Python Library Reference

Guido van Rossum
Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI .Reston.Va.US,guido@python.org

December 12, 1997
Release 1.5b2



Copyright (© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without feeis
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI istheinitial source for this software, amodified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BELIABLEFOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.



Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such asfile I/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python's standard library, as well as many optional library modules (which
may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual .

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manua remains the highest authority on syntactic and semantic questions.
Finally, the manual entitled Extending and Embedding the Python Interpreter describes how to add new extensionsto
Python and how to embed it in other applications.



Contents

1

2

Introduction

Built-in Types, Exceptions and Functions

21 BUl-iNTYPes . . .
211 TruthValueTesting . . . . . . . o
212 Boolean Operations. . . . . . v v i i e e e
213 CompariSonNS . . . . v v e e e
214 NUMENCTYPES . . . o e e e e e e e e e e e
215 SequenceTYPES. . . . . . i e
216 MappingTYPES . . . o o o o e
217 OtherBUilt-inTYPES . . . . . . . o e
218 Specia Attributes . . . . . . .

22 BUIt-INEXCEPtiONS . . . . . . o e e

23 BUIlt-inFUNCtioNS . . . . . . . e e e

Python Services
31 Built-inModulesys . . . . . . e
32 StandardModuletypes . . . . . . . e e e
3.3 Standard ModulesUserDict andUserList . . . . . . oo v v it i it i e e e s
34 Built-inModuleoperator . . . . . . . . e
35 StandardModuletraceback . . . . . v v i e e e
3.6 StandardModulepickle . . . . . . e e e e
3.7 StandardModuleshelve . . . . . . .
38 StandardModule copy . . . . . . e e e e
3.9 Built-inModulemarshal . . . . . . . . e e e
310 Built-inModuleimp . . . . . . o e e
3101 EXamples . . . . . e e e
311 Built-inModuleni . . . . . .
312 Built-inModuleparser . . . . . . e
3121 Creating AST ObJECES . . . . . o o o o e
3122 Converting AST Objects . . . . . . . . o
3123 QueriesoN AST ObJECES . . . . . . . i e e e e
3124 ExceptionsandErrorHandling. . . . . . . . . .. . . ...
3125 ASTODJECTS . . . . o
3126 Examples . . . . . e
313 Standard Module symbol . . . . . . .. e e e e e
314 StandardModule token . . . . . .
315 Standard Modulekeyword . . . . . . .. e e e e
3.16 Standardmodulecode . . . . . ..
317 Standard modulepprint . . . . ... e e
3.17.1 PrettyPrinter ObjeCts . . . . . . . . o o e
318 Standardmoduledis . . . . . . L

[

O~NUAWWNN N

10



3.18.1 PythonByteCodelnstructions . . . . . . . . . . . i e e e e
319 Standard Modulesite . . . . . . e e e e
3.20 Standard Moduleuser . . . . . . . . e e e e e e
321 Built-inModule _builtin . . . . . . . . . e
322 Built-inModule _main__ . . . . . . .. e

String Services
41 StandardModulestring . . . . . . . e e e
42 Built-inModulere . . . . .. e e
421 Regular EXpressionSyntax . . . . . . . v v i i e e e e e e e e
422 ModuleContents . . . . . . . . o e e
423 Regular ExpressionObjects . . . . . . . . L
424 MachObjects . . . . . . .
4.3 Built-inModuleregex . . . . .. e e e
431 Regular EXpressions . . . . . . e e e e e e
432 ModuleContents . . . . . . . . e e
44 StandardModuleregsub . . . . ... e
45 Built-inModulestruct . . . . . .. e e e
46 StandardModule StringTIO . . . . . o v v i i e e
47 StandardModule soundex . . . . v v i e e e e e e

Miscellaneous Services

5.1 Built-inModulemath . . . . . . e e
5.2 Built-inModulecmath . . . . . . . e e e
5.3 Standard Modulewhrandom . . . . . . v vt i e e e e
54 StandardModulerandom . . . . . . . . .. e e
55 StandardModulerand . . . . . . . . . e e
5.6 Built-inModulearray . . . . . . .

Generic Operating System Services

6.1 StandardModuleos . . . . . . .. e e
6.2 Built-inModuletime . . . . . . . . . e
6.3 Standard Modulegetopt . . . . . . . . e e
6.4 StandardModuletempfile . . . . . . . e e e e e e e
6.5 StandardModuleerrno . . . . . . . . e e
6.6 StandardModuleglob . . . . . . . . e e e
6.7 StandardModule fnmatch . . . . . . . . e e e
6.8 Standardmodule Llocale . . . . . .

Optional Operating System Services
7.1 Built-inModulesignal . . . . . . . .. e e e
7.2 Bult-inModule socket . . . . . e e e e
721 SocketObjects . . . . . .. e
722 Example . . . .. e
7.3 Blilt-inModuleselect . . . . . . . e
7.4 Built-inModulethread . . . . . . . . . e e e
75 StandardmoduleQueue . . . . ...
751 QueueObjects . . . . . . L e e
7.6 Standard Modulesanydbmand dumbdbm . . . . . ... e e e
7.7 Standard Modulewhichdb . . . . . . . .0 e
7.8 Built-inModulezlib . . . . . . . e e
7.9 BlUilt-inModulegzip . . . . .. e

Unix Specific Services



10

11

81 Built-inModuleposix . . . . . . e e
8.2 Standard Moduleposixpath . . . . . . . . . . e e
8.3 Built-inModulepwd . . . . . ..
84 Built-inModulegrp . . . . . ..
85 Built-inModulecrypt . . . . .
8.6 Built-inModuledbm . . . . . ... e
8.7 Built-inModulegdbm . . . . . ...
8.8 Built-inModuletermios . . . . . . . o e e e e

881 Example . . . . .. e
8.9 Standard MOdUIE TERMIOS . . . . i v v i e e e e e e e e e e e e e e e e e e
8.10 Built-inModule fentl . . . . . .. e e
811 Standard Moduleposixfile . . . . . . . e e
8.12 Built-inModuleresource . . . . . . . i e e e e

8.12.1 ResourceLimits . . . . . . . . . .. e

8122 ResoUrCeUSagE . . . . . . . o e
813 Built-inModule sys1og . . . v v o v oo e e e e e e e
814 Standardmodule stat . . . . . ... e
8.15 Standard modulecommands . . . . . . . ... e e

The Python Debugger
9.1 Debugger Commands . . . . . . . . .. e e e
9.2 How IltWOrks . . . . . .

The Python Profiler
10.1 Introductiontotheprofiler . . . . . . . . . . . e
10.2 How IsThis Profiler Different From The Old Profiler? . . . . . . .. .. .. ... ... ... ....
103 InstantUsersManual . . . . . . . . . . e e
10.4 What IsDeterministic Profiling? . . . . . . . . . . .
105 ReferenceManual . . . . . . . . . e
1051 TheStats Class. . . . . . . o i it e e e e e e e
106 LIimMitations . . . . . . o e e e e e
10.7 Calibration . . . . . . e e e
10.8 Extensions— Deriving Better Profilers . . . . . . . . ... o
1081 OldPrafileClass . . . . . . . . i e e
10.8.2 HotProfileClass . . . . . . . . . e

Internet and WWW Services

11.1 Standard Modulecgi . . . . . . . e e e e
1101 IntroduCtion. . . . . o o e e e
11.1.2 Usingthecgimodule . . . . . . . . . . . . . e
1113 OldClasses . . . . . o o
1114 FUNCLIONS . . . . o o o e e e e e
1115 Caring@bout SECUFtY . . . . . . o o e e
11.1.6 Ingtalingyour CGl scriptonalUnixsystem . . . . . . . . ..o o it i it
11.1.7 Testingyour CGISCript . . . . . o o o o e e e e e
11.1.8 Debugging CGI SCripts . . . . . . .
11.1.9 Commonproblemsandsolutions . . . . . . .. . ... ...

11.2 Standard Moduleurllib . . . . . . . o e e

11.3 Standard Module httplib . . . . o o v i e e e e e e
11.31 HTTPODJECES . . . . . o o e e e e e e
11.32 Example . . . . . e

114 Standard Module ftplib . . . . . . .o e
1141 FTPODJECIS . . . v o o v e o e e e e e e e e e e e

115 Standard Modulegopherlib . . . . . . o o oo e e e

134
136



11.6 Standard Modulenntplib . . . . . . o i e e 156

11.6.1 NNTPObDJECtS . . . . . . o e e e 157

11.7 Standard Module urlparse . . . . o v v i i e e e e 159
11.8 Standard Module sgmllib . . . . . . o oo e e e e 160
11.9 Standard Modulehtmllib . . . . . . v 0 e e e e 162
11.10Standard Module xm11ib . . . . . o oo e e e e 163
11.11Standard Module formatter . . . . . v v i e e e e e e e e e e e e e e 164
11.11.1 The Formatter Interface . . . . . . . . . . e 165
11.11.2 Formatter Implementations . . . . . . . . . . . .. 166
11.11.3TheWriter Interface . . . . . . . . . . . e e 166
11.12.4Writer Implementations . . . . . . . . . . e e 167
11.12Standard Module r£C822 . . . . . o v i e e e e 168
11.12.1Message Objects . . . . . . . . e e 168
11.13Standard Modulemimetools . . . . . . o i e e e e e e 169
11.13.1 Additional Methodsof Messageobjects . . . . . . . . . . ... Lo 169
11.14Standard modulebinhex . . . . . o oo e e e 170
TLIAIN0OIES . . o o e e e e 170
11.15Standard moduleuu . . . . . . L e e 170
11.16Built-in Modulebinascii . . . . . . . . e e 171
11.17Standard module xdr1ib . . . . . . . e e e e e 171
11.17.2Packer ODJECES . . . . . . o o e e 172
11.17.2Unpacker Objects . . . . . . . . . . e e e 172
1117.3EXCEPLIONS . . . o o o i o e e e 173
11.18Standard Modulemailcap . . v v v v v e e e e e e e e 174
11.19Standard Modulebase64 . . . . . . . . . e e e e 175
11.20Standard Module QUOPTL . . . v v v v e e e e 175
11.21Standard Module Socket Server . . . v v v v v i e e e e e e e e e e 175
11.22Standard Modulemailbox . . . v v v v i e e e e e e e e 177
11.22.1Mailbox Objects . . . . . . . o e 177
11.23Standard Modulemimify . . . . . . oo e e e e 178
12 Restricted Execution 179
12.1 Standard Modulerexec . . . . . . . L e e e 180
1211 Anexample . . . . . 181

12.2 Standard ModUIEBaSEIi0n . . . v v o v e e e e e e e e e e 182
13 Multimedia Services 183
13.1 Built-inModule audioop . . . . . . oo e e e e 183
13.2 Built-inModule 1mageop . . . . . o v i e e e e e 186
13.3 Standard Moduleaifc . . . . . . o e e 186
134 Built-inModule 3peg . . . . . e e 188
135 Built-inModule rgbimg . . . . . . . . e e e 189
13.6 Standardmodule imghdr . . . . . . . . e e e 189
14 Cryptographic Services 191
14.1 Built-inModulemd5 . . . . . . .. e e e 191
14.2 Built-inModulempz . . . . . . .. e e 192
14.3 Built-inModulerotor . . . . . . . . e e e 193
15 Macintosh Specific Services 195
15.1 Built-inModulemac . . . . . . .. e e e e 195
152 Standard Modulemacpath . . . . . . . . e e e 195
15.3 Built-inModulectb . . . . . . e e 195
15.3.1 connectionobject . . . . . .. e 196



15.4 Built-in Modulemacconsole . . . . . . . i i e e e e e e 197

15.4.1 macconsoleoptionsobject . . . . . . . ... e 197
15.4.2 consolewindow object . . . . .. .. 198

155 Built-inModulemacdnr . . . . . . . ... e e e e 198
1551 dnrresultobject. . . . . ... 199

15.6 Built-inModulemacEfs . . . . . ... e e e 199
156.1 FSSpecobjects . . . . . . . . e 200
15.6.2 aiasobjects. . . . . . . 201
15.6.3 FINfOObJeCtS . . . . . . . 201

15.7 Standard Moduleic . . . . . . e e e 202
1571 1CObJECtS . . . . . o 202

15.8 Built-in ModuleMacOS . . . . . . o e e e 203
15.9 Standard modulemacosStools . . . v v v i i e e e e e e 204
15.10Standard module £indertools . . . v v . i it e e e e e e e e e e e e 204
15 11BuUilt-inModulemactep . . . . . o o e e e e 205
15.111TCP Stream ObJeCtS . . . . . . o o 205
1I5.112TCP StAuS ObJECtS . . . . . . . o e e 206
15.11.3UDPStream Objects . . . . . . . . o 206
15.12Built-in Modulemacspeech . . . . . . .. e e 206
15.12.1v0iCeOhjectS . . . . . . 207
15.12.2speechchannel objects . . . . . . . . . . 207
15.13Standard Module EasyDialogs . . v v v v v o i e e e e e e e e e 207
15.14Standard module FrameWork . . . v v v v v o e e e e e e e e e e e e 208
15141 Application Objects . . . . . . . . 209
15.142Window Objects . . . . . . . . e 210
15.14.3ControlsWindow Object . . . . . . . . . L 210
15.14.4ScrolledWindow Object . . . . . . . e e 210
15.14.5DialogWindow ObjECtS . . . . . . . . . . e e e 211
15.15Standard Module MiniAEFTAmME . . v v v v v v v e e e e e e e e e e e e e e e 211
1515 1AEServer ObJECES. . . . . o o o 211

16 SGI IRIX Specific Services 212
16.1 Built-inModuleal . . . . . . . . . e e 212
16.1.1 ConfigurationObJeCtS . . . . . . . . . o e e 212
16.1.2 PortObjectS. . . . . . o o e 213

16.2 Standard MOdUIEAL . . . . . . e 214
16.3 Built-inModulecd . . . . . . . e 214
16.4 Built-inModule £1 . . . . . . . e e e 217
16.4.1 FunctionsDefinedinModulefl . . . . . . . . . . . . 217
16.4.2 FOrmODbJectS . . . . . . o 218
16.4.3 FORMSODJECIS . . . . . o o e e e e e 220

16.5 Standard MOdUIEFL . . . . . . . o e e 221
16.6 Standard Module £1p . . . . . . o e e e e 221
16.7 Built-inModule fm . . . . . . . . e e e 221
16.8 Built-inModulegl . . . . . . . . 222
16.9 Standard ModuleSGL @NdDEVICE . . .« v v v v v i e e e e e e e e e 224
16.10Built-in Moduleimgfile . . . . . . . . e 224
17 SunOS Spexific Services 226
17.1 Built-inModule sunaudiodev . . . . . . . . . e e e e e 226
17.1.1 AudioDeviceObjects . . . . . . . . . o e 226

18 Undocumented Modules 228
18.1 Fundamental, and pretty straightforwardtodocument . . . . . . .. ... ... ... .. ....... 228



18.2 Frameworks; somewhat harder to document, but well worththeeffort . . . ... ... ... ... .. 228

18.3 Stuff useful to alot of people, includingtheCGlcrowd . . . . . . .. ... ... ... ........ 228
18.4 Miscellaneoususeful utilities . . . . . . . . . . . 228
185 Parsing Python . . . . . . . L 229
18.6 Platformspecificmodules. . . . . . . . . 229
18.7 Codeobjectsandfiles, debuggeretc. . . . . . . . . . . . . e 229
18.8 Multimedia . . . . . . . . 229
189 OddItiES . . . . . . o o e 230
18.100bSOIEtE . . . . . . e e 230
18.11Extension modUIES . . . . . . . L e e e 230

Vi



Chapter 1

| ntroduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of alanguage, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic propertieslike the
spelling and priorities of operators.)

Thelibrary also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket 1/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in al versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

Thismanual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get areasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’'t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finaly, if you enjoy learning about
random subjects, you choose a random page number (see module rand) and read a section or two.

Let the show begin!



Chapter 2

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operatorsthat have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manual for the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequencetypes, and several others, including typesthemselves. Thereis no explicit Boolean type; useintegersinstead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the ... * notation). The latter conversion is implicitly used when an object is written
by theprint statement.

211 Truth Value Testing

Any object can be tested for truth value, for usein an i £ or while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, e.g., 0, 0L, 0. 0.

e any empty sequence, e.g., ' *, (), [1.

e any empty mapping, e.g., { }.

o instancesof user-defined classes, if theclassdefinesa__nonzero__() or __len__() method, when that method
returns zero.

I Most descriptions sorely lack explanations of the exceptions that may be raised — thiswill be fixed in a future version of this manual.



All other values are considered true — so objects of many types are aways true.

Operations and built-in functions that have a Boolean result always return o for false and 1 for true, unless otherwise
stated. (Important exception: the Boolean operations‘or’ and ‘and’ always return one of their operands.)

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X or y | if xisfase, theny, else x D
X and y | if xisfase, thenx, elsey (1)
not x | ifxisfase theni,eseo 2

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ hasalower priority than non-Boolean operators, so e.g. not a == bisinterpreted asnot (a == b),
anda == not bisasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They al have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily, eg. x < y <= z is eguivalent to
x <y and y <= z,exceptthat y isevaluated only once (but in both cases z ishot evaluated at all whenx < vy
isfound to befalse).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than

less than or equal

strictly greater than

N
Il

\Y

>= greater than or equal

== equal

<> not equal (1)
= not equal (@D}
is object identity

is not | negated object identity

Notes:
(1) <> and ! = arealternate spellings for the same operator. (I couldn’t choose between ABC and C! :-)

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operationswith the same syntactic priority, in andnot in, are supported only by sequencetypes (bel ow).



2.1.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers. Plain
integers (also just called integers) are implemented using 1ong in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implemented using double in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex humbers have areal and imaginary part, which are both implemented using double in C. To extract these
parts from a complex number z, use z . real and z. imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plainintegers. Integer literalswithan ‘1.’ or ‘1’ suffix yield long integers (‘' 1’
is preferred because 11 looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending § or J to anumeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the same rule.?
Thefunctionsint (), long (), £loat (), and complex () can be used to coerce numbersto a specific type.

All numeric types support the following operations, sorted by ascending priority (operationsin the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X + Y sum of x and y
X -y difference of x and y
X *y product of x andy
X/y quotient of x and y (@D}
X %Yy remainderof x / y
-X X negated
+X X unchanged
abs (X) absolute value or magnitude of x
int (X) X converted to integer 2
long (X) X converted to long integer 2
float (X) x converted to floating point
complex (re,im) | acomplex number with real part re, imaginary part im. im defaults to zero.
divmod (X, V) thepair (x / y, X % Y) 3
pow (X, Y) x to the power y
X* xy x to the power y

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
12is0, (-1)/2is-1, 1/(-2) is-1, and (-1)/(-2) is O.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions f1oor ()
and ceil () inmodulemath for well-defined conversions.

(3) Seethe section on built-in functions for an exact definition.

Bit-string Operationson Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

2Asaconsequence, thelist [1, 2] isconsidered equal to [1.0, 2.01, and similar for tuples.



The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation* ' hasthe same priority as the other unary numeric operations (‘+' and ‘ -').

Thistableliststhe bit-string operations sorted in ascending priority (operationsin the same box have the same priority):

Operation | Result Notes
X | y | bitwiseor of xandy
X ~y | bitwiseexclusive or of xandy
X & y | bitwiseand of xandy

X << N | xshifted left by n bits @, 2
X >> n | xshifted right by n bits D, (3
| “x | thehitsof xinverted | |

Notes:

(1) Negative shift countsareillegal.
(2) A left shift by nhitsis equivalent to multiplication by pow (2, n) without overflow check.

(3) A right shift by n bitsis equivalent to division by pow (2, n) without overflow check.

215 Sequence Types

There are three sequence types: strings, lists and tuples.

Stringsliteralsarewritteninsingle or doublequotes. ' xyzzy’, "frobozz". See Chapter 2 of the Python Reference
Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, cl. Tuplesare constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, e.g., a, b, cor (). A singleitem tuple must
have atrailing comma, e.g., (4, ).

Sequence types support the following operations. The‘in’ and ‘not in’ operations have the same priorities as the
comparison operations. The‘+’ and ‘ *’ operations have the same priority as the corresponding numeric operations.?

Thistablelists the sequence operations sorted in ascending priority (operationsin the same box have the same priority).
Inthetable, s and t are sequences of the sametype; n, i and j areintegers:

Operation Result Notes
X in s 1if anitemof sisequal tox, else 0
X not in s | oifanitemof sisequa tox, else1
s + t the concatenation of sand t
S * n, n * s | ncopiesof sconcatenated
s[i] i"thitem of s, origin 0 (1)
sli:j] dliceof sfromitoj D, 2
len (s) length of s
min (S) smallestitem of s
max (S) largestitem of s

Notes:

(1) Ifiorjisnegative, theindex isrelativeto the end of the string, i.e,, len(s) + iorlen(s) + |issubstituted.
But notethat -0 istill 0.

3They must have since the parser can't tell the type of the operands.




(2) Thediceof sfromi to| isdefined as the sequence of itemswithindex k suchthati <= k < j. Ifiorjisgreater
thanlen (s), use len (s). If i isomitted, use 0. If j isomitted, use 1en (s) . If i is greater than or equal to |,
the dlice isempty.

More String Operations

String objects have one unique built-in operation: the % operator (modulo) with a string left argument interprets
this string as a C sprintf format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires asingle argument, the right argument may also be asingle non-tuple object.* Thefollowing format characters
areunderstood: %, ¢, s,1,d, u, 0, X, X, € E, f, g, G. Width and precision may bea* to specify that an integer argument
specifies the actual width or precision. The flag characters -, +, blank, # and 0 are understood. The size specifiers h,
| or L may be present but are ignored. The %s conversion takes any Python object and convertsit to a string using
str () beforeformatting it. The ANSI features $p and %n are not supported. Since Python strings have an explicit
length, $s conversionsdon’t assumethat * \ 0’ isthe end of the string.

For safety reasons, floating point precisions are clipped to 50; $£ conversions for numbers whose absolute value is
over 125 are replaced by $g conversions.® All other errors raise exceptions.

If theright argument is adictionary (or any kind of mapping), then the formatsin the string must have a parenthesized
key into that dictionary inserted immediately after the % character, and each format formats the corresponding entry
from the mapping. E.g.

>>> count = 2

>>> language = ’'Python’

>>> print ‘% (language)s has % (count)03d quote types.’ % vars()
Python has 002 quote types.

>>>

In this case no * specifiers may occur in aformat (since they require a sequential parameter list).

Additional string operations are defined in standard module st ring and in built-in module re.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
seguence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (where x is an arbitrary object):

4 A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They areintended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.



Operation Result Notes
s[il] = x itemi of sisreplaced by x
sfi:jl =t diceof sfromi toj isreplaced by t
del sli:j] sameassli:j] = [
S.append (X) sameassS[len(s) :1len(s)] = [X]
S.count (X) return number of i'sfor whichs[i] == x
S.index (X) return smallesti suchthat s[i] == X (@D}
S.insert (i, x) | sameassl[i:i] = [x]ifi >= 0
S. remove (X) sameasdel S[s.index (X)] D
S.reverse () reversestheitemsof sin place (©)]
S.sort () sort theitems of sin place 2, (3

Notes:

(1) Raisesan exceptionwhen xisnot foundins.

(2) The sort () method takes an optional argument specifying a comparison function of two arguments (list items)
which should return -1, 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort alist in
reverseorder it ismuch faster to use callsto sort () and reverse () thantouse sort () with acomparison
function that reverses the ordering of the elements.

(3) Thesort () and reverse () methods modify the list in place for economy of space when sorting or reversing
alargelist. They don't return the sorted or reversed list to remind you of this side effect.

216 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, the dictionary. A dictionary’s keys are almost arbitrary values. The
only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g. 1 and 1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a commaseparated list of key: value pairs within braces, for example:
{"jack’:4098, ’sjoerd’:4127}or {4098: 'jack’, 4127: 'sjoerd’ }.

The following operations are defined on mappings (whereaisamapping, k is akey and x is an arbitrary object):

Operation Result Notes
len(a) the number of itemsin a
arki theitem of a with key k D
alkl = x set a[k] tox
del alk] removea k] froma D
a.clear () removeall itemsfrom a
a.copy () a(shallow) copy of a
a.has key (k) | 1ifahasakeyk, else 0
a.items () acopy of a'slist of (key, item) pairs 2
a.keys () acopy of a'slist of keys 2
a.update(b) | for k, v in b.items(): alk] = v | (3)
a.values () acopy of a'slist of values ()]
a.get (k, f£) | theitem of awithkey k 4

Notes:



(1) Raisesan exceptionif kisnot inthe map.
(2) Keysand valuesarelisted in random order.
(3) b must be of the same type as a.

(4) Never raises an exception if k is not in the map, instead it returnsf. f is optional, when not provided and k is not
in the map, None is returned.

2.1.7 Other Built-in Types

Theinterpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only specia operation on amodule is attribute access: m. name, where mis a module and hame accesses a name
defined in m's symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
spoken, an operation on a module object; import foo does not require a module object named foo to exist, rather it
requires an (external) definition for a module named foo somewhere.)

A special member of every moduleis __dict__. Thisisthe dictionary containing the module's symbol table. Mod-
ifying this dictionary will actually change the module’'s symbol table, but direct assignment to the _dict__ at-
tribute is not possible (i.e., youcanwritem. _dict__['a’] = 1, whichdefinesm.a to be 1, but you can’'t write
m._dict_ = {}.

Modules are written like this; <module ’sys’s>.

Classes and Class | nstances

(See Chapters 3 and 7 of the Python Reference Manual for these.)

Functions

Function objects are created by function definitions. The only operation on a function object is to cal it:
func (argument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributes: f . func_code isafunction's code object (see below) and
f.func_globals isthedictionary used asthe function’s global name space (thisisthe sameasm. _dict__where
m is the module in which the function f was defined).

M ethods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () onlists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to classinstance methods: m. im_self isthe object whose
method thisis, and m. im_func is the function implementing the method. Calling m(arg-1, arg-2, ..., arg-n)
iscompletely equivalentto callingm. im_func (m.im_self, arg-1, arg-2, ..., arg-n).

(See the Python Reference Manual for moreinfo.)



Code Objects

Code objects are used by the implementation to represent “ pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement or the
built-in eval () function.

(See the Python Reference Manual for moreinfo.)

Type Objects

Type objects represent the various object types. An object’stype is accessed by the built-in function type (). There
are no specia operations on types. The standard module t ypes defines namesfor all standard built-in types.

Typesarewritten likethis: <type ’int’s.

The Null Object

This object is returned by functions that don't explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It iswritten asNone.

File Objects

File objects are implemented using C's stdio package and can be created with the built-in function open () de-
scribed under Built-in Functions below. They are also returned by some other built-in functions and methods, e.g.
posix.popen () andposix.fdopen () andthemakefile () method of socket objects.

When afile operation fails for an 1/O-related reason, the exception IOError israised. Thisincludes situations where
the operation is not defined for some reason, like seek () onatty device or writing afile opened for reading.

