S DEVICEDHVERRIOgramming

iapleroifContents

m Targeted Audience

m General considerations
m Driver Identification

m Driver Interfaces

AlGIERece

m Not targeted at beginners in device driver
programming

m At least basic skills and experience are
assumed

m No discussion of basic device driver operation

m Covers OS/2 protected mode drivers only,
OS/2 virtual DOS machines are not addressed

Paladignie

m OS/2 is used in highly dynamic environments

NOW:
- »Plug and Play« buses like

e PCCard/Cardbus sockets
e USB

* Device bays with hot-swap features

- Machines with power management
m Device drivers need to handle such hardware
m Programmers have to care about that

== DEeVice DriverProgiamming

Driver Identification

PRVveridenimicanon

m Device drivers shall identify themselves
verbosely wherever this is possible:

- In the device driver file (BldLevel)
- In the resource manager tree (Hardware Manager)
- In the PCCard manager (PC Card Director)

m This helps you both in development and
support

m |t gives users confidence in their system setup

=)fe| Eav/e

The information shown by the BldLevel utility is stored in the
file description:

DESCRIPTION "Q@#DANI:1.S#Q##1## 17.9.2002 12:57:21
Nachtigall:: ::18::QQ@ Adapter Driver for ST506/IDE DASD"

The result Is then

Signature: QH#DANI:1.5#Q##1## 17.9.2002 12:57:21
Nachtigall:: ::18::QQ@ Adapter Driver for ST506/IDE DASD

Vendor: DANT

Revision: 1.05

Date/Time: 17.9.2002 12:57:21

Build Machine: Nachtigall
File Version: 1.5.1
Description: Adapter Driver for ST506/IDE DASD

RESEUCENVIanager

m Even if your driver doesn't handle any
hardware, I.e. Is a software-only driver,
register it with the resource manager

m |[f your driver shows up In the resource
manager device tree (check with RMView /D)
then

- you know that your initialization code is fine

— the user knows that the driver is successfully
loaded

RESOUECENV2nAUE)

UCHAR DrvrNameTxt[] = "DANIS506.ADD";

UCHAR DrvrDescrTxt[] = "DMA Adapter Driver for ST506/IDE DASD";
UCHAR VendorNameTxt[]= "Dani'";

DRIVERSTRUCT DriverStruct = {

DrvrNameTxt, /* DriverName * /
DrvrDescrTxt, /* DriverDescription */
VendorNameTxt, /* VendorName * /
CMVERSION MAJOR, /* MajorVersion */
CMVERSION MINOR, /* MinorVersion */
YEAR ,MONTH, DAY, /* Date */
0, /* DriverFlags *x /
DRT ADDDM, /* DriverType */
DRS_ADD, /* DriverSubType */
NULL /* DriverCallback *x /

};
generates this RMView /D output:

Driver: DANIS506.ADD - DMA Adapter Driver for ST506/IDE DASD
Vendor: Dani Version: 1.1 Date (MDY): 9/15/2002
Flag: STATIC Type-Subtype: ADDDM - ADD

PO @ zifol P)lfeeiio)f

A PCCard client driver registration like this one

struct CI_Info ClientInfo = {
0,
sizeof (ClientInfo),
ATB IOClient | ATB Insertd4Sharable | ATB Insert4Exclusive,
VERSION,
0,
((YEAR - 1980) << 9) | (MONTH << 5) | DAY,
offsetof (struct CI_Info, CI_ Name),
sizeof (ClientInfo.CI_ Name),
offsetof (struct CI_Info, CI Vendor),
sizeof (ClientInfo.CI_ Vendor),
"DaniS506 EIDE Driver",
"Copyright Daniela Engert 2002, all rights reserved"

Iy

generates this output in PC Card Director

| card Services

gttt ettt ettt gt ettt etttV VTt P TR T T

Client:

<Type= /O client

<Handle>= 07fF4

<Revision> 01.51

<Year> 2002

<Month> 9

<Day> 24

<Card Services level> 02.00
<Client name=

DaniS506 EIDE Driver
<Vendor string>

row]

