SOMobjects Developer Toolkit
Collection Classes
Reference Manual

Reference material for the classes
and methods of the Collection Classes
provided with the System Object Model

Version 2.1
October 1994

Version 2.1 (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE PUB-
LICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this state-
ment may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your
IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 or AlX programming techniques. You may copy and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or distributing application programs
conforming to the OS/2 or AIX application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “©(your company name) (year) All Rights Reserved.”

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

© Copyright International Business Machines Corporation 1991 — 1994. All rights reserved.

The term “IBM” is a registered trademark and “SOMobjects” and “System Object Model” are trademarks of In-
ternational Business Machines Corporation.

Notice to US Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

ii SOMobjects Developer Toolkit

Collection Classes Reference Manual

Contents

Basics for Using the Collection Classes ...,

Categories of Collection Classes

AbstractClasses
Main Collection Classes
Iterator Classes
MixinClasses
Supporting Classes

Inheritance Hierarchy of the Collection Classescoon...
Utility Collection Classes by Categoryco i,

somf_MCollectible Class
somfClone Method
somfClonePointer Method
somfHash Method
somflsEqual Method
somflsNotEqual Method
somflsSame Method

somf_MLinkable Class
somfGetNext Method
somfGetPrevious Method
somfMLinkablelnit Method
somfSetNext Method
somfSetPrevious Method

somf_MOrderableCollectible Class

somfCompare Method
somflsGreaterThan Method

somflsGreaterThanOrEqualTo Method

somflsLessThan Method

somflsLessThanOrEqualTo Method i,

somf TAssocClass
somfGetKey Method
somfGetValue Method
somfSetKey Method
somfSetValue Method
somfTAssocInitM Method
somfTAssocInitMM Method

somf_TCollectibleLong Class
somfGetValue Method
somfHash Method
somflsEqual Method
somfSetValue Method

somfTCollectibleLongInit Method

Collection Classes Reference Manual

O© 00O ~NOP~WER PP

(=Y
o

11
13
14
15
16
17
18

19
20
21
22
23
24

25
27
29
30
31
32

33
34
35
36
37
38
39

40
41
42
43
44
45

somf _TCollection Classttt e e et 46

somfAdd Method 47
SOMFAdAII Method 48
somfCount Method ... i 49
somfCreatelterator Method i i 50
somfDeleteAll Method i 51
somflsEqual Method i e 52
somfMember Method i 53
somfRemove Method i e e 54
somfRemoveAll Method i e 55
somfSetTestFunction Method 56
somfTCollectionlnit Method e 57
somfTestFunction Method e 58
somf_TDeque Class e 59
somfAdd Method 61
somfAddAfter Method 62
somfAddBefore Method e 63
somfAddFirst Method e 64
somfAddLast Method i e 65
somfAfter Method i 66
somfAssign Method i e 67
somfBefore Method i 68
somfCount Method e 69
somfCreatelterator Method i 70
somfCreateNewLink Method i 71
somfCreateSequencelterator Method i, 72
somfDeleteAll Method i e 73
somfFirst Method 74
somflnsert Method e 75
somfLast Method e e 76
somfMember Method e 77
somfPop Method 78
somfPush Method e e 79
somfRemove Method i e 80
somfRemoveAllMethod i 81
somfRemoveFirst Method i 82
somfRemoveLast Method i i 83
somfRemoveQ Method i e 84
somfTDequelnitD Method i e 85
somfTDequelnitF Method i e 86
somf_TDequelterator Classottt 87
somfFirst Methodo e 88
somfLast Method e 90
somfNext Method 91
somfPrevious Method e 93
somfRemove Method i e 95
somfTDequelteratorinit Method i 97
somf_TDequeLinkable Class ...t 98
somfGetValue Method 99
somfSetValue Method i 100
somfTDequelLinkablelnitDD Method 101
somfTDequeLinkablelnitDDM Method i 102

SOMobjects Developer Toolkit

somf_TDictionary Class
somfAdd Method

somfAddKeyValuePairMM Method i
somfAddKeyValuePairMMB Method

somfAssign Method .

somfCopylmplementation Method i,

somfCount Method . .

somfCreatelterator Method i
somfCreateNewlmplementationF Method
somfCreateNewlmplementationFL Method
somfCreateNewlmplementationFLL Method
somfCreateNewlmplementationFLLL Method

somfDeleteAll Method

somfDeleteAllKeys Method i
somfDeleteAllValues Method i
somfDeleteKey Method i e
somfGetHashFunction Method i

somfKeyAtM Method
somfKeyAtMF Method
somfMember Method
somfRemove Method

somfRemoveAll Method

somfSetHashFunction

Method ...

somfTDictionaryInitD Method i
somfTDictionarylnitF Method i i i

somfTDictionaryInitFL

Method

somfTDictionarylnitFLL Method it
somfTDictionarylnitL Method
somfTDictionarylnitLL Method
somfTDictionarylnitLLF Method i

somfValueAt Method .

somf_TDictionarylterator Class ...t

somfFirst Method
somfNext Method ...
somfRemove Method

somfTDictionarylteratorlnit Method

somf _THashTable Class
somfAddMM Method .
somfAddMMB Method
somfAssign Method .
somfCount Method ..
somfDelete Method . .
somfDeleteAll Method

somfDeleteAllKeys Method i
somfDeleteAllValues Method i
somfGetGrowthRate Method i e
somfGetHashFunction Method i,
somfGetRehashThreshold Method i,

somfGrow Method . ..
somfMember Method

Collection Classes Reference Manual

103
105
107
109
111
112
113
114
115
117
119
121
123
125
126
127
128
129
130
132
133
134
135
136
137
138
139
141
142
143
145

146
147
149
151
153

154
156
158
160
161
162
164
166
168
170
171
172
173
174

somfRemove Method i e 175

somfRemoveAll Method i 176
somfRetrieve Method e 177
somfSetGrowthRate Method i i 178
somfSetHashFunction Method i 179
somfSetRehashThreshold Method 181
somfTHashTablelnitFL Method i i 182
somfTHashTablelnitFLL Method i i 183
somfTHashTablelnitFLLL Method 184
somfTHashTablelnitH Methodo, 186
somf_THashTablelterator Class ...t 187
SOMIFIrst Method 188
somfNeXt Method 190
somfRemove Method i e e 192
somfTHashTablelteratorlnit Method 194
SOMf_THerator Class . ..ot e e e e 195
SOMIFIrSt Method o e 196
somfNext Method e 197
somfRemove Method i e 198
somf_TPrimitiveLinkedList Class ... 199
somfAddAfter Method 200
somfAddBefore Method 201
somfAddFirst Method e 202
somfAddLast Method i 203
somfAfter Method i 204
somfBefore Method e 205
somfCount Method i e 206
somfFirst Method e 207
somfLast Method o 208
somfRemove Method i e e 209
somfRemoveAll Method i e 210
somfRemoveFirst Method i e 211
somfRemovelLast Method i 212
somf_TPrimitiveLinkedListlterator Class i, 213
somfFirst Method e 214
somfLast Method 216
somfNeXt Method 217
somfPrevious Method 219
somfTPrimitiveLinkedListlteratorInit Method 220
somf_TPriorityQueue Classt 221
SOMfAdd Method 223
somfAssign Method e 224
somfCount Method i e 225
somfCreatelterator Method i 226
somfDeleteAll Method i 227
somfGetEqualityComparisonFunction Method 228
somflnsert Method e 229
somfMember Method i 230

Vi SOMobjects Developer Toolkit

somfPeek Method
somfPop Method
somfRemove Method .
somfRemoveAll Method
somfReplace Method .

somfSetEqualityComparisonFunction Method
somfTPriorityQueuelnitF Method i,
somfTPriorityQueuelnitP Method i i

somf_TPriorityQueuelterator Class,

somfFirst Method
somfNext Method
somfRemove Method .

somfTPriorityQueuelteratorinit Method,

somf_TSequence Class .
somfAdd Method
somfAfter Method
somfBefore Method . . .
somfCount Method ...

somfCreatelterator Methodot i

somfDeleteAll Method

somfFirst Method
somfLast Method
somfOccurrencesOf Me
somfRemove Method .
somfRemoveAll Method
somfTSequencelnit Met

thod ...

hod ..

somf_TSequencelterator Class ...ttt

somfFirst Method
somfLast Method
somfNext Method
somfPrevious Method .
somfRemove Method .

somf _TSetClass
somfAdd Method
somfAssign Method ..
somfCount Method ...

somfCreatelterator Methodt

somfDeleteAll Method

somfDifferenceS Method

somfDifferenceSS Meth

T

somfGetHashFunction Method e
somflntersectionS Method i
somfintersectionSS Method

somfMember Method .
somfRehash Method . .
somfRemove Method .
somfRemoveAll Method

somfSetHashFunction Method e

somfTSetlnitF Method

Collection Classes Reference Manual

231
232
233
234
235
236
237
238

239
240
242
244
245

246
247
248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264

265
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

Vii

somfTSetinitFL Method i e 283

somfTSetinitL Method e 284
somfTSetinitLF Method 285
somfTSetinitS Method 286
somfUnionS Method 287
somfUnionSS Method i 288
somfXorS Method 289
SOMIXOISS Method . ..o 290
somf _TSetlterator Classt e 291
SOMIFIrSt Methodo 292
somfNext Method 294
somfRemove Method 296
somfTSetlteratorinit Method i 298
somf_TSortedSequence Class ...ttt e 299
soMfAdd Method o 301
somfAfter Method e 302
somfAssign Method e 303
somfBefore Method i 304
somfCount Method e e 305
somfCreatelterator Method i i 306
somfCreateSequencelteratorMethod i, 307
somfCreateSortedSequenceNode Method, 308
somfDeleteAll Methodo 309
soMFirst Method 310
somfGetSequencingFunction Method oo 311
somfLast Method i e 312
somfMember Method i e 313
somfOccurrencesOf Method i e 315
somfRemove Method i e 316
somfRemoveAll Method i 317
somfSetSequencingFunction Method 318
somfTSortedSequencelnitF Method i, 319
somfTSortedSequencelnitS Method 320
somf_TSortedSequencelterator Classcoiiiiiiiiinnnnnnnn.. 321
SOMIFIrst Method 322
somfLast Method 324
somfNext Method 325
somfPrevious Method i e 327
somfRemove Method i e 329
somfStartHere Method i e 331
somfTSortedSequencelteratorinit Method 333
somf_TSortedSequenceNode Class ..., 334
somfGetKey Method 335
somfGetLeftChild Method 336
somfGetParent Method e 337
somfGetRed Method e 338
somfGetRightChild Method 339
somfSetKey Method 340
somfSetLeftChild Method 341

Viii SOMobjects Developer Toolkit

somfSetParent Method
somfSetRed Method
somfSetRedOn Method
somfSetRightChild Method
somfTSortedSequenceNodelnitT Method . .
somfTSortedSequenceNodelnitTM Method

somfTSortedSequenceNodelnitTMT Method

Collection Classes Reference Manual

342
343
344
345
346
347
348

SOMobjects Developer Toolkit

About This Book

This book gives reference material for the Collection Classes provided with the SOMobjects
Developer Toolkit. In particular, it contains a reference page for every class included in the
Collection Classes, and for each of their methods.

In addition to this book, refer to the SOMobjects Developer Toolkit: Programmers Reference
Manual for information about the other classes, methods, functions, and macros provided in the
SOMobijects Toolkit, and to the SOMobjects Developer Toolkit Users Guide for introductory
information. Also, refer to the Emitter Framework Guide and Reference for documentation of
the Emitter Framework of the SOMobjects Developer Toolkit.

How This Book Is Organized

The first part of this book contains some general information about the Collection Classes and
the categories by which they are organized.The reference pages in this book describe the
classes in alphabetical order, with the methods of each class given in alphabetical order
following their corresponding class.

The reference page for a class contains the following topics:

Description: A description of the class.

File Stem: The file stem for the class’s IDL interface specification (.idl) file
and its usage binding (.h/.xh) files.

Base: The class’s direct base (parent) classes.

Ancestor Classes: The class’s ancestor (indirect base) classes.

Metaclass: The class’s metaclass.

New Methods: The names of the methods that the class introduces

(grouped roughly according to purpose).

Each new method is documented on a separate reference page.
Overriding Methods: The names of the methods that the class overrides from

ancestor classes

The reference page for a method contains the following topics:

Purpose: The purpose of the method in brief.

Syntax: The method’s C/C++ procedure prototype (which includes the
method procedure’s return type and the names and types of its
parameters). The in/out/inout keywords associated with each of the
method’s parameters in the method’s IDL declaration are also
shown. These keywords are shown for information only;
they are not actually present in the method procedure prototype.

Description: A description of the method’s use.

Parameters: A description of each of the method procedure’s parameters.
Return Value: A description of the method’s return value.

Example: An example of using or overriding the method, if available.

Although methods of SOM classes are language neutral (i.e., they
can be invoked from any programming language that can use
the SOMobjects system), the examples given here are written in C.
Original Class: The name of the class that introduces the method
(the class is documented separately in this book).
Related Information: Related methods that can be found in this book.

Collection Classes Reference Manual Xi

Who Should Use This Book

Xii

This book is for the professional programmer using the SOMobjects Toolkit to build object-
oriented class libraries or application programs that use SOM class libraries or the frameworks
in the SOMobjects Toolkit.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using an
object-oriented programming language is helpful, but not essential.

SOMobjects Developer Toolkit

Collection Classes Reference Manual

Basics for Using the Collection Classes

The Collection Classes constitute a large group of classes and methods provided for the
programmer’s convenience. Collection Classes — sometimes also called Foundation Classes
— are a set of classes whose purpose is to contain other objects. These classes and their
related methods implement most of the common data structures encountered in programming,
thus relieving the programmer of those coding tasks. The collection classes can be used in
client code “as is,” or they can be used as the basis for deriving new classes.

