicode character
whose encoding isxxx. This translation step allows any Java program to be
expressed using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream of
input characters and line terminators (83.4).

3. A translation of the stream of input characters and line terminators resulting
from step 2 into a sequence of Java input elements (83.5) which, after white
space (83.6) and comments (83.7) are discarded, comprise the tokens (83.5)
that are the terminal symbols of the syntactic grammar (82.3) for Java.

Java always uses the longest possible translation at each step, even if the result
does not ultimately make a correct Java program, while another lexical translation
would. Thus the input characteas-b are tokenized (83.5) as --, b, which is
not part of any grammatically correct Java program, even though the tokenization
a, -, -, b could be part of a grammatically correct Java program.

3.3 Unicode Escapes

Java implementations first recognidaicode escapes their input, translating

the ASCII charactersu followed by four hexadecimal digits to the Unicode char-
acter with the indicated hexadecimal value, and passing all other characters
unchanged. This translation step results in a sequence of Unicode input charac-
ters:

UnicodelnputCharacter:
UnicodeEscape
RawlInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarkeru
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RawlnputCharacter:
any Unicode character

HexDigit: one of
@ 1 2 3 456 7 8 9 abocdefABT CDTEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input char-
acter that is a backslaghinput processing must consider how many otherar-
acters contiguously precede it, separating it from a\nomaracter or the start of
the input stream. If this number is even, then\th® eligible to begin a Unicode
escape; if the number is odd, then this not eligible to begin a Unicode escape.
For example, the raw inpti\\u2297=\u2297" results in the eleven characters
"\\u2297=0"(\u2297 is the Unicode encoding of the charactét ).

If an eligible\ is not followed byu, then it is treated asRawlnputCharacter
and remains part of the escaped Unicode stream. If an eligibliollowed byu,
or more than one, and the last is not followed by four hexadecimal digits, then
a compile-time error occurs.

The character produced by a Unicode escape does not participate in further
Unicode escapes. For example, the raw ihpa®d5cu@05a results in the six char-
acters\ u 0 0 5 a, becaus®05c is the Unicode value foy. It does not result in
the charactez, which is Unicode charactedsa, because thg that resulted from
the\u@o5c is not interpreted as the start of a further Unicode escape.

Java specifies a standard way of transforming a Unicode Java program into
ASCII that changes a Java program into a form that can be processed by ASCII-
based tools. The transformation involves converting any Unicode escapes in the
source text of the program to ASCII by adding an extrdor example \uxxxx
becomes uuxxxx—while simultaneously converting non-ASCII characters in the
source text to §uxxxx escape containing a singleThis transformed version is
equally acceptable to a Java compiler and represents the exact same program. The
exact Unicode source can later be restored from this ASCII form by converting
each escape sequence where multifdeare present to a sequence of Unicode
characters with one feweu, while simultaneously converting each escape
seguence with a singleto the corresponding single Unicode character.

Java systems should use thexxxx notation as an output format to display
Unicode characters when a suitable font is not available.

3.4 Line Terminators

Java implementations next divide the sequence of Unicode input characters into
lines by recognizindine terminators This definition of lines determines the line

13
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numbers produced by a Java compiler or other Java system component. It also
specifies the termination of thi¢ form of a comment (83.7).

LineTerminator:
the ASCIILF character, also known as “newline”
the ASCIICR character, also known as “return”
the ASCIIcR character followed by the ASQIF character

InputCharacter:
UnicodelnputCharactebut notCR or LF

Lines are terminated by the ASCII characters or LF, or CR LF. The two
characters£r immediately followed byF are counted as one line terminator, not
two. The result is a sequence of line terminators and input characters, which are
the terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (83.3)

and then input line recognition (83.4) are reduced to a sequeimibélements

Those input elements that are not white space (83.6) or comments (83.7) are

tokens The tokens are the terminal symbols of the Java syntactic grammar (82.3).
This process is specified by the following productions:

Input:
InputElementg,; Sulypt

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

Token:
Identifier
Keyword
Literal
Separator
Operator

14
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Sub:
the ASCIIsuB character, also known as “control-Z”

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII charac-
ters- and= in the input can form the operator token(83.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the
ASCII suB character\u@ela, or control-Z) is ignored if it is the last character in
the escaped input stream.