Page 3

oy JHRTRTRIEPRCVR, (Pt (0T TR . PR Pl RENCRS pap SEPSPRTIOS B 5 T o] e T O | EPE TR 1 O S A

Resources ”Eersinn

Client

Figs

S Device Drver Programming

Driver Interfaces

PDrVerIntieraces

m Drivers are DLL modules which are not linked
against any other modules (except kernel)

m Drivers connect dynamically at runtime to
kernel services or other OS/2 subsystems In
kernel space

m Drivers must not assume that all subsystems
are available on a given installation

m Connections are usually created by a
registration/callback scheme

PDrVerIntieraces

m A driver registers to other services by IDC
lookup (to other drivers) or device helper
functions (to kernel services)

m |f a driver offers services to other parts of the
system It exports an entry point into its code

m |f a driver uses services from other parts it
Imports an entry point into foreign code

m each service needs a full specification

PDrVerIntieraces

The minimum specification of a service requires:

— a registration method

(IDC, device helper function, known location)
— a fully protyped service entry point

(linkage, return type, argument types, ...)

— a list of execution contexts it may be called in
(init time, task time, interrupt time, ...)

- a list of restrictions (if any)
(duration, register usage, access privileges)

- a description of the functions provided

PDrVerIntieraces

Drivers implemented in C often require
assembler stub functions which interface to the

C language mode

— arguments passec
arguments in C

to handle

In registers visa stack based

- fully saved registers at the interface visa partially
clobbered registers in C routines

- setup of DS to the driver's own default data segment

- setup of DS to the other driver's data segment

PDrVerIntieraces

Example:
int EntryPoint (int function, anytype *ptr);
Questions:

— Is the function name _EntryPoint, ENTRYPOINT or
@EntryPoint ?

— Is the data segment already set up ?
— IS a near or far return required ?

— Is the pointer argument near or far ?
— what's the argument order ?

— who cleans up the arguments ?

PDrVerIntieraces

Driver entry points must be fully prototyped to
avoid unexpected or faulty behaviour

mnong:
int EntryPoint (int function, anytype *ptr);
right:

int far cdecl loadds EntryPoint (int function,

anytype far *ptr);

The calling convention, decoration, DS setup,
and near/far attributes need to be specified to
be independent of compiler options or models.

PDrVerIntieraces

Standard driver interfaces are

m Device helper entry point

m Strategy 1 entry point

m [nterrupt handler entry points
m Timer handler entry point

m |[DC entry point

m Context hook entry points

PDrVerIntieraces

The following driver interfaces are optional, but
| consider them mandatory!

m Resource Manager services
m APM notifications
m PC Card/Cardbus services and notifications

You need them to adapt the driver operation
to dynamic environments

PDrVerIntieraces

These driver interfaces are required for
discovery of supported hardware

m Resource Manager services
m OEMHelp services

You need them to search in the OS/2 device
database or to enumerate the PCI bus

PDrVerIntieraces

The following driver interfaces are required by
particular classes of device drivers only

m Strategy 2 entry points (ADD/FLT/DMD)

m Strategy 3 entry points (DMD)

m NDIS2 entry points (MAC drivers)

m USB entry points (USB drivers)

m MM Stream entry points (Multimedia drivers)
m others

Sjifeiisio)y/

m This entry point is exported to the OS/2 kernel
In the device header structure

m Modern device drivers should request
InitComplete and Shutdown notifications to
attach to or detach from other services

properly

IReRtpEanaIEr:

m You must handle shared interrupts
m PCl interrupts may be unshared

m the execution context of interrupt handlers is
restricted

m the execution time of interrupt handlers must
be short

m defer as much work as possible to task time
handling (f.e. context hooks) - but decide
wisely

IReRtpEanaIEr:

UCHAR SharingMode;
/* attach to interrupt in given sharing mode */

SharingMode = (IRQ->isShared) ? IRQMODE_ SHARED : IRQMODE UNSHARED;
rc = DevHelp SetIRQ ((NPFN)IRQ->Handler, IRQ->Level, SharingMode) ;

/* if attach failed and sharing mode was "shared" try "unshared" */

if (rc && IRQ->isShared) {
rc = DevHelp SetIRQ ((NPFN)IRQ->Handler, IRQ->Level, IRQMODE_ UNSHARED) ;