Categories of Collection Classes

The collection classes are organized into the following categories:

e Abstract classes Define the conceptual operations that are implemented by
methods in other (sub)classes.

e Main collection classes Represent each of the implemented data structures for col-
lecting elements into a group.

e lterator classes Define an iterator class corresponding to each of the main
collection classes, enabling clients to iterate through each of
the objects in the collection.

e Mixin classes Define characteristics that apply to more than one kind of
collection class, such as ordering or linking. A collection class
may also require certain mixin characteristics in objects that it
collects. To facilitate this, a mixin class can be “mixed in” with
an existing user class to derive a new “collectible” class.

e Supporting classes Provides additional capabilities used internally by collection
classes; is of interest primarily to those deriving new collection
classes.

Each group of the foregoing classes is discussed more thoroughly in subsequent topics, with
particular emphasis on the main collection classes.

IsSame vs. IsEqual comparisons

The distinction between the IsSame vs. IsEqual operation is an important concept when
making comparisons. The various collection classes use one or the other of these approaches
to compare contained objects. The operations are defined as follows:

1. IsSame is true when two objects are really the same object. This means “both”
objects are literally the same object; that is, both parts of a comparison are testing the
same instantiation.

2. IsEqual is true when two objects are equivalent objects. This would occur when two
different instantiations contain the same values, or at least values which, for the sake
of the comparison, can be considered the same. Stated differently, the two instantia-
tions are isomorphic.

Collection Classes Reference Manual 1

Class inheritance vs. element inheritance
There are two distinct aspects of inheritance that pertain to each class:

1. The inheritance of the collection class itself that is derived from its parent or base
class.

2. Theinheritance of the elements or objects that can be inserted into a collection class
as a value.

Do not assume that these two inheritances are the same. There are times when a collection
class has one parent, but the objects to be inserted into the collection class may have a totally
different parent. Further, a collection class may mandate that elements (or values) meet certain
inheritance requirements before the elements can be stored in that collection container.

The subsequent topics describing each collection class also discuss any pertinent inheritance
restrictions of the class and its contained elements.

Object-initializer methods

Most of the collection classes provide optional initializers. These are methods with which a
newly created instance can be initialized to some state other than its default. All initializer
methods use the following format:

somf<className>Init<optional postfix to distinguish between initializers>

The initializers can also be used to reset certain default properties of the collection classes.
For example, although the somf_THashTable class uses an IsSame approach for comparing
objects, the initializer method could be used to cause an instance of somf_THashTable to
compare using Isequal instead.

Some initializer methods cannot be overridden by inheriting classes. That is, the initializer
methods can be used, but they cannot be redefined.

Naming conventions

The class names for Mixin classes all begin with the prefix somf_M. All other collection classes
have names beginning with the prefix somf_T.

The method names of methods defined by the collection classes all begin with the prefix somf,
without an underscore after the prefix.

2 SOMobjects Developer Toolkit

Abstract Classes

The Annotated C++ Reference Manual® describes an abstract class as follows: “The abstract
class mechanism supports the notion of a general concept, such as a shape, of which only
more concrete variants, such as circle and square, can actually be used. An abstract class
can also be used to define an interface for which derived classes provide a variety of imple-
mentations.”

The concept of an abstract base class, which was briefly discussed earlier in this manual, is a
C++ variation on the abstract class. An abstract base class is a class that not only describes the
general concept, it also can not be instantiated. Another aspect of the abstract base class is the
notion of pure virtual function. Any child of the parent abstract base class must override each
pure virtual function (method) in order to use the function.

While the idea of a pure virtual function is primarily a C++ concept, itis a valid conceptin SOM as
well. This is especially true when defining basic behavior in a parent class that applies for all
children of that class. This concept allows class implementors the flexibility to use either of two
approaches:

1. Declare an interface in the parent class to a method that all children must override
and redefine. If the method is not overridden, the parent class will print a correspond-
ing message and processing will halt.

2. Declare and define an interface in the parent to a method that the children can either
accept as their base definition or can override and redefine.

The somf_Tlterator class provides an example of an abstract class which declares a method
interface in the parent that all children must override and redefine. Specifically, the
somf_Tlterator class declares the methods somfFirst and somfNext, which all children
derived from somf_Tlterator must override.

The Abstract Classes include the following classes:
somf_TCollection — Represents a group of objects.
somf_Tlterator — Declares the behavior common to all iterator classes. An
iterator for a particular collection class will iterate over

each element contained in an object of that class.

somf_TSequence — Declares the behavior common to all collections whose
elements are ordered.

somf_TSequencelterator — Declares the behavior of all iterators for children of the

somf_TSequence class. This class is also a child of the
somf_Tlterator class.

1. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual (Addison—Wesley
Publishing Company, 1992).

Collection Classes Reference Manual 3

Main Collection Classes

The set of main collection classes contains data structure classes for the following kinds of data
structures, as described in the subsequent classes:

somf_THashTable — A table consisting of (key, value) pairs. The “key” provides
the means for mapping into the table, and the “value” is the
data element to be stored in the hash table.

somf_TDictionary — An unordered data structure with (key, value) pairs.

somf_TSet — An unordered collection of objects where the objects can
only appear once.

somf_TDeque — A queue, stack, or deque collection.
somf_TPrimitiveLinkedList
— A collection where each element in the list is linked to the

element in front of it and also to the element behind it.

somf_TSortedSequence — A collection where the order of its elements is determined
by how those elements relate to each other.

somf_TPriorityQueue — A special case of the sorted sequence.

4 SOMobjects Developer Toolkit

Choosing the best class

If you are unsure which main collection class you should use, the following selection chart may
prove helpful.

Selection chart for the Main Collection Classes

Do you plan to insert

an element into the

collection more than
once?

Consider either a Do you plan to use
somf_TPrimitiveLinkedList (pg 199) (key,value) pairs where the
ora key is another element, not
somf_TSet (pg 266) an index?

no yes

Will the elements in the collection Consider either a
be ordered based on how they somf_THashTable (pg 154)
relate to each other? ora
(forexample: A >= B >= Q) somf_TDictionary (pg 103)

no yes

Consider using a Consider either a
somf_TDeque (pg 59) somf_TPrlorlg(gueue(pg 221)
somf_TSortedSequence (pg 300)

Figure 1. Collection class selection chart

Collection Classes Reference Manual 5

lterator Classes

Each of the main collection classes has a corresponding iterator class defined for it. An iterator
for a particular object will iterate over each contained object in the collection. To illustrate,
the following example uses an iterator of class somf_TSetlterator to iterate over each element
in an object of the somf_TSet class.

somf TSet set;

somf TSetIterator itr;
somf MCollectible obj;
Environment *ev;

set = somf TSetNew() ;
ev = somGetGlobalEnvironment () ;

/* A bunch of stuff happens to set */

itr = somf_ TSet_ somfCreatelterator (set,ev);
obj = somf TSetIterator somfFirst (itr,ev);
while (obj != SOMF NIL)

{

/* do something to obj */
obj = somf TSetIterator somfNext (itr,ev);

}

The somfFirst method is used to get the first element in the collection, and the somfNext
method is used thereafter to get each “next” element. Using an iterator allows you to sequen-
tially look at each element in the collection and do some appropriate processing on it.

Notice that the iterator was initialized using the method somfCreatelterator. All classes that
inherit from somf_TCollection must provide a somfCreatelterator method. This shows one of
the two ways to initialize an iterator; the other way is to use the constructor-initializer associated
with the iterator. For example, itr could have been declared using:

somf TSetIterator *itr;
itr = somf TSetIteratorNew() ;
somf TSetIterator somfTSetIteratorInit(itr, ev, set);

Note: Some people may wonder why the iterator logic was not included in the main collection
classes, rather than being in a separate class. One reason was so that the user can create
multiple iterators for a single instance of a collection class. If the methods were part of the main
collection classes, each instance would be limited to the one iterator that came with it.

If a collection changes while the iterator is in use, the iterator becomes invalid and will issue a
notice that it cannot continue to the next element. So, for example, if a client program calls the
collection’s somfAdd method after starting to iterate through the collection, the iterator will not
allow processing to continue. The iterator will have to be reset, and the easiest way to do that is
to call the iterator’s somfFirst method and start over.

If a collection is ordered, the iterator returns its elements in the correct order. If the collection is
unordered or partially ordered (like somf_TPriorityQueue), the iterator returns its elements in
some random order.

6 SOMobjects Developer Toolkit

Mixin Classes

A Mixin class is a class designed “to be mixed in together with other classes to produce new
subclasses.”? Mixin classes do not necessarily describe stand-alone characteristics — just
characteristics that may be common to more than one kind of class. For example, classes
describing a “car” or a “dress” might both inherit from a Mixin class describing “red.”

Another characteristic of mixin classes is that they inherit only from other mixin classes (not
including SOMObject). A mixin class can not inherit from some other base class without a
somf_M prefix.

For any object to be eligible for insertion into one of the main collection classes, that object
must inherit from a Mixin class (see the table below). This is necessary because the mixin
class declares certain behavior that the main collection class requires in the object in order to
process it. For example, the somf_McCollectible mixin class declares the somflsEqual
method that is needed to compare objects in almost every collection.

To utilize a collection class for storing their own objects, programmers must first define a class
whose instances will contain the required mixin characteristics. By using multiple inheritance, a
class can inherit from zero or more mixin classes, as well as from its logical parent (if it has a
logical parent). For example, if you want to store objects in a sorted sequence structure of class
somf_TSortedSequence, those objects must be instances of a class defined to inherit charac-
teristics from the somf_MOrderableCollectible mixin class, such as:

interface MySortSegData : MyData, somf MOrderableCollectible

There are three important mixin classes used by the main collection classes:

somf_MCollectible — Defines the generic methods needed by objects inserted
into any of the collections classes. It provides the profile for
the methods somflsEqual, somflsSame, and somfHash.

somf_MLinkable — Defines the general characteristics of objects that contain
links.

somf_MOrderableCollectible
— Defines the general characteristics of objects that are
ordered.

The following table maps each main collection class to the mixin class from which an object
must inherit in order for that object to be eligible for insertion into the corresponding main
collection class:

Mixin Class from which an

Main Collection Class inserted object must inherit
somf_TDeque somf_MCollectible
somf_TDictionary somf_MCollectible
somf_THashTable somf_MCollectible
somf_TPrimitiveLinkedList somf_MLinkable
somf_TPriorityQueue somf_MOrderableCollectible
somf_TSet somf_MCollectible
somf_TSortedSequence somf_MOrderableCollectible

2. Grady Booch, Object Oriented Design with Applications (Redwood City, California: The Benjamin/
Cummings Publishing Company, 1991), pg. 58

Collection Classes Reference Manual 7

Supporting Classes

Many of the main collection classes use supporting classes. The somf_TSortedSequence
class, for example, uses the supporting class somf_TSortedSequenceNode to define the
behavior of a single node in a sorted sequence collection.

Included are the following supporting classes:
somf_TAssoc — Is used to hold a pair of objects.

somf_TDequeLinkable — Inherits from somf_MLinkable and provides a generic ver-
sion of somf_MLinkable containing a long value. The
somf_TDequeLinkable class is used by somf_TDeque.

somf_TSortedSequenceNode
— Represents a node in a tree containing elements of the
somf_MOrderableCollectible class. It contains a key (the
somf_MOrderableCollectible) and a link to a left child
and a right child.

somf_TCollectibleLong — Provides a generic somf_MCaollectible class containing a
long value.

The somf_TDequeLinkable and somf_TSortedSequenceNode classes will probably not be
of particular interest unless you plan to derive a new collection class. somf_TAssoc may only
be of interest if you are working with somf_THashTable or somf_TDictionary, since these two
classes store key, value pairs. somf_TCollectibleLong will be of interest if you need a generic
somf_MCollectible containing a long. somf_TCollectibleLong is not used by any of the
other Collection Classes.

8 SOMobjects Developer Toolkit

Inheritance Hierarchy of the Collection Classes

The inheritance hierarchy for the collection classes is depicted in the following chart. Note that
this diagram does not illustrate all of the classes, only those which have some position in the
inheritance hierarchy of the set.

Inheritance hierarchy of collection classes

somf_MCollectible somf_MOrderableCollectible
somf_THashTable
somf_TAssoc
somf_TCollectibleLong
somf_TCollection somf_TSet

somf_TDictionary
somf_TPriorityQueue

somf_TSequenceisomf_TDeque

somf_Tlterator
somf_THashTablelterator
somf_TSetlterator
somf_TDictionarylterator
somf_TPriorityQueuelterator
somf_TSequencelterator

somf_MLinkable ——— somf_TDequeLinkable

somf_TSortedSequence

somf_TDequelterator

somf_TSortedSequencelterator

Figure 2. Collection classes inheritance hierarchy

Collection Classes Reference Manual 9

Utility Collection Classes by Category
Following is the entire list of utility collection classes.
Abstract Classes

somf_TCollection
somf_Tlterator
somf_TSequence
somf_TSequencelterator

Main Collection Classes

somf_TDeque
somf_TDictionary
somf_THashTable
somf_TPrimitiveLinkedList
somf_TPriorityQueue
somf_TSet
somf_TSortedSequence

Iterator Classes

somf_TDequelterator
somf_TDictionarylterator

somf THashTablelterator
somf_TPrimitiveLinkedListlterator
somf_TPriorityQueuelterator
somf_TSetlterator
somf_TSortedSequencelterator

Mixin Classes

somf_MCollectible
somf_MLinkable
somf_MOrderableCollectible

Supporting Classes

somf_TAssoc
somf_TCollectibleLong
somf_TDequeLinkable
somf_TSortedSequenceNode

10

SOMobjects Developer Toolkit

somf_MCollectible class

somf_MCollectible Class

Description

The somf_MCollectible class represents the generic class from which most other collection
classes are derived. It can be critical for subclasses to define some or all of the methods
presented below.

When you link, include the following library reference to get access to this class: somtk

The primary reason new classes inherit from somf_MCollectible is so that instances of the
inheriting class can be inserted into one of the main collection classes (that is, into a
somf_THashTable, somf_TSet, somf_TDictionary, or whatever).

All classes that inherit from somf_MCollectible must override either method somflsEqual or
somflsSame, depending on which method the new class plans to use for comparison. The
somfHash method will probably need to be overridden too.

This class is not thread-safe.

File Stem

mcollect

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods

somfClone
somfClonePointer
somfHash
somflsEqual
somflsSame
somflsNotEqual

Overriding Methods

None.