Consider two tokeng andy in the resulting input stream. i precedey,
then we say that is to the left ofy and thaty is to the right ofx. For example, in
this simple piece of Java code:

class Empty {
3

we say that thg token is to the right of thg token, even though it appears, in this
two-dimensional representation on paper, downward and to the left ptdken.

This convention about the use of the words left and right allows us to speak, for
example, of the right-hand operand of a binary operator or of the left-hand side of
an assignment.

3.6 White Space

White spaces defined as the ASCII space, horizontal tab, and form feed charac-
ters, as well as line terminators (83.4).

WhiteSpace:
the ASClIspcharacter, also known as “space”
the ASCIIHT character, also known as “horizontal tab”
the ASCIIFF character, also known as “form feed”
LineTerminator

3.7 Comments

Java defines three kinds@dmments

/% text */ A traditional commentall the text from the ASCII
characterg* to the ASCII characters/ is ignored
(asin C and C++).

15
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// text A single-line commenall the text from the ASCII
characterg/ to the end of the line is ignored (as in
C++).

/** documentation*/ A documentation commerihe text enclosed by
the ASCII characterg** and*/ can be processed
by a separate tool to prepare automatically
generated documentation of the following class,
interface, constructor, or member (method or field)
declaration. See 818 for a full description of how
the suppliedlocumentations processed.

These comments are formally specified by the following productions:

Comment:
TraditionalComment
EndOfLineComment
DocumentationComment

TraditionalComment
/ * NotStar CommentTail

EndOfLineComment:
/ / CharactersinLingy; LineTerminator

DocumentationComment:
/ * * CommentTailStar

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:

/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacterbut not*
LineTerminator

NotStarNotSlash:
InputCharacterbut not* or /
LineTerminator

16
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CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These productions imply all of the following properties:
« Comments do not nest.
« /*and*/ have no special meaning in comments that begin xyith
» // has no special meaning in comments that begin Awitbr /.
As a result, the text:
/* this comment /* // /** ends here: */

is a single complete comment.

The lexical grammar implies that comments do not occur within character lit-
erals (83.10.4) or string literals (83.10.5).

Note that/**/ is considered to be a documentation comment, while:/
(with a space between the asterisks) is a traditional comment.

3.8 Identifiers

An identifieris an unlimited-length sequenceJaiva lettersandJava digits the

first of which must be a Java letter. An identifier cannot have the same spelling
(Unicode character sequence) as a keyword (83.9), Boolean literal (83.10.3), or
the null literal (83.10.7).

Identifier:
IdentifierCharsbut not aKeywordor BooleanLiteralor NullLiteral

IdentifierChars:
Javaletter
IdentifierChars JavaletterOrDigit

Javaletter:
any Unicode character that is a Java letter (see below)

Javal etterOrDigit:
any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows Java programmers to use identifiers in
their programs that are written in their native languages.

17
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A Java letter is a character for which the metblogl-racter.isJavaletter
(820.5.17) returnsrue. A Java letter-or-digit is a character for which the method
Character.isJavalLetterOrDigit (§20.5.18) returnsrue.

The Java letters include uppercase and lowercase ASCII Latin l&Hers
(\u@o41-\u005a), anda—z (\u@061-\u007a), and, for historical reasons, the
ASCII underscore_(, or \u0o5sf) and dollar sign{, or\u024). The$ character
should be used only in mechanically generated Java code or, rarely, to access pre-
existing names on legacy systems.

The Java digits include the ASCII digés9 (\u0030—\u0039).

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit

Identifiers that have the same external appearance may yet be different. For
example, the identifiers consisting of the single lett@rsn CAPITAL LETTER A
(A, \u0@041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL LETTER ALPHA
(A, \u0391), andCYRILLIC SMALL LETTER A (a, \u0430) are all different.