/* if attach failed another time give up */
if ('re) {

/* adjust actual sharing mode */
IRQ—>isShared = FALSE;

}

/* re == 0 if attach to interrupt succeeded */

IReRtpEanaIEr:

/* each IRQ entry point handles a list of instances hooked to this IRQ level */

USHORT FAR _loadds IRQEntryO() { return (HandleIRQ (IHdAr[O].npInst) >> 1);
USHORT FAR _loadds IRQEntryl() { return (HandleIRQ (IHdr[1l].npInst) >> 1);
USHORT FAR _loadds IRQEntry2() { return (HandleIRQ (IHdr[2].npInst) >> 1);
USHORT FAR _loadds IRQEntry3() { return (HandleIRQ (IHdAr[3].npInst) >> 1);

e

USHORT NEAR HandleIRQ (PTRTYPE_INSTANCEDATA npInst) {
USHORT Claimed = 0;

/* walk list of instances attached to this IRQ */
for (; NULL != npInst; npInst = npInst->npIntNext)
Claimed |= npInst->IntHandler (npInst);

return (~Claimed) ;

}

/* As long as the driver isn't prepared to handle interrupts */
/* from a particular hardware we have to catch them anyway to prevent */
/* the 0S/2 IRQ dispatcher from going mad! */

USHORT NEAR CatchInterrupt (PTRTYPE_INSTANCEDATA npInst) {
if (npInst->CheckIRQ (npInst)) {
DevHelp EOI (npInst->IRQLevel);
return (1) ;

}

return (0);

IReRtpEanaIEr:

USHORT NEAR Interrupt (PTRTYPE_INSTANCEDATA npInst) {
USHORT Claimed = O0;
int rcCheck;

/* is the interrupt generated by hardware associated with this instance ? */
/* if not, bail out early */

if (! (rcCheck = CheckIRQ (npInst)))
return (Claimed) ;

/* so far, the interrupt is possibly from us */
/* if we expect an interrupt or the interrupt is definitely from us, */
/* then handle it */
/* up to this point, interrupts are still enabled in case of a shared IRQ */
/* the following code is a section which must not be preempted */
DISABLE

if ((npInst->Flags & WAIT INTERRUPT) || (rcCheck == 1)) {

npInst->Flags &= ~WAIT INTERRUPT;
/* there should be am IRQ timeout timer running */

if (npInst->IRQTimerHandle) ({

ADD CancelTimer (npInst->IRQTimerHandle) ; /* cancel the timer, got IRQ */
npInst->IRQTimerHandle = 0;
Claimed = 1;

} /* else spurious */

IReRtpEanaIEr:

/* reenable IRQ handling both globally and for this particular IRQ *x/

ENABLE
DevHelp EOI (npInst->IRQLevel) ;

if (Claimed) {
/* the actual handler code is running with interrupts enabled! *x/

HandleInterruptForInstance (npInst);

}

/* this is a *requirement* ! *x/
/* if we fail to do so, the 0S/2 IRQ dispatcher will shut down this */
/* IRQ line */

Claimed = 1;

} else {

ENABLE

/* spurious */
}

return (Claimed) ;

IReRtpEanaIEr:

m [nterrupts preempt task time execution

m [nterrupts may preempt interrupt time
execution

m [nterrupts may preempt their own interrupt
handlers

m at each preemption, temporary resources (like
memory mappings) may become invalid

m every preemption costs system resources
(f.e. stack space)

ReRtpISTanasSIVIIE

On SMP systems interrupt handlers may
execute concurrently with other parts of the
same driver

CPU CPUO CPU1
Application J Application
Driver Stra¥egy1 Driver o.v
.meimpt | itetrupt
Exit EiXit Exit 1}
v | v

merEandlers

m Timer handlers are In fact interrupt handlers,
the same rules apply

m |f you need multiple timers, the use of
ADDCall.lib Is recommended. It implements:

- free running timers
- one-shot timers
- each timer may have different time intervals

- each timer may have arguments

merEandlers

/* Expected interrupt timeout routine */
JOID FAR _cdecl IRQTimer (USHORT TimerHandle, ULONG Parameterl, ULONG Parameter2?)