Typedefs
The following typedefs are defined in the somf_MCollectible class:

somf_MCollectibleCompareFn
A method pointer to a somflsEqual or somflsSame method.

somf_MCollectibleHashFn
A method pointer to a somfHash method.

Collection Classes Reference Manual 11

somf_MCollectible class

Defines
The following defines originate in this class:

SOMF_NIL A representation of nil used by the collection classes.
SOMF_CALL_COMPARE_FN

A define to help call the method pointed to by somf_MCaollectibleCompareFn.
SOMF_CALL_HASH_FN

A define to help call the method pointed to by somf_MCollectibleHashFn.

12 SOMobjects Developer Toolkit

somf_MCollectible class

somfClone Method

Pu rpose
Provides a general polymorphic duplication operation.
IDL Syntax
somf_MCollectible somfClone ();
Description
The somfClone method provides a general polymorphic duplication operation.
Parameters
receiver A pointer to an object of class somf_MCollectible.
ev A pointer to the Environment structure for the calling method.

Return Value

This method returns a pointer to a ‘new’ object of the same class as the receiver. The receiving
object must be an object of the somf_MCollectible class or of a class that inherits from
somf_MCollectible. The somfClone method determines the true class of the receiver and
creates a new instance of that class, and then returns a pointer to that instance.

Example
somf MCollectible clone;
somf_ TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment () ;

SS

somf_ TSortedSequenceNew () ;

clone = somfClone(ss,ev);
somPrintf ("\n Clone returned Class %s\n”, _somGetClassName (clone)) ;

_somFree (ss);
_somFree (clone);

Original Class
somf_MCollectible

Related Information
Methods: somfClonePointer

Collection Classes Reference Manual 13

somf_MCollectible class

somfClonePointer Method

Pu rpose
Returns a pointer to a Clone.
IDL Syntax
somf_MCollectible somfClonePointer (in somf_MCollectible clonee);
Description
The somfClonePointer method returns a pointer to a Clone.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_MCollectible.
ev A pointer to the Environment structure for the calling method.
clonee A pointer to the somf_MCollectible to be cloned.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to a ‘new’ instance of the calling class, which inherits from the
somf_MCollectible class.

SOMF_NIL The clonee is nil, so a clone could not be created.

Example

somf MCollectible clone;
somf_ TSortedSequence ss;
Environment *ev;

ev

somGetGlobalEnvironment () ;

SS

somf TSortedSequenceNew () ;

clone = somfClonePointer (ss,ev,ss);
somPrintf ("\n Clone returned Class %s\n”, _somGetClassName (clone)) ;

_somFree (ss);
_somFree (clone);

Original Class
somf_MCollectible

Related Information
Methods: somfClone

14 SOMobjects Developer Toolkit

somf_MCollectible class

somfHash Method

Pu rpose
Returns a value suitable for use as a hashing probe for the receiving object.

IDL Syntax

long somfHash ();

Description

The somfHash method returns a value suitable for use as a hashing probe for the receiving
object.

This method should be overridden if a class inherits from somf_MCollectible. The default
function will simply return the address of the object. The default function is almost certainly not
adequate if you are overriding somflsEqual, because you need to make sure that all objects
that “are equal” to each other return the same hash value.

Parameters
receiver A pointer to an object of class somf_MCollectible.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the hash value for the receiving object.

Example

<Your class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

obj = <Your class which inherits from somf MCollectible>New() ;
somPrintf (” The Hashing probe for obj is %d\n”, _somfHash (obj,ev));
_somFree (obj);

Original Class
somf_MCollectible

Collection Classes Reference Manual 15

somf_MCollectible class

somflsEqual Method

Purpose

IDL Syntax

Returns TRUE if a given obj is isomorphic to the receiving object.

boolean somflsEqual (in somf_MCollectible obj);

Description

The somflsEqual method returns TRUE if another specified obj is isomorphic to the receiving
object.

Most utility classes allow you to specify what methods to use when comparing objects for
insertion, deletion, etc. The choice is to use either the somflsEqual method or else the
somflsSame method.

This method must be overridden if a class inherits from somf_McCollectible. If it is not
overridden, and this method is used, an error message is written and processing will end.

Parameters

receiver A pointer to an object of class somf_MCollectible.
ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that the receiving object will be
compared against.

Return Value

Example

This method returns a boolean value:
TRUE obj is equal to the receiving object.

FALSE obj is not equal to the receiving object.

You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. The following example
shows how to use this method once it is overridden.

<Your class which inherits from somf MCollectible> obj;
<Your class which inherits from somf MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

obj = <Your class which inherits from somf MCollectible>New() ;
obj2 = <Your class which inherits from somf MCollectible>New() ;

if (somfIsEqual (obj, ev, obj2))
somPrintf (” obj is equal to obj2\n”);

_somFree (obj);
_somFree (obj2);

Original Class

somf_MCollectible

Related Information

16

Methods: somflsNotEqual

SOMobjects Developer Toolkit

somf_MCollectible class

somflsNotEqual Method

Pu rpose
Returns TRUE if a specified obj is not isomorphic to the receiving object.

IDL Syntax

boolean somflsNotEqual (in somf_MCollectible obj);

Description
The somflsNotEqual method returns TRUE if the specified object obj is not isomorphic to the
receiving object.

This method uses the somflsEqual method described on page 16. If a class inherits from
somf_MCollectible, somflsEqual must be overridden for this method to work.

Parameters
receiver A pointer to an object of class somf_MCollectible.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that the receiving object will be
compared against.

Return Value
This method returns a boolean value:

TRUE obj is not equal to the receiving object.

FALSE obj is equal to the receiving object.

Example

<Your class which inherits from somf MCollectible> obj;
<Your class which inherits from somf MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment () ;
obj = <Your class which inherits from somf MCollectible>New() ;
obj2 = <Your class which inherits from somf MCollectible>New() ;

if (somfIsNotEqual (obj, ev, obj2))
somPrintf (” obj is NOT equal to obj2\n”);

_somFree (obj);
_somFree (obj2);

Original Class
somf_MCollectible

Related Information
Methods: somflsEqual

Collection Classes Reference Manual 17

somf_MCollectible class

somflsSame Method

Pu rpose
Performs a pointer comparison between the receiving object and another specified object, obj.
IDL Syntax
boolean somflsSame (in somf_MCollectible obj);
Description
The somflsSame method performs a pointer comparison between the receiving object and
another specified obj.
Parameters
receiver A pointer to an object of class somf_MCollectible.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the somf_MCollectible object that the receiving object will be

compared against.

Return Value
This method returns a boolean value:

TRUE obj is the same as the receiving object.

FALSE obj is not the same as the receiving object.

Example

<Your class which inherits from somf MCollectible> obj;
<Your class which inherits from somf MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment () ;
obj = <Your class which inherits from somf MCollectible>New() ;
obj2 = <Your class which inherits from somf MCollectible>New() ;

if (_somfIsSame (obj, ev, obj2))
somPrintf (” obj is the same as obj2\n”);

_somFree (obj);
_somFree (obj2);

Original Class
somf_MCollectible

18 SOMobjects Developer Toolkit

somf_MLinkable class

somf_MLinkable Class

Description

This class defines the general characteristics of objects that contain links. For example,
somf_TPrimitiveLinkedList uses somf_MLinkable.

When you link, include the following library reference to get access to this class: somtk

Other classes would inherit from somf_MLinkable if the user plans to link one class to another
class, either in a somf_TPrimitiveLinkedList or through another class.

This class is not thread-safe.

File Stem

mlink

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods

somfGetNext
somfSetNext
somfGetPrevious
somfSetPrevious
somfMLinkablelnit

Overriding Methods

sominit

Collection Classes Reference Manual 19

somf_MLinkable class

somfGetNext Method

Pu rpose
Gets a pointer to the next somf_MLinkable object.
IDL Syntax
somf_MLinkable somfGetNext ();
Description
The somfGetNext method gets a pointer to the next object of class somf_MLinkable.
Parameters
receiver A pointer to an object of class somf_MLinkable.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the pointer to the next somf_MLinkable object.

Example

somf MLinkable ml;
somf MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

ml somf MLinkableNew () ;

/* Determine ml’s next pointer */
ml2 = somfGetNext (ml, ev);
_somFree (ml);

Original Class
somf_MLinkable

Related Information
Methods: somfSetNext, somfSetPrevious

20 SOMobjects Developer Toolkit

somf_MLinkable class

somfGetPrevious Method

Pu rpose
Gets a pointer to the previous somf_MLinkable object.
IDL Syntax
somf_MLinkable somfGetPrevious ();
Description
The somfGetPrevious method returns a pointer to the previous object of class
somf_MLinkable.
Parameters
receiver A pointer to an object of class somf_MLinkable.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the pointer the previous somf_MLinkable object.

Example
somf MLinkable ml;
somf MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

ml

somf MLinkableNew () ;

/* Determine ml’s previous pointer */
ml2 = somfGetPrevious (ml, ev);
_somFree (ml);

Original Class
somf_MLinkable

Related Information
Methods: somfSetPrevious, somfGetNext

Collection Classes Reference Manual 21

somf_MLinkable class

somfMLinkablelnit Method

Pu rpose
Initializes a new somf_MLinkable object, given pointers to its next and previous objects.
IDL Syntax
somf_MLinkable somfMLinkablelnit (
in somf_MLinkable n,
in somf_MLinkable p);
Description
The somfMLinkablelnit method initializes a new object of class somf_MLinkable, given
pointers to the new object’s next and previous somf_MLinkable objects.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_MLinkable.
ev A pointer to the Environment structure for the calling method.
n A pointer to the next somf_MLinkable object.
p A pointer to the previous somf_MLinkable object.

Return Value
This method returns a pointer to an initialized somf_MLinkable object.

Example

somf MLinkable ml;
Environment *ev;

ev = somGetGlobalEnvironment () ;

ml = somf MLinkableNew () ;
_somfMLinkableInit (ml, ev, SOMF NIL, SOMF NIL) ;

_somFree (ml);

Original Class
somf_MLinkable

22 SOMobjects Developer Toolkit

somf_MLinkable class

somfSetNext Method

Pur pose
Sets a link pointer to the next somf_MLinkable object, given a pointer to the object that should
come after the receiving object.

IDL Syntax

void somfSetNext (in somf_MLinkable aLink);

Description
The somfSetNext method sets a link pointer to the next object of class somf_MLinkable, given
a pointer to the object that should follow the receiving object.

Parameters
receiver A pointer to an object of class somf_MLinkable.

ev A pointer to the Environment structure for the calling method.

aLink A pointer to the somf_MLinkable object which should be next after the
receiving object.

Return Value
None.

Example
somf MLinkable ml;
somf MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

ml = somf MLinkableNew () ;
ml2 = somf MLinkableNew() ;

/* Set ml’s next and previous pointers */

/* Set ml2 to point to ml as the next link */
_somfSetNext (ml2, ev, ml);

_somFree (ml) ;
_somFree (ml2);

Original Class
somf_MLinkable

Related Information
Methods: somfSetPrevious, somfGetNext

Collection Classes Reference Manual 23

somf_MLinkable class

somfSetPrevious Method

Pu rpose
Sets a link pointer to the previous somf_MLinkable object, given a pointer to the object that
should come before the receiving object.
IDL Syntax
void somfSetPrevious (in somf_MLinkable aLink);
Description
The somfSetPrevious method sets a link pointer to the previous object of class
somf_MLinkable, given a pointer to the object that should precede the receiving object.
Parameters
receiver A pointer to an object of class somf_MLinkable.
ev A pointer to the Environment structure for the calling method.
aLink A pointer to the somf_MLinkable object, which should be previous to the

receiving object.

Return Value
None.

Example
somf MLinkable ml;
somf MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

ml = somf MLinkableNew () ;
ml2 = somf MLinkableNew () ;

/* Set ml’s next and previous pointers */

/* Set ml2 to point to ml as the previous link */
_somfSetPrevious (ml2, ev, ml);

_somFree (ml) ;
_somFree (ml2);

Original Class
somf_MLinkable

Related Information
Methods: somfSetNext, somfGetPrevious

24 SOMobjects Developer Toolkit

somf_MOrderableCollectible class

somf_MOrderableCollectible Class

Description
Characteristics of the somf_MOrderableCollectible class should be mixed into objects that
might need to be ordered. Objects passed to an instance of class somf_TPriorityQueue or
somf_TSortedSequence (or their children) must have somf_MOrderableCollectible mixed
into them.

When you link, include the following library reference to get access to this class: somtk

A class willinherit from somf_MOrderableCollectible if it represents an element in an ordered
collection, such as an element in a somf_TPriorityQueue or somf_TSortedSequence.

All classes that inherit from somf_MOrderableCollectible must override the somflsEqual
method that is inherited from somf_MCaollectible, as well as somf_MOrderableCollectible’s
somflsLessThan and somflsGreaterThan methods.

This class is not thread-safe.

File Stem

morder
Base

somf_MCollectible
Metaclass

SOMClass

Ancestor Classes
somf_MCollectible, SOMObject

New Methods

somflsGreaterThan
somflsLessThan
somfCompare
somflsGreaterThanOrEqualTo
somflsLessThanOrEqualTo

Overriding Methods

None
Typedefs
The following typedefs are defined in the somf_MOrderableCollectible class:
somf_MOrderableCompareFn
A method pointer to a somflsLessThan or somflsGreaterThan method.
somf_MBetterOrderableCompareFn
A method pointer to a somfCompare method.
Enums

The following enum is defined in this class:

EComparisonResult
An enum with the values:
kLessThan
kEqual
kGreaterThan

Collection Classes Reference Manual 25

somf_MOrderableCollectible class

Defines
The following defines originate in this class:

SOMF_CALL_ORDERABLE_COMPARE_FN
A define to help call the method pointed to by somf_MOrderableCompareFn.

SOMF_CALL_BETTER_ORDERABLE_COMPARE_FN
A define to help call the method pointed to by
somf_MBetterOrderableCompareFn.

26 SOMobjects Developer Toolkit

somf_MOrderableCollectible class

somfCompare Method

Purpose

Compares a specified obj to the receiving object, and returns a value indicating ob7j’s compar-
ative size.