Unicode composite characters are different from the decomposed characters.
For example, aATIN CAPITAL LETTER A ACUTE (A, \u@0c1) could be considered
to be the same asLATIN CAPITAL LETTER A (A, \u0041) immediately followed
by aNON-SPACING ACUTE(", \u@301) when sorting, but these are different in Java
identifiers. Seél'he Unicode Standard/olume 1, pages 412ff for details about
decomposition, and see pages 626—627 of that work for details about sorting.

Examples of identifiers are:

String i3 OpETN MAX_VALUE isLetterOrDigit

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved for
use akeywordsand cannot be used as identifiers (83.8):

Keyword: one of

abstract default if private throw
booTlean do implements protected throws
break doubTe import public transient
byte else instanceof return try

case extends int short void
catch final interface static volatile
char finally Tong super while
class float native switch

const for new synchronized

continue goto package this
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The keywordsonst andgoto are reserved by Java, even though they are not
currently used in Java. This may allow a Java compiler to produce better error
messages if these C++ keywords incorrectly appear in Java programs.

While true and false might appear to be keywords, they are technically
Boolean literals (§3.10.3). Similarly, whitei11 might appear to be a keyword, it
is technically the null literal (83.10.7).

3.10 Literals

A literal is the source code representation of a value of a primitive type (84.2), the
String type (84.3.3, §20.12), or the null type (84.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

3.10.1 Integer Literals

See 84.2.1 for a general discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadecimal
(base 16), or octal (base 8):

IntegerLiteral:
DecimalintegerLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimallntegerLiteral:
DecimalNumeral IntegerTypeSuffix

HexIntegerLiteral:
HexNumeral IntegerTypeSuffix

OctallntegerLiteral:
OctalNumeral IntegerTypeSuffjx

IntegerTypeSuffix: one of
T L

19
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An integer literal is of typdong if it is suffixed with an ASCII lettet or 1
(ell); otherwise it is of typént (84.2.1). The suffix is preferred, because the let-
ter1 (ell) is often hard to distinguish from the digi{one).

A decimal numeral is either the single ASCII charaeterepresenting the
integer zero, or consists of an ASCII digit frano 9, optionally followed by one
or more ASCII digits fron® to 9, representing a positive integer:

DecimalNumeral:

0

NonZeroDigit Digitg
Digits:

Digit

Digits Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of
123 456 7 89

A hexadecimal numeral consists of the leading ASCII charagxersoX fol-
lowed by one or more ASCII hexadecimal digits and can represent a positive,
zero, or negative integer. Hexadecimal digits with values 10 through 15 are repre-
sented by the ASCII letteks throughf or A throughF, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigit
0 X HexDigit
HexNumeral HexDigit

The following production from 83.3 is repeated here for clarity:

HexDigit: one of
1 2 3 4567 8 9 abocdefABTC CDTEF

An octal numeral consists of an ASCII digifollowed by one or more of the
ASCII digits @ through7 and can represent a positive, zero, or negative integer.

OctalNumeral:
0 OctalDigit
OctalNumeral OctalDigit

OctalDigit: one of
01 2 3 45 6 7
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Note that octal numerals are always consist of two or more diggsalways
considered to be a decimal numeral—not that it matters much in practice, for the
numeral®, 00, andoxo all represent exactly the same integer value.

The largest decimal literal of typet is 2147483648 (231). All decimal liter-
als fromo to 2147483647 may appear anywhere ant literal may appear, but
the literal 2147483648 may appear only as the operand of the unary negation
operator-.

The largest positive hexadecimal and octal literals of type are
ox7fffffff and 017777777777, respectively, which equalk147483647
(2%1-1). The most negative hexadecimal and octal literals of type are
0x80000000 and020000000000, respectively, each of which represents the deci-
mal value-2147483648 (—2°1). The hexadecimal and octal literasf fffffff
ande37777777777, respectively, represent the decimal value

See alsdnteger.MIN_VALUE (820.7.1) andnteger.MAX_VALUE (820.7.2).