Files have the following methods:

close ()
Closethefile. A closed file cannot be read or written anymore.

flush()
Flush theinternal buffer, like stdio’'sfflush ().

isatty ()
Return 1 if thefileis connected to atty(-like) device, else 0.

fileno ()
Return theinteger “file descriptor” that is used by the underlying implementation to request 1/O operationsfrom
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fentl oros.read () and friends.

read ( [size] )
Read at most size bytes from the file (less if the read hits EOF or no more datais immediately available on a
pipe, tty or similar device). If the size argument is negative or omitted, read all data until EOF is reached. The
bytes are returned as a string object. An empty string is returned when EOF is encountered immediately. (For
certain files, like ttys, it makes sense to continue reading after an EOF is hit.)



readline ( [size] )
Read one entire line from the file. A trailing newline character is kept in the string® (but may be absent when a
file ends with an incomplete line). If the size argument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned when EOF
ishitimmediately. Note: unlikestdio’s fgets (), thereturned string contains null characters(’ \ 0" ) if they
occurred in the input.

readlines ( [sizehint] )
Read until EOF using readline () and return alist containing the lines thus read. If the optional bufferhint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes are read.

seek (offset, whence)
Set the file's current position, like stdio’s fseek (). The whence argument is optional and defaults to 0
(absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to the
file'send). Thereis no return value.

tell ()
Return the file's current position, like stdio’sftell ().

truncate ( [size] )
Truncatethefile's size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIx versions support this operation).

write (str)
Write a string to the file. Thereis no return value. Note: due to buffering, the string may not actually show up
inthefileuntil the £1ush () or close () method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to match readlines;
writelines doesnot add line separators.)

Classes that are trying to simulate a file object should also have a writable softspace attribute, which should be
initialized to zero. (softspaceisused by theprint statement.) Thiswill be automatic for classesimplemented in
Python; types implemented in C will haveto provideawritable softspace éttribute.

Internal Objects

(See the Python Reference Manual for these.)

2.1.8 Special Attributes

The implementation adds afew special read-only attributes to several object types, where they are relevant:

e X._dict__isadictionary of some sort used to store an object’s (writable) attributes;

e X._methods__ lists the methods of many built-in object types, eg., []._methods__ yields
["append’, ’‘count’, ’index’, ’‘insert’, ’'remove’, ’'reverse’, ’'sort’];

e X._members__lists data attributes;
e X.__class__istheclassto which aclassinstance belongs;

e X._bases__isthetuple of base classes of a class object.

6The advantage of leaving the newline on is that an empty string can be returned to mean EOF without being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of afile while scanning its lines) you can tell whether the last line of a
file ended in anewline or not (yes this happens!).

10



2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5a4, all standard exceptions have been converted to class objects, and users are encouraged to the the same.
The source code for those exceptionsis present in the standard library module except i ons; this module never needs
to be imported explicitly.

For backward compatibility, when Python is invoked with the - X option, the standard exceptionsare strings. This may
be needed to run some code that breaks because of the different semantics of class based exceptions. The -X option
will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. Thisis doneto force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but thisis not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, in a try statement with anexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from which it is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

Thebuilt-in exceptionslisted below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
severa items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to the ra i se statement. For string exceptions, the associated valueitself will be stored in the variable named
as the second argument of the except clause (if any). For class exceptions derived from the root class Exception,
that variable receives the exception instance, and the associated value is present as the exception instance’'s args
attribute; thisis atuple even if the second argument to ra i se was not (then it is asingleton tuple).

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter rai ses the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but thisis not (yet) enforced. The st () function, when applied to an
instance of this class (or most derived classes) returnsthe string val ue of the argument or arguments, or an empty
string if no argumentswere given to the constructor. When used as a sequence, this accesses the argumentsgiven
to the constructor (handy for backward compatibility with old code).

StandardError
The base class for built-in exceptions. All built-in exceptions are derived from this class, which isitself derived
fromtheroot class Exception.

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors. OverflowError,
ZeroDivisionError, FloatingPointError.

LookupError
The base class for thise exceptionsthat are raised when akey or index used on amapping or sequenceisinvalid:
IndexError, KeyError

Thefollowing exceptions are the exceptionsthat are actually raised. They are class objects, except when the - X option
is used to revert back to string-based standard exceptions.

AssertionError
Raised when an assert statement fails.

11



AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at al, TypeError israised.)

EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: theread () and readline () methods of file objects return an empty string
when they hit EOF.) No associated value.

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the - -with-fpectl option, or the WANT_SIGFPE _HANDLER symbol is defined
inthe‘config.h’ file

IOError
Raised when an /O operation (such as aprint statement, the built-in open () function or amethod of afile
object) fails for an |/O-related reason, e.g., “file not found” or “disk full”.

When class exceptions are used, and this exception is instantiated as IOError (errno, strerror), the
instance has two additional attributes errno and strerror set to the error code and the error message,
respectively. These attributes default to None.

ImportError
Raised when an import statement fails to find the module definition or whena from ... import failsto
find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if anindex is not aplaininteger, TypeError israised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a check for
interruptsis made regularly. Interrupts typed when a built-in function input () or raw_input ()) iswaiting
for input aso raise this exception. No associated value.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by del eting some objects).
Theassociated valueis astring indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C'smalloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when alocal or global nameis not found. This applies only to unqualified names. The associated value
is the namethat could not be found.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operationsthat can overflow are checked except |eft shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

12



SyntaxError

Raised when the parser encounters a syntax error. This may occur in an import Statement, in an exec
statement, in acal to the built-in function eval () or input (), or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttributes £ilename, 1ineno, offset and
text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)).Forclassexceptions, str () returnsonly the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report thisto the author or maintainer of your Python interpreter. Be sure to report the version string
of the Python interpreter (sys.version; it is aso printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
theerror.

SystemExit
Thisexceptionisraised by the sys.exit () function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated valueis a plain integer, it specifies the system exit status (passed to
C'sexit () function); if itisNone, the exit statusis zero; if it has another type (such as a string), the object’s
valueis printed and the exit statusis one.

When class exceptions are used, the instance has an attribute code which is set to the proposed exit status or
error message (defaulting to None).

A cdl to sys.exit () istrandated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(e.g., after afork () inthechild process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
isastring giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import__(name[, globals[, Iocals[, fromlist] ] ] )
Thisfunctionisinvoked by the import statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semantics of the import statement. For examples
of why and how you would do this, see the standard library modulesni, ihooks and rexec. See also the
built-in module imp, which defines some useful operations out of which you can build your own __import __()

function.
For example, the statement
import spam results in the following cal: __import__(’spam’, globals(), locals(), [1);

13



the Statement from spam.ham import eggs
resultsin __import_ (' spam.ham’, globals(), locals(), [’eggs’]). Notethat eventhough
locals () and ['eggs’] are passed in as arguments, the __import__() function does not set the local
variable named eggs; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not use its locals argument at all, and uses its globals only to determine the
package context of the import statement.)

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned. This is done for compatibility with the bytecode generated
for the different kinds of import statement; when using import spam.ham.eggs, the top-level package
spam must be placed in the importing namespace, but when using from spam.ham import eggs, the
spam. ham subpackage must be used to find the eggs variable.

abs (X)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, args [ keywords] )
The function argument must be a callable object (a user-defined or built-in function or method, or a class object)
and the argsargument must beatuple. Thefunctioniscalled with argsasargument list; the number of arguments
is the the length of the tuple. (Thisis different from just calling func (args) , since in that case there is always
exactly one argument.) If the optional keywords argument is present, it must be a dictionary whose keys are
strings. It specifies keyword arguments to be added to the end of the the argument list.

callable (object)
Return true if the object argument appears callable, false if not. If this returnstrue, it is still possible that a call
fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they have an attribute __call_..

chr (i)
Return a string of one character whose AscClI code istheinteger i, eg., chr (97) returnsthestring “a’. This
istheinverse of ord (). The argument must be in the range [0..255], inclusive.

cmp (X, Y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative if
X < Yy, zeoif x == yandsdtrictly positiveif x > v.

coerce (X, Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, kind)
Compilethe string into acode object. Code objects can be executed by an exec statement or evaluated by acall
toeval (). Thefilename argument should give the file from which the codewasread; passe.g. ' <strings>’
if it wasn't read from afile. The kind argument specifieswhat kind of code must be compiled; it canbe  exec’
if string consists of a sequence of statements, ' eval’ if it consists of a single expression, or ' single’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else than None will printed).

complex (real [, imag] )
Create a complex number with the value real + imag*j. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion function like
int, long and float.

delattr (object, name)
Thisis arelative of setattr. The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, ‘foobar’) isequivaenttodel X.foobar.

14



dir ()
XXX New functionality takes anything and looksin __dict__, __methods__, __members__.
Without arguments, return the list of names in the current local symbol table. With a module, class or class

instance object as argument (or anything else that has a __dict __ attribute), returns the list of names in that
object’s attribute dictionary. The resulting list is sorted. For example:

>>> import sys

>>> dir ()
["sys’]
>>> dir(sys)
["argv’, ’'exit’, ’'modules’, ’'path’, ’‘stderr’, ’'stdin’, ’‘stdout’]
>>>
divmod (a, b)

Take two numbers as arguments and return a pair of integers consisting of their integer quotient and re-
mainder. With mixed operand types, the rules for binary arithmetic operators apply. For plain and long
integers, the result isthe same as (a / b, a % b). For floating point numbers the result is the same as
(math.floor(a / b), a ¢ b).

eval (expression [ globals [ Iocals] ] )
The arguments are a string and two optional dictionaries. The expression argument is parsed and evaluated as a
Python expression (technically speaking, aconditionlist) using the globals and locals dictionaries as global and
local name space. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval iscaled. Thereturn valueis the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> X = 1

>>> print eval ('x+1')
2

>>>

This function can also be used to execute arbitrary code objects (e.g. created by compile ()). In this case
pass a code object instead of a string. The code object must have been compiled passing ' eval’ to the kind
argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
afile is supported by the execfile () function. The globals () and locals () functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile().

execfile (file [ gIobals[, Iocals] ] )
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the modul e administration — it reads the file unconditionally and does
not create a new module.”

The arguments are a file name and two optional dictionaries. Thefile is parsed and evaluated as a sequence of
Python statements (similarly to a module) using the globals and locals dictionaries as global and local name
space. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted,
the expression is executed in the environment where execfile () iscaled. ThereturnvalueisNone.

filter (function, list)
Construct alist from those elements of list for which function returnstrue. If list isastring or atuple, the result
also has that type; otherwise it is always a list. If function is None, the identity function is assumed, i.e. all
elements of list that are false (zero or empty) are removed.

"It is used relatively rarely so does not warrant being made into a statement.

15



float (X)
Convert a string or anumber to floating point. If the argument is a string, it must contain a possibly singed dec-
imal or floating point number, possibly embedded in whitespace; this behavesidentical to string.atof (X).
Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python's floating point precision) is returned.

getattr (object, name)
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result isthe value of that attribute. For example, getattr (X, ’foobar’) isequivalentto x.foobar.

globals ()
Return a dictionary representing the current global symbol table. This is aways the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
Theargumentsarean object and astring. Theresultis 1if the string isthe name of one of the object’sattributes, 0
if not. (Thisisimplemented by callinggetattr (object, name) and seeing whether it raises an exception
or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are 32-bit integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash
value (evenif they are of different types, e.g. 1 and 1.0).

hex (X)
Convert an integer number (of any size) to a hexadecimal string. Theresult is avalid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine, hex (-1) yields ' oxff££££££/. When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as alarge positive number or raise an Overf lowError exception.

id (object)
Return the ‘identity’ of an object. Thisisaninteger which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disiunct may have the same id() value.) (Implementation
note: thisis the address of the object.)

input ( [prompt] )
Almost equivalent to eval (raw_input (prompt) ). Like raw_input (), the prompt argument is optional,
and GNU readline is used when configured. The differenceis that along input expression may be broken over
multiple lines using the backslash convention.

intern (string)
Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (X)
Convert a string or number to a plain integer. |f the argument is a string, it must contain a possibly singed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi (X). Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbersto integersis defined by the C semantics; normally the conversiontruncates
towards zero.?

isinstance (object, class)

8Thisis ugly — the language definition should require truncation towards zero.

16



Return true if the object argument is an instance of the class argument, or of a (direct or indirect) subclass
thereof. Also return true if class is a type object and object is an object of that type. If object is not a class
instance or a object of the given type, the function always returns false. If class is neither a class object nor a
type object, a TypeError exception is raised.

issubclass (classl, class?)
Returntrueif classl isasubclass (direct or indirect) of class2. A classis considered a subclass of itself. If either
argument is not a class object, a TypeError exception is raised.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
amapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order as sequence's items. If sequence is already
alist, a copy is made and returned, similar to sequence(:]. For instance, 1ist (’abc’) returns returns
["a’, 'b’, 'c’landlist( (1, 2, 3) )retuns([1, 2, 3].

locals ()
Return a dictionary representing the current local symbol table. Inside a function, modifying this dictionary
does not always have the desired effect.

long (X)
Convert a string or number to along integer. If the argument is a string, it must contain a possibly singed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behavesidentical to string.atol (X).
Otherwise, the argument may be a plain or long integer or afloating point number, and along interger with the
same value is returned. Conversion of floating point numbers to integersis defined by the C semantics; see the
description of int ().

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are passed,
function must take that many arguments and is applied to the items of all listsin parallel; if alist is shorter than
another it is assumed to be extended with None items. If function is None, the identity function is assumed;
if there are multiple list arguments, map returns a list consisting of tuples containing the corresponding items
fromall lists (i.e. akind of transpose operation). The list arguments may be any kind of sequence; the result is
awaysalist.

max (S)
Return the largest item of a non-empty sequence (string, tuple or list).

min (S)
Return the smallest item of a non-empty sequence (string, tuple or list).

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this aways yields an unsigned literal, e.g. on a 32-bit machine, oct (-1) yields ' 037777777777'. When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as alarge positive number or raise an Overf lowError exception.

open (filename [ mode [ bufsize] ] )

Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio’s fopen (): filenameis the file name to be opened, mode indicates how thefile isto be opened: ' ¢’

for reading, ' w’ for writing (truncating an existing file), and ' a* opensit for appending (which on some UNIX

systems means that all writes append to the end of the file, regardiess of the current seek position). Modes
"r+',’w+’ and ' a+’ openthefilefor updating, provided the underlying st dio library understandsthis. On
systemsthat differentiate between binary and text files, ' b’ appended to the mode opensthefilein binary mode.
If the file cannot be opened, IO0Error israised. If mode is omitted, it defaultsto ' r. The optional bufsize
argument specifies the file's desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive
value means use abuffer of (approximately) that size. A negative bufsize meansto use the system default, which

17



isusually line buffered for for tty devices and fully buffered for other files.®

ord (c)

Return the Ascli value of astring of one character. E.g., ord (’ a’ ) returnstheinteger 97. Thisistheinverse
of chr ().

pow (X, Y [, Z] )
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (X, Y) %2). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand typeis also the type of theresult; if theresult isnot expressible
in this type, the function raises an exception; e.g., pow (2, -1) orpow (2, 35000) isnot allowed.

range ( [start,] stop[, step] )
This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If the step argument is omitted, it defaults to
1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. |If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step greater
than stop. step must not be zero (or else an exceptionis raised). Example:

>>> range (10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1l, 11)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

(o, -1, -2, -3, -4, -5, -6, -7, -8, -91]
>>> range (0)

>>> range (1, 0)

raw_input ( [prompt] )
If the prompt argument is present, it is written to standard output without a trailing newline. The function then

reads a line from input, convertsit to a string (stripping atrailing newline), and returns that. When EOF isread,
EOFError israised. Example:

>>> s = raw_input ('--> ')

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"
>>>

If the interpreter was built to use the GNU readline library, then raw_input () will useit to provide elaborate
line editing and history features.

reduce (function, list [, initializer | )
Apply the binary function to the items of list so as to reduce the list to a single vaue. E.g,

9 Specifying a buffer size currently has no effect on systems that don’'t have setvbuf (). The interface to specify the buffer size is not done
using a method that calls setvbuf (), because that may dump core when called after any 1/0 has been performed, and there’s no reliable way to
determine whether thisisthe case.

18



reduce (lambda x, y: x*y, list, 1) returns the product of the elements of list. The optional
initializer can be thought of as being prepended to list so as to allow reduction of an empty list. The list
arguments may be any kind of sequence.

reload (module)
Re-parse and re-initialize an aready imported module. The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return valueisthe module
object (i.e. the same as the modul e argument).

There are a number of caveats:

If amodule is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys . modules. To reload the module
you must first import it again (this will bind the name to the partially initialized module object) before you
canreload/() it.

When amodule is reloaded, its dictionary (containing the modul€'s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the modul€e's advantage if it maintains a global table or cache of objects — with a t ry statement it can test
for thetable's presence and skip itsinitialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for sys,
_main__and _builtin__.. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when rel oaded.

If a module imports objects from another module using from ... import ..., cdling reload () for the
other module does not redefine the objects imported from it — one way around this is to re-execute the f rom
statement, another isto use import and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The sameis true for derived
classes.

repr (object)
Return a string containing a printabl e representation of an object. Thisis the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passedto eval ().

round (X, N)
Return the floating point value x rounded to n digits after the decimal point. If nis omitted, it defaults to zero.
Theresult isafloating point number. Values are rounded to the closest multiple of 10 to the power minusn; if two
multiples are equally close, rounding is done away from 0 (so e.g. round (0.5) is1.0 and round (-0.5)
is-1.0).

setattr (object, name, value)
This is the counterpart of getattr. The arguments are an object, a string and an arbitrary value. The string
must be the name of one of the object’s attributes. The function assigns the value to the attribute, provided the
object allowsit. For example, setattr (x, ‘foobar’, 123) isequivalenttox.foobar = 123.

slice ( [start,] stop[, step] )
Return a slice object representing the set of indices specified by range (start, stop, step). The start and
step arguments default to None. Slice objects have read-only data attributes start, stop and step which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax isused, e.g. for a [start:stop:step] Ora[start:stop, 1il.

str (object)
Return a string containing a nicely printable representation of an object. For strings, this returns the string

19



itself. The differencewith repr (object) isthat str (object) does not always attempt to return astring that is
acceptableto eval (); itsgoa isto return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order as sequence's items. If sequence is already
atuple, it is returned unchanged. For instance, tuple (’abc’) returnsreturns (‘a’, 'b’, ’'c’) and
tuple([1, 2, 31) retuns (1, 2, 3).

type (object)
Return the type of an object. The return valueis atype object. The standard module types defines names for
all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

vars ( [object] )
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has a __dict__ attribute), returns a dictionary cor-
responding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefined. 1°

xrange ( [start,] stop [, step] )
This function is very similar to range (), but returns an “xrange object” instead of alist. Thisis an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantage of xrange () over range () isminimal (since xrange () still hasto create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when al of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

101n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

20



Chapter 3

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here's an overview:

sys — Access system specific parameters and functions.

types — Namesfor al built-in types.

UserDict, UserList — Classwrappersfor dictionary and list objects.

operator — All python’s standard operators as built-in functions.

traceback — Print or retrieve a stack traceback.

pickle — Convert Python objects to streams of bytes and back.

shelve — Python object persistency.

copy — Shallow and deep copy operations.

marshal — Convert Python objects to streams of bytes and back (with different constraints).
ni — New import (obsolete).

imp — Access the implementation of the import statement.

parser — Retrieve and submit parse trees from and to the runtime support environment.
keyword — Test whether astring is a keyword in the Python language.

code — Code object services.

pprint — Data pretty printer.

dis — Disassembler.

site — A standard way to reference site-specific modules.

user — A standard way to reference user-specific modules.

_builtin__ — The set of built-in functions.

__main__ — The environment where the top-level scriptisrun.

21



3.1 Built-in Module sys

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
Thelist of command line arguments passed to a Python script. sys . argv [0] isthe script name (it is operating
system dependent whether thisisafull pathname or not). If the command was executed using the* - ¢’ command
line option to the interpreter, sys.argv [0] is set to the string "-c". If no script name was passed to the
Python interpreter, sys . argv has zero length.

builtinmodule_names
A tuple of strings giving the names of all modulesthat are compiled into this Python interpreter. (Thisinforma-
tionis not available in any other way — sys.modules.keys () only lists the imported modules.)

exc_info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “ executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exceptionis accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is returned.
Otherwise, the values returned are (type, value, traceback). Their meaningis: type gets the exception type
of the exception being handled (a string or class object); value gets the exception parameter (its associated
value or the second argument to raise, which isawaysaclassinstance if the exception typeis a class object);
traceback gets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning the traceback return value to alocal variable in a function that is handling an exception
will cause acircular reference. Thiswill prevent anything referenced by alocal variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something like type, value = sys.exc.info () [:2] to extract only the exception
type and value. If you do need the traceback, make sure to delete it after use (best donewithatry-finally
statement) or to call sys.exc_info () inafunction that does not itself handle an exception.

exc_type

exc_value

exc_traceback
Use of these three variables is deprecated; they contain the same values as returned by sys.exc_info ()
above. However, since they are global variables, they are not specific to the current thread, so their use is not
safe in amulti-threaded program. When no exception isbeing handled, sys . exc type isset to None and the
other two are undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also "/usr/local". This can be set at build time with the - -exec-prefix argu-
ment to the configure script. Specifically, al configuration files (e.g. the config.h header file) are
installed in the directory sys.exec prefix+"/lib/pythonVER/config", and shared library mod-
ules are installed in sys.exec_prefix+"/lib/pythonVER/1ib-dynload", where VER is equa to
sys.version[:3].

exit (n)
Exit from Python with numeric exit status n. Thisis implemented by raising the SystemExit exception, so
cleanup actions specified by finally clauses of try statements are honored, and it is possible to catch the
exit attempt at an outer level.

22



exitfunc
Thisvalueis not actually defined by the module, but can be set by the user (or by a program) to specify aclean-
up action at program exit. When set, it should be a parameterless function. Thisfunctionwill be called when the
interpreter exits in any way (except when afatal error occurs: in that case the interpreter’sinternal state cannot
be trusted).

last_type

last_value

last_traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to alow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
theerror. (Typica useis import pdb; pdb.pm() toenter the post-mortem debugger; see the chapter “The
Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values from sys .exc_info () above. (Since
thereisonly oneinteractivethread, thread-saf ety is not aconcernfor thesevariables, unlikefor sys . exc type
etc.)

modules
Givesthelist of modulesthat have already been loaded. This can be manipulated to force reloading of modules
and other tricks.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, or an installation-dependent default.

The first item of this list, sys.path[0], is the directory containing the script that was used to invoke the
Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the
script isread from standard input), sys . path [0] isthe empty string, which directs Python to search modules
in the current directory first. Notice that the script directory is inserted before the entries inserted as a result of
$PYTHONPATH.

platform
This string contains a platform identifier, e.g. sunos5 or 1inux1. This can be used to append platform-
specific componentsto sys . path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string "/usr/local". This can be set at build time with the - -prefix argu-
ment to the configure script. The main collection of Python library modulesis installed in the directory
sys.prefix+"/1lib/pythonVER" while the platform independent header files (all except config.h)
arestoredin sys.prefix+"/include/pythonVER", where VERisequal to sys.version[:3].

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
isin interactive mode. Their initial valuesinthiscaseare '>>> “ and * ... . If anon-string object is
assigned to either variable, its st r () isre-evaluated each timethe interpreter preparesto read anew interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set theinterpreter’s” check interval”. Thisinteger value determines how often the interpreter checksfor periodic
things such as thread switches and signal handlers. The default is 10, meaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to avalue <= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See

23



section “How It Works® in the chapter on the Python Debugger.

setprofile (profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
the chapter on the Python Profiler. The system’s profilefunctioniscalled similarly to the system’strace function
(see sys.settrace), but it isn't called for each executed line of code (only on call and return and when an
exception occurs). Also, itsreturn value is not used, so it can just return None.

stdin

stdout

stderr
File objects corresponding to the interpreter’s standard input, output and error streams. sys . stdin isused for
all interpreter input except for scripts but including callsto input () and raw_input (). sys.stdout is
used for the output of print and expression statements and for the promptsof input () and raw_input ().
The interpreter’s own prompts and (almost all of) its error messages go to sys . stderr. sys.stdout and
sys.stderr needn’'t be built-in file objects: any object isacceptableaslongasit hasawrite () method that
takes a string argument. (Changing these objects doesn’t affect the standard 1/O streams of processes executed
by popen (), system() ortheexec* () family of functionsin the os module.)

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The default is 1000. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 Standard Module types

This module defines names for all object types that are used by the standard Python interpreter (but not for the types
defined by various extension modules). It issafetouse“from types import *" — the module does not export
any other names besides the ones listed here. New names exported by future versions of this module will al end in

Type.
Typica useisfor functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove (item)

The module defines the following names:

NoneType
Thetype of None.

TypeType
The type of type objects (such as returned by type () ).

IntType
Thetype of integers(e.g. 1).

LongType
Thetype of long integers (e.g. 1L).

24



FloatType
The type of floating point numbers (e.g. 1. 0).

StringType
Thetype of character strings (e.g.  Spam’).

TupleType
Thetypeof tuples(e.g. (1, 2, 3, ’Spam’)).

ListType
Thetypeof lists(e.g. [0, 1, 2, 31).

DictType
Thetypeof dictionaries(e.g. {'Bacon’: 1, ‘Ham’: 0}).

DictionaryType
An alternative namefor Dict Type.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An dlternative namefor FunctionType.

CodeType
Thetype for code objects such asreturned by compile ().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternative name for MethodType.

BuiltinFunctionType
Thetype of built-in functionslike len or sys . exit.

BuiltinMethodType
An alternative namefor BuiltinFunction.

ModuleType
The type of modules.

FileType
Thetype of open file objects such as sys . stdout.

XRangeType
The type of range objects returned by xrange () .

TracebackType
Thetype of traceback objects such asfoundin sys . exc_traceback.

FrameType
Thetype of frame objects such asfoundin tb. tb_frame if tb isatraceback object.

25



3.3 Standard ModulesUserDict and UserList

Each of these modul es defines a class that acts as awrapper around either dictionary or list objects. They're useful base
classes for your own dictionary-like or list-like classes, which can inherit from them and override existing methods or
add new ones. In this way one can add new behavioursto dictionariesor lists.

The UserDict module definesthe UserDict class:

UserDict ()
Return aclassinstance that simulates adictionary. Theinstance’s contentsare kept in aregular dictionary, which
is accessible viathe data attribute of UserDict instances.

TheUserList module definesthe UserList class:

UserList ( [Iist] )
Return aclassinstance that smulates alist. Theinstance's contents are kept in aregular list, which is accessible
via the data attribute of UserList instances. The instance's contents are initially set to ¢ copy of list,
defaulting to the empty list [1. list can be either a regular Python list, or an instance of UserList (or a
subclass).

3.4 Built-in Module operator

Theoperator moduleexportsaset of functionsimplementedin C correspondingto theintrinsic operatorsof Python.
For example, operator.add (x, y) isequivaent to the expression x+y. The function names are those used for
specia class methods; variants without leading and trailing * - are also provided for convenience.

The operator module defines the following functions:

add (a, b)
Return a + b, for a and b numbers.