IDL Syntax

EComparisonResult somfCompare (in somf_MOrderableCollectible obj);

Description

The somfCompare method compares the specified obj to the receiving object. The return value
indicates whether obj is greater than, less than, or equal to the receiving object.

The somflsEqual method inherited from somf_MCaollectible, as well as the somflsLessThan
and somflsGreaterThan methods of somf_MOrderableCollectible, must be overridden be-
fore this method will work.

Parameters
receiver A pointer to an object of class somf_MOrderableCollectible.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the object to which the receiving object will be compared.

Return Value
There are three possible valid return values for this method:

kLessThan obj is less than the receiving object.
kEqual obj is equal to the receiving object.

kGreaterThan obj is greater than the receiving object.

Example

<Your Class which inherits from somf MOrderableCollectible> al;
<Your Class which inherits from somf MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment () ;
al = <Your Class which inherits from somf MOrderableCollectible>New () ;
a2 = <Your Class which inherits from somf MOrderableCollectible>New () ;

/* Set al and a2 as you wish */

/* Compare al and a2 */

if (_somfCompare(a2,ev,al) == somf MOrderableCollectible kLessThan)
somPrintf (7 al is less than a2\n”);

else
somPrintf (” al is NOT less than a2\n”);

if (_somfCompare(al,ev,a2) ==
somf MOrderableCollectible kGreaterThan)
somPrintf (” a2 is greater than al\n”);
else
somPrintf (” a2 is NOT greater than al”);

Collection Classes Reference Manual 27

somf_MOrderableCollectible class

if (_somfCompare(a2,ev,a2) == somf MOrderableCollectible kEqual)
somPrintf (7 a2 is equal a2\n”);

else
somPrintf (” a2 is NOT equal to a2”);

_somFree (al)
_somFree (a2)

~e ~e

Original Class
somf_MOrderableCollectible

Related Information
Methods: somflsEqual, somflsGreaterThan, somflsLessThan

28 SOMobjects Developer Toolkit

somf_MOrderableCollectible class

somflsGreaterThan Method

Pu rpose
Compares two objects and returns TRUE if a given ob7j is “greater than” the receiving object.

IDL Syntax

boolean somflsGreaterThan (in somf_MOrderableCollectible obj);

Description

The somflsGreaterThan method returns TRUE if the specified object obj is “greater than” the
receiving object.

This method must be overridden if a class inherits from somf_MOrderableCollectible. Ifitis
not overridden, an error message is written and processing will end.

Parameters
receiver A pointer to an object of class somf_MOrderableCollectible.
ev A pointer to the Environment structure for the calling method.

obj A pointer to the object to which the receiving object will be compared.

Return Value

This method returns the boolean values TRUE or FALSE, depending on whether obj “Is Greater
Than” the receiving object.

Example

You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. The following example
shows how you would use this method once it is overridden.

<Your Class which inherits from somf MOrderableCollectible> al;
<Your Class which inherits from somf MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment () ;
al = <Your Class which inherits from somf MOrderableCollectible>New () ;
a2 = <Your Class which inherits from somf MOrderableCollectible>New () ;

/* Set al and a2 as you wish */

/* Compare al and a2 */

if (somfIsGreaterThan (a2,ev,al))

somPrintf (” al is greater than a2\n”);
else

somPrintf (” al is NOT greater than a2\n”);

_somFree (al);
_somFree (a2);

Original Class
somf_MOrderableCollectible

Related Information
Methods: somflsGreaterThanOrEqualTo, somflsLessThan, somflsEqual

Collection Classes Reference Manual 29

somf_MOrderableCollectible class

somflsGreaterThanOrEqualTo Method

Pu rpose
Compares two objects and returns TRUE if a specified obj is “greater than” or “equal to” the
receiving object.
IDL Syntax
boolean somflsGreaterThanOrEqualTo (in somf_MOrderableCollectible obj);
Description
The somflsGreaterThanOrEqualTo method returns TRUE if a specified object obj is “greater
than” or “equal to” the receiving object.
Parameters
receiver A pointer to an object of class somf_MOrderableCollectible.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the object to which the receiving object will be compared.

Return Value

This method returns the Boolean values TRUE or FALSE, depending on whether obj “Is Greater
Than” or "Is Equal To” the receiving object.

Example

<Your Class which inherits from somf MOrderableCollectible> al;
<Your Class which inherits from somf MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

al
a2

<Your Class which inherits from somf MOrderableCollectible>New() ;
<Your Class which inherits from somf MOrderableCollectible>New () ;

/* Set al and a2 as you wish */

/* Compare al and a2 */

if (somfIsGreaterThanOrEqualTo (a2,ev,al))

somPrintf (” al is greater than or equal to a2\n”);
else

somPrintf (” al is NOT greater than or equal to a2\n”);

_somFree (al);
_somFree (a2);

Original Class
somf_MOrderableCollectible

Related Information
Methods: somflsGreaterThan, somflsLessThan, somflsEqual

30 SOMobjects Developer Toolkit

somf_MOrderableCollectible class

somflsLessThan Method

Pu rpose
Compares two objects and returns TRUE if a given ob7j is “less than” the receiving object.

IDL Syntax

boolean somflsLessThan (in somf_MOrderableCollectible obj);

Description

The somflsLessThan method returns TRUE if the specified object obj is “less than” the
receiving object.

This method must be overridden if a class inherits from somf_MOrderableCollectible. Ifitis
not overridden, an error message is written and processing will end.

Parameters
receiver A pointer to an object of class somf_MOrderableCollectible.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the object to which the receiving object will be compared.

Return Value

This method returns the boolean values TRUE or FALSE, depending on whether obj “Is Less
Than” the receiving object.

Example

You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. The following example
shows how you would use this method once it is overridden.

<Your Class which inherits from somf MOrderableCollectible> al;
<Your Class which inherits from somf MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment () ;
al = <Your Class which inherits from somf MOrderableCollectible>New () ;
a2 = <Your Class which inherits from somf MOrderableCollectible>New () ;

/* Set al and a2 as you wish */

/* Compare al and a2 */

if (somfIsLessThan(a2,ev,al))

somPrintf (7 al is less than a2\n”);
else

somPrintf (” al is NOT less than a2\n”);

_somFree (al);
_somFree (a2);

Original Class
somf_MOrderableCollectible

Related Information
Methods: somflsLessThanOrEqualTo, somflsEqual, somflsGreaterThan

Collection Classes Reference Manual 31

somf_MOrderableCollectible class

somfilsLessThanOrEqualTo Method

Pu rpose
Compares two objects and returns TRUE if a given obj is “less than” or “equal to” the receiving
object.
IDL Syntax
boolean somflsLessThanOrEqualTo (in somf_MOrderableCollectible obj);
Description
The somflsLessThanOrEqualTo method returns TRUE if a specified object obj is “less than”
or “equal to” the receiving object.
Parameters
receiver A pointer to an object of class somf_MOrderableCollectible.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the object to which the receiving object will be compared.

Return Value

This method returns the boolean values TRUE or FALSE, depending on whether the specified
obj “Is Less Than” or “Is Equal To” the receiving object.

Example

<Your Class which inherits from somf MOrderableCollectible> al;
<Your Class which inherits from somf MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

al
a2

<Your Class which inherits from somf MOrderableCollectible>New() ;
<Your Class which inherits from somf MOrderableCollectible>New () ;

/* Set al and a2 as you wish */

/* Compare al and a2 */

if (_somfIsLessThanOrEqualTo (a2,ev,al))

somPrintf (” al is less than or equal to a2\n”);
else

somPrintf (” al is NOT less than or equal to a2\n”);

_somFree (al);
_somFree (a2);

Original Class
somf_MOrderableCollectible

Related Information
Methods: somflsLessThan, somflsGreaterThan, somflsEqual

32 SOMobjects Developer Toolkit

somf_TAssoc class

somf _TAssoc Class

Description

File Stem

Base

Metaclass

An object of class somf_TAssoc is used to hold a (key, value) pair of objects. Typically, these
structures are owned by some other higher-level object; specifically, the somf_THashTable
and somf_TDictionary classes use (key, value) pairs that are actually objects of the
somf_TAssoc class.

Objects of the somf_TAssoc class are usually not returned to the user. However, users
implementing their own classes to hold pairs of objects might wish to use somf_TAssoc in their
implementations.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, different tasks should not be setting the key and value. That situation is too prone to
conflicts in setting the key or value correctly, with the result that the instance is in an unaccept-
able state for both tasks.

tassoc

somf_MCollectible

SOMClass

Ancestor Classes

somf_MCollectible, SOMObject

New Methods

somfGetKey
somfGetValue
somfSetKey
somfSetValue
somfTAssocInitM
somfTAssoclnitMM

Overriding Methods

sominit
somuUninit

Collection Classes Reference Manual 33

somf_TAssoc class

somfGetKey Method

Pu rpose
Gets the key of an associated (key, value) pair.
IDL Syntax
somf_MCollectible somfGetKey ();
Description
The somfGetKey method obtains the key of the associated (key, value) pair represented by the
receiving object.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TAssoc.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the key of the associated pair.

Example

Environment *ev;

somf TAssoc obj;
somf_MCollectible key;

ev = somGetGlobalEnvironment () ;
obj = somf TAssocNew () ;

/* Add the key and value to obj */

/* Determine the key of obj */
key = somfGetKey (obj,ev);

_somFree (obj) ;

Original Class
somf_TAssoc

Related Information
Methods: somfSetKey, somfSetValue, somfGetValue

34 SOMobjects Developer Toolkit

somf_TAssoc class

somfGetValue Method

Pu rpose
Gets the value to an associated (key, value) pair.
IDL Syntax
somf_MCollectible somfGetValue ();
Description
The somfGetValue method gets the value to the associated (key, value) pair represented by
the receiving object.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TAssoc.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the value of the associated pair.

Example

Environment *ev;

somf TAssoc obj;
somf_MCollectible value;

ev = somGetGlobalEnvironment () ;
obj = somf TAssocNew () ;

/* Add the value and value to obj */

/* Determine the value of obj */
value = somfGetValue (obj,ev);

_somFree (obj) ;

Original Class
somf_TAssoc

Related Information
Methods: somfSetValue, somfSetKey, somfGetKey

Collection Classes Reference Manual 35

somf_TAssoc class

somfSetKey Method

Pur pose
Sets the key of an associated (key, value) pair.

IDL Syntax
void somfSetKey (in somf_MCollectible k);

Description

The somfSetKey method sets the key of an associated (key, value) pair represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TAssoc.

ev A pointer to the Environment structure for the calling method.

k A pointer to an object of class somf_MCollectible which will be the key of the
associated pair.

Return Value
None.

Example

Environment *ev;
somf TAssoc obj;
somf_MCollectible key;

ev = somGetGlobalEnvironment () ;

obj
key

somf TAssocNew () ;
somf MCollectibleNew () ;

/* Add the key to obj */
__somfSetKey (obj, ev, key) ;

_somFree (obj);
_somFree (key);

Original Class
somf_TAssoc

Related Information
Methods: somfGetKey, somfSetValue, somfGetValue

36 SOMobjects Developer Toolkit

somf_TAssoc class

somfSetValue Method

Pu rpose
Sets the value to an associated (key, value) pair.

IDL Syntax

void somfSetValue (in somf_MCollectible v);

Description

The somfSetValue method sets the value to the associated (key, value) pair represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TAssoc.

ev A pointer to the Environment structure for the calling method.

% A pointerto an object of class somf_MCollectible which will be the value of the
associated pair.

Return Value
None.

Example

Environment *ev;
somf TAssoc obj;
somf_MCollectible value;

ev = somGetGlobalEnvironment () ;
obj = somf TAssocNew () ;
value = somf MCollectibleNew () ;

/* Add the value to obj */
_somfSetValue (obj,ev,value) ;

_somFree (obj);
_somFree (value);

Original Class
somf_TAssoc

Related Information
Methods: somfGetValue, somfGetKey, somfSetKey

Collection Classes Reference Manual 37

somf_TAssoc class

somfTAssoclnitM Method

Pu rpose
Initializes a somf_TAssoc object to a given key (k). The value (v) is set to SOMF_NIL.
IDL Syntax
somf_TAssoc somfTAssocInitM (in somf_MCollectible k);
Description
The somfTAssocInitM method initializes an object of class somf_TAssoc to a given key (k).
The value (V) is set to SOMF_NIL. An object of class somf_TAssoc is a (key, value) pair.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TAssoc.
ev A pointer to the Environment structure for the calling method.
k A pointer to an object of class somf_MCollectible that will be the key of the

associated pair.

Return Value
This method returns a pointer to an initialized somf_TAssoc object.

Example

Environment *ev;
somf_TAssoc obj;

ev = somGetGlobalEnvironment () ;

obj = somf TAssocNew () ;
_somfTAssocInitM(obj, ev, SOMF NIL);

_somFree (obj);
Original Class
somf_TAssoc

Related Information
Methods: somfTAssocInitMM

38 SOMobjects Developer Toolkit

somf_TAssoc class

somfTAssoclnitMM Method

Pu rpose
Initializes a somf_TAssoc object to a given key (k) and value (v).
IDL Syntax
somf_TAssoc somfTAssocInitMM (
in somf_MCollectible k,
in somf_MCollectible v);
Description
The somfTAssocInitMM method initializes an object of class somf_TAssoc to a given key (k)
and value (v). An object of class somf_TAssoc is a (key, value) pair.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TAssoc.
ev A pointer to the Environment structure for the calling method.
k A pointer to an object of class somf_MCollectible that will be the key of the

associated pair.

\; A pointer to an object of class somf_MCollectible that will be the value of the
associated pair.

Return Value
This method returns a pointer to an initialized somf_TAssoc object.

Example

Environment *ev;
somf TAssoc obj;

ev = somGetGlobalEnvironment () ;

obj = somf TAssocNew () ;
_somfTAssocInitMM (obj, ev, SOMF NIL, SOMF NIL) ;

_somFree (obj);

Original Class
somf_TAssoc

Related Information
Methods: somfTAssocInitM

Collection Classes Reference Manual 39

somf_TCollectibleLong class

somf_TCollectibleLong Class

Description
This class provides the user with a generic somf_MCollectible class containing a long value.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, you do not want different tasks setting the value. That situation is too prone to conflicts
in setting the value correctly, with the result that the state of the instance is unacceptable for all
but one task.