A compile-time error occurs if a decimal literal of typet is larger than
2147483648 (231), or if the literal2147483648 appears anywhere other than as
the operand of the unaryoperator, or if a hexadecimal or octalt literal does
not fit in 32 bits.

Examples ofint literals:

0 2 0372 OxDadaCafe 1996 Ox0Q0FFQOFF

The largest decimal literal of typkong is 9223372036854775808L (293).
All decimal literals fromoL t0 9223372036854775807L may appear anywhere a
Tong literal may appear, but the literg123372036854775808L may appear only
as the operand of the unary negation operator

The largest positive hexadecimal and octal literals of typeg are
Ox7TFFffffffffrffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (263—1). The literals0x8000000000000000L
and 01000000000000000000000L are the most negativiong hexadecimal and
octal literals, respectively. Each has the decimal vale#23372036854775808L
(—2%3). The hexadecimal and octal literalexffffffffffffffffL and
01777777777777777777777L, respectively, represent the decimal value.

See als@ong.MIN_VALUE (820.8.1) and.ong.MAX_VALUE (820.8.2).

A compile-time error occurs if a decimal literal of typeng is larger than
9223372036854775808L (263), or if the literal9223372036854775808L appears
anywhere other than as the operand of the unaperator, or if a hexadecimal or
octalTong literal does not fit in 64 bits.

Examples oflong literals:

01 0777L 0x100000000L 2147483648L 0xCoBOL
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3.10.2 Floating-Point Literals

See 84.2.3 for a general discussion of the floating-point types and values.

A floating-point literalhas the following parts: a whole-number part, a deci-
mal point (represented by an ASCII period character), a fractional part, an expo-
nent, and a type suffix. The exponent, if present, is indicated by the ASClkletter
or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and either a
decimal point, an exponent, or a float type suffix are required. All other parts are
optional.

A floating-point literal is of typéloat if it is suffixed with an ASCII letteF
or f; otherwise its type idouble and it can optionally be suffixed with an ASCII
letterD ord.

FloatingPointLiteral:
Digits . Digitsy,r ExponentPag,; FloatTypeSuffig
. Digits ExponentPag FloatTypeSuffig,
Digits ExponentPart FloatTypeSuffjx
Digits ExponentPagy FloatTypeSuffix

ExponentPart:
Exponentindicator Signedinteger

Exponentindicator: one of
e E

Signedinteger:
Signypt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
fFdD

The Java typesloat anddouble are IEEE 754 32-bit single-precision and
64-bit double-precision binary floating-point values, respectively.

The details of proper input conversion from a Unicode string representation of
a floating-point number to the internal IEEE 754 binary floating-point representa-
tion are described for the methodslueOf of classFloat (§20.9.17) and class
Double (820.10.16) of the packagava.lang.

The largest positive finit€loat literal is 3.40282347e+38f. The smallest
positive finite nonzero literal of typ€loat is 1.40239846e-45f. The largest
positive finitedouble literal is1.79769313486231570e+308. The smallest posi-
tive finite nonzero literal of typdouble iS4.94065645841246544e-324.
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SeeFloat.MIN_VALUE (820.9.1) andrloat.MAX_VALUE (820.9.2); see also
Double.MIN_VALUE (820.10.1) an@®ouble.MAX_VALUE (820.10.2).

A compile-time error occurs if a honzero floating-point literal is too large, so
that on rounded conversion to its internal representation it becomes an IEEE 754
infinity. A Java program can represent infinities without producing a compile-time
error by using constant expressions suchfa®f or -1d/0d or by using the pre-
defined constantBOSITIVE_INFINITY andNEGATIVE_INFINITY of the classes
Float (820.9) andouble (820.10).

A compile-time error occurs if a nonzero floating-point literal is too small, so
that, on rounded conversion to its internal representation, it becomes a zero. A
compile-time error does not occur if a nonzero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the
classesloat andDouble asFloat.NaN (820.9.5) andouble.NaN (820.10.5).