!
'

/* cancelling the timer makes it an one-shot timer! */
ADD CancelTimer (TimerHandle) ;

do something useful here

/* free running timer with a given call interval */
7JOID FAR _cdecl Ticker (USHORT TimerHandle, ULONG Parameterl, ULONG Parameter2)

!
5

do something useful here

[/* Initialize timer pool */
ADD InitTimer (TimerPool, sizeof (TimerPool)) ;

/* start a timer to call function 'Ticker' with arguments argl and arg2 */
/* repeatedly after each TICKER INTERVAL milliseconds */

ADD StartTimerMS (&TickerHandle, TICKER INTERVAL, (PFN)Ticker, argl, arg2);
/* stop all timer processing and destroy timer pool */

ADD DeInstallTimer() ;

IDE ERti/ PoInt

m The presence of an IDC entry point and its
location within the driver's default code
segment is advertised in the device driver
header structure

m yYou need to specify in which execution
contexts your IDC services may be called

m |f you allow calls in interrupt context the same
rules as for interrupt handlers apply

m most likely you need an assembler stub

IDE ERtR/AEoRL

EXTRN _IDCHandler:NEAR/FAR
; VOID NEAR/FAR _cdecl IDCHandler (/* any argument type */)

; IDC stub to C handler routines
; needs to be located in the driver default code segment

PUBLIC _IDCStub
_IDCStub PROC FAR

PUSH ES
PUSH DS
PUSHAD

; handle arguments here to match the handler function prototype

MOV DS, CS:[_DSSel]
CALL _IDCHandler

POPAD
POP DS
POP ES
RET

_IDCStub END

_DSSel DW SEG _DATA

Eontext Heeks

m Context hooks do deferred task time
processing of interrupt time events (similar to
DPCs in WindowsNT)

m Context hooks are excecuted after all interrupt
processing at the next schedule point

m Context hooks can be armed only once untill
the next execution of the context hook code,
multiple invocations need to be queued

m most likely you need an assembler stub

Eontext Heeks

EXTRN _CxtHookHandler:NEAR/FAR

; context hook handler entry points need to be located in the
; default code segment!

; VOID NEAR/FAR _cdecl CtxHookHandler (/* any argument type */)
PUBLIC _CtxHookStub
_CtxHookStub PROC FAR
PUSH ES
PUSH DS
PUSHAD
PUSH EAX ; stack frame is compatible to any data type

MOV DS, CS:[_DSSel]
CALL _CtxHookHandler

ADD SP, 4
POPAD

POP DS
POP ES
RET

_CtxHookStub ENDP

_DSSel DW SEG _DATA

AEIVIFEVENLS

m APM event callbacks are possibly called in
Interrupt context, so the general interrupt
handling rules apply

m f necessary, defer APM processing to task
time by using a context hook (f.e. device
reinitialization after system resume)

m the OS/2 APM subsystem may not be
available even if APM is active; the driver
needs to handle this scenario gracefully

ARIVIFREGIStialion

/* attach to APM at processing of the InitComplete request packet */

{
UCHAR noAPM;

/* attach to APM */
if (! (noAPM = APMAttach())) {
/* if attached, register for suspend and resume */
APMRegister ((PAPMHANDLER)APMEventHandler,
APM NOTIFYSETPWR | APM NOTIFYNORMRESUME |
APM NOTIFYCRITRESUME | APM NOTIFYSTBYRESUME,
0);
/* prepare driver to deal with APM notifications */

} else {

/* prepare driver to deal with APM events (like suspend) even if it */
/* doesn't see any notifications about them! */

ARIVIFREGIStialion

USHORT FAR _gdecl APMEventHandler (PAPMEVENT Event) {
USHORT Message = (USHORT)Event->ulParml;
USHORT PowerState;

if (Message == APM_SETPWRSTATE) {
PowerState = (USHORT) (Event->ulParm2 >> 16) ;
if (PowerState != APM;PWRSTATEREADY)

return (APMSuspend (PowerState)) ;
} else if ((Message == APM NORMRESUMEEVENT) ||
(Message == APM_CRITRESUMEEVENT) | |
(Message == APM STBYRESUMEEVENT)) {
PowerState = 0;
return (APMResume()) ;
}

return O;