This class is reentrant.

File Stem

tclong

Base
somf_MCollectible

Metaclass
SOMClass

Ancestor Classes
somf_MCollectible, SOMObject

New Methods

somfGetValue
somfSetValue
somfTCollectibleLonglnit

Overriding Methods

sominit
somflsEqual
somfHash

40 SOMobjects Developer Toolkit

somf_TCollectibleLong class

somfGetValue Method

Pu rpose
Gets the value of the long in the receiving object.

IDL Syntax

long somfGetValue ();

Description
The somfGetValue method gets the value of the long in the receiving object.

Parameters
receiver A pointer to an object of class somf_TCollectibleLong.

ev A pointer to the Environment structure for the calling method.

Return Value
Returns the value of the long.

Example

somf TCollectibleLong 1;
Environment *ev;

ev = somGetGlobalEnvironment () ;
1 = somf TCollectibleLongNew () ;

somPrintf (“\n Value of 1= %d\n”, somfGetValue(l,ev));

_somFree (1);

Original Class
somf_TCollectibleLong

Related Information
Methods: somfSetValue, somflsEqual

Collection Classes Reference Manual 41

somf_TCollectibleLong class

somfHash Method

Pu rpose
Returns a value suitable for use as a hashing probe for the receiving object. Actually, it returns
the value of the long.
IDL Syntax
long somfHash ();
Description
The somfHash method returns a long value suitable for use as a hashing probe for the receiving
object.
Parameters
receiver A pointer to an object of class somf_TCollectibleLong.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the hash value for the receiving object.

Example

somf TCollectibleLong 1;
Environment *ev;

ev = somGetGlobalEnvironment () ;
1 = somf TCollectibleLongNew () ;
somPrintf (“\n Hash Value of 1= %d\n”, _somfHash(l,ev));

_somFree (1);

Original Class
somf_MCollectible (overridden here)

Related Information
Methods: somfGetValue, somfSetValue, somfTCollectibleLonglnit, somflsEqual

42 SOMobjects Developer Toolkit

somf_TCollectibleLong class

somflsEqual Method

Pu rpose
Compares two objects and returns TRUE if a given obj is isomorphic to the receiving object.
IDL Syntax
boolean somflsEqual (in somf_MCollectible obj);
Description
The somflsEqual method returns TRUE if a specified object ob7j is isomorphic to the receiving
object.
All of the utility classes allow you to specify what methods to use when comparing objects for
insertion, deletion, etc.
Parameters
receiver A pointer to an object of class somf_TCollectibleLong.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the somf_MCollectible object that the receiving object will be

compared against.

Return Value
This method returns a boolean value:

TRUE obj is equal to the receiving object.

FALSE obj is not equal to the receiving object

Example

somf TCollectibleLong 1;
somf TCollectibleLong 11;
Environment *ev;

ev = somGetGlobalEnvironment () ;
1 = somf TCollectibleLongNew () ;
11 = somf TCollectibleLongNew () ;
_somfTCollectibleLongInit (11,ev,220) ;

/* 1f (*1 == *11) */
if (somfIsEqual(l,ev,11))

somPrintf (“\n Why is 1 == 11?\n”);
else

somPrintf (“\n 1 != 11\n”);

_somFree (1) ;
_somFree (11);

Original Class
somf_MCollectible (overridden here)

Related Information
Methods: somfGetValue, somfSetValue, somfTCollectibleLonglInit

Collection Classes Reference Manual 43

somf_TCollectibleLong class

somfSetValue Method

Pu rpose
Sets the value of a long in a somf_TCollectibleLong object.
IDL Syntax
void somfSetValue (in long v);
Description
The somfSetValue method sets the long value in an object of class somf_TCollectibleLong.
Parameters
receiver A pointer to an object of class somf_TCollectibleLong.
ev A pointer to the Environment structure for the calling method.
% The value of the long.

Return Value

None.

Example

somf TCollectibleLong 1;
Environment *ev;

ev = somGetGlobalEnvironment () ;
1 = somf TCollectibleLongNew () ;

_somfSetValue (1,ev,220);
somPrintf (“\n Value of 1= %d\n”, _somfGetValue(l,ev));

_somFree (1) ;

Original Class
somf_TCollectibleLong

Related Information
Methods: somfGetValue, somfTCollectibleLonglInit, somflsEqual

44 SOMobjects Developer Toolkit

somf_TCollectibleLong class

somfTCollectibleLonglnit Method

Pu rpose
Initializes a new object of class somf_TCollectibleLong.
IDL Syntax
somf_TCollectibleLong somfTCollectibleLonglnit (in long v);
Description
The somfTCollectibleLonglnit method initializes a new somf_TCollectibleLong object.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TCollectibleLong.
ev A pointer to the Environment structure for the calling method.
v A pointer to the initial value of the somf_TCollectibleLong.

Return Value
This method returns a pointer to an initialized object of class somf_TCollectibleLong.

Example

somf TCollectibleLong 1;
Environment *ev;

ev = somGetGlobalEnvironment () ;
1 = somf TCollectibleLongNew () ;
_somfTCollectibleLongInit (1,ev,44) ;
_somFree (1) ;

Original Class

somf_TCollectibleLong

Related Information
Methods: somfSetValue, somfGetValue, somflsEqual, somfHash

Collection Classes Reference Manual 45

somf_TCollection class

somf_TCollection Class

Description

File Stem

Base

Metaclass

This class represents a group of objects. It is implemented as an abstract class from which
almost all main collection classes inherit methods.

When you link, include the following library reference to get access to this class: somtk

When creating an unordered collection, your classes should inherit from somf_TCollection.
(When creating an ordered collection, your classes should inherit from somf_TSequence.)
The somf_TCollection class provides the pure virtual functions that constitute the framework
for the methods that should be available in an unordered collection.

Note: Thesomf_TCollection class uses the somflsEqual method as the default comparison
function. (That is, if keyl="Bart” and key2="Bart”, then keyl and key2 are
equal.) If you do not want to use the somflsEqual method to equate entries, use the
initialization methods to change to the somflsSame method.

tcollect

somf_MCollectible

SOMClass

Ancestor Classes

somf_MCollectible, SOMObject

New Methods

somfAdd
somfAddAll
somfRemove
somfRemoveAll
somfDeleteAll
somfCount
somfMember
somfCreatelterator
somfTestFunction
somfSetTestFunction
somfTCollectionlnit

Overriding Methods

46

somflsEqual

SOMobjects Developer Toolkit

somf_TCollection class

somfAdd Method

Pu rpose
Adds a specified obj to a collection.
IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);
Description
The somfAdd method adds a specified object ob5 to the collection represented by the receiv-
ing object.
Every class that inherits from this class must override this method for that class to work
correctly.
Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.
obj A pointer to an object of class somf_MCollectible that will be added to the

receiving object.

Return Value
Two valid return values are possible for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that had to be removed in order to
add obj. (Recall that some of the main collection classes will only accept one
occurrence of an object where the somflsEqual or somflsSame method
would be TRUE.)

SOMF_NIL No somf_MCollectible had to be removed in order to add ob7j.

Example

You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method looks when it is invoked, see somf_TDeque, somf_TDictionary, or any of the other
classes that inherit from somf_TCollection.

Original Class
somf_TCollection

Related Information
Methods: somfAddAll

Collection Classes Reference Manual 47

somf_TCollection class

somfAddAll Method

Pu rpose
Adds all of the objects from a given collection into the receiving object.

IDL Syntax

void somfAddAll (in somf_TCollection col);

Description

The somfAddAIll method adds all of the objects from a specified collection to the receiving
object. Essentially, this is equivalent to passing in an iterator for the collection and then adding
each element of the collection to the receiving object.

Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.
col A pointer to an object of class somf_TCollection. All of the objects in the

collection pointed to by col will be added to the receiving object.

Return Value
None.

Example

somf TSet sl1;
somf TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

sl

somf TSetNew () ;
s2 ;

somf_ TSetNew ()

/* Add All of the objects in s2 to sl */
_somfAddAll (s1, ev, s2);

_somFree (sl);
_somFree (s2);

Original Class
somf_TCollection

Related Information
Methods: somfAdd

48 SOMobjects Developer Toolkit

somf_TCollection class

somfCount Method

Pu rpose
Gets the number of objects in a collection.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the collection represented by the
receiving object, and returns that number.
Every class that inherits from the somf_TCollection class must override this method for that
class to work correctly.
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method must be fully qualified (for example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfCount (ev) ;

Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a long indicating the number of objects in the receiving object.

Example

You cannot use this method directly from the somf_TCollection class; it must be overridden.
If you invoke this method directly, an error message is written and processing will end.
For examples of how this method looks when it is invoked, see somf TDeque or
somf_TDictionary or any of the other classes that inherit from somf_TCollection.

Original Class
somf_TCollection

Collection Classes Reference Manual 49

somf_TCollection class

somfCreatelterator Method

Pu rpose
Returns a new iterator that is suitable for iterating over the objects in this collection.

IDL Syntax

somf_Tlterator somfCreatelterator ();

Description
The somfCreatelterator method returns a new iterator that is suitable for iterating over the
objects in the collection represented by the receiving object.

Every class that inherits from the somf_TCollection class must override this method for that
class to work correctly.

Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example

You cannot use this method directly from the somf_TCollection class; it must be overridden.
If you invoke this method directly, an error message is written and processing will end.
For examples of how this method looks when it is invoked, see somf_TDeque or
somf_TDictionary or any of the other classes that inherit from somf_TCollection.

Original Class
somf_TCollection

50 SOMobjects Developer Toolkit

somf_TCollection class

somfDeleteAll Method

Pu rpose
Removes all of the objects from the receiving object and deallocates the storage that these
objects might have owned. (That is, the destructor function is called for each object in the
collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the receiving object and deallocates
the storage that these objects might have owned (that is, the destructor function is called for
each object in the collection).
Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to ’A’is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.
Every class that inherits from the somf_TCollection class must override this method for that
class to work correctly.
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfDeleteAll (ev) ;

Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.

Return Value

Example

None.

You cannot use this method directly from the somf_TCollection class; it must be overridden.
If you invoke this method directly, an error message is written and processing will end.
For examples of how this method looks when it is invoked, see somf TDeque or
somf_TDictionary or any of the other classes that inherit from somf_TCollection.

Original Class

somf_TCollection

Collection Classes Reference Manual 51

somf_TCollection class

somflsEqual Method

Pu rpose
Compares two objects and returns TRUE if a specified ob7j is isomorphic to the receiving object.
IDL Syntax
boolean somflsEqual(in somf_MCollectible obj);
Description
The somflsEqual method returns TRUE if a given object obj is isomorphic to the receiving
object.
All of the utility classes allow you to specify what methods to use when comparing objects for
insertion, deletion, etc.
Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the somf_MCollectible object that the receiving object will be

compared against.

Return Value
This method returns a boolean value:

TRUE obj is equal to the receiving object.

FALSE obj is not equal to the receiving object.

Original Class
somf_MCollectible (overridden here)

52 SOMobjects Developer Toolkit

somf_TCollection class

somfMember Method

Purpose

Gets an obj in the collection.

IDL Syntax

somf_MCollectible somfMember (in somf_MCaollectible obj);

Description

The somfMember method determines whether a specified obj is a member of the collection
that is the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf _TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfMember). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:

Parameters

d->somfMember (ev, obj) ;

receiver A pointer to an object of class somf_TCollection.

ev

obj

Return Value

A pointer to the Environment structure for the calling method.

A pointer to the object of class somf_MCollectible that may or may not be a
member of the collection.

Two possible return values are valid for this method:

somf_MCollectible

SO

Example

A pointer to the object the method determined as the member.

MF_NIL Indicates the object was not found.

somf TDeque dqg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf_ TDequeNew () ;
obj = <your Class which inherits from somf MCollectiblesNew() ;

/* See if obj is in dg */
if (somfMember (dg, ev, obj) != SOMF NIL)
somPrintf ("\n obj is a Member\n”) ;
else
somPrintf ("\n ERROR: obj should be a Member\n”) ;

_somFree (dq) ;
_somFree (obj);

Original Class
somf_TCollection

Collection Classes Reference Manual 53

somf_TCollection class

somfRemove Method

Pu rpose
Removes an object from a collection.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes a specified object ob from the collection represented by
the receiving object.
Every class that inherits from the somf_TCollection class must override this method for that
class to work correctly.
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_Tlterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TDictionary_somfRemove). Thisis
the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfRemove (ev, obj) ;

Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the object of class somf_MCollectible to be removed from the

collection.

Return Value

Example

Two possible return values are valid for this method:

somf_MCollectible
A pointer to the object that was removed.

SOMF_NIL Indicates the specified object was not found.

You cannot use this method directly from the somf_TCollection class; it must be overridden.
If you invoke this method directly, an error message is written and processing will end.
For examples of how this method looks when it is invoked, see somf_TDeque or
somf_TDictionary or any of the other classes that inherit from somf_TCollection.

Original Class

somf_TCollection

Related Information

54

Methods: somfRemoveAll

SOMobjects Developer Toolkit

somf_TCollection class

somfRemoveAll Method

Pu rpose
Removes all of the objects from a collection.

IDL Syntax

void somfRemoveAll ();

Description

The somfRemoveAll method removes all existing objects from the collection represented by
the receiving object.

Every class that inherits from the somf_TCollection class must override this method for that
class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfRemoveAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
d->somfRemoveAll (ev) ;

Parameters
receiver A pointer to an object of class somf_TCollection.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example

You cannot use this method directly from the somf_TCollection class; it must be overridden.
If you invoke this method directly, an error message is written and processing will end.
For examples of how this method looks when it is invoked, see somf TDeque or
somf_TDictionary or any of the other classes that inherit from somf_TCollection.

Original Class
somf_TCollection

Related Information
Methods: somfRemove

Collection Classes Reference Manual 55

somf_TCollection class

somfSetTestFunction Method

Pur pose
Sets the test method for a collection.