Examples off1oat literals:

lelf 2.f .3f of 3.14f 6.022137e+23f
Examples ofloube literals:
lel 2. .3 0.0 3.14 le-9d lel37

There is no provision for expressing floating-point literals in other than deci-
mal radix. However, methodntBitsToFloat (820.9.23) of clasFloat and
method TongBitsToDouble (820.10.22) of clas®ouble provide a way to
express floating-point values in terms of hexadecimal or octal integer literals. For
example, the value of:

DoubTe.longBitsToDoubTe(0x400921FB54442D18L)
is equal to the value ¢fath.PI (§20.11.2).

3.10.3 Boolean Literals

The boolean type has two values, represented by the literale andfalse,
formed from ASCII letters.
A boolean literalis always of typ&oolean.

BooleanLiteral: one of
true false
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3.10.4 Character Literals

A character literalis expressed as a character or an escape sequence, enclosed in
ASCII single quotes. (The single-quote, or apostrophe, charatig#da?.)
A character literal is always of typhar.

CharacterLiteral:
' SingleCharacter'
' EscapeSequence

SingleCharacter:
InputCharacterbut not' or\

The escape sequences are described in §3.10.6.

As specified in §83.4, the charactem andLF are never amnputCharacter
they are recognized as constitutingiae Terminator

It is a compile-time error for the character following SiagleCharacteror
EscapeSequende be other than a

It is a compile-time error for a line terminator to appear after the opéning
and before the closinyg

The following are examples ahar literals:

a
'\Ot'
Y

"\u@3a9'’

"\uFFFF'

"\177"'

1 Q L}

1 |:| L}

Because Unicode escapes are processed very early, it is not correct to write
'\u0ooa' for a character literal whose value is linefees);(the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (83.3) and the
linefeed becomes laneTerminatorin step 2 (83.4), and so the character literal is
not valid in step 3. Instead, one should use the escape seduend®3.10.6).
Similarly, it is not correct to writé\ueeed' for a character literal whose value is
carriage returndR). Instead, usé\r'.

In C and C++, a character literal may contain representations of more than
one character, but the value of such a character literal is implementation-defined.
In Java, a character literal always represents exactly one character.
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3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quotes.
Each character may be represented by an escape sequence.

A string literal is always of typ&tring (84.3.3, §20.12). A string literal
always refers to the same instance (84.3.1) of Slasing.

StringLiteral:
" StringCharactergy "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacterbut not" or\
EscapeSequence

The escape sequences are described in §3.10.6.

As specified in 83.4, neither of the charactsandLF is ever considered to
be aninputCharacter each is recognized as constitutingime Terminator

It is a compile-time error for a line terminator to appear after the opé&ning
and before the closing matchifigA long string literal can always be broken up
into shorter pieces and written as a (possibly parenthesized) expression using the
string concatenation operato§15.17.1).

The following are examples of string literals:

// the empty string

"\ // astring containing" alone

"This is a string" // astring containing 16 characters

"This is a " + // actually a string-valued constant expression,
"two-Tine string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write
"\u00oa" for a string literal containing a single linefeed)( the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (83.3) and the
linefeed becomeslaneTerminatorin step 2 (83.4), and so the string literal is not
valid in step 3. Instead, one should wtite" (83.10.6). Similarly, it is not correct
to write "\u0ood" for a string literal containing a single carriage retwnR).(
Instead usé\r".

Each string literal is a reference (84.3) to an instance (84.3.1, 812.5) of class
String (84.3.3, 820.12)String objects have a constant value. String literals—
or, more generally, strings that are the values of constant expressions (815.27)—
are “interned” so as to share unique instances, using the ntathoeh.intern
(820.12.47).
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Thus, the test program consisting of the compilation unit (§7.3):

package testPackage;

class Test {
public static void main(String[] args) {
String hello = "Hello", To = "lo";
System.out.print((hello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"10")) + " ");
System.out.print((Chello == ("Hel"+10)) + " ");
System.out.printinChello == ("Hel"+1o).intern());
3
}

class Other { static String hello = "Hello"; }
and the compilation unit:

package other;
public class Other { static String hello = "Hello"; }
produces the output:

true true true true false true
This example illustrates six points:

« Literal strings within the same class (88) in the same package (87) represent
references to the sarSering object (84.3.1).