}

USHORT NEAR APMSuspend (USHORT PowerState) ({
if (PowerState == APM PWRSTATESUSPEND) {
/* prepare hardware and software for suspend */

}

return O;

}

USHORT NEAR APMResume () {
/* restore/reinitialize hardware and software after resume */
return O;

PE@and/Cardius

m The card services subsystem is optional, the
driver needs to be prepared not to find it

m the minimum set of card service events to be
handled Is

— CLIENTINFO (identify as client driver)
- CARD INSERTION
- CARD _REMOVAL

m yYyou may decide to handle more events
m most likely you need an assembler stub

(CAEFSeVIceS REGISialieNn

/* Attach to PCMCIA.SYS

check for presence of card service

allocate a context hook for deferred processing of events
register driver with card services

scan sockets for PCCards already inserted (no card insertion events
will be generated!)

* % * *

*/
USHORT NEAR PCMCIASetup () ({
if (SELECTOROF (CSIDC.ProtIDCEntry) != NULL)
return (FALSE) ; /* already initialized */

if (!DevHelp_AttachDD (PCMCIA;PDName, (NPBYTE) &CSIDC) &&
CardServicesPresent () &&
'DevHelp AllocateCtxHook ((NPFN)&CSHookHandler, (PULONG)&CSCtxHook) &&
!CSRegisterClient()) {
int Socket;

for (Socket = 0; Socket < NumSockets; Socket++)
if (0 == CSCardPresent (Socket)) {
PCCardPresent |= (1 << Socket);
}
return (FALSE) ;
}
return (TRUE) ;

CandrSenVices EVents

VOID NEAR _cdecl CSCallbackHandler (USHORT Socket, USHORT Event, PUCHAR Buffer)
{

/* release resources if a card removal event occurs */

/* acquire resources if card insertion event occurs */

switch (Event) {
case CARD REMOVAL:
if (!'InitComplete) return;
PCCardPresent &= ~ (1 << Socket);
CSUnconfigure (Socket) ;
CardRemoval (Socket) ;
return;

case CARD_ INSERTION:
if (!'InitComplete) return;
if (CSConfigure (Socket) == 0) {
PCCardPresent |= (1 << Socket);
CardInsertion (Socket);

}

return;

case CLIENTINFO:
/* £ill client info structure */
return;

/* handle other events if required */

}

CandrSenVices EVents

USHORT NEAR CardRemoval (USHORT Socket) {
/* handle removal of a PCCard

* - detach hardware from the supporting driver code

* — release resources allocated to the hardware being removed

* - prepare driver to handle calls directed at removed hardware *gratiously*
w3/

return (0);

}

USHORT NEAR CardInsertion (USHORT Socket) {
/* handle insertion of a PCCard (part I)

* - allocate resources to the hardware being inserted

* - make a *short* test if hardware is supported and healthy
* - release resources if test fails

<5/

if (test passed) {
/* defer full initialization (make take long) */

DevHelp ArmCtxHook (Socket, CSCtxHook) ;

} else {
/* release resources */

CSUnconfigure (Socket);
}

return (0) ;

CandrSenVices EVents

USHORT NEAR _fastcall CardInsertionDeferred (USHORT Socket) {

/* handle insertion of a PCCard (part II)

* — full initialization of the newly inserted PCCard
* - release resources if initialization fails
*/

if (initialized) {

/* attach hardware to the supporting driver code */
} else {

/* release resources */

CSUnconfigure (Socket)

}

return (0);

@zlfel Sapyless Siil)o

; VOID FAR _cdecl CSCallbackStub ()
; VOID NEAR _cdecl CSCallbackHandler (USHORT Socket, USHORT Event,
; PUCHAR Buffer)