_.add__(a, b)
Returna + b, for a and b numbers.

sub (a, b)
Returna - b.

__sub__(a, b)
Returna - b.

mul (a, b)
Returna * b, for a and b numbers.

_mul__(a,b)
Returna * b, for a and b numbers.

div (a, b)
Returna / b.

_div__(a,b)
Returna / b.

mod (a, b)
Returna % b.

_mod__(a, b)
Returna % b.

neg (0)
Return o negated.

26



__neg__(0)
Return o negated.

pos (0)
Return o positive.

__pos__(0)
Return o positive.

abs (0)
Return the absolute value of o.

__abs__(0)
Return the absol ute value of o.

inv (0)
Return the inverse of o.

__inv__(0)
Return the inverse of o.

lshift (a,b)
Return a shifted left by b.

__1lshift__(ab)
Return a shifted left by b.

rshift (a,b)
Return a shifted right by b.

__rshift__(a,b)
Return a shifted right by b.

and_(a, b)
Return the bitwise and of a and b.

__and__(a, b)
Return the bitwise and of a and b.

or_(a,b)
Return the bitwise or of aand b.

_or__(a,b)
Return the bitwise or of aand b.

concat (a, b)
Returna + b for aand b sequences.

__concat__(a,b)
Returna + b for aand b sequences.

repeat (a,b)
Returna * b where ais a sequence and b is an integer.

__repeat__(a,b)
Returna * b where aiis a sequence and b is an integer.

getitem(a, b)
Return the value of a at index b.

_getitem__(a,b)
Return the value of a at index b.

setitem(a, b, c)

27



Set the value of a at index b to c.

__setitem_(a, b, c)
Set thevalueof aat index btoc.

delitem(a, b)
Remove the value of a at index b.

_delitem_(a,b)
Remove the value of a at index b.

getslice(a,b,c)
Return the slice of a fromindex b toindex c-1.

_getslice__(aDb,c)
Returnthe slice of afromindex btoindex c-1.

setslice(ab,c, V)
Set the dlice of a fromindex b to index c- 1 to the sequencev.

_setslice_(a,b,c,Vv)
Set the dlice of a fromindex b to index c- 1 to the sequencev.

delslice(a,b,c)
Deletethe slice of afromindex btoindex c-1.

_delslice_(a,b,c)
Deletethe slice of afromindex btoindex c-1.

Example: Build adictionary that maps the ordinalsfrom 0 to 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map (chr, keys)

>>> map (operator.setitem, [d]*len (keys), keys, wvals)

3.5 Standard Module traceback

This module provides a standard interface to format and print stack traces of Python programs. It exactly mimics the
behavior of the Python interpreter when it prints astack trace. Thisis useful when you want to print stack traces under
program control, e.g. in a“wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variables sys . exc_traceback
and sys.last_traceback.

The module defines the following functions:

print_tb (traceback [ Iimit] )
Print up to limit stack trace entries from traceback. If limit is omitted or None, al entries are printed.

extract_tb (traceback [, Iimit] )
Return alist of up to limit “ pre-processed” stack trace entries extracted from traceback. It isuseful for alternate
formatting of stack traces. If limit is omitted or None, al entries are extracted. A “pre-processed” stack trace
entry is aquadruple (filename, line number, function name, line text) representing the information that is usually
printed for a stack trace. Thelinetext is a string with leading and trailing whitespace stripped; if the source is

28



not availableit isNone.

print_exception (type, value, traceback [ Iimit] )
Print exception information and up to limit stack trace entries from traceback. This differsfromprint tbin
the following ways: (1) if traceback is not None, it printsaheader “Traceback (innermost last) :”;
(2) it prints the exception type and value after the stack trace; (3) if type is SyntaxError and value has the
appropriate format, it prints the line where the syntax error occurred with a caret indication the approximate
position of the error.

print_exc ( [IirT‘it] )
This is a  shorthand for print_exception (sys.exc_type, sys.exc_value,
sys.exc_traceback, 1limit).

print_last ( [IirT‘it] )
This is a shorthand for print_exception(sys.last_type, sys.last_value,
sys.last_traceback, 1limit).

3.6 Standard Modulepickle

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). Thisis a more primitive notion than persistency — athough pickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. The pickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obviousthing to do with these byte streamsisto
writethem onto afile, but it is also concelvableto send them across anetwork or store them in adatabase. The module
shelve providesasimpleinterface to pickle and unpickle objects on “dbm” -style database fil es.

Note: Thepickle moduleisrather slow. A reimplementation of the same algorithmin C, which is up to 1000 times
faster, is available asthe cPickle module. This has the same interface except that Pickler and Unpickler are
factory functions, not classes (so they cannot be used as a base class for inheritance).

Unlike the built-in module marshal, pickle handlesthe following correctly:

e recursive objects (objects containing references to themselves)
o object sharing (references to the same object in different places)

o user-defined classes and their instances

The dataformat used by pickle is Python-specific. This has the advantage that there are no restrictionsimposed by
external standards such as CORBA (which probably can’t represent pointer sharing or recursive objects); however it
means that non-Python programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable Ascii representation. This is dlightly more voluminous than a
binary representation. The big advantage of using printable Ascli (and of some other characteristics of pickle’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is dlightly more efficient, can be chosen by specifying a nonzero (true) value for the bin
argument to the Pickler constructor or the dump () and dumps () functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In afuture version, the default may changeto
binary.

The pickle module doesn’t handle code objects, which themarshal module does. | supposepickle could, and
maybe it should, but there’s probably no great need for it right now (as long as marshal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horsesinto a program.

29



For the benefit of persistency modules written using pickle, it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of printable Ascli
characters. The resolution of such namesis not defined by the pickle module — the persistent object module will
have to implement a method persistent_load. To write references to persistent objects, the persistent module
must define amethod persistent_id which returns either None or the persistent 1D of the object.

There are some restrictions on the pickling of class instances.

First of al, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, its __init__ method is normally not invoked. Note: Thisis a deviation
from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the change is that
in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to have to provide
a_getinitargs__ method.

If itisdesirablethat the __init__ method be called on unpickling, aclass can defineamethod _getinitargs_ (),
which should return atuple containing the arguments to be passed to the class constructor (__init __()).

Classes can further influence how their instances are pickled — if the class defines the method __getstate__ (),
it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate__(), it is caled with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If thereisno _getstate__() method, the instance’s __dict __is pickled. If thereis no
__setstate__() method, the pickled object must be a dictionary and its items are assigned to the new instance’s
dictionary. (If aclass definesboth _getstate_() and __setstate__(), the state object needn’t be adictionary
— these methods can do what they want.) This protocol is also used by the shallow and deep copying operations
defined in the copy module.

Note that when class instances are pickled, their class's code and data are not pickled along with them. Only the
instance data are pickled. Thisis done on purpose, so you can fix bugsin a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objectsthat will see many versions
of aclass, it may be worthwhile to put aversion number in the objects so that suitable conversions can be made by the
class's__setstate_ () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an object x onto afile £, open for writing:

p = pickle.Pickler (f)
p.dump (x)

A shorthand for thisis:

pickle.dump (x, f)

To unpickle an object x from afile £, open for reading:

u = pickle.Unpickler (f)
X = u.load()
A shorthandis:

30



x = pickle.load(f)

The Pickler class only calls the method f . write with a string argument. The Unpickler calls the methods
f.read (with an integer argument) and £ . readline (without argument), both returning a string. It is explicitly
allowed to pass non-file objects here, as long as they have the right methods.

The constructor for the Pick1ler class hasan optional second argument, bin. If thisis present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

integers, long integers, floating point numbers

strings

tuples, lists and dictionaries containing only picklable objects

classes that are defined at the top level in amodule

instances of such classeswhose __dict__or __setstate_ () ispicklable

Attempts to pickle unpicklable objectswill raise the Pickl ingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to the dump () method of the same Pickler instance. These must then be
matched to the same number of callstothe 1oad () instance of the corresponding Unpickler instance. |f the same
object is pickled by multiple dump () calls, the 1oad () will al yield references to the same object. Warning: this
isintended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the same Pickler instance, the object is not pickled again — areference to
it is pickled and the Unpickler will return the old value, not the modified one. (There are two problems here: (@)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart fromthe Pickler and Unpickler classes, the module defines the following functions, and an exception:

dump (object, file [, bin] )
Write a pickled representation of obect to the open file object file. This is equivaent to
Pickler (file, bin) .dump (object). If the optional bin argument is present and nonzero, the binary pickle
format isused; if it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file object file. Thisisequivalentto Unpickler (file) .load ().

dumps (object [, bin] )
Return the pickled representation of the object as a string, instead of writing it to a file. If the optional bin
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of afile. Charactersin the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object ispassed to Pickler.dump ().

31



3.7 Standard Module shelve

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databasesis that the values (not the keys!)
in ashelf can be essentially arbitrary Python objects — anything that the pickle module can handle. Thisincludes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interface (key isastring, data isan arbitrary object):
import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if
# using an existing key)

data = dlkey] # retrieve data at key (raise KeyError if no
# such key)

del dl[keyl # delete data stored at key (raises KeyError
# if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (e.g. dbm or gdbm) depends on which interfaceis available.
Thereforeit isn't safe to open the database directly using dbm. The database is also (unfortunately) subject to
the limitations of dbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

¢ Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e The shelve module does hot support concurrent read/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. UNI1X file locking can be used to solve this, but this differs across UNIX versions and
requires knowledge about the database implementation used.

3.8 Standard Module copy

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
It

copy . copy (y) # make a shallow copy of y
copy .deepcopy (y) # make a deep copy of y

X
It

For module specific errors, copy . error israised.

32



The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

¢ A shallow copy constructs a new compound object and then (to the extent possible) inserts referencesinto it to
the objectsfound in the original.

o A deep copy constructs a new compound object and then, recursively, inserts copiesinto it of the objects found
inthe original.

Two problems often exist with deep copy operationsthat don’t exist with shallow copy operations:

¢ Recursive objects (compound objects that, directly or indirectly, contain areference to themselves) may cause a
recursive loop.

e Because deep copy copies everything it may copy too much, e.g. administrative data structures that should be
shared even between copies.

Python'sdeepcopy () operation avoids these problems by:

¢ keeping atable of objects already copied during the current copying pass; and

o |etting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket,
window, nor array, nor any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods
caled _getinitargs__(),_getstate_ () and __setstate__(). Seethedescription of modulepickle for
information on these methods.

3.9 Built-in Modulemarshal

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to afile on a PC, transport
the fileto a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does).!

Thisis not ageneral “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modules pickle and shelve. The marshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules of * . pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported: None, integers, long
integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood
that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C's 1ong int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the current marshal module uses 32 hits to transfer
plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals

L The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marsha” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

33



in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the moduleis read from the . pyc instead.?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump (value, file)
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned by open () or posix.popen ().

If the value has (or contains an object that has) an unsupported type, avalueError exceptionis raised — but
garbage datawill also be written to the file. The object will not be properly read back by 1oad ().

load (file)
Read one value from the open file and return it. If no valid value isread, raise EOFError, ValueError or
TypeError. Thefile must be an open file object.

Warning: If an object containing an unsupported type was marshalled with dump (), 1oad () will substitute
None for the unmarshallable type.

dumps (value)
Return the string that would be written to a file by dump (value, file). The vaue must be a supported
type. RaseavalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError Of TypeError.
Extracharactersin the string are ignored.

3.10 Built-in Module imp

This module provides an interface to the mechanisms used to implement the import statement. It defines the follow-
ing constants and functions:

get_magic ()
Return the magic string value used to recognize byte-compiled code files (“ . pyc files’). (This value may be
different for each Python version.)

get_suffixes()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the filename to
search for, mode is the mode string to pass to the built-in open function to open the file (this can be " ¢’
for text files or ' rb’ for binary files), and type is the file type, which has one of the values PY_SOURCE,
PY_COMPILED, Or C_EXTENSION, defined below.

find -module (name, [path] )

Try to find the module name on the search path path. If path is alist of directory names, each directory is
searched for files with any of the suffixes returned by get _suffixes () above. Invalid namesin thelist are
silently ignored (but all list items must be strings). If path is omitted or None, thelist of directory names given
by sys.path is searched, but first it searches a few specia places: it tries to find a built-in module with the
given name (C_BUILTIN), then afrozen module (PY_FROZEN), and on some systems some other places are
looked in as well (on the Mac, it looks for a resource (PY_RESOURCE); on Windows, it looks in the registry
which may point to a specificfile).

If search is successful, the return value is a triple (file, pathname, description) where file is an open file
object positioned at the beginning, pathname is the pathname of the file found, and description is a triple as

2 A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would beto let themarshal
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.



contained in the list returned by get _suf fixes describing the kind of module found. If the modul e does not
livein afile, the returned file is None, filename is the empty string, and the description tuple contains empty
stringsfor its suffix and mode; the moduletypeisasindicatein parenthesesdabove. If the searchis unsuccessful,
ImportError israised. Other exceptionsindicate problemswith the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find varP.M, i.e.,
submoduleM of package P, use find-module () and load-module () tofind andload package P, and then
use find-module () with the path argument setto P. __path__. When P itself has a dotted name, apply this
recipe recursively.

load-module (name, file, filename, description)
L oad a module that was previously found by find module () (or by an otherwise conducted search yielding
compatibleresults). This function does more than importing the module: if the module was already imported, it
isequivalenttoareload () ! The nameargument indicates the full module name (including the package name,
if thisis a submodule of a package). The file argument is an open file, and filename is the corresponding file
name; these can beNone and " ", respectively, when the moduleis not being loaded from afile. The description
argument is atuple asreturned by find module () describing what kind of module must be |oaded.

If theload is successful, the return valueis the modul e object; otherwise, an exception (usually ImportError)
israised.

Important: the caller is responsible for closing the file argument, if it was not None, even when an exception
israised. Thisis best done using atry-finaly statement.

new_module (hame)
Return a new empty module object called name. Thisobject isnot inserted in sys . modules.

The following constants with integer values, defined in this module, are used to indicate the search result of
findmodule ().

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as afrozen module (see init _frozen).

The following constant and functions are obsolete; their functionality is available through £ind module () or
load-module (). They are kept around for backward compatibility:

SEARCH_ERROR
Unused.

init builtin (name)
Initialize the built-in module called name and return its module object. |f the module was already initialized, it
will beinitialized again. A few modules cannot be initialized twice — attempting to initialize these again will
raise an ImportError exception. If thereisno built-in module called name, None isreturned.

init_frozen (name)

35



Initialize the frozen module called name and return its module object. |f the module was aready initialized,
it will be initialized again. If there is no frozen module called name, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python's freeze utility. See Tools/freeze for now.)

is builtin (name)
Return 1 if thereis a built-in module called name which can be initialized again. Return -1 if thereisabuilt-in
module called name which cannot be initialized again (see init builtin). Return o if thereis no built-in
module called name.

is_frozen (name)
Return 1 if thereisafrozen module (see init_frozen) caled name, 0 if thereisno such module.

load_compiled (name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initialized again. The name argument is used to create or access a
module object. The pathname argument points to the byte-compiled code file. The file argument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be areal file object,
not a user-defined class emulating afile.

load_dynamic (name, pathname, [file] )
L oad and initialize amodul e implemented as a dynamically loadabl e shared library and return its modul e object.
If the module was already initialized, it will be initialized again. Some modules don’t like that and may raise
an exception. The pathname argument must point to the shared library. The name argument is used to construct
the name of the initialization function: an external C function called initname() in the shared library is
called. The optional file argment is ignored. (Note: using shared librariesis highly system dependent, and not
all systems support it.)

load_source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initialized again. The name argument is used to create or access a module
object. The pathname argument points to the source file. The file argument is the source file, open for reading
astext, from the beginning. It must currently be areal file object, not a user-defined class emulating afile. Note
that if a properly matching byte-compiled file (with suffix . pyc) exists, it will be used instead of parsing the
given source file.

3.10.1 Examples
Thefollowing function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical module

names). (This implementation wouldn’'t work in that version, since imp . find module () has been extended and
imp.load.module () hasbeenaddedin 1.4)

36



import imp import sys

def _ import_ (name, globals=None, locals=None, fromlist=None) :
# Fast path: see if the module has already been imported.
try:

return sys.modules [name]
except KeyError:
pass

# If any of the following calls raises an exception,
# there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find module (name)

try:
return imp.load module (name, fp, pathname, description)
finally:
# Since we may exit via an exception, close fp explicitly.
if fp:

fp.close ()

A more complete example that implements hierarchical module names and includes a reload () function can be
found in the standard module knee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.11 Built-in Moduleni

Warning: Thismoduleisobsolete. As of Python 1.5a4, package support (with different semanticsfor __init__and
no support for __domain__or __) isbuiltin theinterpreter. The ni moduleis retained only for backward compatibility.
As of Python 1.5b2, it has been renamed to ni1; if you really need it, you can use import niil, but the recom-
mended approach is to rely on the built-in package support, converting existing packages if needed. Note that mixing
ni and the built-in package support doesn’'t work once you import ni, all packages useit.

The ni module defines a new importing scheme, which supports packages containing several Python modules. To
enable package support, execute import ni beforeimporting any packages. Importing this module automatically
installs the relevant import hooks. There are no publicly-usablefunctions or variablesin theni module.

To create a package named spam containing sub-modules ham, bacon and eggs, create adirectory ‘spam’ some-
where on Python’s module search path, as given in sys .path. Then, create files caled ‘ham.py’, ‘bacon.py’
and ‘eggs .py’ inside‘spam’.

To import module ham from package spam and use function hamneggs () from that module, you can use any of the
following possibilities:

import spam.ham # *not* "import spam" !!!
spam. ham.hamneggs ()

from spam import ham
ham.hamneggs ()

37



from spam.ham import hamneggs
hamneggs ()

import spam creates an empty package named spam if one does not already exist, but it does not automatically
import spam’s submodules. The only submodule that is guaranteed to be imported is spam. _init_, if it exists;
it would bein afilenamed ‘__init__.py’ inthe ‘spam’ directory. Notethat spam.__init __is a submodule of
package spam. It can refer to spam’s namespace as __ (two underscores):

___.spam_inited = 1 # Set a package-level variable

Additional initialization code (setting up variables, importing other submodules) can be performed in
‘spam/__init__.py’.

3.12 Built-in Moduleparser

The parser module provides an interface to Python's internal parser and byte-code compiler. The primary purpose
for thisinterfaceis to allow Python code to edit the parse tree of a Python expression and create executabl e code from
this. Thisis better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
Thisisnot atutorial on editing the parse trees for Python code, but some examples of using the parser module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For full

information on the language syntax, refer to the Language Reference. The parser itself is created from a grammar
specification defined in the file ' Grammar /Grammar’ in the standard Python distribution. The parse trees stored in
the “AST objects’ created by this module are the actual output from the internal parser when created by the expr ()

or suite () functions, described below. The AST objects created by sequence2ast () faithfully simulate those
structures. Be aware that the values of the sequences which are considered “correct” will vary from one version of
Python to another as the formal grammar for the language is revised. However, transporting code from one Python
version to another as source text will always allow correct parse trees to be created in the target version, with the
only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has aways
been forward-compatible.

Each element of the sequences returned by ast21ist or ast2tuple () has a simple form. Sequences repre-
senting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘Include/graminit.h’ and the Python module symbol. Each additional element of the sequence represents
a component of the production as recognized in the input string: these are always sequences which have the same
form as the parent. An important aspect of this structure which should be noted is that keywords used to identify the
parent node type, such asthe keyword i f inan i f _stmt, areincluded in the node tree without any special treatment.
For example, the 1 £ keyword is represented by thetuple (1, ’if’), where1 isthe numeric value associated with
all NAME tokens, including variable and function names defined by the user. In an alternate form returned when line
number information is requested, the same token might berepresentedas (1, ’if’, 12),wherethe 12 represents
the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of the i £ keyword above is representative. The various types of

38



terminal symbols are defined in the C header file‘ Include/token.h' and the Python module t oken.

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to alow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modulesin C which manipulate parse trees. A ssimple “wrapper” class may be created in Python to hide the
use of AST objects; the AST library module provides avariety of such classes.

The parser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

3.12.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to createthe ' eval’ and ' exec’ forms.

expr (string)
Theexpr () function parsesthe parameter string asif it wereaninput to compile (string, ‘eval’). If the
parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an appropriate
exception is thrown.

suite (string)
The suite () function parses the parameter string as if it were an input to compile (string, ’exec’).
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence)

This function accepts a parse tree represented as a sequence and builds an interna representation if possible.
If it can validate that the tree conforms to the Python grammar and al nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If thereis
aproblem creating the internal representation, or if the tree cannot be validated, a ParserError exceptionis
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptionsthrown
by compilation may still be initiated when the AST object is passed to compileast (). This may indicate
problems not related to syntax (such as aMemoryError exception), but may also be due to constructs such as
theresult of parsingdel £ (0), which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, ’'mame’) or asthree-element lists of the form (1, ‘name’, 56). If thethird element is present,
it isassumed to be avalid line number. Theline number may be specified for any subset of theterminal symbols
intheinput tree.

tuple2ast (seguence)
Thisisthe same function as sequence2ast (). Thisentry point is maintained for backward compatibility.

3.12.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast|[, lineinfo = o])
This function accepts an AST object from the caller in ast and returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parsetreein list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspection, ast2tuple () should be used instead to reduce memory consumption

39



and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the token ends. This
informationis omitted if the flag is false or omitted.

ast2tup1e(aﬂ[,ﬁnehﬁo = O])
Thisfunction accepts an AST object from the caller in ast and returns a Python tupl e representing the equivel ent
parse tree. Other than returning atupleinstead of alist, thisfunctionisidentical toast21ist ().

If line_info istrue, line number information will be included for all terminal tokens as athird element of thelist
representing the token. Thisinformation is omitted if the flag is false or omitted.

compileast(&i[,menawe = ’<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of an exec statement or a call to the built-in eval () function. This function provides the interface to
the compiler, passing the internal parse tree from ast to the parser, using the source file name specified by the
filename parameter. The default value supplied for filenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be a
SyntaxError caused by the parse tree for del £ (0): this statement is considered legal within the for-
mal grammar for Python but is not a legal language construct. The SyntaxError raised for this condition
is actually generated by the Python byte-compiler normally, which is why it can be raised at this point by the
parser module. Most causes of compilation failure can be diagnosed programmatically by inspection of the
parse tree.

3.12.3 Querieson AST Objects

Two functions are provided which allow an application to determine if an AST was create as an expression or a suite.
Neither of these functions can be used to determineif an AST was created from source codeviaexpr () or suite ()
or from aparsetreeviasequence2ast ().

isexpr (ast)
When ast representsan ' eval’ form, thisfunction returns atrue value (1), otherwise it returnsfalse (0). This
is useful, since code objects normally cannot be queried for this information using existing built-in functions.
Note that the code objects created by compileast () cannot be queried like this either, and are identical to
those created by the built-in compile () function.

issuite (agt)
This function mirrors isexpr () inthat it reports whether an AST object represents an ' exec’ form, com-
monly known as a “suite.” It is not safe to assume that this function is equivelent to not isexpr (ast), as
additional syntactic fragments may be supported in the future.

3.12.4 Exceptionsand Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptionsit can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failuresrather thanthe built in SyntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed to sequence2ast () and an explanatory string. Callsto sequence2ast () need to be ableto
handle either type of exception, while calls to other functionsin the module will only need to be aware of the
simple string values.

40



Note that the functions compileast (), expr (), and suite () may throw exceptionswhich are normally thrown
by the parsing and compilation process. These include the built in exceptions MemoryError, OverflowError,
SyntaxError, and SystemError. In these cases, these exceptions carry al the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

3.125 AST Objects

AST objectsreturned by expr (), suite (), and sequence2ast () have no methods of their own. Some of the
functions defined which accept an AST object as their first argument may change to object methodsin the future. The
type of these objectsis available as ASTType in the module.

Ordered and equality comparisons are supported between AST objects.

3.12.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstratesemulation of the compile () built-infunction and the complex example
shows the use of a parse tree for information discovery.

Emulation of compile ()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using the parser module to produce an intermediate data structure is equivelent to the
code

>>> code = compile(’a + 5’', ‘eval’)
>>> a = 5

>>> eval (code)

10

The equivelent operation using the parser module is somewhat longer, and allows the intermediate internal parse
tree to beretained as an AST object:

>>> import parser

>>> ast = parser.expr(‘a + 5')
>>> code = parser.compileast (ast)
>>> a =5

>>> eval (code)

10

An application which needs both AST and code objects can package this code into readily available functions:

41



import parser

def load suite(source_ string):
ast = parser.suite(source_string)
code = parser.compileast (ast)
return ast, code

def load expression(source_ string) :
ast = parser.expr (source_string)
code = parser.compileast (ast)
return ast, code

I nfor mation Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to modul e documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter via import. This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located in the ‘Demo/parser/’ directory of
the distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only alimited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., afunction defined by ade f statement at
column zero of a module, but not a function defined within a branch of an i f ... else construct, though there are
some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. Thisis
specified inthefile ‘Grammar /Grammaxr’ in the distribution. Consider the simplest case of interest when searching
for docstrings: a module consisting of adocstring and nothing else. (Seefile‘docstring.py’.)

"n"nsome documentation.
nnn

Using the interpreter to take alook at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

42



>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’) .read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint (tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,

(293,

(294,

(295,

(296,
(297,
(298,
(299,
(300, (3, """"Some documentation.\012"""’))))))))))))))))),

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbolsin the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. However, the symbol and token modules provide symbolic
names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: theinteger 257 and three additional tuples.
Node type 257 has the symbolic name file_input. Each of these inner tuples contains an integer as the first
element; these integers, 264, 4, and 0, represent the node types stmt, NEWLINE, and ENDMARKER, respectively.
Note that these values may change depending on the version of Python you are using; consult ‘symbol.py’ and
‘token.py’ for details of the mapping. It should be fairly clear that the outermost node is related primarily to the
input source rather than the contents of the file, and may be disregarded for the moment. The stmt node is much
more interesting. In particular, all docstrings are found in subtrees which are formed exactly as this node is formed,
with the only difference being the string itself. The association between the docstring in a similar tree and the defined
entity (class, function, or module) which it describes is given by the position of the docstring subtree within the tree
defining the described structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow asimple pattern
matching approach to check any given subtree for equivelenceto the general pattern for docstrings. Since the example
demonstratesinformation extraction, we can safely require that the tree be in tuple form rather than list form, allowing
asimplevariablerepresentationtobe [’ variable name’ ]. A simplerecursivefunction canimplement the pattern
matching, returning a boolean and a dictionary of variable name to value mappings. (Seefile‘example.py’.)