IDL Syntax

void somfSetTestFunction (in somf_MCollectibleCompareFn testfn);

Description

The somfSetTestFunction method sets the test method to be used by the collection that is the
receiving object.

Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.
testfn A method pointer specifying either a somflsEqual or somflsSame method.

This argument should always be set to either

somf MCollectibleClassData.somfIsSame Or

somf MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TCollection object will use this pointer to access the somflsSame or
somflsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TCollection object.

Return Value
None.

Original Class
somf_TCollection

Related Information
Methods: somfTestFunction

56 SOMobjects Developer Toolkit

somf_TCollection class

somfTCollectionlnit Method

Pu rpose
Initializes a new object of class somf_TCollection.
IDL Syntax
somf_TCollection somfTCollectionlInit (in somf_MCollectibleCompareFn testfn);
Description
The somfTCollectionInit method initializes a new object of class somf_TCollection.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TCollection.
ev A pointer to the Environment structure for the calling method.
testfn A method pointer specifying either a somflsEqual or somflsSame method.

This argument should always be set to either

somf MCollectibleClassData.somfIsSame Or

somf MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the ariginal
declaration of the method, which resides in somf_MCollectible. The
somf_TCollection object will use this pointer to access the somflsSame or
somflsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TCollection object.

Return Value
This method returns a pointer to an initialized object of class somf_TCollection.

Original Class
somf_TCollection

Collection Classes Reference Manual 57

somf_TCollection class

somfTestFunction Method

Pu rpose
Determines the method that a collection uses for comparison testing.

IDL Syntax

somf_MCollectibleCompareFn somfTestFunction ();

Description

The somfTestFunction method determines which method is used for comparison testing by
the collection that is the receiving object. Comparison testing is performed on objects already
contained in the collection and/or on objects being tested for eligibility.

Parameters
receiver A pointer to an object of class somf_TCollection.

ev A pointer to the Environment structure for the calling method.

Return Value

This method returns a pointer to the method that a somf_TCollection collection uses to
compare two (existing or potential) objects of the collection. This test is usually either
somflsSame or somflsEqual.

Original Class
somf_TCollection

Related Information
Methods: somfSetTestFunction

58 SOMobjects Developer Toolkit

somf_TDeque class

somf _TDeque Class

Description

Asomf_TDeque classis a child of somf_TSequence. Itis ordered based on the order in which
objects are added to, or removed from, the collection. The somf_TDeque class can also be
used as a queue, or a stack.

e A queue is a list where the elements are inserted and removed using a first-in, first-out
(FIFO) approach.

e A stack is a list where the elements are inserted and removed using a last-in, first-out
(LIFO) approach.

e A deque is a double-ended queue that permits insertion and removal at either end of
the list.

All three of these data structures are implemented in the somf_TDeque class, with different
methods processing the logically different structures. However, the somf_TDeque class is
more than all three data structures combined, because objects can be inserted and removed
from any point in the somf_TDeque. In addition, the somf_TDeque is probably the most
flexible of the data structures, because an object can appear in it more than once, and the only
ordering in the data structure is determined by how elements are inserted into it.

When you link, include the following library reference to get access to this class: somtk

Objects of class somf_MCollectible that are inserted into a somf_TDeque collection could
override the somflsSame method.

Note: The somf_TDeque class uses the somflsSame method as the default comparison
function. That is, if keyl="Bart” and key2="Bart”, keyl and key2 are not the
same. Only keyl is the same as keyl. If you don't want to use the somflsSame method
to equate entries, use one of the initialization methods to change to the somflsEqual
method. Just be aware that if the comparison methods are changed, the objects in-
serted into the somf_TDeque must have somflsEqual and somfHash overridden.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class is to be passed around to multiple threads, it
is up to the code in those threads to guarantee thread-safe usage of the class.

File Stem
tdeq

Base
somf_TSequence

Metaclass
SOMClass

Ancestor Classes
somf_TSequence, somf_TCollection, somf_MCollectible, SOMObject

New Methods

somfAddAfter
somfAddBefore
somfAddLast

Collection Classes Reference Manual 59

somf_TDeque class

somfAddFirst
somfRemovelLast
somfRemoveFirst

somfCreateSequencelterator

somfRemoveQ
somflnsert

somfPop

somfPush
somfCreateNewLink
somfAssign
somfTDequelnitF
somfTDequelnitD

Overriding Methods

60

sominit
somuUninit
somfAdd
somfRemove
somfDeleteAll
somfRemoveAll
somfCount
somfAfter
somfBefore
somflLast
somfFirst
somfMember
somfCreatelterator

SOMobjects Developer Toolkit

somf_TDeque class

somfAdd Method

Pu rpose
Adds an object to a deque collection.
IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);
Description
The somfAdd method adds a designated object obj to the deque collection represented by
the receiving object.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
obj A pointer to a somf_MCollectible object that will be added to the receiving
object.

Return Value
This method returns a pointer to the somf_MCollectible object that was added.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf_ TDequeNew () ;
obj = <your Class which inherits from somf MCollectible>New() ;

_somfAdd (dg, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfAddAfter, somfAddBefore, somfAddLast, somfAddFirst

Collection Classes Reference Manual 61

somf_TDeque class

somfAddAfter Method

Pu rpose
Adds a new object to a deque collection after a specified existing object.
IDL Syntax
void somfAddAfter (
in somf_MCollectible existingobj,
in somf_MCollectible tobeadded);
Description
The somfAddAfter method adds the designated new object, tobeadded, to the deque collec-
tion after the specified existing object, existobj.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
existingobj A pointer to the existing somf_MCollectible object after which the new object
will be added.
tobeadded A pointer to the new somf_MCollectible object to be added to the deque.

Return Value
None.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> objl;
<your Class which inherits from somf MCollectible> obj2;
Environment *ev;

ev somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
objl = <your Class which inherits from somf MCollectible>New () ;
obj2 = <your Class which inherits from somf MCollectible>New() ;

_somfAddFirst (dg, ev, objl);
_somfAddAfter (dg, ev, objl, obj2);

_somFree (dq) ;
_somFree (objl);
_somFree (obj2);

Original Class
somf_TDeque

Related Information
Methods: somfAdd, somfAddBefore, somfAddLast, somfAddFirst

62 SOMobjects Developer Toolkit

somf_TDeque class

somfAddBefore Method

Pu rpose
Adds a new object to a deque collection before a specified existing object.
IDL Syntax
void somfAddBefore (
in somf_MCaollectible existobj,
in somf_MCollectible tobeadded);
Description
The somfAddBefore method adds the designated new object, tobeadded, to the deque
collection before the specified existing object, existob;.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
existobj A pointer to the existing somf_MCollectible object before which the new

object will be added.

tobeadded A pointer to the new somf_MCollectible object to be added to the deque.

Return Value
None.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> objl;
<your Class which inherits from somf MCollectible> obj2;
Environment *ev;

ev somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
objl = <your Class which inherits from somf MCollectible>New() ;
obj2 = <your Class which inherits from somf MCollectible>New() ;

_somfAddFirst (dg, ev, objl);
_somfAddBefore (dg, ev, objl, obj2);

_somFree (dq);

_somFree (objl);
_somFree (obj2);

Original Class
somf_TDeque

Related Information
Methods: somfAdd, somfAddAfter, somfAddLast, somfAddFirst

Collection Classes Reference Manual 63

somf_TDeque class

somfAddFirst Method

Pu rpose
Adds a new object as the first object in a deque collection.
IDL Syntax
void somfAddFirst (in somf_MCollectible obj);
Description
The somfAddFirst method adds the designated new object obj as the first object in the deque
collection represented by the receiving object.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the object of class somf_MCollectible to be added to the deque.

Return Value

None.

Example

somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg somf_TDequeNew () ;
obj = <your Class which inherits from somf MCollectible>New() ;

_somfAddFirst (dg, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque

Related Information
Methods: somfAdd, somfAddAfter, somfAddBefore, somfAddLast

64 SOMobjects Developer Toolkit

somf_TDeque class

somfAddLast Method

Purpose
Adds a new object as the last object in a deque collection.
IDL Syntax
void somfAddLast (in somf_MCollectible obj);
Description
The somfAddLast method adds the new object obj as the last object in the deque collection.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the object of class somf_MCollectible to be added to the deque.

Return Value
None.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
obj = <your Class which inherits from somf MCollectible>New() ;

_somfAddLast (dg, ev, obj);

_somFree (dq);
_somFree (obj) ;

Original Class
somf_TDeque

Related Information
Methods: somfAdd, somfAddAfter, somfAddBefore, somfAddFirst

Collection Classes Reference Manual 65

somf_TDeque class

somfAfter Method

Pu rpose
Gets the object found after a specified object in a deque collection.
IDL Syntax
somf_MCollectible somfAfter (in somf_MCollectible obj);
Description
The somfAfter method returns the object found after object obj in the deque collection
represented by the receiving object.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the somf_MCollectible that is in front of the returned obj .

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object of class somf_MCollectible that comes after obj .

SOMF_NIL obj is the last object in the collection or could not be found.

Example

somf_ TDeque dg;

somf MCollectible obj;

Environment *ev;

<Your Class which inherits from somf MCollectible> al;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
al = <Your Class which inherits from somf MCollectible>New() ;

/* Add some objects to dg */

/* set obj to point to the object after al */
obj = somfAfter(dg, ev, al);

_somFree (dq);
_somFree (al);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfBefore, somfFirst, somfLast

66 SOMobjects Developer Toolkit

somf_TDeque class

somfAssign Method

Pu rpose
Assigns a deque collection as being equal to a given source deque.

IDL Syntax

void somfAssign (in somf_TDeque s);

Description

The somfAssign method assigns the deque receiving object to be equal to the source deque
object. That s, the method sets/resets the instance variables of the receiver to the values of the
source. This operation is logically equivalent to using the “=" operator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDeque_somfAssign). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
d->somfAssign(ev, obj);

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

S A pointer to the somf_TDeque object to which the receiving object will be set
equal.

Return Value

None.

Example

somf TDeque dql;
somf_ TDeque dqg2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dgl
dg2

somf TDequeNew () ;
somf_ TDequeNew () ;

/* Add som objects to dgl */

/* Assign dg2 = dgl */
somf TDeque somfAssign (dg2, ev, dgl);

_somFree (dgl);
_somFree (dqg2) ;

Original Class
somf_TDeque

Collection Classes Reference Manual 67

somf_TDeque class

somfBefore Method

Pu rpose
Gets the object found before a specified object in a deque collection.
IDL Syntax
somf_MCollectible somfBefore (in somf_MCollectible obj);
Description
The somfBefore method returns the object found immediately before the designated object
obj in a deque collection represented by the receiving object.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the somf_MCaollectible that is behind the returned ob;.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that precedes obj .

SOMF_NIL The obj is the first object in the receiving object or could not be found.

Example

somf_ TDeque dg;

somf MCollectible obj;

Environment *ev;

<Your Class which inherits from somf MCollectible> al;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
al = <Your Class which inherits from somf MCollectible>New() ;

/* Add some objects to dg */

/* set obj to point to the object before al */
obj = somfBefore(dqg, ev, al);

_somFree (dq);
_somFree (al);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfAfter, somfFirst, somfLast

68 SOMobjects Developer Toolkit

somf_TDeque class

somfCount Method

Pu rpose
Gets the number of objects in a deque collection.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the deque collection represented
by the receiving object, and returns that number.
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDeque_somfCount). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfCount (ev) ;

Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the receiving object.

Example

somf TDeque dqg;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg somf_TDequeNew () ;

somPrintf (“\n Count of dg= %$d\n”, _somfCount (dg,ev));

_somFree (dq);

Original Class
somf_TCollection (overridden here)

Collection Classes Reference Manual 69

somf_TDeque class

somfCreatelterator Method

Pu rpose

Returns a new iterator that is suitable for iterating over the objects in this deque collection.
IDL Syntax

somf_Tlterator somfCreatelterator ();
Description

The somfCreatelterator method returns a new iterator that is suitable for iterating over the

objects in the deque collection represented by the receiving object.

Note: Thisisone ofthree ways toinitialize a somf_TDequelterator to point to an instance of a
somf_TDeque. One other way is to use the somf_TDequelterator’s initializer method
described on page 97. The final way is to use somf _TDeque's method
somfCreateSequencelterator, described on page 72.

Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example

somf_ TDeque dg;
Environment *ev;
somf_TDequeIterator itr;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
itr = (somf TDequelterator*) somfCreatelIterator (dq,ev);

_somFree (dq);
_somFree (itr);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfCreateSequencelterator

70 SOMobjects Developer Toolkit

somf_TDeque class

somfCreateNewLink Method

Purpose

Creates a new link in a somf_TDeque collection, given two objects as the previous and
next somf_TDequeLinkable links, and the value of the new link.

IDL Syntax

somf_TDequeLinkable somfCreateNewLink (
in somf_TDequeLinkable p,
in somf_TDequeLinkable n,
in somf_MCollectible v);

Description

The somfCreateNewLink method creates a new link in a somf_TDeque collection,given the
previous and next somf_TDequelLinkable objects, as well as the value of the new link.

When inheriting from this class, this method can be overridden if you want to customize how a
somf_TDeque object creates a new link in your derived class.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.
p A pointer to the somf_TDequeLinkable object before this one.
n A pointer to the somf_TDequeLinkable object after this one.

v A pointer to the somf_MCaollectible object that represents the “value” of the
new somf_TDequeLinkable.

Return Value
This method returns a pointer to the new somf_TDequeLinkable object.

Original Class
somf_TDeque

Collection Classes Reference Manual 71

somf_TDeque class

somfCreateSequencelterator Method

Pur pose
Returns a new iterator that is suitable for iterating over the objects in the given deque collection.

IDL Syntax

somf_TSequencelterator somfCreateSequencelterator ();

Description

The somfCreateSequencelterator method returns a new iterator that is suitable for iterating
over the objects in the deque collection represented by the receiving object.

Note: Thisisone ofthree ways toinitialize a somf_TDequelterator to point to an instance of a
somf_TDeque. One other way is to use somf_TDequelterator’s initializer method
described on page 97. The final way is to use somf_TDeque’s somfCreatelterator
method described on page 70.