« Literal strings within different classes in the same package represent refer-
ences to the sansaring object.

« Literal strings within different classes in different packages likewise represent
references to the sarsering object.

» Strings computed by constant expressions (815.27) are computed at compile
time and then treated as if they were literals.

 Strings computed at run time are newly created and therefore distinct.

» The result of explicitly interning a computed string is the same string as any
pre-existing literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and striregcape sequencedow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
characters in character literals (83.10.4) and string literals (83.10.5).
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EscapeSequence:
b * \uQ0o8: backspacess */

* \u@009: horizontal tabHT */

* \u@ooa: linefeedLF */

* \u0ooc: form feedFr*/

* \u@ood: carriage returrcr */

* \u0022: double quote' */

* \u@027: single quote */

* \u@05c: backslash */

* \u0000 to \uooff: from octal value*/

PP A
S h S ot

A\
OctalEscape

SIS

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

It is a compile-time error if the character following a backslash in an escape is
not an ASClb, t,n, f, r,", ',\,0,1,2,3,4,5,6,0r7. The Unicode escapa is
processed earlier (83.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode valua®000 through\u@eFF, so Unicode escapes are
usually preferred.)

3.10.7 The Null Literal

The null type has one value, the null reference, represented by thenlit€tal
which is formed from ASCII characters.Alll literal is always of the null type.

NullLiteral:
null

3.11 Separators

The following nine ASCII characters are the Jsgparatorgpunctuators):

Separator: one of
( ) { 3 [ ] ; )
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3.12 Operators

The following 37 tokens are the Jayaerators formed from ASCII characters:

Operator: one of

= > < ! ~ ? :

= <= >= I= & || + --

+ - / & | A % << >> >>>
+= -= = [J= &= |= A= %= <<= >>= >>>=

Give her no token but stones; for she’s as hard as steel.
—William Shakespeardwo Gentlemen of VeropAct I, scene i

These lords are visited; you are not free;
For the Lord’s tokens on you do | see.

—William Shakespeard,ove’s Labour’s LostAct V, scene ii

Thou, thou, Lysander, thou hast given her rhymes,
And interchanged love-tokens with my child.

—William Shakespeard Midsummer Night's Dreajii\ct |, scene |

Here is a letter from Queen Hecuba,
A token from her daughter . . .

—William Shakespeardjoilus and CressidaAct V, scene i

Are there no other tokens . .. ?
—William Shakespeardfleasure for MeasureAct 1V, scene i
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CHAPTER |

Types, Values, and Variables

| send no agent or medium,
offer no representative of value,
but offer the value itself.

—Walt Whitman,Carol of Occupation$1855),
in Leaves of Grass

JAVA is astrongly typedlanguage, which means that every variable and every
expression has a type that is known at compile time. Types limit the values that a
variable (84.5) can hold or that an expression can produce, limit the operations
supported on those values, and determine the meaning of the operations. Strong
typing helps detect errors at compile time.

The types of the Java language are divided into two categories: primitive types
and reference types. The primitive types (84.2) arebtitdean type and the
numeric types. The numeric types are the integral tgpes, short, int, long,
and char, and the floating-point typeSloat anddouble. The reference types
(84.3) are class types, interface types, and array types. There is also a special null
type. An object (84.3.1) in Java is a dynamically created instance of a class type or
a dynamically created array. The values of a reference type are references to
objects. All objects, including arrays, support the methods of dagsct
(84.3.2). String literals are representedShying objects (84.3.3).

Types are the same (84.3.4) if they have the same fully qualified names and
are loaded by the same class loader. Names of types are used (84.4) in declara-
tions, in casts, in class instance creation expressions, in array creation expressions,
and ininstanceof operator expressions.

A variable (84.5) is a storage location. A variable of a primitive type always
holds a value 