43



from types import ListType, TupleType

def match(pattern, data, vars=None) :
if vars is None:

vars = {}
if type(pattern) is ListType:
vars [pattern[0]] = data

return 1, vars
if type(pattern) is not TupleType:
return (pattern == data), vars
if len(data) != len(pattern):
return 0, wvars
for pattern, data in map (None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:
break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomesfairly readable. (Seefile‘example.py’.)

import symbol
import token

DOCSTRING _STMT PATTERN = (
symbol.stmt,
(symbol.simple stmt,

(symbol.small stmt,
(symbol.expr stmt,
(symbol.testlist,
(symbol.test,
(symbol.and test,
(symbol.not_ test,
(symbol.comparison,
(symbol.expr,
(symbol .xor_expr,
(symbol.and expr,
(symbol.shift expr,
(symbol.arith expr,
(symbol.term,
(symbol . factor,
(symbol .power,
(symbol.atom,
(token.STRING, [’‘docstring’])
))))))))))))))) ),
(token.NEWLINE, ')
))

Using thematch () function with this pattern, extracting the modul e docstring from the parse tree created previously
is easy:



>>> found, vars = match(DOCSTRING STMT PATTERN, tupl[l])
>>> found

1

>>> VvVars

{"docstring’: '"""Some documentation.\012"""’}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt node in a code block (file_input or suite node types). A module consists of asingle file input
node, and class and function definitions each contain exactly one suite node. Classes and functions are readily
identified as subtrees of code block nodes which start with (stmt, (compound_stmt, (classdef, ... or
(stmt, (compound.stmt, (funcdef, ....Notethatthesesubtreescannotbematched by match () since
it does not support multiple sibling nodes to match without regard to number. A more elaborate matching function
could be used to overcomethis limitation, but thisis sufficient for the example.

Given the ability to determinewhether astatement might be adocstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform thiswork is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it represents. The ModuleInfo constructor accepts an optional
name parameter since it cannot otherwise determine the name of the module.

The public classes include ClassInfo, FunctionInfo, and ModulelInfo. All objects provide
the methods get_name (), get_docstring(), get_class.names (), and get_class_info(). The
ClassInfo objects support get_method names () and get _method_info () while the other classes provide
get_function_names () andget_function_info().

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects areal semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base class, SuiteInfoBase, with the accessors for function
and method information provided el sewhere. Note that there is only one class which represents function and method
information,; this parallels the use of the def statement to define both types of elements.

Most of the accessor functions are declared in SuiteInfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuiteInfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of the SuiteInfoBase definition from ‘example . py’:

45



class SuiteInfoBase:

_docstring = '’

_name = '’

def init (self, tree = None):
self. class info = {}
self. function info = {}
if tree:

self. extract info(tree)

def extract info(self, tree):
# extract docstring

if len(tree) == 2:

found, wvars = match(DOCSTRING_STMT_PATTERN[1], tree[1l])
else:

found, vars = match(DOCSTRING STMT PATTERN, treel[3])
if found:

self. docstring = eval (vars[’docstring’])
# discover inner definitions
for node in tree(l:]:
found, vars = match(COMPOUND STMT_ PATTERN, node)

if found:
cstmt = vars|[’compound’]
if cstmt[0] == symbol.funcdef:
name = cstmt [2] [1]
self. function info[name] = FunctionInfo(cstmt)
elif cstmt[0] == symbol.classdef:
name = cstmt[2] [1]
self. class info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls the _extract_info () method. This method performs
the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

Theinitial i £ test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, asin

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make power (exp) :
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):
return x ** vy
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only, small stmt
element. The extraction of such adocstringisdlightly different and requires only aportion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if thereisonly one small _stmt node
inthe simple_stmt node. Since most functions and methods which use the short form do not provide a docstring,

46



this may be considered sufficient. The extraction of the docstring proceeds using thematch () function as described
above, and the value of the docstring is stored as an attribute of the SuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on the stmt nodes of the suite node.
The specia case of the short form is not tested; since there are no stmt nodes in the short form, the algorithm will
silently skip the single simple_stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something el se.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-
level function can be used to extract the complete set of information from a sourcefile. (Seefile ‘example.py’.)

def get docs(fileName) :
source = open(fileName) .read()
import os
basename = os.path.basename (os.path.splitext (fileName) [0])
import parser
ast = parser.suite (source)
tup = parser.ast2tuple(ast)
return ModuleInfo (tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined pointsto provide additional capa-
bilities.

3.13 Standard Module symbol

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to thefile ‘Grammar /Grammar’ in the Python distribution for
the defintions of the namesin the context of the language grammar. The specific numeric values which the names map
to may change between Python versions.

This module also provides one additional data object:

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readabl e representation of parse trees to be generated.

3.14 Standard Module token

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer tothefile'Grammar/Grammar’ in the Python distribution for the defintions of the namesin the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

Thismodule also provides one data object and some functions. The functionsmirror definitionsin the Python C header
files.

tok_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing

47



more human-readabl e representation of parse trees to be generated.

ISTERMINAL (X)
Return true for terminal token values.

ISNONTERMINAL (X)
Return true for non-terminal token values.

ISEOF (X)
Return true if x is the marker indicating the end of input.

3.15 Standard Module keyword

This module allows a Python program to determineif astring is akeyword. A single functionis provided:

iskeyword (S)
Return true if sis a Python keyword.

3.16 Standard module code

The code module defines operations pertaining to Python code objects.
The code module defines the following functions:

compile_command (SoUrce, [filename[, wmbol] ] )
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This function almost
always makes the same decision as the real interpreter main loop.

Arguments. sourceisthe source string; filenameis the optional filename from which source was read, defaulting
to "<input>"; and symboal is the optional grammar start symbol, which should be either "single" (the
default) or "eval™.

Return a code object (the same as compile (source, filename, symbol)) if the command is complete and
valid; return None if the command isincomplete; raise SyntaxError if the command is a syntax error.

3.17 Standard modulepprint

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such asfiles, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on asingle lineif it can, and breaks them onto multiple linesif they don't
fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width constraint.

The pprint module defines one class:

PrettyPrinter (...)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An output stream
may be set using the stream keyword; the only method used on the stream object is thefile protocol’'swrite ()
method. If not specified, the PrettyPrinter adopts sys . stdout. Three additional parameters may be used to
control the formatted representation. The keywords are indent, depth, and width. The amount of indentation
added for each recursive level is specified by indent; the default is one. Other values can cause output to ook

48



alittle odd, but can make nesting easier to spot. The number of levels which may be printed is controlled by
depth; if the data structure being printed is too deep, the next contained level isreplaced by ‘. . .". By default,
there is no constraint on the depth of the objects being formatted. The desired output width is constrained using
the width parameter; the default is eighty characters. If a structure cannot be formatted within the constrained
width, abest effort will be made.

import pprint, sys

stuff sys.pathl:]

stuff.insert (0, stuffl[:1)

joje) pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)

[ [ "y
" /usr/local/lib/pythonl.5",

" /usr/local/lib/pythonl.5/test’,

" /usr/local/lib/pythonl.5/sunos5’,

" /usr/local/lib/pythonl.5/sharedmodules’,
" /usr/local/lib/pythonl.5/tkinter’],

>>>

>>>
>>>

>>>

1
7

" /usr/local/lib/pythonl.5",

" /usr/local/lib/pythonl.5/test’,

" /usr/local/lib/pythonl.5/sunos5’,

" /usr/local/lib/pythonl.5/sharedmodules’,

" /usr/local/lib/pythonl.5/tkinter’]
>>>
import parser
tup parser.ast2tuple (

parser.suite (open(’'pprint.py’) .read())) [1] [1] [1]
joje) pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
(266, (267, (307,

>>>

>>>

>>>

(287, (288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation of object as a string. The default parameters for formatting are used.

pprint (object[,stream] )
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout isused. This may be used in the interactive interpreter instead of a print command for in-
specting values. The default parameters for formatting are used.

>>> stuff sys.pathl[:]

>>> gstuff.insert (0, stuff)

>>> pprint.pprint (stuff)

[<Recursion on list with 1d=869440>,

1

7

" /usr/local/lib/pythonl
" /usr/local/lib/pythonl
" /usr/local/lib/pythonl
" /usr/local/lib/pythonl
" /usr/local/lib/pythonl

isreadable (object)

.57,

.5/test’,
.5/sunoss5’,
.5/sharedmodules’,
.5/tkinter’]

Determineif the formatted representation of object is “readable,” or can be used to reconstruct the value using
eval (). Notethat this returnsfalse for recursive objects.

>>> pprint.isreadable (stuff)

0

49



isrecursive (object)
Determine if object requires a recursive representation.

One more support function is a so defined:

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the rep-
resentation of object exposes a recursive entry, the recursive reference will be represented as
<Recursion on typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)

"[<Recursion on list with id=682968>, ’'’, ’'/usr/local/lib/pythonl.4’, ’'/usr/loca
1/1lib/pythonl.4/test’, ' /usr/local/lib/pythonl.4/sunos5’, ‘/usr/local/lib/python
1.4/sharedmodules’, ' /usr/local/lib/pythonl.4/tkinter’]"

3.17.1 PrettyPrinter Objects

PrettyPrinter instances (returned by PrettyPrinter () above) have the following methods.

pformat (object)
Return the formatted representation of object. This takes into account the options passed to the PrettyPrinter
constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don't need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value
using eval (). Note that this returns false for recursive objects. If the depth parameter of the PrettyPrinter is
set and the object is deeper than allowed, this returns fal se.

isrecursive (object)
Determine if the object requires a recursive representation.

3.18 Standard moduledis

The dis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined inthefile‘ Include/opcode . h' and used by the compiler and the interpreter.

Example: Given the function myfunc

def myfunc(alist) :
return len(alist)

the following command can be used to get the disassembly of myfunc () :

>>> dis.dis (myfunc)

0 SET LINENO 1
3 SET_LINENO 2
6 LOAD_GLOBAL 0 (len)

50



9 LOAD FAST 0 (alist)

12 CALL_FUNCTION 1
15 RETURN_VALUE
16 LOAD_CONST 0 (None)

19 RETURN_VALUE

The dis module defines the following functions:

dis ( [bytesource] )
Disassemble the bytesource object. bytesource can denote either a class, amethod, a function, or a code object.
For aclass, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of atraceback, using the last traceback if none was passed. Theinstruc-
tion causing the exceptionis indicated.

disassemble(code[Jaﬂi])
Disassembles a code object, indicating the last instruction if lasti was provided. The output is divided in the
following columns:
ethe current instruction, indicated as - - >,
ealabelled instruction, indicated with >>,
ethe address of theinstruction,
othe operation code name,
eoperation parameters, and
einterpretation of the parametersin parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (codel, lasti] )
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of a operation names, indexable using the byte code.

cmp-op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access aalocal variable.

hascompare
Sequence of byte codes of boolean operations.

51



3.18.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP_TOP
Removes the top-of-stack (TOS) item.

ROT_TWO
Swaps the two top-most stack items.

ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.
UNARY_POSITIVE

Implements TOS = +TOS.
UNARY NEG

Implements TOS = -TOS.
UNARY_NOT

Implements TOS = not TOS.
UNARY_CONVERT

ImplementsTOS = ‘TOS".
UNARY_INVERT

ImplementsTOS = TOS.

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOSL1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER
ImplementsTOS = TOS1 ** TOS.

BINARY MULTIPLY
ImplementsTOS = TOS1 * TOS.

BINARY DIVIDE
ImplementsTOS = TOS1 / TOS.

BINARY MODULO
ImplementsTOS = TOS1 %TOS.

BINARY_ADD
ImplementsTOS = TOS1 + TOS.

BINARY_SUBTRACT
ImplementsTOS = TOS1 - TOS.

BINARY_SUBSCR
Implements TOS = TOS1 [TOS].

BINARY LSHIFT
ImplementsTOS = TOS1 << TOS.

BINARY_RSHIFT

52



Implements TOS

TOS1 >> TOS.

BINARY_AND

Implements TOS TOS1 and TOS.

BINARY_XOR

Implements TOS TOS1 ~ TOS.

BINARY_OR
ImplementsTOS = TOS1 or TOS.

The dlice opcodes take up to three parameters.

SLICE+0

ImplementsTOS = TOS[:].
SLICE+1

ImplementsTOS = TOS1[TOS:].
SLICE+2

Implements TOS = TOS1[:TOS1].

SLICE+3
Implements TOS

TOS2 [TOS1:TOS].
Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE_SLICE+0
ImplementsTOS[:]1 = TOSL.

STORE_SLICE+1

Implements TOS1 [TOS:] = TOS2.
STORE_SLICE+2

Implements TOS1 [ : TOS] = TOS2.
STORE_SLICE+3

Implements TOS2 [TOS1:TOS] = TOS3.

DELETE_SLICE+0
Implementsdel TOSI[:1].

DELETE_SLICE+1
Implementsdel TOS1[TOS:].

DELETE_SLICE+2
Implementsdel TOS1[:TOS].

DELETE_SLICE+3
Implementsdel TOS2 [TOS1:TOS].

STORE_SUBSCR
Implements TOS1 [TOS] = TOS2.

DELETE_SUBSCR
Implementsdel TOS1[TOS].

PRINT_EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminated with POP_STACK.

PRINT_ITEM
Prints TOS. Thereis one such instruction for each item in the print statement.

PRINT NEWLINE

53



Prints a new line on sys.stdout. Thisis generated as the last operation of a print statement, unless the
statement ends with acomma.

BREAK_LOOP
Terminates aloop due to a break statement.

LOAD_L.OCALS
Pushes areference to the local s of the current scope on the stack. Thisis used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURN_VALUE
Returns with TOS to the caller of the function.

EXEC_STMT
Implementsexec TOS2, TOS1, TOS. The compiler fills missing optional parameters with None.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END_FINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD_CLASS
Creates anew class object. TOS is the methods dictionary, TOSL the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORE_NAME hamei
Implements name = TOS. name is the index of name in the attribute co names of the code object. The
compiler triesto use STORE_LOCAL or STORE_GLOBAL if possible.

DELETE_NAME namei
Implementsdel name, where namel istheindex into conames attribute of the code object.

UNPACK_TUPLE count
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

UNPACK_LIST count
Unpacks TOS into count individual values.

STORE_ATTR hamei
Implements TOS . name = TOS1, where namei istheindex of namein co names.

DELETEATTR namei
Implementsdel TOS.name, using name asindex into conames.

STORE_GLOBAL namei
Works as STORE_NAME, but stores the name as aglobal.

DELETE_GLOBAL hamel
Works as DELETE_NAME, but deletes a global name.

LOAD_CONST consti
Pushes co_consts [consti] onto the stack.

LOAD_NAME namel
Pushes the value associated with co_names [namei] onto the stack.

BUILD_TUPLE count
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the stack.



BUILD_LIST count
Works as BUILD_TUPLE, but creates alist.

BUILD MAP Zzero
Pushes an empty dictionary object onto the stack. The argument isignored and set to zero by the compiler.

LOADATTR hame
Replaces TOSwith getattr (TOS, conames [namei].

COMPARE_OP opnhame
Performs a bool ean operation. The operation name can be found in cmp op [opname] .

IMPORT NAME hamel
Importsthe module co names [namei]. The module object is pushed onto the stack. The current name space
is not affect: for a proper import statement, a subsequent STORE _FAST instruction modifies the name space.

IMPORT_FROM namei
Importsthe attribute co_.names [namei]. The moduleto import fromisfoundin TOS and | eft there.

JUMP_FORWARD delta
Increments byte code counter by delta.

JUMP_IF_TRUE deta
If TOSistrue, increment the byte code counter by delta. TOS is|eft on the stack.

JUMP_IF _FALSE delta
If TOSisfalse, increment the byte code counter by delta. TOS is not changed.

JUMP_ABSOLUTE target
Set byte code counter to target.

FOR_LOOP deta
Iterate over asequence. TOSisthe current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code counter by delta. Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOAD_GLOBAL nhamei
Loadsthe global named co_names [namei] onto the stack.

SETUP_LOOP delta
Pushes a block for aloop onto the block stack. The block spans from the current instruction with asize of delta
bytes.

SETUP_EXCEPT delta
Pushes atry block from atry-except clause onto the block stack. delta pointsto the first except block.

SETUP_FINALLY delta
Pushes atry block from atry-except clause onto the block stack. delta pointsto the finally block.

LOAD_FAST var_num
Pushes areferenceto thelocal co_varnames [var_num] onto the stack.

STORE_FAST Vvar_num
Stores TOS into thelocal co_varnames [var_num].

DELETE_FAST var_num
Deleteslocal co_varnames [var_num].

SET_LINE_NO lineno
Sets the current line number to lineno.

RAISE_VARARGS argc
Raises an exception. argc indicates the number of parameters to the raise statement, ranging from 1to 3. The

55



handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION argc
Callsafunction. Thelow byte of argc indicatesthe number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKE_FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to have argc default parameters, which are found below TOS.

BUILD_SLICE argc
Pushes a slice object on the stack. If argc is three, creates TOS3 [TOS2: TOS1:TOS]. Otherwise, expects
three arguments.

3.19 Standard Modulesite

This moduleis automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site somewhere near the top of their code. Thisis no longer necessary.

Thiswill append site-specific paths to to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses sys.prefix
and sys . exec_prefix; empty heads are skipped. For the tail part, it uses the empty string (on Mac or Windows)
oritusesfirst ‘1ib/pythonversion/site-packages’ andthen‘lib/site-python’ (on Unix). For each of
the distinct head-tail combinations, it seesif it refersto an existing directory, and if so, addsto sys . path, and aso
inspected for path configuration files.

A path configuration file is a file whose name has the form ‘ package. pth’; its contents are additional items (one per
line) to be added to sys . path. Non-existing items are never added to sys . path, but no check is made that the
item refersto a directory (rather than afile). No item is added to sys . path more than once. Blank lines and lines
beginning with # are skipped.

For example, suppose sys.prefix and sys.exec prefix are set to ‘/usr/local’. The Python
15 library is then ingtalled in ‘/usr/local/lib/pythonl.5'. Suppose this has a subdirectory
‘/usr/local/pythonl.5/site-packages’ withthree subsubdirectories,‘foo’, ‘bar’ and‘spam’, and two
path configurationfiles, ‘foo.pth’ and ‘bar.pth’. Assume‘foo.pth’ containsthe following:

# foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains.

# bar package configuration

bar

Then the following directories are added to sys.path, in this order:

56



/usr/local/pythonl.5/site-packages/bar
/usr/local/pythonl.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘ foo’ directory because
‘bar.pth’ comes aphabetically before ‘foo.pth'; and ‘spam’ is omitted because it is not mentioned in either
path configuration file.

After these path manipulations, an attempt is made to import amodule named sitecustomi ze, which can perform
arbitrary site-specific customizations. If thisimport fails with an Tmport Error exception, it is silently ignored.

Notethat for somenon-Unix systems, sys . prefix and sys . exec_pref ix areempty, and the path manipul ations
are skipped; however the import of sitecustomize isstill attempted.

3.20 Standard Moduleuser

As apolicy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser modulelooksfor afile’ .pythonrc.py’ inthe user’shomedirectory and if it can be opened, exececutes
it (using execfile()) initsown (i.e. the module user’s) globa namespace. Errors during this phase are not
caught; that’s up to the program that imports the user module, if it wishes. The home directory is assumed to be
named by the HOME environment variable; if thisis not set, the current directory is used.

Theuser's' . pythonrc.py’ could conceivably test for sys . versionif it wishesto do different things depending
on the Python version.

A warning to users. be very conservative in what you place in your * . pythonrc.py’ file. Since you don’t know
which programswill useit, changing the behavior of standard modules or functionsis generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
packageis to have them define variablesin their * . pythonrc. py’ filethat you test in your module. For example, a
module spam that has averbosity level can look for avariableuser . spam_verbose, asfollows:

import user
try:

verbose = user.spam verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programswith security or privacy concerns should not import this module; a user can easily break into aa program by
placing arbitrary codein the‘ . pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the importing program.

For a site-wide customization mechanism, see module site.

57



3.21 Built-in Module_builtin _

This module provides direct access to all ‘built-in’ identifiers of Python; eg. _builtin__.open isthe full name
for the built-in function open () . See section 2.3, “Built-in Functions.”

3.22 Built-in Module _main _

This module represents the (otherwise anonymous) scope in which the interpreter’'s main program executes — com-
mands read either from standard input or from a script file.

58



Chapter 4
String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here's an overview:

string — Common string operations.

regex — Regular expression search and match operations.

regsub — Substitution and splitting operations that use regular expressions.
struct — Interpret strings as packed binary data.

StringlO — Read and write strings asif they werefiles.

4.1 Standard Module string

This module defines some constants useful for checking character classes and some useful string functions. See the
module re for string functions based on regular expressions.

The constants defined in this module are are:
digits
Thestring ' 0123456789".

hexdigits
Thestring * 0123456789abcde fABCDEF .

letters
The concatenation of the strings 1lowercase and uppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijklmnopgrstuvwxyz’. Do not changeits definition — the effect on the routinesupper and
swapcase is undefined.

octdigits
Thestring ' 01234567,

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
' ABCDEFGHIJKLMNOPQRSTUVWXYZ'. Do not changeits definition — the effect on theroutines 1 ower and
swapcase isundefined.

59



whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
stripand split isundefined.

The functions defined in this modul e are:

atof (s)
Convert a string to afloating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by asign (‘+ or ‘-"). Note that this behaves identical to the built-in function
float () when passed a string.

atoi (s[, base] )
Convert string s to an integer in the given base. The string must consist of one or more digits, optionally
preceded by asign (‘+' or ‘-'). The base defaultsto 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means 16, ‘0’ means 8, anything else
means 10. If baseis 16, aleading ‘ 0x’ or ‘0X’ is aways accepted. Note that when invoked without base or
with base set to 10, this behavesidentical to the built-in function int () when passed a string. (Also note: for
amore flexible interpretation of numeric literals, use the built-in function eval () .)

atol (S[, base] )
Convert string s to along integer in the given base. The string must consist of one or more digits, optionally
preceded by asign (‘+' or ‘ -). The base argument has the same meaning asfor atoi (). A trailing ‘1’ or ‘L’
isnot allowed, except if the base is 0. Note that when invoked without base or with base set to 10, this behaves
identical to the built-in function Long () when passed a string.

capitalize (word)
Capitalize thefirst character of the argument.

capwords (S)
Split the argument into words using split, capitalize each word using capitalize, and join the capi-
talized words using join. Note that this replaces runs of whitespace characters by a single space. (See also
regsub.capwords () for aversion that doesn’t changethe delimiters, and |ets you specify aword separator.)

expandtabs (s, tabsize)
Expand tabsin astring, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences.

find (s, sub [ start [,end] ] )
Return the lowest index in s where the substring sub is found such that sub iswholly contained in s[start : end] .
Return -1 on failure. Defaults for start and end and interpretation of negative values is the same as for dlices.

rfind (s, sub [,start[,end] ] )
Like £ind but find the highest index.

index (s, sub [,start[,end] ] )
Like find but raise valueError when the substring is not found.

rindex (S, sub [,start [,end] ] )
Like rfind but raise ValueError when the substring is not found.

count (S, sub [ start [,end] ] )
Return the number of (non-overlapping) occurrences of substring sub in string s[start : end] . Defaults for start
and end and interpretation of negative values is the same as for dlices.

lower (S)
Convert letters to lower case.

maketrans (from, to)
Return atranslation table suitable for passingto string.translate or regex.compile, that will map

60



each character in frominto the character at the same position in to; from and to must have the same length.

split (s[, sep [ maxsplit] ] )

Return a list of the words of the string s. If the optiona second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argument sep is present and not None, it specifies a string to be used as the word separator. The returned
list will then have one more items than the number of non-overlapping occurrences of the separator in the
string. The optional third argument maxsplit defaults to O. If it is nonzero, at most maxsplit number of splits
occur, and the remainder of the string is returned as the final element of the list (thus, the list will have at most
maxsplit+1 elements). (Seealso regsub.split () for aversion that allows specifying a regular expression
as the separator.)

splitfields(S[,Sep[,maXSplit] ] )
This function behaves identically to split. (Inthe past, split was only used with one argument, while
splitfields wasonly used with two arguments.)

join(words[,sep] )
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep isasingle
space character. Itisalwaystruethat string.join (string.split (s, sep), sep) equass.

joinfields (Words[,sep] )
This function behaves identical to join. (In the past, join was only used with one argument, while
joinfields wasonly used with two arguments.)

lstrip(S)
Remove |eading whitespace from the string s.

rstrip(S)
Remove trailing whitespace from the string s.

strip(S)
Remove leading and trailing whitespace from the string s.

swapcase (S)
Convert lower case |etters to upper case and vice versa.

translate (s, table [, deletechars] )
Delete all characters from s that are in deletechars (if present), and then transate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (S)
Convert letters to upper case.

1just (s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in afield of given width. They return a
string that is at least width characters wide, created by padding the string s with spaces until the given width on
theright, left or both sides. The string is never truncated.

z£111 (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with asign are
handled correctly.

replace (str, old, new [, maxsplit] )
Return a copy of string str with al occurrences of substring old replaced by new. If the optional argument
maxsplit is given, the first maxsplit occurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop. However, you should never import the latter module directly. When string discoversthat st rop exists,
it transparently replaces parts of itself with the implementation from st rop. After initialization, thereis no overhead

61



inusing string instead of strop.

4.2 Built-in Module re

Thisdocumentation ispreliminary and incomplete. If you find abug or documentation error,
or just find something unclear, please send a message to string-sige@python.org, and
we'll fix it.

This module provides regular expression matching operations similar to those found in Perl. It's 8-bit clean: both
patterns and strings may contain null bytes and characters whose high bit is set. It is always available.

Regular expressions use the backslash character (\) to indicate special forms or to allow special charactersto be used
without invoking their special meaning. This collides with Python’'s usage of the same character for the same purpose
instring literals; for example, to match aliteral backslash, one might haveto write \\ \ \ asthe pattern string, because
the regular expression must be \ \, and each backslash must be expressed as \ \ inside aregular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backs ashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is atwo character string containing a backslash and the
letter 'n’, while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python
code using this raw string notation.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functionsin this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also an regular expression. If astring p matches A and another string q matches B, the string pg will match
AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like'a’, "a’, or '0’,
are the smplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
"last’ matchesthe characters’last’. (Intherest of thissection, we'll write RE'sinthis special font, usualy
without quotes, and strings to be matched 'in single quotes’.)

Some characters, like | or (, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The specia charactersare:

. (Dot.) Inthe default mode, this matches any character except anewline. If the DOTALL flag has been specified,
this matches any character including a newline.

~ (Caret.) Matchesthe start of the string, and in MULTILINE mode also immediately after each newline.

$ Matches the end of the string, and in MULTILINE mode also matches before a newline. foo matches both
'foo’ and 'foobar’, while the regular expression foo$ matches only 'foo’.

* Causes the resulting RE to match O or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match’a’, 'ab’, or 'a followed by any number of 'b’s.

62



*2, 42,22

(?iLmsx)

(?P<name>. . .)

Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match 'a followed by
any non-zero number of 'b’s; it will not match just'a’.

Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either 'a’ or "ab’.

The *, +, and ? qualifiers are all greedy; they match as much text as possible. Sometimes this behaviour
isn't desired; if the RE <. *> is matched against <H1>title</H1>, it will match the entire string, and not
just <H1>. Adding ? after the qualifier makes it perform the match in non-greedy or minimal fashion; as few
characters as possible will be matched. Using . * ? in the previous expression will match only <H1 >.