This method is identical to somfCreatelterator; you could use either one. The only difference is
that the type of the return value for this method is a somf_TSequencelterator, and the return
type for the return value of somfCreatelterator is a somf_Tlterator. However, both methods
return an instance of a somf_TDequelterator that has been typed correctly.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example

somf_ TDeque dg;
Environment *ev;
somf TDequelterator itr;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
itr = (somf TDequelterator*) somfCreateSequencelIterator (dg,ev);

_somFree (dq) ;
_somFree (itr);

Original Class
somf_TDeque

Related Information
Methods: somfCreatelterator

72 SOMobjects Developer Toolkit

somf_TDeque class

somfDeleteAll Method

Purpose

IDL Syntax

Removes all of the objects from a deque collection and deallocates the storage that these
objects might have owned. (That is, the destructor function is called for each object in the
collection.)

void somfDeleteAll ();

Description

The somfDeleteAll method removes all of the objects from the deque collection represented by
the receiving object. Also, it deallocates the storage that these objects might have owned (that
is, the destructor function is called for each object in the collection).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDeque_somfDeleteAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
d->somfDeleteAll (ev) ;

Parameters

receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value

Example

None.

somf_ TDeque dg;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
/* Add some objects to dg */

/* Remove all of the objects in dg AND DELETE ALL INSTANCES */
_somfDeleteAll (dg, ev) ;

_somFree (dq);

Original Class

somf_TCollection (overridden here)

Collection Classes Reference Manual 73

somf_TDeque

class

somfFirst Method

Pu rpose
Gets the first object in a deque collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method determines the first object in the deque collection represented by the
receiving object, and returns a pointer to the object (if found).
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_Tlterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TDeque_somfFirst). This is the only way the linker can tell
them apart.
This is not a problem in C++. In C++ you can reference this method as:

seg->somfFirst (ev) ;

Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value

Example

Original CI

There are two possible valid return values for this method:

somf_MCollectible
A pointer to the first somf_MCollectible object in the collection.

SOMF_NIL Nothing is in the collection.

somf TDeque dg;

Environment *ev;

somf_ MCollectible first;

ev = somGetGlobalEnvironment () ;
dg = somf_ TDequeNew() ;

/* Add some objects to dg */

first = somf TDeque somfFirst (dqg,ev);
/* do something with the first object in the somf TDeque */

_somFree (dq) ;

ass
somf_TSequence (overridden here)

Related Information

74

Methods: somfAfter, somfBefore, somfLast

SOMobjects Developer Toolkit

somf_TDeque class

somflnsert Method

Purpose
Adds an object to the end of the deque/queue.

IDL Syntax

void somfinsert (in somf_MCollectible obj);

Description

The somfinsert method appends the object ob5j to the end of the deque/queue represented
by the receiving object.

This method can be used with somfRemoveQ to simulate a queue.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCaollectible object to be added to the deque.

Return Value
None.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
obj = <your Class which inherits from somf MCollectiblesNew() ;

_somfInsert (dg, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque

Related Information
Methods: somfRemoveQ

Collection Classes Reference Manual 75

somf_TDeque class

somfLast Method

Pu rpose
Gets the last object in a given deque collection.

IDL Syntax

somf_MCollectible somfLast();

Description

The somfLast method gets the last object in the deque collection represented by the receiving
object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TSequence is used with a child of
somf_TSequencelterator or with somf_TPrimitiveLinkedListlterator, then the name of the
method must be fully qualified (for example: somf_TDeque_somfLast). This is the only way
the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
seg->somfLast (ev) ;

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the last somf_MCollectible object in the collection.

SOMF_NIL Nothing is in the collection.

Example
somf TDeque dg;

Environment *ev;

somf_ MCollectible last;

ev = somGetGlobalEnvironment () ;
dg = somf_ TDequeNew() ;

/* Add some objects to dg */

last = somf TDeque somfLast (dg,ev) ;
/* do something with the last object in the somf TDeque */

_somFree (dq) ;

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfAfter, somfBefore, somfFirst

76 SOMobjects Developer Toolkit

somf_TDeque class

somfMember Method

Purpose

Gets an object in a deque collection.

IDL Syntax

somf_MCollectible somfMember (in somf_MCaollectible obj);

Description

The somfMember method determines whether object obj is in the deque collection repre-
sented by the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDeque_somfMember). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:

Parameters

d->somfMember (ev, obj) ;

receiver A pointer to an object of class somf_TDeque.

ev

obj

Return Value

A pointer to the Environment structure for the calling method.

A pointer to the somf_MCollectible object that may or may not be a member
of the deque collection.

There are two possible valid return values for this method:

somf_MCollectible

SO

Example

Original Clas

A pointer to the object the method determined as the member.
MF_NIL obj was not found.

somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
obj = <your Class which inherits from somf MCollectible>New() ;

/* See if obj is in dg */
if (somfMember (dg, ev, obj) != SOMF NIL)
somPrintf ("\n obj is a Member\n”) ;
else
somPrintf (“\n ERROR: obj should be a Member\n”) ;

_somFree (dq);
_somFree (obj) ;

S

somf_TCollection (overridden here)

Collection Classes Reference Manual 77

somf_TDeque class

somfPop Method

Pu rpose
Removes the object on top of a deque/stack.

IDL Syntax
somf_MCollectible somfPop ();

Description

The somfPop method removes the object on top of the deque/stack represented by the
receiving object.

Note: This call can be used to simulate a stack.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

Return Value

This method returns a pointer to the somf_MCaollectible object removed from the deque/stack.
Or, SOMF_NIL is returned if the collection is empty.

Example
somf_ TDeque dg;

somf_MCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dg = somf_ TDequeNew () ;

/* Use _somfPush to push objects onto the stack */

/* Pop an object from the stack */
obj = _somfPop (dqg,ev) ;

_somFree (dq);
Original Class
somf_TDeque

Related Information
Methods: somfPush

78 SOMobjects Developer Toolkit

somf_TDeque class

somfPush Method

Pu rpose
Adds an object to the top of a deque/stack.

IDL Syntax

void somfPush (in somf_MCollectible obj);

Description

The somfPush method adds the specified object obj to the top of the deque/stack repre-
sented by the receiving object.

Note: This call can be used to simulate a stack.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCaollectible object to be added to the deque.

Return Value
None.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
obj = <your Class which inherits from somf MCollectiblesNew() ;

_somfPush(dg, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque

Related Information
Methods: somfPop

Collection Classes Reference Manual 79

somf_TDeque class

somfRemove Method

Pu rpose
Removes an object from a deque collection.

IDL Syntax

somf_MCollectible somfRemove (in somf_MCaollectible obj);

Description
The somfRemove method removes the object obj from the deque collection represented by
the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TlIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TDeque_somfRemove). Thisis the
only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
d->somfRemove (ev, obj) ;

Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.
obj A pointer to the somf_MCollectible object to be removed from the deque

collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object that was removed.

SOMF_NIL The object was not found.

Example
somf_ TDeque dg;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
obj = <your Class which inherits from somf MCollectible>New() ;

/* Add some values to dg */
somf TDeque somfRemove (dg, ev, obj);

_somFree (dq);
_somFree (obj) ;

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemoveFirst, somfRemovelLast, somfRemoveAll

80 SOMobjects Developer Toolkit

somf_TDeque class

somfRemoveAll Method

Pu rpose
Removes all of the objects from a deque collection.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the deque collection represented
by the receiving object.
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf TCollection is used with
somf_THashTable, then the name of the method must be fully qualified (for example:
somf_TDeque_somfRemoveAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfRemoveAll (ev) ;

Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value

None.

Example

somf_ TDeque dqg;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
/* Add some objects to dg */

/* Remove all of the objects in dg */
_somfRemoveAll (dg, ev) ;

_somFree (dq);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemove, somfRemoveFirst, somfRemovelLast

Collection Classes Reference Manual 81

somf_TDeque class

somfRemoveFirst Method

Pu rpose
Removes the first object in a deque collection.

IDL Syntax

somf_MCollectible somfRemoveFirst ();

Description

The somfRemoveFirst method determines the first object in the deque collection represented
by the receiving object, and removes it.

Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCaollectible object that was removed.

SOMF_NIL The collection is empty.

Example

somf_ TDeque dqg;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
/* Add some objects to dg */

if (somfRemoveFirst (dg,ev) == SOMF_NIL)
somPrintf (” ERROR: The first object should have been removed.\n”) ;

_somFree (dq) ;

Original Class
somf_TDeque

Related Information
Methods: somfRemoveLast, somfRemove, somfRemoveAll

82 SOMobjects Developer Toolkit

somf_TDeque class

somfRemovelLast Method

Pu rpose
Removes the last object in a deque collection.
IDL Syntax
somf_MCollectible somfRemovelast ();
Description
The somfRemovelast method determines the last object in the deque collection represented
by the receiving object, and removes it.
Parameters
receiver A pointer to an object of class somf_TDeque.
ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCaollectible object that was removed.

SOMF_NIL The collection is empty.

Example

somf_ TDeque dqg;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
/* Add some objects to dg */

if (_somfRemovelast (dg,ev) == SOMF NIL)
somPrintf (” ERROR: The last object should have been removed.\n”) ;

_somFree (dq) ;

Original Class
somf_TDeque

Related Information
Methods: somfRemoveFirst, somfRemove, somfRemoveAll

Collection Classes Reference Manual 83

somf_TDeque class

somfRemoveQ Method

Pu rpose
Removes the first object from a deque/queue.

IDL Syntax

somf_MCollectible somfRemoveQ ();

Description
The somfRemoveQ method removes the first object from the deque/queue represented by the
receiving object.

Note: This method can be used with somfinsert to simulate a queue.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object that was removed.

SOMF_NIL The object was not found.

Example
somf_ TDeque dg;

somf MCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;

/* Use _somflInsert to insert objects into the queue */

/* Remove an object from the queue */
obj = _somfRemoveQ (dqg,ev) ;

_somFree (dq);

Original Class
somf_TDeque

Related Information
Methods: somfinsert

84 SOMobjects Developer Toolkit

somf_TDeque class

somfTDequelnitD Method

Pu rpose
Initializes a new deque, setting it equal to a given somf_TDeque source object.

IDL Syntax

somf_TDeque somfTDequelnitD (in somf_TDeque S);

Description

The somfTDequelnitD method initializes the new deque represented by the receiving object.
The method also sets the new deque equal to a specified somf_TDeque source object. This
implies that the instance data of the new deque will be set equal to those of the source deque.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.

S A pointer to the source deque to which the receiving object will be set equal.

Return Value
This method returns a pointer to an initialized somf_TDeque object.

Example
somf_ TDeque dql;
somf TDeque dqg2;
Environment *ev;

ev = somGetGlobalEnvironment () ;
dgl somf TDequeNew () ;

dg2 somf TDequeNew () ;
_somfTDequeInitD (dg2, ev, dql);

_somFree (dql)
_somFree (dg2)

Original Class
somf_TDeque

Related Information
Methods: somfTDequelnitF

Collection Classes Reference Manual 85

somf_TDeque class

somfTDequelnitF Method

Pu rpose
Initializes a new deque collection, specifying the comparison method that it will use.

IDL Syntax

somf_TDeque somfTDequelnitF (in somf_MCollectibleCompareFn testfn);

Description

The somfTDequelnitF method initializes a new deque represented by the receiving object.
The method also establishes the comparison method that the new deque will use to compare
current/potential objects for the collection, as determined by the testfn argument.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDeque.

ev A pointer to the Environment structure for the calling method.
testfn A method pointer specifying either a somflsEqual or somflsSame method.

This argument should always be set to either
somf_MCollectibleClassData.somfIsSame Of
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original

declaration of the method, which resides in somf_MCollectible. The

somf_TDeque object will use this pointer to access the somflsSame or
somflsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDeque object.

Return Value
This method returns a pointer to an initialized somf_TDeque.

Example

somf TDeque dql;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dgl = somf TDequeNew () ;
_somfTDequeInitF (dgl, ev, somf MCollectibleClassData.somfIsSame) ;

_somFree (dqgl);

Original Class
somf_TDeque

Related Information
Methods: somfTDequelnitD

86 SOMobjects Developer Toolkit

somf_TDequelterator class

somf_TDequelterator Class

Description
An iterator for the somf_TDeque class that will iterate over all of the objects in a deque.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class is to be passed around to multiple threads,
the code in those threads must guarantee thread-safe usage of the class.

File Stem
tdeqitr

Base
somf_TSequencelterator

Metaclass
SOMClass

Ancestor Classes
somf_TSequencelterator, somf_Tlterator, SOMObject

New Methods

somfTDequelteratorinit

Overriding Methods
somfFirst
somfNext
somfLast
somfPrevious
somfRemove

Collection Classes Reference Manual 87

somf_TDequelterator class

somfFirst Method

Purpose

Resets the iterator and returns the first object from a deque collection.

IDL Syntax

somf_MCollectible somfFirst ();

Description

The somfFirst method resets the iterator and returns the first object in the deque collection that
corresponds to the deque iterator represented by the receiving object.

This resets the iterator to the beginning of the collection. This is true not only for the first time you
use the iterator; it is also true if other operations on the collection cause the iterator to be
invalidated. In the second case, this also revalidates the iterator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_Tlterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TDequelterator_somfFirst). This is the only way the linker
can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
itr->somfFirst (ev) ;

Parameters
receiver A pointer to an object of class somf_TDequelterator.
ev A pointer to the Environment structure for the calling method.

Return Value

This method returns a pointer to the first somf_MCollectible object in the collection. Or,
SOMF_NIL is returned if the collection is empty.

Example

somf_ TDeque dg;
Environment *ev;
somf TDequelterator itr;
somf MCollectible itrobj;

ev = somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;

itr = somf TDequelteratorNew () ;
_somfTDequeIteratorInit (itr, ev, dq);

/* Add some object to dg */

/* Iterate through the TDeque */

itrobj = somf TDequeIterator somfFirst (itr,ev);
while (itrobj != SOMF NIL)

/* Do something with itrobj */
itrobj = somfNext (itr,ev);

}

_somFree (dq) ;
_somFree (itr);

88 SOMobjects Developer Toolkit

Original Class
somf_Tlterator (overridden here)

Related Information
Methods: somfNext

Collection Classes Reference Manual

somf_TDequelterator class

89

somf_TDequelterator class

somfLast Method

Pu rpose
Gets the last object in the deque collection.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the deque collection that corresponds to
the iterator represented by the receiving object, and returns a pointer to the last object (if found).
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequencelterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TDequelterator_somfLast). Thisis the only way
the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

itr->somfLast (ev) ;

Parameters
receiver A pointer to an object of class somf_TDequelterator.
ev A pointer to the Environment structure for the calling method.