PUBLIC _CSCallbackStub

_CSCallbackStub PROC FAR

PUSHF

PUSHA

PUSH DS

PUSH ES ; setup buffer pointer
PUSH BX

AND AX, OOFFh

PUSH AX ; set up event number,
PUSH CX ; socket number

MOV AX, DATA ; and data segment

MOV DS, AX
CALL _CsCallbackHandler
ADD SP, 3*2

POP ES
POP DS
POPA
POPF

RET

_CsSCallbackStub ENDP

RESOUICENVIanACEMERL

m From a device driver's view, resource
manager offers two basic services:

- maintaining and validating hardware resources

- maintaining and looking up the device database

m the former is mandatory, the latter is optional

RESOUICENVanagEmeEn

m As a bare minimum, your driver must register
with Resource Manager If it stays resident

m for users, this is the only way to find out if a
driver Is actually loaded by means of tools
provided by a standard OS/2 installation (i.e.
RMView /D)

m for developers, this is the easiest way to find
out which hardware resources a driver Is
operating on

RESOUICES

m every device driver creates a driver object In
RM. Software only drivers are done here.

m for each device, drivers allocate hardware
resource objects iIn RM and check for
collisions

m [N case of success, drivers:

— create an adapter object for each hardware
Instance they handle and assign them to the driver
object

- assign hardware resources to the adapter objects
— possibly create and assign device objects

mlelfelyWelfe Bejo))¢

m Device drivers may look up the OS/2 device
database for supported hardware

m this database Is updated at each boot or on
demand by means of the snooper drivers
(SNOOP.LST)

m the hardware look-up may be for exact
matches of device identifiers (PnP, PCI, EISA)
or for compatible devices (f.e. »looks like an
IDE port«)

@ENVIFEIRFSEVICES

m OEMHelp provides access to configuration
type BIOS services:

— guery video info
- query MCA and ESCD Iinfo

- enumerate and configure PCI adapters

m the OEMHelp PCI functions are more
appropriate for device discovery in case of
class specific drivers or info not maintained by
the snoopers

@ENVIFEIRFSEVICES

m OEMHelp may be called at DEVICE init time
(ring 3) through regular 16-bit DosCalls

m OEMHelp needs to be called at BASEDEV init
or task time (ring 0) through an IDC interface.
This requires an assembler stub.

@ENVIFEIRFSEVICES

CHAR OEMHLE_DDName[Q] = "OEMHLPS ";
IDCTABLE OemHlpIDC = { 0 };
UCHAR SetupOEMHlp () {
if ((SELECTOROF (OemHlpIDC.ProtIDCEntry) != NULL) &&
(OemH1pIDC.ProtIDC_DS != NULL))
return (0); /* alread initialized */

/* Setup Global OEMHlp Variables */
if (DevHelp_AttachDD (OEMHLP_DDName, (NPBYTE) &0emH1pIDC))
return (1) ; /* Couldn't find OEMHLP's IDC */

if ((SELECTOROF (OemHlpIDC.ProtIDCEntry) == NULL) ||
(OemHlpIDC.ProtIDC_DS == NULL))
return (1); /* Bad Entry Point or Data Segment */
return (0) ;

}
/* example */
{ RP_GENIOCTL IOCtlRP;
/* Setup IO Control Packet here */

return (CallOEMHlp ((PRPH) &IOCtlRP))) ;
}

; USHORT FAR _fastcall CallOEMHlp (PRPH pRPH) ;

@CallOEMH1p PROC FAR

PUSH
MOV
PUSH
PUSH
LES
TEST
JNZ

MOV
MOV
JMP
DoOEMH1p:
PUSH
PUSH
MOV
CALL
POP
ADD
MOV
CallOEMHlpEnd:
AND
POP
POP
LEAVE
RET

BP

BP, SP

SI

DI

BX, DWORD PTR [BP+6]

WORD PTR [OemHlpIDC.Entry], -1
DoOEMH1p

AX, 8100h
WORD PTR ES: [BX+3], AX
SHORT CallOEMH1pEnd

[OemH1pIDC.Entry]

DS

DS, [_OemHlpIDC.DSegq]
DWORD PTR [BP-8]

DS

Sp, 4

AX, WORD PTR ES: [BX+3]

AX, 8000h
DI
SI

4

@CallOEMHlp ENDP