Either escapes special characters (permitting you to match characters like '*2+&$'), or signals a special se-
guence; specia sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequencein string literals; if the escape sequence isn’t recognized by Python's parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it's highly
recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them by a’-'. Specia characters are not active inside sets.
For example, [akm$1 will match any of the characters’a, 'k’, 'm’, or '$’; [a-z] will match any lowercase
letter and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \ S (defined below) are
also acceptableinside arange. If you want to includea] or a - inside a set, precede it with a backslash.

Characters not within arange can be matched by including a ~ asthefirst character of the set; ~ elsewhere will
simply match the’ ~’ character.

A | B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. This can
be used inside groups (see below) aswell. To match aliteral '—', use \ |, or encloseit inside a character class,
like []1.

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \ number special sequence, described below. To match theliterals’ (' or’)’, use \ ( or \), or enclose
theminsideacharacter class: [ (1 [)1].

Thisis an extension notation (a’? following a’(’ is not meaningful otherwise). The first character after the
'? determines what the meaning and further syntax of the construct is. Following are the currently supported
extensions.

(One or more letters fromthe set 'i’, 'L’, 'm’, 's’, 'x’.) The group matches the empty string; the letters set the
corresponding flags (rell, re.L, reM, re.S, re.X) for the entire regular expression. This is useful if you wish
include the flags as part of the regular expression, instead of passing aflag argument to the compile function.

A non-grouping version of regular parentheses. Matches whatever’'sinside the parentheses, but the text matched
by the group cannot be retrieved after performing a match or referenced later in the pattern.

Similar to regular parentheses, but the text matched by the group is accessible via the symbolic group name
name. Group names must be valid Python identifiers. A symbolic group is also a numbered group, just as if the
group were not named. So the group named 'id’ in the example above can a so be referenced as the numbered
group 1.

For example, if the patternis (?P<id>[a-zA-Z_] \w*), the group can be referenced by its name in argu-
ments to methods of match objects, suchasm.group (' id’) orm.end (’ id’ ), and aso by namein pattern
text (e.g. (?P=id)) and replacement text (e.g. \g<id>).

Matches whatever text was matched by the earlier group named name.

A comment; the contents of the parentheses are simply ignored.

63



(?=...)

(?1...)

Matchesif . . . matches next, but doesn’t consume any of the string. Thisis called alookahead assertion. For
example, Isaac (?=Asimov) will match’lsaac’ only if it's followed by ' Asimov’.

Matches if ... doesn't match next. This is a negative lookahead assertion. For example, For example,
Isaac (?!Asimov) will match’Isaac’ only if it's not followed by ' Asimov’.

The special sequences consist of '\’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \ $ matchesthe character'$'.

\ hnumber

\2A

\b

\B
\d
\D
\s
\S
\w

\W

\Z
\\

Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matches’thethe’ or’'5555', but not 'theend’ (note the space after the group). This special sequence
can only be used to match one of the first 99 groups. If thefirst digit of number is 0, or number is 3 octal digits
long, it will not be interpreted as a group match, but as the character with octal value number.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character range, \ b represents the backspace character, for compatibility with Python’s string literals.

Matches the empty string, but only when it is not at the beginning or end of aword.
Matches any decimal digit; thisis equivalenttotheset [0-9].

Matches any non-digit character; thisis equivalent totheset [~ 0-91].

Matches any whitespace character; thisisequivalent totheset [ \t\n\r\f\v].
Matches any non-whitespace character; thisis equivalenttotheset [~ \t\n\r\f\v].

When the LOCALE flag is not specified, matches any aphanumeric character; this is equivalent to the set
[a-zA-Z0-9_]. With LOCALE, it will matchthe set [0-9_] pluswhatever characters are defined as |etters
for the current locale.

When the LOCALE flag is not specified, matches any non-alphanumeric character; thisis equivalent to the set
["a-zA-Z0-9_]. With LOCALE, it will match any character not in the set [0-9_], and not defined as a
letter for the current locale.

Matches only at the end of the string.
Matches aliteral backslash.

4.2.2 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern [ flags] )

Compile aregular expression pattern into aregular expression object, which can be used for matching using its
match and search methods, described bel ow.

The expression’s behaviour can be modified by specifying a flags value. Vaues can be any of the following
variables, combined using bitwise OR (the | operator).

ol or IGNORECASE or (?1)

Perform case-insensitive matching; expressions like [A-2z] will match lowercase letters, too. Thisis not
affected by the current locale.

64



oL or LOCALEOr (?L)
Make \w, \W, \b, \B, dependent on the current locale.

oM or MULTILINE or (?m)
When specified, the pattern character ~ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character $ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ~ matches only at the beginning
of the string, and $ only at the end of the string and immediately before the newline (if any) at the end of
the string.

eSor DOTALL or (?s)
Make the . special character any character at al, including a newline; without this flag, . will match
anything except a newline.

eX or VERBOSE or (?x)
Ignore whitespace within the pattern except when in a character class or preceded by an unescaped back-
dash, and, when aline contains a # neither in a character class or preceded by an unescaped backslash, all
characters from the leftmost such # through the end of the line are ignored.

The sequence

prog = re.compile (pat)
result = prog.match(str)

isequivalent to

result = re.match(pat, str)

but the version using compile () is more efficient when the expression will be used several timesin asingle
program.

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharactersin it.

match (pattern, string [ ﬂags] )
If zero or more characters at the beginning of string match the regular expression pattern, return acorresponding
Match object. ReturnNone if the string does not match the pattern; note that thisis different from azero-length
match.

search (pattern, string [ ﬂags] )
Scan through string looking for alocation where the regular expression pattern produces amatch. Return None
if no position in the string matches the pattern; note that this is different from finding a zero-length match at
some point in the string.

split (pattern, string, [ maxsplit:O] )
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then occurrences of
patterns or subpatterns are al so returned.

>>> re.split (’/ [\W]+’, ’'Words, words, words.’)
["Words’, ’'words’, ’‘words’, '']

>>> re.split (’ ([\W]+)’, 'Words, words, words.'’)
['Words’, ', ', 'woxrds’, ', ', 'words’, '.', '']

This function combines and extends the functionality of theold regex . split () and regex.splitx ().

65



sub (pattern, repl, string [ count:O] )
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the patternisn’t found, string is returned unchanged. repl can be a string or afunction; if a
function, it is called for every non-overlapping occurance of pattern. The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == ’'-’': return ' '’
else: return '-’
>>> re.sub(’-{1,2}’, dashrepl, ’'pro----gram-files’)

'pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use a
regex object, or use embedded modifiersin a pattern; e.g.

sub (" (?i)b+", "x", "bbbb BBBB") returns ’'x X'.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer, and the default value of 0 meansto replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
sub ('x*’, '-', ’abc’) returns’-ab-c-'.

subn (pattern, repl, string [ count:O] )
Perform the same operation as sub (), but return atuple (new_string, number_of_subs.made).

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. (It is never an error if a
string contains no match for a pattern.)

4.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string [ pos] [ endpos] )
If zero or more characters at the beginning of string match this regular expression, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that thisis different from
a zero-length match.

The optional second parameter pos gives an index in the string where the search is to start; it defaultsto 0. The
+ ~ 1 pattern character will match at the index where the search isto start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos
characterslong, so only the characters from pos to endpos will be searched for amatch.

search (string [ pos] [ endpos] )
Scan through string looking for alocation where this regular expression produces a match. Return None if no
position in the string matches the pattern; note that this is different from finding a zero-length match at some
point in the string.

The optional pos and endpos parameters have the same meaning as for the mat ch method.

split (string, [,maxsplit:O] )
Identical to the sp1it function, using the compiled pattern.

66



sub (repl, string [ count:O] )
Identical to the sub function, using the compiled pattern.

subn (repl, string [ count:O] )
Identical to the subn function, using the compiled pattern.

flags
The flags argument used when the regex object was compiled, or 0 if no flags were provided.

groupindex
A dictionary mapping any symbolic group names (defined by ?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

4.2.4 MatchObjects

Matchobject instances support the following methods and attributes:

group ( [gl, 02, ] )
Returns one or more groups of the match. If thereis asingleindex argument, theresult isasingle string; if there
are multiple arguments, the result is a tuple with one item per argument. If the index is zero, the corresponding
return value is the entire matching string; if it isin the inclusive range [1..99], it is the string matching the the
corresponding parenthesized group. If no such group exists, the corresponding result is None.

If the regular expression usesthe (? P<names. . .) syntax, theindex arguments may also be stringsidentifying
groups by their group name.

A moderately complicated example:

m = re.match(r" (?P<int>\d+)\. (\d*)", ’3.14")

After performing thismatch, m.group (1) is’3’,asism.group (' int’). m.group(2) iS’14".

groups ()
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
Groups that did not participate in the match have values of None. If the tuple would only be one element long,
astring will be returned instead.

start (group)

end (group)
Return the indices of the start and end of the substring matched by group. Return None if group exists but did
not contribute to the match. For a match object m, and a group g that did contribute to the match, the substring
matched by group g (equivalenttom.group (g)) is

m.string[m.start (g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example, af-
ter m = re.search('b(c?)’, ’'cba’), m.start(0) is 1 m.end(0) iS 2, m.start (1) and
m.end (1) areboth2, andm. start (2) raisesan IndexError exception.

span (group)
Return the 2-tuple (start (group) , end (group) ). Notethat if group did not contribute to the match, this
iS (None, None).

67



pos
The value of poswhich was passed to the search or match function. Thisistheindex into the string at which
the regex engine started looking for a match.

endpos
The value of endpos which was passed to the search or match function. Thisis the index into the string
beyond which the regex engine will not go.

re
Theregular expression object whosematch () or search () method produced thisMat chObject instance.

string
Thestring passedtomatch () or search ().

See Also:

Jeffrey Friedl, Mastering Regular Expressions, O’ Reilly. The Python material in this book dates from before the re
module, but it coverswriting good regular expression patternsin great detail.

4.3 Built-in Module regex

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence note:  This module is obsolete as of Python version 1.5; it is still being maintained be-
cause much existing code still uses it.  All new code in need of regular expressions should use the
new re module, which supports the more powerful and regular Perl-style regular expressions.  Exist-
ing code should be converted. The standard library module reconvert helps in converting regex
style regular expressions to re style regular expressions.  (For more conversion help, see the URL
‘http://starship.skyport.net/crew/amk/regex/regex-to-re.html’.)

By default the patterns are Emacs-style regular expressions (with one exception). Thereis away to change the syntax
to match that of several well-known UNix utilities. The exceptionisthat Emacs ‘\ s’ pattern is not supported, since
the original implementation references the Emacs syntax tables.

Thismoduleis 8-bit clean: both patterns and strings may contain null bytes and characters whose high bit is set.

Please note: There is a little-known fact about Python string literals which means that you don’'t usualy have to
worry about doubling backslashes, even though they are used to escape specia charactersin string literals as well as
in regular expressions. This is because Python doesn’t remove backslashes from string literas if they are followed
by an unrecognized escape character. However, if you want to include a literal backslash in a regular expression
represented as a string literal, you have to quadrupleit or encloseit in asingleton character class. E.g. to extract IATEX
‘\section{...}" headers from a document, you can use this pattern: ’ [\] section{\ (.*\) }’. Ancther
exception: the escape sequece ‘ \b' issignificant in string literals (where it means the ASCII bell character) as well as
in Emacs regular expressions (where it stands for a word boundary), so in order to search for a word boundary, you
should usethe pattern * \\b’ . Similarly, a backslash followed by adigit 0-7 should be doubled to avoid interpretation
as an octal escape.

4.3.1 Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functionsin this module et you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions, then
AB is also an regular expression. If astring p matches A and another string g matches B, the string pg will match AB.
Thus, complex expressions can easily be constructed from simpler ones like the primitives described here. For details

68



of the theory and implementation of regular expressions, consult almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary characters, like'a’, 'a’, or '0’, are
the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so’ last’
matchesthe characters’last’. (Intherest of thissection, we'll writeRE'sinthis special font, usualy without
quotes, and strings to be matched 'in single quotes'.)

Specia characters either stand for classes of ordinary characters, or affect how the regular expressions around them
areinterpreted.

The specia charactersare:

A

$

*

(Dot.) Matches any character except a newline.
(Caret.) Matches the start of the string.

Matches the end of the string. foo matches both *foo’ and 'foobar’, while the regular expression ' foos’
matches only 'foo’.

Causes the resulting RE to match O or more repetitions of the preceding RE. ab* will match 'a’, 'ab’, or '&
followed by any number of 'b’s.

Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ’a followed by
any non-zero number of 'b’s; it will not match just'a’.

Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either 'a’ or "ab’.

Either escapes special characters (permitting you to match characters like '*?2+&9$'), or signals a special se-
guence; special sequences are discussed below. Remember that Python also uses the backslash as an escape
sequencein string literals; if the escape sequence isn't recognized by Python's parser, the backslash and subse-
guent character are included in the resulting string. However, if Python would recognize the resulting sequence,
the backslash should be repeated twice.

Used to indicate a set of characters. Characters can be listed individually, or arange is indicated by giving two
characters and separating them by a’-’. Special charactersare not activeinside sets. For example, [akm$]1 will
match any of the characters’a, 'k’,'m’, or'$’; [a-z] will match any lowercase | etter.

If youwant toincludea] insideaset, it must bethe first character of the set; to include a -, placeit asthe first
or last character.

Characters not within arange can be matched by including a ~ asthefirst character of the set; ~ elsewhere will
simply match the’ =’ character.

The specia sequences consist of *\’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \ $ matches the character '$'. Ones where the
backslash should be doubled are indicated.

\ |

N\

\\1,

A\ | B, where A and B can be arbitrary RES, creates aregular expression that will match either A or B. Thiscan
be used inside groups (see below) as well.

Indicatesthe start and end of agroup; the contents of agroup can be matched later inthe stringwiththe \ [1-9]
special sequence, described next.

\\7, \8, \9
Matches the contents of the group of the same number. For example, \ (.+\) \\1 matches 'the the' or
'5555', but not "theend’ (note the space after the group). This special sequence can only be used to match one
of the first 9 groups; groups with higher numbers can be matched using the \v sequence. (\8 and \ 9 don’t
need a doubl e backslash because they are not octal digits.)

69



\\b

\B
\v

\w
\W
\ <

\>
AN
\
A\’

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of aword isindicated by whitespace or a non-al phanumeric character.

Matches the empty string, but when it is not at the beginning or end of aword.

Must be followed by a two digit decimal number, and matches the contents of the group of the same number.
The group number must be between 1 and 99, inclusive.

Matches any alphanumeric character; thisis equivalent tothe set [a-zA-270-9].
Matches any non-al phanumeric character; thisis equivalent tothe set [“a-zA-Z0-9].

Matches the empty string, but only at the beginning of aword. A word is defined as a sequence of a phanumeric
characters, so the end of aword isindicated by whitespace or a non-a phanumeric character.

Matches the empty string, but only at the end of aword.
Matches aliteral backslash.

Like =, this only matches at the start of the string.

Like $, this only matches at the end of the string.

4.3.2 Module Contents

The module defines these functions, and an exception:

match (pattern, string)

Return how many characters at the beginning of string match the regular expression pattern. Return -1 if the
string does not match the pattern (thisis different from a zero-length matcht).

search (pattern, string)

Return the first position in string that matches the regular expression pattern. Return -1 if no position in the
string matches the pattern (thisis different from a zero-length match anywhere!).

compile (pattern [ transl ate] )

Compile aregular expression pattern into a regular expression object, which can be used for matching using its
match and search methods, described below. The optional argument trandate, if present, must be a 256-
character string indicating how characters (both of the pattern and of the strings to be matched) are translated
before comparing them; the i-th element of the string gives the trangdlation for the character with Ascii code i.
This can be used to implement case-insensitive matching; seethe casefold dataitem below.

The sequence

prog = regex.compile (pat)
result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version using compile () ismore efficient when multiple regular expressionsare used concurrently in a
single program. (The compiled version of the last pattern passed to regex .match () or regex.search ()

is cached, so programs that use only asingle regular expression at atime needn’t worry about compiling regular
expressions.)

70



set_syntax (flags)
Set the syntax to be used by future calls to compile, match and search. (Already compiled expression
objects are not affected.) The argument is an integer which is the OR of severa flag bits. The return valueis
the previous value of the syntax flags. Names for the flags are defined in the standard module regex _syntax;
read thefile ‘' regex_syntax.py’ for moreinformation.

get_syntax ()
Returns the current value of the syntax flags as an integer.

symcomp (pattern [ trand ate] )
Thisislike compile, but supports symbolic group names: if a parenthesis-enclosed group begins with agroup
nameinangular brackets, e.g. ' \ (<id>[a-z] [a-z0-9] *\) ’, thegroup can bereferenced by itsnamein ar-
gumentsto the group method of the resulting compiled regular expression object, likethis. p.group (' id’).
Group names may contain al phanumeric charactersand  _* only.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. (It is never an error if a
string contains no match for a pattern.)

casefold
A string suitable to pass as translate argument to compile to map all upper case characters to their lowercase
equivalents.

Compiled regular expression objects support these methods:

match (string [ pos] )
Return how many characters at the beginning of string match the compiled regular expression. Return -1 if the
string does not match the pattern (thisis different from a zero-length matcht).
The optional second parameter pos gives an index in the string where the search is to start; it defaultsto 0. This
isnot completely equivalent to dlicing the string; the * ~ # pattern character matches at the real begin of the string
and at positions just after a newline, not necessarily at the index where the search isto start.

search (string [ pos] )
Return the first position in string that matches the regular expression pattern. Return -1 if no position in the
string matches the pattern (thisis different from a zero-length match anywhere!).

The optional second parameter has the same meaning as for the mat ch method.

group (index, index, ...)
This method is only valid when the last call to the mat ch or search method found a match. It returns one or
more groups of the match. If thereis a single index argument, the result is a single string; if there are multiple
arguments, the result is a tuple with one item per argument. If the index is zero, the corresponding return value
isthe entire matching string; if it isin the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group (using the default syntax, groups are parenthesized using ( and ) ). If no such group exists,
the corresponding result isNone.

If the regular expression was compiled by symcomp instead of compile, the index arguments may also be
strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
Whenthelast call tothematch or search method found amatch, thisisatuple of pairs of indices correspond-
ing to the beginning and end of all parenthesized groupsin the pattern. Indices are relative to the string argument
passed to match or search. The 0-th tuple gives the beginning and end or the whole pattern. When the last
match or search failed, thisisNone.

last
When the last call to the match or search method found a match, this is the string argument passed to that
method. When the last match or search failed, thisis None.

71



translate
Thisis the value of the trandate argument to regex . compile that created this regular expression object. If
the trandlate argument was omitted in the regex . compile cal, thisisNone.

givenpat
Theregular expression pattern as passed to compile Or symcomp.

realpat
The regular expression after stripping the group names for regular expressions compiled with symcomp. Same
asgivenpat otherwise.

groupindex
A dictionary giving the mapping from symbolic group names to numerical group indices for regular expressions
compiled with symcomp. None otherwise.

4.4 Standard Module regsub

This modul e defines a number of functions useful for working with regular expressions (see built-in module regex).
Warning: these functions are not thread-sefe.

Obsolescence note: This module is obsolete as of Python version 1.5; it is till being maintained be-
cause much existing code still uses it.  All new code in need of regular expressions should use the
new re module, which supports the more powerful and regular Perl-style regular expressions. Exist-
ing code should be converted. The standard library module reconvert helps in converting regex
style regular expressions to re style regular expressions.  (For more conversion help, see the URL
‘http://starship.skyport.net/crew/amk/regex/regex-to-re.html’.)

sub (pat, repl, str)
Replace the first occurrence of pattern pat in string str by replacement repl. If the pattern isn’t found, the string
isreturned unchanged. The pattern may be astring or an already compiled pattern. The replacement may contain
references‘ \ digit’ to subpatterns and escaped backslashes.

gsub (pat, repl, str)
Replace all (non-overlapping) occurrences of pattern pat in string str by replacement repl. The samerules asfor
sub () apply. Empty matches for the pattern are replaced only when not adjacent to a previous match, so e.g.
gsub(’’, '-', "abc’) returns’-a-b-c-’.

split (str, pat [, maxsplit] )
Split the string str in fields separated by delimiters matching the pattern pat, and return a list containing the
fields. Only non-empty matches for the pattern are considered, so e.g. split (’a:b’, ’:*’) returns
["a’, 'b’] and split(’abc’, ') returns ['abc’]. The maxsplit defaults to 0. If it is nonzero,
only maxsplit number of splits occur, and the remainder of the string is returned as the final element of thelist.

splitx(str,pat[,n"naxqolit] )
Split the string str in fields separated by delimiters matching the pattern pat, and return a list containing the
fields as well as the separators. For example, splitx (‘a:::b’, ’:*’)retuns['a’, ’":::', 'b’'].
Otherwise, this function behavesthe sasmeas split.

capwords(s[,pal)
Capitalize words separated by optional pattern pat. The default pattern uses any characters except letters, digits
and underscores as word delimiters. Capitalization is done by changing the first character of each word to upper
case.

clear_cache ()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular expression string
and the syntax of the regex module at the time the expression was compiled. This function clearsthat cache.

72



45 Built-in Module struct

This module performs conversions between Python values and C structs represented as Python strings. It uses format
strings (explained bel ow) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values.

See also built-in module array.
The module defines the following exception and functions:;

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, vl, V2, ...)
Return a string containing the valuesvl, v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed by pack (fmt, ...)) according to the given format. Theresult isatuple
even if it contains exactly one item. The string must contain exactly the amount of data required by the format
(i.e. len (string) must equal calcsize (fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Python
‘x’ pad byte no value
‘o’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char | integer
‘h’ short integer
‘H unsigned short | integer
‘i’ int integer
‘T unsigned int integer
‘v long integer
‘) unsigned long | integer
‘f float float
Nel double float
‘g’ char(] string

A format character may be preceded by an integral repeat count; e.g. the format string * 4h’ means exactly the same
as ’'hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ' s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters, eg. ' 10s’ means a single 10-byte string, while ' 10c’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. Asaspecial case, ' 0s’ meansasingle, empty string (while ’ 0c’ means
0 characters).

Forthe ' I’ and ' L.’ format characters, the return value is a Python long integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytesif necessary (according to the rules used by the C compiler).

73



Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘=’ native standard
K3 little-endian standard
> big-endian standard
‘r network (= big-endian) | standard

If the first character is not one of these, * @’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size and alignment are as follows. no alignment is required for any type (so you have to use pad bytes); short
is 2 bytes; int and long are 4 bytes. Float and double are 32-bit and 64-bit | EEE floating point numbers, respectively.

Note the difference between '@’ and ’ =’: both use native byte order, but the size and alignment of the latter is
standardized.
Theform ' | ' isavailable for those poor souls who claim they can’t remember whether network byte order is big-

endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice of * <’ or

I I

>0,

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack('hhl’, 1, 2, 3)
*\000\001\000\002\000\000\000\003"

>>> unpack ("hhl’, \000\001\000\002\000\000\000\003")
(1, 2, 3)

>>> calcsize('hhl’)

8

>>>

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with arepeat count of zero, e.g. theformat * 11h01’ specifiestwo pad bytes at the end, assuming longs
are aligned on 4-byte boundaries. (This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.)

4.6 Standard Module stringIO

This module implements a file-like class, StringI0, that reads and writes a string buffer (also known as memory
files). See the description on file objects for operations.

When astringIO objectis created, it can beinitialized to an existing string by passing the string to the constructor.
If no string is given, the St ringIO will start empty.

Themethod getvalue () canbecalledto retrieve the entire contents of the “file” at any time beforethe St ringIo
object'sclose () methodiscaled. Caling close () will freethe memory buffer.

74



4.7 Standard Module soundex

The soundex algorithm takes an English word, and returns an easily-computed hash of it; this hash is intended to be
the same for words that sound alike. This module provides an interface to the soundex algorithm.

Note that the soundex algorithm is quite simple-minded, and isn’t perfect by any measure. Its main purposeisto help
looking up namesin databases, when the name may be misspelled — soundex hashes common misspellings together.

get_soundex (string)
Return the soundex hash value for aword; it will always be a 6-character string. string must contain the word to
be hashed, with no leading whitespace; the case of the word isignored.

sound_similar (stringl, string2)
Compare the word in stringl with the word in string2; this is equivdent to
get_soundex (stringl) ==get_soundex (string2) .

75



Chapter 5

M iscellaneous Services

The modules described in this chapter provide miscellaneous services that are availablein all Python versions. Here's
an overview:

math — Mathematical functions (sin () etc.).

whrandom — Floating point pseudo-random number generator.

random — Generate pseudo-random numbers with various common distributions.

rand — Integer pseudo-random number generator (obsolete).

array — Efficient arrays of uniformly typed numeric values.

5.1 Built-in Modulemath

Thismoduleis aways available. It provides accessto the mathematical functions defined by the C standard. They are:

acos (X)
Return the arc cosine of x.

asin (X)
Return the arc sine of x.

atan (X)
Return the arc tangent of x.

atan2 (X,Y)
Returnatan(x / y).

ceil (X)
Return the ceiling of x.

cos (X)
Return the cosine of x.

cosh (X)
Return the hyperbolic cosine of x.

exp (X)
Return e* *x.

fabs (X)
Return the absolute value of the real x.

76



floor (X)
Return the floor of x.

fmod (X, Y)
Returnx $vy.

frexp (X)
Return the matissa and exponent for x. The mantissais positive.

hypot (X Y)
Return the Euclidean distance, sgrt (x*x + y*vy).

ldexp (X, i)
Returnx * (2**i),

modf (X)
Return the fractional and integer parts of x. Both results carry the sign of x.

pow (X, Y)
Return x* *y.

sin (X)
Return the sine of x.

sinh (X)
Return the hyperbolic sine of x.

sqrt (X)
Return the square root of x.

tan (X)
Return the tangent of x.

tanh (X)
Return the hyperbolic tangent of x.

Note that frexp and modf have a different call/return pattern than their C equivalents: they take a single argument
and return a pair of values, rather than returning their second return value through an ‘ output parameter’ (thereis no
such thing in Python).

The module also defines two mathematical constants:
pi

The mathematical constant pi.

The mathematical constant e.

See Also: 5.2; cmath (Complex number versions of many of these functions.)

5.2 Built-in Module cmath

This module is aways available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (X)
Return the arc cosine of x.

acosh (X)
Return the hyperbolic arc cosine of x.

asin (X)

77



Return the arc sine of x.

asinh (x)
Return the hyperbolic arc sine of x.

atan (X)
Return the arc tangent of x.

atanh (X)
Return the hyperbolic arc tangent of x.

cos (X)
Return the cosine of x.

cosh (X)
Return the hyperbolic cosine of x.

exp (X)
Return the exponentia value e®.

log (X)
Return the natural logarithm of x.

1logl0 (X)
Return the base-10 logarithm of x.

sin (X)
Return the sine of x.

sinh (X)
Return the hyperbolic sine of x.

sqrt (X)
Return the square root of x.

tan (X)
Return the tangent of x.

tanh (X)
Return the hyperbolic tangent of x.

The module also defines two mathematical constants:
pi
The mathematical constant pi, asareal.

The mathematical constant e, as areal.

