
Device Driver ProgrammingDevice Driver Programming
What's not in the Books

Table of ContentsTable of Contents

= Targeted Audience

= General considerations

= Driver Identification

= Driver Interfaces

AudienceAudience

= Not targeted at beginners in device driver
programming

= At least basic skills and experience are
assumed

= No discussion of basic device driver operation

= Covers OS/2 protected mode drivers only,
OS/2 virtual DOS machines are not addressed

ParadigmaParadigma

= OS/2 is used in highly dynamic environments
now:
– »Plug and Play« buses like

" PCCard/Cardbus sockets

" USB

" Device bays with hot-swap features

– Machines with power management

= Device drivers need to handle such hardware

= Programmers have to care about that

Device Driver ProgrammingDevice Driver Programming

Driver Identification

Driver IdentificationDriver Identification

= Device drivers shall identify themselves
verbosely wherever this is possible:

– in the device driver file (BldLevel)

– in the resource manager tree (Hardware Manager)

– in the PCCard manager (PC Card Director)

= This helps you both in development and
support

= It gives users confidence in their system setup

IdentificationIdentification
BldLevelBldLevel

The information shown by the BldLevel utility is stored in the
file description:

The result is then

IdentificationIdentification
Resource ManagerResource Manager

= Even if your driver doesn't handle any
hardware, i.e. is a software-only driver,
register it with the resource manager

= If your driver shows up in the resource
manager device tree (check with RMView /D)
then
– you know that your initialization code is fine

– the user knows that the driver is successfully
loaded

IdentificationIdentification
Resource ManagerResource Manager

generates this RMView /D output:

IdentificationIdentification
PC Card DirectorPC Card Director

A PCCard client driver registration like this one

generates this output in PC Card Director

IdentificationIdentification
PC Card DirectorPC Card Director

Device Driver ProgrammingDevice Driver Programming

Driver Interfaces

Driver InterfacesDriver Interfaces

= Drivers are DLL modules which are not linked
against any other modules (except kernel)

= Drivers connect dynamically at runtime to
kernel services or other OS/2 subsystems in
kernel space

= Drivers must not assume that all subsystems
are available on a given installation

= Connections are usually created by a
registration/callback scheme

Driver InterfacesDriver Interfaces

= A driver registers to other services by IDC
lookup (to other drivers) or device helper
functions (to kernel services)

= if a driver offers services to other parts of the
system it exports an entry point into its code

= if a driver uses services from other parts it
imports an entry point into foreign code

= each service needs a full specification

Driver InterfacesDriver Interfaces

The minimum specification of a service requires:
– a registration method

(IDC, device helper function, known location)
– a fully protyped service entry point

(linkage, return type, argument types, ...)

– a list of execution contexts it may be called in
(init time, task time, interrupt time, ...)

– a list of restrictions (if any)
(duration, register usage, access privileges)

– a description of the functions provided

Driver InterfacesDriver Interfaces

Drivers implemented in C often require
assembler stub functions which interface to the
C language model to handle

– arguments passed in registers visa stack based
arguments in C

– fully saved registers at the interface visa partially
clobbered registers in C routines

– setup of DS to the driver's own default data segment

– setup of DS to the other driver's data segment

Driver InterfacesDriver Interfaces

Example:

Questions:

– is the function name _EntryPoint, ENTRYPOINT or
@EntryPoint ?

– is the data segment already set up ?

– is a near or far return required ?

– is the pointer argument near or far ?

– what's the argument order ?

– who cleans up the arguments ?

Driver InterfacesDriver Interfaces

Driver entry points must be fully prototyped to
avoid unexpected or faulty behaviour

 wrong:

 right:

The calling convention, decoration, DS setup,
and near/far attributes need to be specified to
be independent of compiler options or models.

Driver InterfacesDriver Interfaces

Standard driver interfaces are

= Device helper entry point

= Strategy 1 entry point

= Interrupt handler entry points

= Timer handler entry point

= IDC entry point

= Context hook entry points

Driver InterfacesDriver Interfaces

The following driver interfaces are optional, but
I consider them mandatory!

= Resource Manager services

= APM notifications

= PC Card/Cardbus services and notifications

You need them to adapt the driver operation
to dynamic environments

Driver InterfacesDriver Interfaces

These driver interfaces are required for
discovery of supported hardware

= Resource Manager services

= OEMHelp services

You need them to search in the OS/2 device
database or to enumerate the PCI bus

Driver InterfacesDriver Interfaces

The following driver interfaces are required by
particular classes of device drivers only

= Strategy 2 entry points (ADD/FLT/DMD)

= Strategy 3 entry points (DMD)

= NDIS2 entry points (MAC drivers)

= USB entry points (USB drivers)

= MM Stream entry points (Multimedia drivers)

= others

Strategy 1Strategy 1

= This entry point is exported to the OS/2 kernel
in the device header structure

= Modern device drivers should request
InitComplete and Shutdown notifications to
attach to or detach from other services
properly