Return Value

This method returns a pointer to the last somf_MCaollectible object in the deque collection.

Example

somf TDeque dqg;
somf TDequelterator itr;
somf_MCollectible itrobj;
Environment *ev;

ev somGetGlobalEnvironment () ;

dg = somf TDequeNew () ;
itr = somf TDequelteratorNew() ;
_somfTDequelteratorInit (itr, ev, dq);

/* Add some objects to dg */

/* set obj to point to the last object in dg */
itrobj = somf TDequeIterator somfLast (itr,ev);

_somFree (dq);
_somFree (itr);

Original Class
somf_TSequencelterator (overridden here)

Related Information
Methods: somfPrevious

90

SOMobjects Developer Toolkit

somf_TDequelterator class

somfNext Method

Purpose
Gets the next object in a deque collection.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the deque collection that corresponds to
the deque iterator represented by the receiving object. The method also returns a pointer to the
next object, if found. Objects are retrieved in an order that reflects the “ordered-ness” of the
collection (or the lack of ordering on the collection objects).
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_Tlterator is used with
somf_TPrimitiveLinkedListlterator, then the name of the method must be fully qualified (for
example: somf_TDequelterator_somfNext). This is the only way the linker can tell them
apart.
This is not a problem in C++. In C++ you can reference this method as:

itr->somfNext (ev) ;

If the somf_TDeque collection has changed (other than through the use of the somfRemove
method of this iterator) since the last time the somfFirst or somfLast method was called, the
iterator becomes invalid and will fail when asked to find the next object. For example, if the
collection’s somfAdd method were called after starting to iterate through the collection, the
iterator would not allow iteration to continue. The iterator must be reset, and the easiest way to
do that is to call the iterator’'s somfFirst method and start over.

Parameters
receiver A pointer to an object of class somf_TDequelterator.
ev A pointer to the Environment structure for the calling method.

Return Value

Example

There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the collection.

SOMF_NIL The end of the collection has been reached.

somf TDeque dqg;
Environment *ev;
somf TDequelterator itr;
somf MCollectible itrobj;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
itr = somf TDequelteratorNew() ;

_somfTDequelteratorInit (itr, ev, dq);

/* Add some object to dg */

Collection Classes Reference Manual 91

somf_TDequelterator class

/* Iterate through the TDeque */

itrobj = somf TDequelterator somfFirst (itr,ev);
while (itrobj != SOMF NIL)

/* Do something with itrobj */
itrobj = somfNext (itr,ev);

}

_somFree (dq);
_somFree (itr);

Original Class
somf_Tlterator (overridden here)

Related Information
Methods: somfFirst

92

SOMobjects Developer Toolkit

somf_TDequelterator class

somfPrevious Method

Pu rpose
Gets the previous object in a deque collection.

IDL Syntax
somf_MCollectible somfPrevious ();

Description
The somfPrevious method determines the previous object in the deque collection that corre-
sponds to the deque iterator represented by the receiving object. The method also returns a
pointer to the previous object, if found.
C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TSequencelterator is used with
somf_TPrimitiveLinkedListlterator, then the name of the method must be fully qualified (for
example: somf_TDequelterator_somfPrevious). This is the only way the linker can tell them
apart.
This is not a problem in C++. In C++ you can reference this method as:

itr->somfPrevious (ev) ;

If the somf_TDeque collection changes while using this iterator, the iterator becomes invalid
and will fail if asked to find the previous object. For example, if the collection’s somfAdd method
is called after starting to iterate through the collection, the iterator will not allow iteration to
continue. The iterator must be reset, and the easiest way to do that is to call the iterator’s
somflLast method and start over.

Parameters
receiver A pointer to an object of class somf_TDequelterator.
ev A pointer to the Environment structure for the calling method.

Return Value

Example

There are two possible valid return values for this method:

somf_MCollectible
A pointer to the previous somf_MCollectible object in the collection.

SOMF_NIL The beginning of the collection has been reached.

somf TDeque dg;
somf TDequelterator itr;
somf MCollectible itrobj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dg somf TDequeNew () ;
itr = somf TDequelteratorNew() ;
_somfTDequelteratorInit (itr, ev, dq);

/* Add some objects to dg */

Collection Classes Reference Manual 93

somf_TDequelterator class

/* set itrobj to point to the next to the last object in dg */
somf TDequelterator somflast (itr,ev);
itrobj = somfPrevious(itr,ev);

_somFree (dq) ;
_somFree (itr);

Original Class
somf_TSequencelterator (overridden here)

Related Information
Methods: somflLast

94 SOMobjects Developer Toolkit

somfRem

somf_TDequelterator class

ove Method

Purpose

IDL Syntax

Removes the current object from a deque collection.

void somfRemove ();

Description

The somfRemove method removes the current object (the object just returned by somfFirst,
somfNext, somfLast, or somfPrevious) from the deque collection that corresponds to the
deque iterator represented by the receiving object.

The somfRemove method is the only way to remove an object from a collection during iteration.
However, if multiple iterators are in process, all the other iterators are invalidated, just as if
some other kind of change had occurred in the collection.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_Tlterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TDequelterator_somfRemove).
This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you can reference this method as:
itr->somfRemove (ev) ;

If the somf_TDeque collection has changed (other than through the use of the somfRemove
method of this iterator) since the last time the somfFirst or somfLast method was called, the
iterator becomes invalid and will fail if asked to remove an object. For example, if the collection’s
somfAdd method were called after starting to iterate through the collection, the iterator then
would not allow iteration to continue. The iterator must be reset, and the easiest way to do that is
to call the iterator’s somfFirst or somfLast method and start over.

Parameters
receiver A pointer to an object of class somf_TDequelterator.
ev A pointer to the Environment structure for the calling method.

Return Value

Example

None.

somf TDeque dqg;
Environment *ev;
somf TDequelterator itr;
somf MCollectible itrobj;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
itr = somf TDequelteratorNew() ;

_somfTDequelteratorInit (itr, ev, dq);

/* Add some objects to dg */

Collection Classes Reference Manual 95

somf_TDequelterator class

/* Use the Iterator’s Remove to remove the first object */
itrobj = somf TDequelterator somfFirst (itr,ev);
somf TDequeIterator somfRemove (itr,ev) ;

_somFree (dq) ;
_somFree (itr);

Original Class
somf_Tlterator (overridden here)

96 SOMobjects Developer Toolkit

somf_TDequelterator class

somfTDequelteratorinit Method

Pu rpose

Initializes a somf_TDequelterator iterator for a deque collection.
IDL Syntax

somf_TDequelterator somfTDequelteratorinit (in somf_TDeque h);
Description

The somfTDequelteratorinit method initializes an iterator of class somf_TDequelterator,

given the somf_TDeque collection over which iteration is needed.

Note: Thisisone ofthree ways to initialize asomf_TDequelterator to point to an instance of a
somf_TDeque collection. One other way is to use the somfCreatelterator method of
the somf_TDeque class, as described on page 70. The final way is to use the
somf_TDeque class’s somfCreateSequencelterator method, described on page 72.

Note: You cannot override this method

Parameters

receiver A pointer to an object of class somf_TDequelterator.

ev A pointer to the Environment structure for the calling method.

h A pointer to the deque object that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TDequelterator object.

Example

somf TDeque dqg;
Environment *ev;
somf TDequelterator itr;

ev = somGetGlobalEnvironment () ;
dg = somf TDequeNew () ;
itr = somf TDequelteratorNew() ;

_somfTDequelteratorInit (itr, ev, dq);

_somFree (dq) ;
_somFree (itr);

Original Class
somf_TDequelterator

Collection Classes Reference Manual 97

somf_TDequeLinkable class

somf_TDequeLinkable Class

Description

File Stem

Base

Metaclass

The somf_TDequeLinkable class is a subclass of somf_MLinkable. It provides a
generic somf_MLinkable class to contain somf_MCollectible. An object of class
somf_TDequeLinkable is used (transparently) by the somf_TDeque class for each node of a
deque collection. The somf_TDequeLinkable object provides the “linkability” (that is, the left
and right links) to its two adjacent nodes in the collection.

The somf_TDequeLinkable class and methods will probably be of interest to programmers
only in two situations: (a) if you are creating a new class that needs linkable nodes between
objects of the class, or (b) if you are creating a new class that inherits from somf_TDeque, and
it would be appropriate to override some method(s) of the somf_TDequeLinkable class to
define additional functionality for those methods.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, different tasks should not be setting the value. That situation is too prone to having
multiple tasks setting conflicting values, leaving the state of the instance in an unacceptable
state for all but one task.

This class is reentrant.

tdeqlink

somf_ MLinkable

SOMClass

Ancestor Classes

somf_MLinkable, SOMObject

New Methods

somfGetValue

somfSetValue
somfTDequeLinkablelnitDDM
somfTDequeLinkablelnitDD

Overriding Methods

98

sominit

SOMobjects Developer Toolkit

somf_TDequeLinkable class

somfGetValue Method

Pu rpose
Gets the value from a somf_TDequeLinkable node.

IDL Syntax

somf_MCollectible somfGetValue ();

Description

The somfGetValue method gets the value of the somf_TDequeLinkable object (node) repre-
sented by the receiving object. The method returns a pointer to a somf_MCaollectible object
containing the value.

Parameters
receiver A pointer to an object of class somf_TDequeLinkable.

ev A pointer to the Environment structure for the calling method.

Return Value

This method returns a pointer to a somf_MCollectible object containing the value obtained
from the somf_TDequeLinkable object.

Example

somf TDequeLinkable dl;

<Your Class which inherits from somf MCollectible> obj;
<Your Class which inherits from somf MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

obj = <Your Class which inherits from somf MCollectible>New () ;
dl = somf TDequeLinkableNew () ;

_somfSetValue(dl, ev, obj);
obj2 = (<Your Class which inherits from somf MCollectiblex>*)
_somfGetValue (dl, ev) ;

_somFree (dl);
_somFree (obj);

Original Class
somf_TDequeLinkable

Related Information
Methods: somfSetValue

Collection Classes Reference Manual 99

somf_TDequeLinkable class

somfSetValue Method

Pu rpose
Sets the value of a given somf_TDequeLinkable node.
IDL Syntax
void somfSetValue (in somf_MCollectible v);
Description
The somfSetValue method sets the value of the somf_TDequeLinkable object (hode) repre-
sented by the receiving object.
Parameters
receiver A pointer to an object of class somf_TDequeLinkable.
ev A pointer to the Environment structure for the calling method.
% A pointer to the new value of the somf_TDequeLinkable object.

Return Value

None.

Example
somf TDequeLinkable dl;
<your Class which inherits from somf MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment () ;

obj = <your Class which inherits from somf MCollectible>New() ;
dl = somf_ TDequelLinkableNew () ;

_somfSetValue (dl, ev, obj);

_somFree (dl);
_somFree (obj);

Original Class
somf_TDequeLinkable

Related Information
Methods: somfGetValue

100 SOMobjects Developer Toolkit

somf_TDequeLinkable class

somfTDequelinkablelnitDD Method

Pu rpose
Initializes a new somf_TDequeLinkable node, by specifying the adjacent nodes to which it will
link. This method does not set a value for the node.
IDL Syntax
somf_TDequeLinkable somfTDequeLinkablelnitDD (
in somf_TDequeLinkable previous,
in somf_TDequeLinkable next);
Description
The somfTDequelLinkablelnitDD method initializes a new object (node) of class
somf_TDequeLinkable. The method specifies the previous and next nodes to which the new
node will link. However, it does not set a value for the node.
Note: You cannot override this method.
Parameters
receiver A pointer to an object of class somf_TDequeLinkable.
ev A pointer to the Environment structure for the calling method.
previous A pointer to the somf_TDequeLinkable before this one.
next A pointer to the somf_TDequeLinkable after this one.

Return Value

This method returns a pointer to the initialized somf_TDequeLinkable object that represents a
node in a deque collection.

Example

somf TDequeLinkable dl1;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dll = somf TDequeLinkableNew () ;
_somfTDequeLinkableInitDD (dl1l, ev, SOMF NIL, SOMF NIL) ;

_somFree (dl1l);

Original Class
somf_TDequeLinkable

Related Information
Methods: somfTDequeLinkablelnitDDM

Collection Classes Reference Manual 101

somf_TDequeLinkable class

somfTDequelinkablelnitDDM Method

Purpose

Initializes a new somf_TDequeLinkable node. This includes specifying the adjacent nodes
and setting the value of the node.

IDL Syntax

somf_TDequeLinkable somfTDequeLinkablelnitDDM(
in somf_TDequeLinkable previous,
in somf_TDequeLinkable next,
in somf_MCollectible value);

Description

The somfTDequelLinkablelnitDDM method initializes a new object (node) of class
somf_TDequeLinkable. The method specifies the previous and next nodes to which the new
node will link, and it also passes a value for the new node.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDequeLinkable.
ev A pointer to the Environment structure for the calling method.
previous A pointer to the somf_TDequeLinkable node before this one.
next A pointer to the somf_TDequeLinkable node after this one.
value A pointer to the value of this somf_TDequeLinkable object that represents a

node in a deque collection.

Return Value
This method returns a pointer to the initialized somf_TDequeLinkable object (node).

Example

somf TDequeLinkable dl2;
Environment *ev;

ev = somGetGlobalEnvironment () ;

dl2 = somf TDequeLinkableNew () ;
_somfTDequeLinkableInitDDM(d1l2, ev, SOMF NIL, SOMF NIL, SOMF NIL) ;

_somFree (dl2);

Original Class
somf_TDequeLinkable

Related Information
Methods: somfTDequeLinkablelnitDD

102 SOMobjects Developer Toolkit