Note that the selection of functionsis similar, but not identical, to that in module math. The reason for having two
modulesis, that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather havemath. sqgrt (-1) raise an exception than return a complex number. Also note that the functions
defined in cmath aways return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.3 Standard Module whrandom

This module implements a Wichmann-Hill pseudo-random number generator class that is also named whrandom.
Instances of the whrandom class have the following methods:

choice (seq)

78



Chooses arandom element from the non-empty sequence seq and returnsiit.

randint (a, b)
Returns arandom integer N such that a<=N<=h.

random ()
Returns the next random floating point number in the range[0.0 ... 1.0).

seed (XY, 2)
Initializes the random number generator from the integers x, y and z. When the module is first imported, the
random number isinitialized using values derived from the current time.

uniform(a, b)
Returns arandom real number N such that a<=N<b.

When imported, the whrandom module also creates an instance of the whrandom class, and makes the methods of
that instance available at the module level. Therefore one can write either N = whrandom.random () Or:

generator = whrandom.whrandom ()
N = generator.random/()

See Also: 5.4: random (generatorsfor various random distributions)

Wichmann, B. A. & Hill, 1. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190

54 Standard Module random

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

The module exports the following functions, which are exactly equivalent to those in the whrandom module:
choice, randint, random, uniform. Seethe documentation for the whrandom module for these functions.

The following functions specific to the random module are also defined, and all return real values. Function pa-
rameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical
practice; most of these equations can be found in any statistics text.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha>-1 and beta>-1. Returned values will range
between 0 and 1.

cunifvariate (mean, arc)
Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range between 0 and pi. Returned values
will range between mean - arc/2 andmean + arc/2.

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be called “lambda’,
but that's also a reserved word in Python.) Returned values will range from O to positive infinity.

gamma (alpha, beta)
Gammadistribution. (Not the gamma function!) Conditions on the parametersare alpha>-1 and beta>0.

gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is dightly faster than the
normalvariate function defined below.

79



lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with mean mu and standard deviation sigma mu can have any value, and sigma must be greater than zero.

normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and pi, and kappa is the concentration parameter, which
must be greater then or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random
angle over therange 0 to 2*pi.

paretovariate (alpha)
XXX

weibullvariate (alpha, beta)
XXX

See Also: 5.3: whrandom (the standard Python random number generator)

55 Standard Module rand

The rand module simulates the C library’s rand () interface, though the results aren’t necessarily compatible with
any given library’s implementation. While still supported for compatibility, the rand module is now considered
obsolete; if possible, use the whrandom module instead.

choice (seq)
Returns arandom element from the sequence seq.

rand ()
Return arandom integer between 0 and 32767, inclusive.

srand (seed)
Set a starting seed value for the random number generator; seed can be an arbitrary integer.

See Also: 5.3: whrandom (the standard Python random number generator)

5.6 Built-in Module array

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

80



Typecode Type Minimal size in bytes
re’ character 1
"o’ signed integer 1
"B’ unsigned integer 1
"h’ signed integer 2
"H’ unsigned integer 2
rif signed integer 2
rI’ unsigned integer 2
r1’ signed integer 4
"L’ unsigned integer 4
T £ floating point 4
rd’ floating point 8

The actual representation of valuesis determined by the machine architecture (strictly speaking, by the C implementa-
tion). The actual size can be accessed through the itemsize attribute. The values storedfor ' 1.’ and ' I itemswill be
represented as Python long integers when retrieved, because Python's plain integer type can’t represent the full range
of C'sunsigned (long) integers.

See also built-in module st ruct.
The module defines the following function:

array (typecode [ initializer] )
Return a new array whose items are restricted by typecode, and initialized from the optional initializer value,
which must be alist or astring. Thelist or string is passed to thenew array’s fromlist () or fromstring ()
method (see below) to add initial itemsto the array.

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with value x to the end of the array.

buffer_info ()
Returnatuple (address, varlength) givingthe current memory addressand thelengthin bytes of the buffer
used to hold array’s contents. Thisis occasionally useful when working with low-level (and inherently unsafe)
1/O interfacesthat require memory addresses, such as certain ioct1 operations. Thereturned numbersarevalid
aslong as the array exists and no length-changing operations are applied to it.

byteswap (X)
“Byteswap” all items of the array. Thisis only supported for integer values. It is useful when reading data from
afile written on amachine with a different byte order.

fromfile (f,n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than n
itemsare available, EOFError israised, but the items that were available are still inserted into the array. f must
be areal built-in file object; something else with aread () method won't do.

fromlist (list)
Append items from the list. Thisis equivalentto for x in list: a.append (x) except that if thereisa
type error, the array is unchanged.

fromstring (S)
Appends items from the string, interpreting the string as an array of machine values (i.e. asif it had been read
fromafileusingthe fromfile () method).

81



insert (i, X)
Insert anew item with value x in the array before positioni.

tofile (f)
Write all items (as machine values) to the file object f.

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be writtento afile by the tofile () method.)

When an array object is printed or converted to a string, it is represented as array (typecode, initializer). The
initializer is omitted if the array is empty, otherwise it is a string if the typecode is ' ¢, otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes (* ). Examples:

7

array(’1”")

array(’c’, 'hello world’)
array(’1’, [1, 2, 3, 4, 5])
array('d’, [1.0, 2.0, 3.141])

7

I

82



Chapter 6

Generic Operating System Services

The modules described in this chapter provideinterfacesto operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modelled after the UNiIx or C interfaces but
they are available on most other systems as well. Here's an overview:

0s — Miscellaneous OS interfaces.

time — Time access and conversions.

getopt — Parser for command line options.

tempfile — Generate temporary file names.

errno — Standard errno system symbols.

glob — Unix shell style pathname pattern expansion.
fnmatch — Unix shell style pathname pattern matching.
locale — Internationalization services.

6.1 Standard Module os

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module like posix.

When the optional built-in module posix is available, this module exports the same functions and data as posix;
otherwise, it searches for an OS dependent built-in module like mac and exports the same functions and data as
found there. The design of all Python's built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the function os . stat (file) returns stat info about a file in a format
compatible with the POSIX interface.

Extensions peculiar to a particular OS are also available through the os module, but using them is of course a threat
to portability!

Note that after the first time os is imported, there is no performance penalty in using functions from os instead of
directly from the OS dependent built-in module, so there should be no reason not to use os!

In addition to whatever the correct OS dependent module exports, the following variables and functions are always
exported by os:

name
The name of the OS dependent module imported. The following names have currently been registered:
‘posix’, 'nt’, ‘dos’, ‘'mac’.

83



path
The corresponding OS dependent standard module for pathname operations, e.g., posixpath or macpath.
Thus, (given the proper imports), os.path.split (file) is equivalent to but more portable than
posixpath.split (file).

curdir
The constant string used by the OS to refer to the current directory, eg. ’ . * for POSIX or * : * for the Mac.

pardir
The constant string used by the OS to refer to the parent directory, e.g. . . * for POSIX or ’ : : * for the Mac.

sep
The character used by the OS to separate pathname components, e.g. / /' for POSIX or * : * for the Mac. Note
that knowing thisis not sufficient to be able to parse or concatenate pathnames—better useos . path.split ()
and os.path.join ()—but it isoccasionaly useful.

altsep
An alternative character used by the OS to separate pathname components, or None if only one separator char-
acter exists. Thisissetto  // on DOS/Windows systems where sep is a backsash.

pathsep
The character conventionally used by the OS to separate search patch components (asin $PATH), eg. ' : * for
POSIX or * ; * for MS-DOS.

defpath

The default search path used by os . exec*p* () if the environment doesn't have a ’ PATH' key.

execl (path, arg0, argl, ...)
Thisisequivalentto os . execv (path, (arg0, argl, ...)).

execle (path, arg0, argl, ..., env)
Thisisequivalentto os . execve (path, (arg0, argl, ...), ew).
execlp (path, arg0, argl, ...)
Thisisequivalentto os . execvp (path, (arg0, argl, ...)).
execvp (path, args)
Thisislike os.execv (path, args) but duplicates the shell’s actions in searching for an executablefilein a
list of directories. Thedirectory list isobtained fromos . environ [’ PATH’ ].

execvpe (path, args, env)
Thisisacrossbetweenos . execve () andos . execvp (). Thedirectory list isobtainedfromenv [’ PATH' ].

(The functions os . execv () and execve () are not documented here, since they are implemented by the OS de-
pendent module. If the OS dependent module doesn't define either of these, the functions that rely on it will raise an
exception. They are documented in the section on module posix, together with all other functionsthat os imports
from the OS dependent module.)

6.2 Built-in Module t ime

This module provides various time-related functions. It is always available.
An explanation of some terminology and conventionsisin order.
e The“epoch” isthe point where thetime starts. On January 1st of that year, at 0 hours, the “time since the epoch”

iszero. For UNIX, the epochis 1970. To find out what the epochiis, look at gmt ime (0) .

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time). The acronym UTC is not a
mistake but a compromise between English and French.



e DST isDaylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has atable containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

e The precision of the various real-time functions may be less than suggested by the unitsin which their value or
argument is expressed. E.g. on most UNIX systems, the clock “ticks’ only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

e On the other hand, the precision of time () and sleep () is better than their UNIX equivalents: times
are expressed as floating point numbers, time () returns the most accurate time available (using UNIX
gettimeofday () where available), and sleep () will accept a time with a nonzero fraction (UNIx
select () isused to implement this, where available).

e The time tuple as returned by gmtime () and localtime (), or as accpted by mktime () isatuple of 9
integers: year (e.g. 1993), month (1-12), day (1-31), hour (0-23), minute (0-59), second (0-59), weekday (0-6,
monday is 0), Julian day (1-366) and daylight savings flag (-1, O or 1). Note that unlike the C structure, the
month value is arange of 1-12, not 0-11. A year value less than 100 will typically be silently converted to 1900
plus the year value. A -1 argument as daylight savings flag, passed to mktime () will usually result in the
correct daylight savings state to befilled in.

The module defines the following functions and dataitems:

altzone
The offset of the local DST timezone, in seconds west of the Oth meridian, if oneis defined. Negativeif the local
DST timezoneis east of the Oth meridian (asin Western Europe, including the UK). Only use thisif daylight
iS honzero.

asctime (tuple)
Convert atuple representing atime asreturned by gmt ime () or localtime () toa?24-character string of the
following form: * Sun Jun 20 23:21:05 1993’. Note: unlike the C function of the same name, thereis
no trailing newline.

clock ()
Return the current CPU time as a floating point number expressed in seconds. The precision, and in fact the very
definiton of the meaning of “CPU time”, depends on that of the C function of the same name, but in any case,
thisisthe function to use for benchmarking Python or timing algorithms.

ctime (secs)
Convert atime expressed in seconds since the epoch to a string representing local time. ctime (t) isequivalent
toasctime (localtime(t)).

daylight
Nonzero if aDST timezoneis defined.

gmt ime (SeECSs)
Convert atime expressed in seconds since the epoch to atime tuple in UTC in which the dst flag is always zero.
Fractions of a second are ignored.

localtime (Secs)
Like gmt ime but convertsto local time. Thedst flag is set to 1 when DST appliesto the given time.

mkt ime (tuple)
This is the inverse function of 1ocaltime. Itsargument is the full 9-tuple (since the dst flag is needed —
pass -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC. It returns a floating
point number, for compatibility with time.time (). If the input value can’'t be represented as a valid time,
OverflowError is raised.

sleep (secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time.

85



strftime (format, tuple)
Convert atuple representing atime asreturned by gmt ime () or localtime () to astring as specified by the
format argument.
The following directives, shown without the optional field width and precision specification, are replaced by the
indicated characters:

Directive | Meaning

%a Locale's abbreviated weekday name.

$A Locale'sfull weekday name.

%b Local€e's abbreviated month name.

%B Locale's full month name.

$c Local€e's appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

$H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%7 Day of the year as a decimal number [001,366].

sm Month as a decimal number [01,12].

$M Minute as a decimal number [00,59].

$p Local€e's equivalent of either AM or PM.

%S Second as a decimal number [00,61].

$U Week number of the year (Sunday as the first day of the
week) as a decimal number [00,53]. All daysin a new year
preceding the first Sunday are considered to be in week 0.

SwW Weekday as a decimal number [0(Sunday),6].

SW Week number of the year (Monday as the first day of the
week) as a decimal number [00,53]. All daysin a new year
preceding the first Sunday are considered to be in week 0.

$x Local€'s appropriate date representation.

$X Locale's appropriate time representation.

sy Year without century as a decimal number [00,99].

Y Year with century as a decimal number.

%7 Time zone name (or by no charactersif no time zone exists).

%% %

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning stan-
dardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial % of a
directivein the following order; thisis also not portable. The field width is normally 2 except for %j whereitis
3.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

timezone
The offset of thelocal (non-DST) timezone, in seconds west of the Oth meridian (i.e. negativein most of Western
Europe, positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

86



6.3 Standard Module getopt

This module helps scripts to parse the command line argumentsin sys . argv. It supports the same conventions as
the UNIX getopt () function (including the special meanings of arguments of theform* -’ and‘ - -"). Long options
similar to those supported by GNU software may be used aswell viaan optional third argument. It definesthe function
getopt.getopt (args, options [, long_options]) andtheexceptiongetopt.error.

The first argument to getopt () is the argument list passed to the script with its first element chopped off (i.e.,
sys.argv[1:]1). Thesecond argument isthe string of option letters that the script wants to recognize, with options
that require an argument followed by a colon (i.e., the same format that UNIX getopt () uses). The third option,
if specified, is alist of strings with the names of the long options which should be supported. The leading ’ - -’

characters should not be included in the option name. Options which require an argument should be followed by an
equal sign (' ="). Thereturn value consists of two elements: thefirst isalist of option-and-value pairs; the second is
thelist of program arguments |eft after the option list was stripped (thisis atrailing slice of the first argument). Each
option-and-value pair returned has the option asiits first element, prefixed with a hyphen (e.g., * -x '), and the option
argument as its second element, or an empty string if the option has no argument. The options occur in thelist in the
same order in which they were found, thus allowing multiple occurrences. Long and short options may be mixed.

An example using only UNIX style options:

>>> import getopt, string

>>> args = string.split(’-a -b -cfoo -d bar al a2’)
>>> args

["-a’, '"-b', "-cfoo’, '-d', 'bar’, 'al’, 'a2']

>>> optlist, args = getopt.getopt (args, ‘abc:d:’)

>>> optlist

(¢('-a*, ")y, ('-b’, "), ('-c¢', "foo’), ('-d', 'bar’)]
>>> args

[fal’, 'a2’]

>>>

Using long option namesis equally easy:

>>> § = '--condition=foo --testing --output-file abc.def -x al a2’

>>> args = string.split(s)

>>> args

[/--condition=foo’, ’'--testing’, ’'--output-file’, ’abc.def’, ’'-x’', ’al’, 'a2'’]
>>> optlist, args = getopt.getopt(args, 'x’, [

C.. ‘condition=', ‘output-file=’', ‘testing’])

>>> optlist

[('--condition’, ‘foo’), (’'--testing’, ’’), (’'--output-file’, ’'abc.def’), (’'-x',
>>> args

[fal’, 'a2’]

>>>

Theexceptiongetopt .error = 'getopt.error’ israised when an unrecognized optionisfoundin the argu-

ment list or when an option requiring an argument is given none. The argument to the exception is a string indicating
the cause of the error. For long options, an argument given to an option which does not require one will also cause this
exception to be raised.

87



6.4 Standard Module tempfile

This module generates temporary file names. It is not UNIX specific, but it may require some help on non-UNIx
systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the current process
exitsor dies.

The module defines a single user-callable function:

mktemp ()
Return a unique temporary filename. This is an absolute pathname of afile that does not exist at the time the call
is made. No two callswill return the same filename.

The module uses two global variables that tell it how to construct atemporary name. The caller may assign values to
them; by default they areinitialized at thefirst call tomktemp ().

tempdir
When set to a value other than None, this variable defines the directory in which filenames returned by
mktemp () reside. The default is taken from the environment variable TMPDIR; if this is not set, either
/usr/tmp is used (on UNIX), or the current working directory (all other systems). No check is made to
see whether its valueis valid.

template
When set to a value other than None, this variable defines the prefix of the final component of the filenames
returned by mktemp (). A string of decimal digitsis added to generate unique filenames. The default is either
“@pid.” where pid isthe current process ID (on UNIX), or “tmp” (al other systems).

Warning: if a UNIX process uses mktemp (), then cals fork () and both parent and child continue to use
mktemp (), the processes will generate conflicting temporary names. To resolve this, the child process should assign
None to template, to force recomputing the default on the next call to mktemp ().

6.5 Standard Module errno

This module makes available standard errno system symbols. The value of each symboal is the corresponding integer
value. The names and descriptions are borrowed from ‘1inux/include/errno.h’, which should be pretty all-
inclusive. Of the following list, symbols that are not used on the current platform are not defined by the module.

The module also defines the dictionary variable errorcode which maps numeric error codes back to their symbol
names, sothat eg. errno.errorcode [errno.EPERM] == ’EPERM’. Totrandate anumeric error codeto an
€rror message, Useos . strerror ().

Symbols available can include:
EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
1/O error

ENXIO

88



No such device or address

E2BIG

Arglist too long
ENOEXEC

Exec format error
EBADF

Bad file number
ECHILD

No child processes
EAGAIN

Try again
ENOMEM

Out of memory
EACCES

Permission denied
EFAULT

Bad address
ENOTBLK

Block devicerequired
EBUSY

Device or resource busy
EEXIST

File exists
EXDEV

Cross-devicelink
ENODEV

No such device
ENOTDIR

Not a directory
EISDIR

Isadirectory
EINVAL

Invalid argument
ENFILE

File table overflow
EMFILE

Too many open files
ENOTTY

Not a typewriter
ETXTBSY

Text file busy
EFBIG

Filetoo large

89



ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File nametoo long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3reset

ELNRNG
Link number out of range

EUNATCH

90



Protocol driver not attached

ENOCSI
No CSl structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchangefull

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired
ENOSR
Out of streams resources

ENONET
Machineis not on the network

ENOPKG
Package not installed

EREMOTE
Object isremote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

91



EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Valuetoo large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec ashared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT

92



Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Addressaready in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references. cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

93



EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFSfile handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named typefile

ENAVAIL
No XENIX semaphores available

EISNAM
Isanamed typefile

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.6 Standard Moduleglob

Theglob modulefinds all the pathnames matching a specified pattern according to the rules used by the UNix shell.
Notilde expansionisdone, but *, ?, and character ranges expressed with [1 will be correctly matched. Thisis doneby
usingtheos.listdir () and fnmatch. fnmatch () functionsinconcert, and not by actually invoking asubshell.
(For tilde and shell variable expansion, use os . path.expanduser () and os.path.expandvars ().)

glob (pathname)
Returns a possibly-empty list of path names that match pathname, which must be a string containing a path
specification. pathname can be either absolute (like* /usr/src/Pythonl .4 /Makefile’) or relative (like
‘../../Tools/*.gif"), and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘2.txt’, and ‘card.gif’.
glob.glob () will producethe following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*")
["./1.gif’, "./2.txt"’]

>>> glob.glob(’'*.gif’)
["1.gif’, 'card.gif’]

>>> glob.glob(’?.gif’)
["1.gif’]

9%



6.7 Standard Module fnmatch

This module provides support for Unix shell-style wildcards, which are not the same as Python’s regular expressions
(which are documented in the re module). The special characters used in shell-style wildcards are:

* matches everything
? matches any single character
[seq]l matchesany character in seq
[!seq] matchesany character not in seq

Note that the filename separator (* /* on Unix) isnot special to this module. See module glob for pathname expan-
sion (glob uses fnmatch to match filename segments).

fnmatch (filename, pattern)
Test whether the filename string matches the pattern string, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to al lower- or upper-case before the comparision is
performed. If you require a case-sensitive comparision regardless of whether that's standard for your operating
system, use fnmatchcase () instead.

fnmatchcase ()
Test whether filename matches pattern, returning true or false; the comparision is case-sensitive.

translate (pattern)
Translate a shell pattern into a corresponding regular expression, returning a string describing the pattern. It does
not compile the expression.

6.8 Standard modulelocale

The 1ocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows applicationsto integrate certain cultural aspectsinto an applications, without requiring the programmer to know
all the specifics of each country where the softwareis executed.

The 1ocale moduleis implemented on top of the -1ocale module, which in turn uses an ANSI C locale imple-
mentation if available.

The 1ocale module defines the following functions:

setlocale (category [ value] )
If value is specified, modifies the locale setting for the category. The available categories are listed in the data
description below. The valueis the name of alocale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the exception Locale.Error israised. If successful, the new locale setting is
returned.
If no value is specified, the current setting for the category is returned.
setlocale isnot thread safe on most systems. Applicationstypically start with acall of

import locale
locale.setlocale(locale.LC ALL,"")

This sets the locale for al categories to the user’s default setting (typically specified in the LANG environment
variable). If thelocaleis not changed thereafter, using multithreading should not cause problems.

localeconv ()
Returnsthe database of of thelocal conventionsas adictionary. Thisdictionary hasthe following strings as keys:

edecimal point specifies the decimal point used in floating point number representations for the
LC_NUMERIC category.

95



egrouping is a sequence of numbers specifying at which relative positions the thousands _sep is ex-
pected. If the sequence is terminated with 1ocale . CHAR MAX, no further grouping is performed. If the
sequence terminates with a0, the last group size is repeatedly used.

ethousands_sep isthe character used between groups.

eint_curr_symbol specifiesthe international currency symbol from the LC_MONETARY category.

ecurrency-symbol isthelocal currency symbol.

emon_decimal_point isthe decimal point used in monetary values.

emon_thousands_sep isthe separator for grouping of monetary values.

emon_grouping has the same format asthe grouping key; it is used for monetary values.

epositive_signandnegative_sign givesthesign used for positive and negative monetary quantities.

eint frac digits and frac_digits specify the number of fractional digits used in the international
and local formatting of monetary values.

ep_cs_precedes andn_cs_precedes specifies whether the currency symbol precedes the value for pos-
itive or negative values.

ep_sep_by_space and n_sep_by_space specifies whether there is a space between the positive or nega
tive value and the currency symbol.

ep_sign_posn and n_sign_posn indicate how the sign should be placed for positive and negative mone-
tary values.

The possible valuesfor p_sign_posn and n_sign_posn are given below.

¢0 - Currency and value are surrounded by parentheses.

¢1 - The sign should precede the value and currency symbol.
o2 - The sign should follow the value and currency symbol.
¢3 - The sign should immediately precede the value.

¢4 - The sign should immediately follow the value.

oL C_MAX - nothing is specified in thislocale.

strcoll (stringl,string2)
Compares two strings according to the current LC_COLLATE setting. As any other compare function, returns a
negative, or a positive value, or 0, depending on whether stringl collates before or after string2 or is equal toit.

strxfrm(string)
Transforms a string to one that can be used for the builtin function cmp, and still returns locale-aware results.
Thisfunction can be used when the same string is compared repeatedly, e.g. when collating a sequence of strings.

format (format,val [groupi ng:O] )
Formats a number val according to the current LC_NUMERIC setting. The format follows the conventions of
the % operator. For floating point values, the decimal point is modified if appropriate. If grouping is true, also
takes the grouping into account.

str (float)
Formats a floating point number using the same format as string. str, but takes the decimal point into
account.

atof (string)
Converts a string to a floating point number, following the LC_NUMERIC settings.

atoi (string)
Converts a string to an integer, following the LC_LNUMERIC conventions.

LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
module st ring dealing with case change their behaviour.

LC_COLLATE
Locale category for sorting strings. The functions strcoll and strxfrm of the locale module are affected.

96



LC_TIME
Locale category for the formatting of time. The function t ime . st r £t ime follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the 1localeconv
function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, likethosereturned by posix. st rerror might be affected
by this category.

LC_NUMERIC
Locale category for formatting numbers. The functions format, atoi, atof and str of the locale module
are affected by that category. All other numeric formatting operations are not affected.

LCALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categoriesis attempted. If that fails for any category, no category is changed at all. When the locale isretrieved
using thisflag, astring indicating the setting for all categoriesis returned. This string can be later used to restore
the settings.

CHAR_MAX
Thisisasymbolic constant used for different valuesreturned by 1ocaleconv.

Error
Exception raised when set1locale fails.

Example:

>>> import locale

>>> locale.open(locale.LC ALL, "de") #setting locale to German

>>> locale.strcoll ("f\344n","foo") #comparing a string containing an umlaut
>>> can.close ()

97



Chapter 7

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modelled after the UN1x or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here's an overview:

signal — Set handlers for asynchronous events.

socket — Low-level networking interface.

select — Wait for I/O completion on multiple streams.

thread — Create multiple threads of control within one namespace.

Queue — A stynchronized queue class.

anydbm — Generic interface to DBM-style database modules.

whichdb — Guess which DBM-style module created a given database.

Zlib

gzip — Compression and decompression compatible with the gzip program (zlib is the low-level interface, gzip the
high-level one).

7.1 Built-in Module signal

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals
handlers:

e A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

e Thereis no way to “block” signals temporarily from critical sections (since this is not supported by all UNIx
flavors).

¢ Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

e When a signal arrives during an 1/O operation, it is possible that the I/O operation raises an exception after
the signal handler returns. This is dependent on the underlying UNIX system’s semantics regarding interrupted
system calls.

98



e Because the C signal handler always returns, it makes little sense to catch synchronous errors like SIGFPE or
SIGSEGV.

e Pythoninstalls a small number of signal handlers by default: SIGPIPE isignored (so write errors on pipes and
sockets can be reported as ordinary Python exceptions), SIGINT is trandated into a KeyboardInterrupt
exception, and SIGTERM is caught so that necessary cleanup (especialy sys.exitfunc) can be performed
before actually terminating. All of these can be overridden.

e Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always perform signal () operationsin the main
thread of execution. Any thread can performanalarm (), getsignal (), or pause () ; only themain thread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by
the Python signal module, even if the underlying thread implementation supports sending signals to individual
threads). This meansthat signals can’t be used as a means of interthread communication. Use locks instead.

The variables defined in the signal module are:

SIG_DFL
Thisis one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action for SIGQUIT isto dump core and exit, while the default action
for SIGCLD isto simply ignoreit.

SIG_IGN
Thisis another standard signal handler, which will simply ignore the given signal.

SIG*
All the signa numbers are defined symbolically.  For example, the hangup signal is defined as
signal.SIGHUP; thevariable namesareidentical to the namesusedin C programs, asfoundin‘signal . h'.
The UNIX man pagefor ‘signal’ lists the existing signals (on some systemsthisis‘signal (2)’, on others
thelistisin‘signal (7)’). Note that not all systems define the same set of signal names; only those names
defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

The signal module defines the following functions:

alarm (time)
If time is non-zero, this function requests that a STGALRM signal be sent to the process in time seconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned valueis
then the number of seconds before any previously set alarm was to have been delivered. If timeis zero, no darm
id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining before
a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (See the UNIX man

pagealarm(2).)

getsignal (signalnum)
Return the current signal handler for the signal signalnum. The returned value may be a callable Python object, or
one of the special values signal . SIG_IGN, signal.SIG.DFL or None. Here, signal . SIG_IGN means
that the signal was previoudly ignored, signal . SIG_DFL means that the default way of handling the signal
was previoudly in use, and None means that the previous signal handler was not installed from Python.

pause ()
Cause the processto sleep until asignal is received; the appropriate handler will then be called. Returns nothing.
(Seethe UNIX man page signal (2).)

signal (signalnum, handler)
Set the handler for signal signalnumto the function handler. handler can be any callable Python object, or one
of the special values signal.SIG_IGN or signal.SIG.DFL. The previoussignal handler will be returned
(seethe description of getsignal () above). (Seethe UNIX man page signal (2).)
When threads are enabled, this function can only be called from the main thread; attempting to call it from other

99



threadswill cause avalueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame
object; see the reference manual for a description of frame objects).