Interrupt HandlerInterrupt Handler

= You must handle shared interrupts

= PCI interrupts may be unshared

= the execution context of interrupt handlers is
restricted

= the execution time of interrupt handlers must
be short

= defer as much work as possible to task time
handling (f.e. context hooks) - but decide
wisely

Interrupt HandlerInterrupt Handler

Interrupt HandlerInterrupt Handler

Interrupt HandlerInterrupt Handler

Interrupt HandlerInterrupt Handler

Interrupt HandlerInterrupt Handler

= Interrupts preempt task time execution

= Interrupts may preempt interrupt time
execution

= Interrupts may preempt their own interrupt
handlers

= at each preemption, temporary resources (like
memory mappings) may become invalid

= every preemption costs system resources
(f.e. stack space)

Interrupts and SMPInterrupts and SMP

On SMP systems interrupt handlers may
execute concurrently with other parts of the
same driver

CPU0 CPU1

Application

Strategy1

Exit

Interrupt

Exit

CPU

Application

Strategy1

Exit

Interrupt

Exit

Driver Driver

Timer HandlersTimer Handlers

= Timer handlers are in fact interrupt handlers,
the same rules apply

= if you need multiple timers, the use of
ADDCall.lib is recommended. It implements:
– free running timers

– one-shot timers

– each timer may have different time intervals

– each timer may have arguments

Timer HandlersTimer Handlers

IDC Entry PointIDC Entry Point

= The presence of an IDC entry point and its
location within the driver's default code
segment is advertised in the device driver
header structure

= you need to specify in which execution
contexts your IDC services may be called

= if you allow calls in interrupt context the same
rules as for interrupt handlers apply

= most likely you need an assembler stub

IDC Entry PointIDC Entry Point

Context HooksContext Hooks

= Context hooks do deferred task time
processing of interrupt time events (similar to
DPCs in WindowsNT)

= Context hooks are excecuted after all interrupt
processing at the next schedule point

= Context hooks can be armed only once until
the next execution of the context hook code,
multiple invocations need to be queued

= most likely you need an assembler stub

Context HooksContext Hooks

APM EventsAPM Events

= APM event callbacks are possibly called in
interrupt context, so the general interrupt
handling rules apply

= if necessary, defer APM processing to task
time by using a context hook (f.e. device
reinitialization after system resume)

= the OS/2 APM subsystem may not be
available even if APM is active; the driver
needs to handle this scenario gracefully

APM RegistrationAPM Registration

APM RegistrationAPM Registration

PCCard/CardbusPCCard/Cardbus

= The card services subsystem is optional, the
driver needs to be prepared not to find it

= the minimum set of card service events to be
handled is
– CLIENTINFO (identify as client driver)

– CARD_INSERTION

– CARD_REMOVAL

= you may decide to handle more events

= most likely you need an assembler stub

Card Services RegistrationCard Services Registration

Card Services EventsCard Services Events

Card Services EventsCard Services Events

Card Services EventsCard Services Events

Card Services StubCard Services Stub

Resource ManagementResource Management

= From a device driver's view, resource
manager offers two basic services:

– maintaining and validating hardware resources

– maintaining and looking up the device database

= the former is mandatory, the latter is optional

Resource ManagementResource Management

= As a bare minimum, your driver must register
with Resource Manager if it stays resident

= for users, this is the only way to find out if a
driver is actually loaded by means of tools
provided by a standard OS/2 installation (i.e.
RMView /D)

= for developers, this is the easiest way to find
out which hardware resources a driver is
operating on

Resource ManagementResource Management
ResourcesResources

= every device driver creates a driver object in
RM. Software only drivers are done here.

= for each device, drivers allocate hardware
resource objects in RM and check for
collisions

= in case of success, drivers:
– create an adapter object for each hardware

instance they handle and assign them to the driver
object

– assign hardware resources to the adapter objects

– possibly create and assign device objects

Resource ManagementResource Management
Hardware Look-upHardware Look-up

= Device drivers may look up the OS/2 device
database for supported hardware

= this database is updated at each boot or on
demand by means of the snooper drivers
(SNOOP.LST)

= the hardware look-up may be for exact
matches of device identifiers (PnP, PCI, EISA)
or for compatible devices (f.e. »looks like an
IDE port«)

OEMHelp ServicesOEMHelp Services

= OEMHelp provides access to configuration
type BIOS services:
– query video info

– query MCA and ESCD info

– enumerate and configure PCI adapters

= the OEMHelp PCI functions are more
appropriate for device discovery in case of
class specific drivers or info not maintained by
the snoopers

OEMHelp ServicesOEMHelp Services

= OEMHelp may be called at DEVICE init time
(ring 3) through regular 16-bit DosCalls

= OEMHelp needs to be called at BASEDEV init
or task time (ring 0) through an IDC interface.
This requires an assembler stub.

OEMHelp ServicesOEMHelp Services

OEMHelp ServicesOEMHelp Services