7.2 Built-in Module socket

This module provides access to the BSD socket interface. It is available on UNIX systems that support this interface.

For an introduction to socket programming (in C), see the following papers: An Introductory 4.3BSD Interprocess
Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD Interprocess Communication Tutorial, by
Samuel J. Leffler et al, both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and
PS1:8). The UNIx manual pages for the various socket-related system calls are also a valuable source of information
on the details of socket semantics.

The Python interface is a straightforward tranditeration of the UNIx system call and library interface for sockets
to Python's object-oriented style: the socket () function returns a socket object whose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: aswith read () and
write () operationson Pythonfiles, buffer allocation on receive operationsis automatic, and buffer length isimplicit
on send operations.

Socket addresses are represented as a single string for the AF_UNIX address family and as a pair (host, port) for
the AF_INET address family, where host is a string representing either a hostname in Internet domain notation like
"daring.cwi.nl’ oranl|Paddresslike #100.50.200.5’, and port is an integral port number. Other address
familiesare currently not supported. The addressformat required by a particular socket object isautomatically selected
based on the address family specified when the socket object was created.

For I P addresses, two special forms are accepted instead of a host address: the empty string represents INADDR _ANY,
and the string "<broadcast>" represents INADDR_BROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errorsrelated to socket or address semanticsraise the error socket . error.

Non-blocking mode is supported through the setblocking () method.
The module socket exportsthe following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or apair (errno, string) representing an error returned by a system call, similar to the value
accompanyingposix.error.

AF_UNIX

AF_INET
These constants represent the address (and protocol) families, used for the first argument to socket (). If the
AF_UNIX constant is not defined then this protocol is unsupported.

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_RDM
SOCK_SEQPACKET
These constants represent the socket types, used for the second argument to socket (). (Only SOCK_STREAM
and SOCK_DGRAM appear to be generally useful.)

SO_*
SOMAXCONN
MSG_*

100



SOL_*

IPPROTO_*

IPPORT_*

INADDR_*

IP_*
Many constants of these forms, documented in the UNIX documentation on sockets and/or the IP protocol, are
also definedin the socket module. They aregenerally used in argumentstothe set sockopt andgetsockopt
methods of socket objects. In most cases, only those symbolsthat are defined inthe UNIx header files are defined;
for afew symbols, default values are provided.

gethostbyname (hostname)
Translate a host name to |P address format. The IP addressisreturned asastring, 9., Y 100.50.200.5". If
the host nameis an IP addressitself it is returned unchanged.

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.
If you want to know the current machine's IP address,
use socket .gethostbyname (socket .gethostname () ). Note gethostname () doesn't always
return the fully quaified domain name; use socket .gethostbyaddr (socket .gethostname () ) (see
below).

gethostbyaddr (ip-address)
Return atriple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name
responding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the
same address, and ipaddrlist isalist of IP addresses for the same interface on the same host (most likely
containing only a single address). To find the fully qualified domain name, check hostname and the items of
aliadist for an entry containing at least one period.

getprotobyname (protocolname)
Translate an Internet protocol name (e.g. ' icmp’) to a constant suitable for passing as the (optional) third argu-
ment to the socket () function. Thisis usually only needed for sockets opened in “raw” mode (SOCK RAW);
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (Servicename, protocolname)
Tranglate an Internet service name and protocol name to a port number for that service. The protocol name
shouldbe ' tcp’ or "udp’.

socket (family, type [ proto] )
Create a new socket using the given address family, socket type and protocol number. The address family should
beAF_INET or AF_UNIX. Thesocket type should be SOCK_STREAM, SOCK_DGRAM or perhapsone of the other
‘SOCK_’ constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, type [ proto] )
Build a socket object from an existing file descriptor (an integer as returned by afile object’s £ i 1eno method).
Address family, socket type and protocol number are as for the socket function above. The file descriptor
should refer to a socket, but this is not checked — subsequent operations on the object may fail if the file
descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by the UNIX inet daemon).

ntohl (X)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, thisis a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (X)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, thisis a no-op; otherwise, it performs a 2-byte swap operation.

htonl (X)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as

101



network byte order, thisis a no-op; otherwise, it performs a 4-byte swap operation.

htons (X)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, thisis a no-op; otherwise, it performs a 2-byte swap operation.

SocketType
This is a Python type object that represents the socket object type. It is the same as
type (socket.socket (...)).

7.2.1 Socket Objects

Socket objects have the following methods. Except for makefile () these correspond to UNIX system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. Thereturnvalueis
apair (conn, address) where conn is a new socket object usable to send and receive data on the connection,
and address is the address bound to the socket on the other end of the connection.

bind (address)
Bind the socket to address. The socket must not already be bound. (The format of address depends on the
address family — see above.)

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued datais flushed). Sockets are automatically closed when they are garbage-collected.

connect (address)
Connect to aremote socket at address. (The format of address depends on the address family — see above.)

connect_ex (address)
Like connect (address), but return an error indicator instead of raising an exception. The error indicator is
0 if the operation succeeded, otherwise the value of the errno variable. Thisis useful e.g. for asynchronous
CONnects.

fileno ()
Return the socket’s file descriptor (asmall integer). Thisis useful with select.

getpeername ()
Return the remote address to which the socket is connected. Thisisuseful to find out the port number of aremote
IP socket, for instance. (The format of the address returned depends on the address family — see above.) On
some systems this function is not supported.

getsockname ()
Return the socket's own address. Thisis useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optname [, buflen] )
Return the value of the given socket option (see the UNIX man page getsockopt(2)). The needed symbolic
constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is assumed and its integer
valueisreturned by the function. If buflenis present, it specifies the maximum length of the buffer used to receive
the option in, and this buffer isreturned as a string. It is up to the caller to decode the contents of the buffer (see
the optional built-in module st ruct for away to decode C structures encoded as strings).

listen (backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number of queued
connections and should be at least 1; the maximum valueis system-dependent (usually 5).

102



makefile ( [mode [, bufsize] ] )
Return a file object associated with the socket. (File objects were described earlier under Built-in Types.) The
file object references a dup () ped version of the socket file descriptor, so the file object and socket object may
be closed or garbage-collected independently. The optional mode and bufsize arguments are interpreted the same
way as by the built-in open () function.

recv (bufsize [ flags] )
Receive data from the socket. The return valueis a string representing the data received. The maximum amount
of datato be received at onceis specified by bufsize. See the UNIX manual page for the meaning of the optional
argument flags; it defaultsto zero.

recvirom (bufsize [ , flags] )
Receive data from the socket. Thereturn valueisapair (string, address) where string is a string representing
the datareceived and address is the address of the socket sending the data. The optional flags argument has the
same meaning as for recv () above. (The format of address depends on the address family — see above.)

send (string [ flags] )
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the
same meaning as for recv () above. Return the number of bytes sent.

sendto (string [ flags] , address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is
specified by address. The optional flags argument has the same meaning as for recv () above. Return the
number of bytes sent. (The format of address depends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the socket: if flag is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking mode, if a recv call doesn’t find any data, or
if asend cal can’'t immediately dispose of the data, asocket . error exceptionis raised; in blocking mode,
the calls block until they can proceed.

setsockopt (level, optname, value)
Set the value of the given socket option (see the UNIX man page setsockopt(2)). The needed symbolic constants
are defined in the socket module (SO_* etc.). The value can be an integer or a string representing a buffer.
In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional built-in
module st ruct for away to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connection. If how s 0, further receives are disallowed. If how is 1, further
sends are disallowed. If how is 2, further sends and receives are disallowed.

Note that there are no methods read () orwrite ();userecv () and send () without flags argument instead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes al data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the sequence socket, bind,
listen, accept (possibly repeating the accept to service more than one client), while a client only needs the
sequence socket, connect. Also note that the server does not send/receive onthe socket it islistening on but
on the new socket returned by accept.

103



# Echo server program
from socket import *
HOST = '’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged server
s = Socket(AF_INET, SOCK_STREAM)
s.bind (HOST, PORT)
s.listen(1)
conn, addr = s.accept ()
print ‘Connected by’, addr
while 1:
data = conn.recv(1024)
if not data: break
conn.send (data)
conn.close ()

# Echo client program

from socket import *

HOST = ’'daring.cwi.nl’ # The remote host

PORT = 50007 # The same port as used by the server
S = Socket(AF_INET, SOCK_STREAM)

s.connect (HOST, PORT)

s.send(’'Hello, world’)

data = s.recv(1024)

s.close ()

print ’‘Received’, ‘data‘

See Also: 11.21: SocketServer (classesthat simplify writing network servers)

7.3 Built-in Module select

This module provides access to the function select availablein most UNIX versions. It defines the following:

error

The exception raised when an error occurs. The accompanying valueis a pair containing the numeric error code

from errno and the corresponding string, as would be printed by the C function perror ().
select (iwtd, owtd, ewtd [, timeout] )

This is a straightforward interface to the UNIX select () system cal. The first three arguments are lists of
‘waitable objects': either integers representing UNIX file descriptors or objects with a parameterless method
named fileno () returning such aninteger. Thethreelists of waitable objects are for input, output and ‘ excep-
tional conditions', respectively. Empty lists are allowed. The optional timeout argument specifies a time-out as
a floating point number in seconds. When the timeout argument is omitted the function blocks until at least one

file descriptor isready. A time-out value of zero specifies apoll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the

time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objects (e.g. sys.stdin, or objects returned
by open () or posix.popen ()), socket objectsreturned by socket . socket (), andthemodule stdwin
which happens to define a function £ileno () for just this purpose. You may also define a wrapper class
yourself, aslong as it has an appropriate fileno () method (that really returns a UNiX file descriptor, not just

arandom integer).

104



7.4 Built-in Module thread

This module provides low-level primitives for working with multiple threads (a.k.a. light-weight processes or tasks)
— multiple threads of control sharing their global data space. For synchronization, simple locks (a.k.a. mutexes or
binary semaphores) are provided.

The module is optional. It is supported on Windows NT and ' 95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

start_new_thread (func, arg)
Start a new thread. The thread executes the function func with the argument list arg (which must be a tuple).
When the function returns, the thread silently exits. When the function terminates with an unhandled exception,
astack trace is printed and then the thread exits (but other threads continue to run).

exit ()
Thisisashorthand for thread.exit_thread ().

exit_thread()
Raise the SystemExit exception. When not caught, thiswill cause the thread to exit silently.

allocate_lock ()
Return a new lock object. Methods of locks are described below. The lock isinitially unlocked.

get_ident ()
Return the ‘thread identifier’ of the current thread. Thisis a nonzero integer. Its value has no direct meaning; it
isintended as amagic cookieto be used e.g. to index adictionary of thread-specific data. Thread identifiers may
be recycled when athread exits and another thread is created.

Lock objects have the following methods:

acquire ( [Waitflag] )
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at atime can acquire alock — that’s their reason for existence), and
returns None. If the integer waitflag argument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return valueis 1 if the lock is acquired successfully, O if
not.

release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked ()
Return the status of the lock: 1 if it has been acquired by some thread, O if not.

Caveats:

e Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received by an arbi-
trary thread. (When the signal moduleis available, interrupts aways go to the main thread.)

e Cdling sys.exit() or raising the SystemExit exception is equivalent to caling
thread.exit_thread().

e Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(sleep, read, select) work as expected.)

e |tisnot possible to interrupt the acquire () method on alock — the KeyboardInterrupt exception will
happen after the lock has been acquired.

105



¢ When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the native
thread implementation, they survive. On most other systems, they are killed without executing “try-finally”
clauses or executing object destructors.

e When the main thread exits, it doesn’t do any of its usual cleanup (except that “try-finally” clauses are honored),
and the standard 1/O files are not flushed.

7.5 Standard module Queue

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especialy useful in threads
programming when information must be exchanged safely between multiple threads. The Queue classin this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

The Queue module defines the following exception:

Empty
Exception raised when non-blocking get (e.9. get nowait ()) is caled on a Queue object which is empty, or
for which the emptyiness cannot be determined (i.e. because the appropriate |ocks cannot be acquired).

7.5.1 Queue Objects

Class Queue implements queue objects and has the methods described below. This class can be derived fromin order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public interface methods are:

_init__(maxsize)
Constructor for the class. maxsize is an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsize is |less than or equal to zero, the queue size isinfinite.

gsize ()
Returns the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Returns 1 if the queue is empty, O otherwise. Because of multithreading semantics, thisis not reliable.

full ()
Returns 1 if the queueis full, O otherwise. Because of multithreading semantics, thisis not reliable.

put (item)
Puts iteminto the queue.

get ()
Gets and returns an item from the queue, blocking if necessary until oneis available.

get_nowait ()
Gets and returns an item from the queueif oneisimmediately available. Raises an Empty exceptionif the queue
isempty or if the queue's emptiness cannot be determined.

7.6 Standard Modules anydbm and dumbdbm

anydbm is a generic interface to variants of the DBM database-DBM, GDBM, or dbhash. If none of these modules
isinstalled, the slow-but-simple implementation in module dumbdbm will be used. Both modules provide the same
interface:

106



open (filename [ flag, mode] )
Open the database file filename and return a corresponding object. The optional flag argument can be ' r’ to
open an existing database for reading only, ' w’ to open an existing database for reading and writing, ' ¢’ to
create the database if it doesn't exist, or “n’, which will always create a new empty database. If not specified,
the default valueis ' ¢’ .
The optional mode argument is the UNIX mode of the file, used only when the database has to be created. It
defaultsto octal 0666 (and will be modified by the prevailing umask).

The object returned by open () supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, andthehas key () andkeys () methodsareavailable. Keysand values
must always be strings.

Both modules a so export the exception error, which is raised for various problems. The anydbm. error excep-
tionis simply adifferent name for the error exception of the underlying implementation modul e used.

7.7 Standard Module whichdb

The single function in this module attempts to guess which of the several simple database modules available-dbm,
gdbm, or dbhash—should be used to open agivenfile.

whichdb (filename)
Returns one of the following values: None if the file can't be opened because it's unreadable or doesn't exist;
the empty string (" ") if the file's format can’t be guessed; or a string containing the required module name, such
as "dbm" or "gdbm".

7.8 Built-in Modulez1ib

For applications that require data compression, the functions in this module allow compression and decom-
pression, using the zlib library, which is based on GNU zip. The zlib library has its own home page at
http://www.cdrom.com/pub/infozip/zlib/. Version 1.0.4 is the most recent version as of April 30,
1997; use alater version if oneis available.

The available functionsin this module are:

adler32 (string [ value] )
Computes a Adler-32 checksum of string. (An Adler-32 checksum is ailmost as reliable as a CRC32 but can be
computed much more quickly.) If value is present, it is used as the starting value of the checksum; otherwise,
a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string [, Ievel] )
Compresses the data in string, returning a string contained compressed data. level is an integer from 1 to 9
controlling the level of compression; 1 is fastest and produces the least compression, 9 is slowest and produces
the most. The default valueis 6. Raisesthe z1ib . error exception if any error occurs.

compressobj ( [Ievel] )
Returns a compression object, to be used for compressing data streams that won't fit into memory at once. level
isan integer from 1 to 9 controlling the level of compression; 1 is fastest and produces the least compression, 9
is slowest and produces the most. The default valueis 6.

cre32 (string [ vaJue] )
Computes a CRC (Cyclic Redundancy Check) sum of string. If valueis present, it is used as the starting value
of the checksum; otherwise, a fixed default valueis used. This allows computing a running checksum over the

107



concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used for
authentication or digital signatures.

decompress (string)
Decompressesthe datain string, returning a string containing the uncompressed data. Raisesthe z1ib.error
exception if any error occurs.

decompressobj ( [Wbits] )
Returns a compression object, to be used for decompressing data streams that won't fit into memory at once. The
whits parameter controls the size of the window buffer; usually this can be left alone.

Compression objects support the following methods:

compress (string)
Compress string, returning a string containing compressed data for at least part of the data in string. This data
should be concatenated to the output produced by any preceding callsto the compress () method. Some input
may be kept ininternal buffersfor later processing.

flush ()
All pending input is processed, and an string containing the remaining compressed output is returned. After
calling flush (), the compress () method cannot be called again; the only redlistic action is to delete the
object.

Decompression objects support the following methods:

decompress (string)
Decompress string, returning a string containing the uncompressed data corresponding to at least part of the data
in string. Thisdatashould be concatenated to the output produced by any preceding callsto thedecompress ()
method. Some of the input data may be preserved in internal buffersfor later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
calling f1ush (), thedecompress () method cannot be called again; the only redlistic action is to delete the
object.

See Also: 7.9: gzip (reading and writing ‘gz ip’-format files)

7.9 Built-in Modulegzip

The data compression provided by the z1ib module is compatible with that used by the GNU compression pro-
gram ‘gzip’. Accordingly, the gzip module providesthe GzipFile classto read and write ‘gzip’-format files,
automatically compressing or decompressing the data so it looks like an ordinary file object.

GzipFile objects simulate most of the methods of a file object, though it's not possible to use the seek () and
tell () methodsto access thefile randomly.

open (fileobj [ fiIename[, mode, corrpra@level] ] )
Returnsanew GzipFile object ontop of fileobj, which can bearegular file, ast ringI0 object, or any object
which simulates afile.
The ‘gzip’ file format includes the original filename of the uncompressed file; when opening a GzipFile
object for writing, it can be set by the filename argument. The default valueis "GzippedFile".
mode can beeither ' v’ or ' w’ depending on whether the file will be read or written. compresslevel is aninteger
from 1 to 9 controlling the level of compression; 1 isfastest and producesthe least compression, and 9 is slowest
and produces the most compression. The default value of compresslevel is 9.
Calling aGzipFile object’'s close () method does not close fileobj, since you might wish to append more
material after the compressed data. This also alows you to pass a StringIO object opened for writing as
fileobj, and retrieve the resulting memory buffer using the St ringI0 object’'sgetvalue () method.

108



See Also: 7.8: z1ib (the basic data compression module)

109



Chapter 8

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the UNIX operating system, or
in some cases to some or many variants of it. Here's an overview:

posix — The most common Posix system calls (normally used viamodule os).
posixpath — Common Posix pathname manipulations (normally used viaos . path).
pwd — The password database (getpwnam () and friends).

grp — The group database (getgrnam () and friends).

crypt — Thecrypt () function used to check UNIX passwords.

dbm — The standard “database” interface, based on ndbm.

gdbm — GNU'’s reinterpretation of dom.

termios — Posix style tty control.

TERMIOS — The symbolic constants required to use the termios module.

fentl — The fentl () and ioctl () systemcals.

posixfile — A file-like object with support for locking.

resource — Aninterface to provide resource usage information on the current process.
sydog — Aninterfaceto the UNIX syslog library routines.

8.1 Built-in Module posix

This module provides access to operating system functionality that is standardized by the C Standard and the POSI X
standard (athinly disguised UNIX interface).

Do not import this module directly. Instead, import the module os, which provides a portable version of this
interface. On UNIX, the os module provides a superset of the posix interface. On non-UNIX operating systems the
posix moduleis not available, but a subset is always avail able through the os interface. Once os isimported, there
is no performance penalty in using it instead of posix. In addition, os provides some additional functionality, such
as automatically calling putenv () whenan entry isos . environ ischanged.

The descriptions below are very terse; refer to the corresponding UNIx manual (or POSIX documentation) entry for
more information. Arguments called path refer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calsraiseposix.error, described below.

Module pos ix defines the following dataitems:

110



environ
A dictionary representing the string environment at the time the interpreter was started. For example,
posix.environ[’/HOME’] is the pathname of your home directory, equivalent to getenv ("HOME") in
C.
Modifying this dictionary does not affect the string environment passed on by execv (), popen() or
system () ; if you need to change the environment, pass environ to execve () or add variable assignments
and export statements to the command string for system () or popen ().
However: If you are using thismoduleviathe os module (asyou should —see theintroduction above), environ
isaamapping object that behavesalmost like adictionary but invokesputenv () automatically called whenever
an item is changed.

error
This exception is raised when a POSIX function returns a POSIX-related error (e.g., not for illegal argument
types). Its string value is ' posix.error’. The accompanying value is a pair containing the numeric error
code from errno and the corresponding string, as would be printed by the C functionperror ().

It defines the following functions and constants:

chdir (path)
Change the current working directory to path.

chmod (path, mode)
Change the mode of path to the numeric mode.

chown (path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. (Not on MS-DOS.)

close (fd)
Close file descriptor fd.
Note: this function is intended for low-level 1/0 and must be applied to a file descriptor as returned by
posix.open () or posix.pipe (). To close a “file object” returned by the built-in function open or by
posix.popenOr posix. fdopen, Useitsclose () method.

dup (fd)
Return a duplicate of file descriptor fd.

dup2 (fd, fd2)
Duplicatefile descriptor fd to fd2, closing the latter first if necessary. Return None.

execv (path, args)
Execute the executable path with argument list args, replacing the current process (i.e., the Python interpreter).
The argument list may be atuple or list of strings. (Not on MS-DOS.)

execve (path, args, env)
Execute the executabl e path with argument list args, and environment env, replacing the current process(i.e., the
Python interpreter). The argument list may be atuple or list of strings. The environment must be a dictionary
mapping stringsto strings. (Not on MS-DOS.)

_exit (n)
Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers, etc. (Not on MS-DOS.)
Note: the standard way to exitissys.exit (n). posix._exit () should normally only be used in the child
process after a fork () .

fdopen (fd [, mode [, bufsize] ] )
Return an open file object connected to the file descriptor fd. The mode and bufsize arguments have the same
meaning as the corresponding argumentsto the built-in open () function.

fork ()
Fork a child process. Return 0 in the child, the child's processid in the parent. (Not on MS-DOS.)

111



fstat (fd)
Return status for file descriptor fd, like stat ().

ftruncate (fd, length)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytesin size.

getcwd ()

Return a string representing the current working directory.
getegid ()

Return the current process's effective group id. (Not on MS-DOS.)
geteuid ()

Return the current process's effective user id. (Not on MS-DOS.)
getgid()

Return the current process's group id. (Not on MS-DOS.)
getpgrp ()

Return the current process group id. (Not on MS-DOS.)
getpid()

Return the current processid. (Not on MS-DOS.)
getppid()

Return the parent’s process id. (Not on MS-DOS.)
getuid ()

Return the current process's user id. (Not on MS-DOS.)
kill (pid, sig)

Kill the process pid with signal sig. (Not on MS-DOS.)
link (src, dst)

Create a hard link pointing to src named dst. (Not on MS-DOS.)

listdir (path)
Return alist containing the names of the entriesin the directory. Thelist isin arbitrary order. It does not include
the special entries’ . 7 and ’ . .’ evenif they are present in the directory.

lseek (fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: 0 to set the position relative to the
beginning of thefile; 1 to set it relative to the current position; 2 to set it relative to the end of the file.

lstat (path)
Like stat (), but do not follow symbolic links. (On systems without symbolic links, this is identical to
posix.stat().)

mkfifo (path [ mode] )
Create a FIFO (a POSIX named pipe) named path with numeric mode mode. The default mode is 0666 (octal).
The current umask valueis first masked out from the mode. (Not on MS-DOS))
FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink). Generally, FIFOs are used as rendez-vous between “client” and “server” type processes. the
server opens the FIFO for reading, and the client opens it for writing. Note that mkfifo () doesn’'t open the
FIFO — it just creates the rendez-vous point.

mkdir (path [ mode] )
Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On some systems,
modeisignored. Where it is used, the current umask valueis first masked out.

nice (increment)
Add incr to the process “niceness’. Return the new niceness. (Not on MS-DOS.)

112



open (file, flags[, mode] )

Open the file file and set various flags according to flags and possibly its mode according to mode. The default
mode is 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
openedfile.

For a description of the flag and mode values, see the UNIX or C run-time documentation; flag constants (like
O_RDONLY and O_WRONLY) are defined in this modul e too (see below).

Note: thisfunctionisintended for low-level 1/0. For normal usage, use the built-in function open, which returns
a“file object” with read () andwrite () methods (and many more).

pipe ()
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively. (Not on
MS-DOS))

plock (op)
Lock program segmentsinto memory. Thevalue of op (definedin <sys/lock . h>) determineswhich segments
arelocked. (Not on MS-DOS.)

popen (command [ mode [ bufsize] ] )
Open apipeto or from command. The returnvalueis an open file object connected to the pipe, which can beread
or written depending on whether modeis ' ' (default) or * w’ . The bufsize argument has the same meaning as
the corresponding argument to the built-in open () function. The exit status of the command (encoded in the
format specified for wait ()) isavailable asthereturn value of the close () method of the file object. (Not on
MS-DOS))

putenv (varname, value)
Set the environment variable named varname to the string value. Such changesto the environment affect subpro-
cesses started with os . system (), os.popen () oros.fork () andos.execv (). (Not on al systems.)
When putenv () is supported, assignments to items in os . environ are automatically trandated into cor-
responding calls to os.putenv (); however, cals to os.putenv () don't update os.environ, S0 it is
actually preferableto assign to items of os . environ.

strerror (code)
Return the error message corresponding to the error codein code.

read (fd, n)
Read at most n bytes from file descriptor fd. Return a string containing the bytes read.
Note: this function is intended for low-level 1/0 and must be applied to a file descriptor as returned by
posix.open() or posix.pipe (). To read a“file object” returned by the built-in function open or by
posix.popenoOr posix.fdopen, Or sys.stdin, useitsread () or readline () methods.

readlink (path)
Return a string representing the path to which the symbolic link points. (On systems without symbolic links, this
awaysraisesposix.error.)

remove (path)
Remove the file path. See rmdir below to remove a directory. This is identical to the unlink function
documented below.

rename (Src, dst)
Rename the file or directory src to dst.

rmdir (path)
Remove the directory path.

setgid (gid)
Set the current process's group id. (Not on MS-DOS.)

setpgrp ()
Callsthe system call setpgrp () or setpgrp (0, 0) depending on which version isimplemented (if any).

113



See the UNIX manual for the semantics. (Not on MS-DOS.)

setpgid (pid, pgrp)
Callsthe system call setpgid (). Seethe UNIx manual for the semantics. (Not on MS-DOS.)

setsid ()
Calsthe system call setsid (). Seethe UNIX manual for the semantics. (Not on MS-DOS.)

setuid (uid)
Set the current process's user id. (Not on MS-DOS.)

stat (path)
Perform a stat system call on the given path. The return value is atuple of at least 10 integers giving the most
important (and portable) members of the stat structure, in the order st mode, st ino, st dev, st nlink,
st_uid, st_gid, st_size, st_.atime, st_.mtime, st_ctime. Moreitems may be added at the end by
some implementations. (On MS-DOS, some items are filled with dummy values.)
Note: The standard module stat definesfunctionsand constantsthat are useful for extracting information from
astat structure.

symlink (src, dst)
Create a symbolic link pointing to src named dst. (On systems without symbolic links, this always raises
posix.error.)

system (command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system (), and has the same limitations. Changesto posix.environ, sys.stdin etc. are not reflected
in the environment of the executed command. The return value is the exit status of the process encoded in the
format specified for wait ().

tcgetpgrp (fd)
Return the process group associated with the termina given by fd (an open file descriptor as returned by
posix.open ()). (Not on MS-DOS.)

tcsetpgrp (fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned by
posix.open ())topg. (Not on MS-DOS.)

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’suser time, children’s system time, and elapsed real time since afixed point
in the past, in that order. See the UNIX manual page times(2). (Not on MS-DOS.)

umask (mask)
Set the current numeric umask and returns the previous umask. (Not on MS-DOS.)

uname ()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysname, nodename, release, version, machine). Some systems truncate the nodename to 8 characters
or to the leading component; a better way to get the hosthame is socket .gethostname (). (Not on MS-
DOS, nor on older UNIX systems.)

unlink (path)
Remove the file path. Thisisthe same function as remove; theunlink nameisitstraditional UNIX name.

utime (path, (atime, mtime))
Set the access and modified time of the file to the given values. (The second argument is a tuple of two items.)

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication:; a 16-bit
number, whose low byteisthe signal number that killed the process, and whose high byte is the exit status (if the
signal number is zero); the high bit of the low byteis set if a core file was produced. (Not on MS-DOS.)

114



waitpid (pid, options)
Wait for completion of a child process given by procesid, and return a tuple containing its pid and exit status
indication (encoded as for wait ()). The semantics of the call are affected by the value of the integer op-
tions, which should be 0 for normal operation. (If the system does not support waitpid (), thisaways raises
posix.error. Not on MS-DOS))

write (fd, str)
Write the string str to file descriptor fd. Return the number of bytes actually written.

Note: this function is intended for low-level 1/0 and must be applied to a file descriptor as returned by
posix.open () Or posix.pipe (). To write a“file object” returned by the built-in function open or by
posix.popen Or posix.fdopen, Of sys.stdout or sys.stderr, useitswrite () method.

WNOHANG
The optionfor waitpid () toavoid hanging if no child process statusis available immediately.

O_RDONLY
O_WRONLY
O_RDWR
O_NDELAY
O_NONBLOCK
O_APPEND
O_DSYNC
O_RSYNC
O_SYNC
O_NOCTTY
O_CREAT
O_EXCL

O_TRUNC
Optionsfor the £1ag argument to the open () function. These can be bit-wise OR'd together.

8.2 Standard Module posixpath

This module implements some useful functions on POSIX pathnames.
Do not import thismodule directly. Instead, import the module os and use os . path.

basename (p)
Return the base name of pathname p. Thisis the second half of the pair returned by posixpath.split (p).

commonprefix (list)
Return the longest string that is a prefix of all stringsin list. I list is empty, return the empty string (* /).

exists (p)
Return true if p refersto an existing path.

expanduser (p)
Return the argument with an initial component of

or‘ ~“user’ replaced by that user’shomedirectory. Aninitial
is replaced by the environment variable $SHOME,; an initial ‘ ~“user’ is looked up in the password directory
through the built-in module pwd. If the expansion fails, or if the path does not begin with atilde, the path is
returned unchanged.

115



expandvars (p)
Return the argument with environment variables expanded. Substrings of the form ‘ $name’ or ‘' $ {name}’ are
replaced by the value of environment variable name. Malformed variable names and references to non-existing
variables are left unchanged.

isabs (p)
Return true if p is an absolute pathname (begins with a dash).

isfile(p)
Returntrueif pisan existing regular file. Thisfollows symbolic links, sobothislink () andisfile () can
be true for the same path.

isdir (p)
Return trueif pisan existing directory. Thisfollows symboalic links, so both is1ink () and isdir () canbe
true for the same path.

islink (p)
Returntrueif p refersto adirectory entry that isasymboliclink. Alwaysfalseif symboliclinksare not supported.

ismount (p)
Returntrueif pathnamep isamount point: apoint in afile system where adifferent file system has been mounted.
The function checks whether p's parent, ‘p/ . .", is on a different device than p, or whether ‘p/ . .” and p point
to the same i-node on the same device — this should detect mount points for all UNIx and POSIX variants.

join(p [, o} [, ] ] )
Joins one or more path componentsintelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenation of p, and optionally g, etc., with
exactly oneslash (7 /) inserted between components, unless p is empty.

normcase (p)
Normalize the case of a pathname. This returns the path unchanged; however, a similar function in macpath
converts upper case to lower case.

samefile (p, Q)
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exceptionif astat () cal on either pathnamefails.

split (p)
Split the pathnamepin apair (head, tail), wheretail isthe last pathname component and head is everything
leading up to that. Thetail part will never contain aslash; if p endsin adash, tail will be empty. If thereisno
slash in p, head will be empty. If p is empty, both head and tail are empty. Trailing slashes are stripped from
head unlessit is the root (one or more slashes only). In nearly al cases, join (head, tail) equalsp (the only
exception being when there were multiple slashes separating head from tail).

splitext (p)
Split the pathnamepinapair (root, ext) suchthatroot + ext == p, andextisempty or beginswith aperiod
and contains at most one period.

walk (p, visit, arg)
Callsthe function visit with arguments (arg, dirname, names) for each directory in the directory tree rooted
at p (including p itself, if it is a directory). The argument dirname specifies the visited directory, the argument
nameslists thefilesin the directory (gotten fromposix.listdir (dirname)). Thevisit function may modify
names to influence the set of directories visited below dirname, e.g., to avoid visiting certain parts of the tree.
(The object referred to by names must be modified in place, using del or slice assignment.)

8.3 Built-in Module pwd

This module provides access to the UNIx password database. It is available on all UNIX versions.

116



Password database entries are reported as 7-tuples containing the following items from the password database (see
‘<pwd.h>"), in order; pw_name, pw_passwd, pw_uid, pw.gid, pw.gecos, pw.dir, pw_shell. Theuid and
gid items areintegers, all others are strings. An exception israised if the entry asked for cannot be found.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (name)
Return the password database entry for the given user name.

getpwall ()
Return alist of all available password database entries, in arbitrary order.

8.4 Built-in Module grp

This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as 4-tuples containing the following items from the group database (see
‘<grp.h>'), inorder: gr name, gr_passwd, gr_gid, gr_mem. The gid is an integer, name and password are
strings, and the member list isalist of strings. (Note that most users are not explicitly listed as members of the group
they are in according to the password database.) An exception israised if the entry asked for cannot be found.

It defines the following items:

getgrgid(gid)
Return the group database entry for the given numeric group ID.

getgrnam (name)
Return the group database entry for the given group name.

getgrall ()
Return alist of all available group entries, in arbitrary order.

8.5 Built-in Module crypt

This module implements an interface to the crypt(3) routine, which is a one-way hash function based upon a modified
DES agorithm; see the Unix man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to crack Unix passwords with a dictionary.

crypt (word, salt)
word will usually be a user’'s password. salt is a 2-character string which will be used to select one of 4096
variations of DES. The charactersin salt must be either ., /, or an alphanumeric character. Returns the hashed
password as a string, which will be composed of characters from the same a phabet as the salt.

The module and documentation were written by Steve Majewski.

8.6 Built-in Module dbm

The dbm moduleprovidesan interfacetothe UNIX (n) dbm library. Dbm objects behavelike mappings (dictionaries),
except that keys and values are aways strings. Printing a dbm object doesn’t print the keys and values, and the
items () andvalues () methodsare not supported.

See also the gdbm module, which provides a similar interface using the GNU GDBM library.

117



The module defines the following constant and functions:

error
Raised on dbm-specificerrors, such as|/O errors. KeyError israised for general mapping errorslike specifying
an incorrect key.

open (filename, [flag, [mode] ] )
Open a dbm database and return a dbm object. The filename argument is the name of the database file (without
the'.dir’ or‘.pag’ extensions).
The optional flag argument can be ' r’ (to open an existing database for reading only — default), ' w’ (to open
an existing database for reading and writing), ’ ¢’ (which creates the databaseif it doesn’t exist), or ' n’ (which
always creates a new empty database).
The optional mode argument is the UNIX mode of the file, used only when the database has to be created. It
defaultsto octal 0666.

8.7 Built-in Module gdbm

This module is quite similar to the dbm module, but uses gdbm instead to provide some additional functionality.
Please note that the file formats created by gdbm and dbm are incompatible.

The gdbm module provides an interface to the GNU DBM library. gdbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a gdbm object doesn’t print the keys and values, and the
items () andvalues () methodsare not supported.

The module defines the following constant and functions:

error
Raised on gdbm-specific errors, such as I/O errors. KeyError israised for general mapping errors like speci-
fying an incorrect key.

open (filename, [flag, [mode] ] )
Open a gdbm database and return a gdbm object. The filename argument is the name of the database file.
The optional flag argument can be ' r’ (to open an existing database for reading only — default), ' w’ (to open
an existing database for reading and writing), ' ¢’ (which creates the databaseif it doesn’t exist), or ' n’ (which
aways creates a new empty database).
Appending £ to the flag opens the database in fast mode; atered data will not automatically be written to the
disk after every change. This resultsin faster writes to the database, but may result in an inconsistent database if
the program crashes while the database is still open. Use the sync () method to force any unwritten data to be
written to the disk.
The optional mode argument is the UNIX mode of the file, used only when the database has to be created. It
defaultsto octal 0666.

In addition to the dictionary-like methods, gdbm objects have the foll owing methods:

firstkey ()
It's possible to loop over every key in the database using this method and thenextkey () method. Thetraversal
isordered by gdbm’sinternal hash values, and won't be sorted by the key values. This method returnsthe starting
key.

nextkey (key)
Returnsthe key that follows key in the traversal. The following code prints every key in the database db, without
having to create alist in memory that containsthem all:

118



k=db.firstkey ()

while k!=None:
print k
k=db.nextkey (k)

reorganize ()
If you have carried out alot of deletionsand would like to shrink the space used by the gdbm file, thisroutine will
reorganize the database. gdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key,value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten datato be written to the disk.

8.8 Built-in Module termios

This module provides an interface to the Posix calls for tty 1/O control. For a complete description of these calls, see
the Posix or UNIX manual pages. It isonly available for those UNIX versions that support Posix termios style tty
1/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first argument. This must be an integer file descriptor,
suchasreturned by sys.stdin.fileno ().

This modul e should be used in conjunction with the TERMI0S maodule, which defines the relevant symbolic constants
(seethe next section).

The module defines the following functions:

tcgetattr (fd)
Return a list containing the  tty atributes  for file descriptor fd, as
follows: [iflag, oflag, cflag, Iflag, ispeed, ospeed, cc] whereccisalist of the tty special characters
(each astring of length 1, except the items with indices VMIN and VT IME, which are integers when these fields
are defined). The interpretation of the flags and the speeds as well as the indexing in the cc array must be done
using the symbolic constants defined in the TERMIOS module.

tcsetattr (fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr (). The when argument determines when the attributes are changed: TERMIOS.TCSANOW
to change immediately, TERMIOS.TCSADRAIN to change after transmitting all queued output, or
TERMIOS . TCSAFLUSH to change after transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration)
Send a break on file descriptor fd. A zero duration sends a break for 0.25-0.5 seconds; a nonzero duration has a
system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptor fd has been transmitted.

tcflush (fd, queue)
Discard queued data on file descriptor fd. The queue selector specifieswhich queue: TERMIOS . TCIFLUSH for
the input queue, TERMIOS . TCOFLUSH for the output queue, or TERMIOS . TCIOFLUSH for both queues.

tcflow (fd, action)
Suspend or resumeinput or output on file descriptor fd. The action argument can be TERMIOS . TCOOFF to sus-
pend output, TERMIOS . TCOON to restart output, TERMIOS . TCIOFF to suspend input, or TERMIOS . TCION
to restart input.

119



8.8.1 Example

Here's a function that prompts for a password with echoing turned off. Note the technique using a separate
termios.tcgetattr() cdlandatry ... finally statement to ensure that the old tty attributes are re-
stored exactly no matter what happens:

def getpass (prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr (fd)
new = termios.tcgetattr (fd)
new[3] = new[3] & "TERMIOS.ECHO # 1flags
try:
termios.tcsetattr (£fd, TERMIOS.TCSADRAIN, new)
passwd = raw_input (prompt)
finally:
termios.tcsetattr (£fd, TERMIOS.TCSADRAIN, old)
return passwd

8.9 Standard Module TERMIOS

This modul e defines the symbolic constants required to use the t ermios module (see the previous section). Seethe
Posix or UNIX manual pages (or the source) for alist of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may have to
generateit for your particular system using the script ‘ Tools/scripts/h2py.py’.

8.10 Built-in Module fcntl

This module performsfile control and 1/0O control on file descriptors. It is an interface to the fentl() and ioctl() UNIX
routines. File descriptors can be obtained with the fileno() method of afile or socket object.

The module defines the following functions:

fentl (fd, op[, arg] )

Perform the requested operation on file descriptor fd. The operation is defined by op and is operating system
dependent. Typically these codes can beretrieved from thelibrary module FCNTL. Theargument argisoptional,
and defaults to the integer value 0. When it is present, it can either be an integer value, or a string. With the
argument missing or an integer value, the return value of this function is the integer return value of the real
fentl () cal. Whentheargumentisastring it representsabinary structure, e.g. created by st ruct .pack ().
The binary datais copied to a buffer whose address is passed to thereal £cntl () call. The return value after a
successful call isthe contents of the buffer, converted to astring object. Incasethe fent1 () fals, an IOError
will be raised.

ioctl (fd, op, arg)
Thisfunctionisidentical tothe fcnt1 () function, except that the operations are typically defined in thelibrary
module IOCTL.

flock (fd, op)
Perform the lock operation op on file descriptor fd. See the Unix manual for details. (On some systems, this
functionisemulated using fcnt1.)

120



lockf (fd, code, [Ien, [start, [whence] ] ] )
Thisisawrapper around the F_SETLK and F_SETLKW fcnt1 () calls. Seethe Unix manual for details.

If thelibrary modules FCNTL or TOCTL are missing, you can find the opcodesin the C includefiles‘sys/fentl .k
and ‘sys/ioctl.h’. You can create the modules yoursalf with the h2py script, found in the ‘Tools/scripts’
directory.

Examples (al on a SVR4 compliant system):

import struct, FCNTL

file = open(...)
rv = fcntl(file.fileno(), FCNTL.O NDELAY, 1)

lockdata = struct.pack(’hhllhh’, FCNTL.F WRLCK, 0, O, 0, 0, 0)
rv = fcentl(file.fileno(), FCNTL.F SETLKW, lockdata)

Notethat in the first examplethe return value variable rv will hold an integer value; in the second exampleit will hold
a string value. The structure lay-out for the lockadata variable is system dependent — therefore using the £1ock ()
call may be better.

8.11 Standard Moduleposixfile

Note: This module will become obsolete in a future release. The locking operation that it providesis done better and
more portably by the fent1 . lockf () cal.

This module implements some additiona functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has al the standard file object methods and adds the methods described below. This
module only worksfor certain flavors of UNIX, sinceit uses fcntl () for filelocking.

To instantiate a posixfile object, usethe open () functionin the posixfile module. The resulting object looks and feels
roughly the same as a standard file object.

The posixfile module defines the following constants:

SEEK_SET
offset is calculated from the start of thefile

SEEK_CUR
offset is calculated from the current position in thefile

SEEK_END
offset is calculated from the end of thefile

The posixfile module defines the following functions:

open (filename [ mode [ bufsize] ] )
Create a new posixfile object with the given filename and mode. The filename, mode and bufsize arguments are
interpreted the same way as by the built-in open () function.

fileopen (fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:
lock (fmt, [Ien [,start [,Whence] ] ] )

121



L ock the specified section of the file that the file object is referring to. The format is explained below in atable.
The len argument specifies the length of the section that should be locked. The default is 0. start specifies the
starting offset of the section, where the default is 0. The whence argument specifies where the offset is relative
to. It accepts one of the constants SEEK_SET, SEEK_CUR or SEEK_END. The default is SEEK_SET. For more
information about the arguments refer to the fcntl manual page on your system.

flags( [flags] )
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in atable. Without the flags argument a string
indicating the current flags is returned (thisisthe same asthe’? maodifier). For moreinformation about the flags
refer to the fentl manual page on your system.

dup ()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it
were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods return TOError when the request fails.

Format charactersfor the 1ock () method have the following meaning:

Format | Meaning
‘o’ unlock the specified region
‘r’ request aread lock for the specified section
‘w request awrite lock for the specified section

In addition the following modifiers can be added to the format:

Modifier | Meaning Notes
‘o wait until the lock has been granted
i return the first lock conflicting with the requested lock, or None if thereis no conflict. D
Note:

(1) Thelock returned isiin the format (mode, len, start, whence, pid) where mode is acharacter rep-
resenting the type of lock ('r’ or 'w’). This modifier prevents a request from being granted; it is for query purposes
only.

Format character for the £1ags () method have the following meaning:

Format | Meaning

‘a’ append only flag

el close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s’ synchronization flag

In addition the following modifiers can be added to the format:

122



Modifier | Meaning Notes
e turn the specified flags ' off’, instead of the default *on’ (1)
‘=’ replace the flags, instead of the default ' OR’ operation (1)
i return a string in which the characters represent the flags that are set. 2

Note:
(1) The ! and = modifiers are mutually exclusive.
(2) This string represents the flags after they may have been altered by the same call.

Examples:
from posixfile import *

file = open(’/tmp/test’, 'w’)
file.lock ("w|")

file.lock('u’)
file.close()

8.12 Built-in Module resource

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

error
The functions described below may raise this error if the underlying system call failures unexpectedly.

8.12.1 Resource Limits

Resources usage can be limited using the setrlimit () function described below. Each resource is controlled by
apair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise ahard limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit () man
page. Theresourceslisted below are supported when the underlying operating system supports them; resources which
cannot be checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resource)
Returns atuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError if an
invalid resourceis specified, or resource . error if the underyling system call fails unexpectedly.

setrlimit (resource, limits)
Sets new limits of consumption of resource. The limits argument must be atuple (soft, hard) of two integers
describing the new limits. A value of -1 can be used to specify the maximum possible upper limit.
Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raise a

123



resource.error if the underyling system call fails.

These symbol s define resources whose consumption can be controlled usingthe setrlimit () andgetrlimit ()
functions defined below. The values of these symbols are exactly the constants used by C programs.

The UNIX man pagefor getrlimit () liststhe available resources. Note that not al systems use the same symbol
or same value to denote the same resource.

RLIMIT_CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
apartial corefileif alarger core would be required to contain the entire processimage.

RLIMIT_CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceeded, a SIGXCPU
signal is sent to the process. (See the signal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT_DATA
The maximum size (in bytes) of the process's heap.

RLIMIT_STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT_RSS
The maximum resident set size that should be made available to the process.

RLIMIT_NPROC
The maximum number of processes the current process may create.

RLIMIT_NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD namefor RLIMIT NOFILE.

RLIMIT_MEMLOC
The maximm address space which may be locked in memory.

RLIMIT.VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT_AS
The maximum area (in bytes) of address space which may be taken by the process.

8.12.2 Resource Usage

These functiona are used to retrieve resource usage information:

getrusage (who)
This function returns a large tuple that describes the resources consumed by either the current process or its
children, as specified by the who parameter. The who parameter should be specified using one of the RUSAGE *
constants described below.
The elements of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some values
are dependent on the clock tick internal, e.g. the amount of memory the processis using.

Thefirst two elementsof the return value are floating point val ues representing the amount of time spent executing

124



in user mode and the amount of time spent executing in system mode, respectively. The remaining values are
integers. Consult theget rusage () man page for detailed information about these values. A brief summary is
presented here:

offset resource
time in user mode (float)
time in system mode (float)
maximum resident set size
shared memory size
unshared memory size
unshared stack size
page faults not requiring 1/0
page faults requiring 1/0
number of swap outs
block input operations
block output operations
messages sent
messages received
signals received
voluntary context switches

15 involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise a
resource.error exception in unusua circumstances.

el el
WNRPOOWONOUAWNERO

H
~

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a processis using. The third element of the
tuple returned by get rusage describes memory usage in pages; multiplying by page size produces number of
bytes.

The following RUSAGE _* symbols are passed to the get rusage () function to specify which processesinformation
should be provided for.

RUSAGE_SELF
RUSAGE_SELF should be used to request information pertaining only to the processitself.

RUSAGE_CHILDREN
Passto getrusage () to request resource information for child processes of the calling process.

RUSAGE_BOTH
Passto getrusage () to request resources consumed by both the current process and child processes. May not
be available on all systems.

8.13 Built-in Module syslog

Thismodule providesan interfaceto the Unix sys1og library routines. Refer to the UNIX manual pagesfor adetailed
description of the sys1og facility.

The module defines the following functions:

syslog ( [priority,] message)
Send the string message to the system logger. A trailing newline is added if necessary. Each message is
tagged with a priority composed of a facility and a level. The optional priority argument, which defaults to
(LOG.USER | LOG-INFO), determinesthe message priority.

openlog (ident, [Iogopt, [facility] ] )
Logging options other than the defaults can be set by explicitly opening the log file with openlog () prior to

125



calling syslog (). The defaults are (usually) ident = ‘syslog’, logopt = O, facility = LOG_USER. Theident
argument isastring which is prepended to every message. The optional logopt argument is abit field - see below
for possible values to combine. The optional facility argument sets the default facility for messages which do not
have a facility explicitly encoded.

closelog ()
Closethelogfile.

setlogmask (maskpri)
This function set the priority mask to maskpri and returns the previous mask value. Calls to syslog with a

priority level not set in maskpri are ignored. The default isto log all priorities. The function LOG MASK (pri)
calculates the mask for the individual priority pri. The function LOG_UPTO (pri) calculates the mask for all
priorities up to and including pri.

The module defines the following constants:
Priority levels (high to low): LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE,

LOG_INFO, LOG_DEBUG.

Facilities: LOG_KERN, LOG_USER, LOG.MAIL, LOG.DAEMON, LOG AUTH, LOG_LPR, LOG.NEWS, LOG_.UUCP,
LOG_CRON and LOG_LOCALO to LOG_LOCAL7.

Log options; LOG_PID, LOG_CONS, LOG.NDELAY, LOG.NOWAIT and LOG_PERROR if definedin ‘syslog.h’.

8.14 Standard modulestat

The stat module defines constants and functions for interpreting the results of os.stat and os.1stat (if it
exists). For complete details about the stat and 1stat system calls, consult your local man pages.

The stat module defines the following functions:

S_ISDIR (mode)
Return non-zero if the mode was gotten from adirectory file.

S_ISCHR (mode)
Return non-zero if the mode was gotten from a character special device.

S_ISREG (mode)
Return non-zero if the mode was gotten from aregular file.

S_ISFIFO (mode)
Return non-zero if the mode was gotten from a FIFO.

S_ISLNK (mode)
Return non-zero if the mode was gotten from a symbolic link.

S_ISSOCK (mode)
Return non-zero if the mode was gotten from a socket.

All the dataitems below are simply symbolic indexesinto the 10-tuplereturned by os . stat or os.1lstat.

ST_MODE
Inode protection mode.

ST_INO
Inode number.

ST_DEV
Deviceinode resides on.

ST_NLINK

126



Number of links to the inode.

ST_UID
User id of the owner.

ST GID
Group id of the owner.

ST_SIZE
File sizein bytes.

ST_ATIME
Time of last access.

ST_MTIME
Time of last modification.

ST_CTIME
Time of creation.

Example:

import os, sys
from stat import *

def process(dir, func):
'’ 'recursively descend the directory rooted at dir, calling func for
each regular file’’’

for £ in os.listdir(dir) :
mode = os.stat(’'%s/%s’ % (dir, f)) [ST MODE]
if S ISDIR (mode) :
# recurse into directory
process ('%s/%s’ % (dir, f), func)
elif S ISREG (mode) :
func (' %$s/%s’ % (dir, £))
else:
print ‘Skipping %$s/%s’ % (dir, f)

def f(file):
print ‘frobbed’, file

if name ==’ main_': process(sys.argv([l], f)

8.15 Standard module commands

The commands module contains wrapper functionsfor os . popen () which take a system command as a string and
return any output generated by the command, and optionally, the exit status.

The commands moduleis only usable on systems which support popen () (currently UNIX).
The commands module defines the following functions:

getstatusoutput (cmd)

127



Execute the string cmd in a shell with os . popen () and return a 2-tuple (status, output). cmd is actually run
as {cmd ; }2>&1, so that the returned output will contain output or error messages. A trailing newline is
stripped from the output. The exit status for the command can be interpreted according to the rules for the C
functionwait ().

getoutput (cmd)
Like getstatusoutput (), except the exit status is ignored and the return value is a string containing the
command’s output.

getstatus (file)
Return the output of ‘1s -1d fil€ asastring. This function uses the getoutput () function, and properly
escapes backslashes and dollar signsin the argument.

Example:

>>> import commands

>>> commands.getstatusoutput (‘1ls /bin/ls’)

(0, "/bin/1s’)

>>> commands.getstatusoutput (' cat /bin/junk’)
(256, ’'cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput (' /bin/junk’)

(256, ’'sh: /bin/junk: not found’)

>>> commands.getoutput (‘1s /bin/ls”’)

" /bin/1ls’
>>> commands.getstatus (' /bin/ls’)
' -rwxXr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

128



Chapter 9

The Python Debugger

The module pdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible — it is actually defined as a class Pdb. Thisis currently undocumented but easily under-
stood by reading the source. The extension interface uses the (al so undocumented) modules bdb and cmd.

A primitive windowing version of the debugger also exists — this is module wdb, which requires STDWIN (see the
chapter on STDWIN specific modules).

The debugger’'sprompt is“ (Pdb) ”. Typical usage to run a program under control of the debugger is:

>>> import pdb

>>> import mymodule

>>> pdb.run ('mymodule.test () ')
> <string>(0)? ()

(Pdb) continue

> <string>(1)?()

(Pdb) continue

NameError: ’'spam’

> <string>(1)?()

(Pdb)

pdb.py can aso be invoked as a script to debug other scripts. For example

python /usr/local/lib/pythonl.4/pdb.py myscript.py
Typical usage to inspect a crashed programis:

129



>>> import pdb

>>> import mymodule

>>> mymodule.test ()
Traceback (innermost last) :

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test
test2 ()

File "./mymodule.py", line 3, in test2
print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in adightly different way:

run (statement [ globals [ Iocals] ] )
Execute the statement (given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and type cont inue, or you can step through the statement using step
or next (all these commands are explained below). The optional globals and locals arguments specify the
environment in which the code is executed; by default the dictionary of the module _main__isused. (Seethe
explanation of the exec statement or theeval () built-in function.)

runeval (expression [ globals [ Iocals] ] )
Evaluate the expression (given as a a string) under debugger control. When runeval () returns, it returnsthe
value of the expression. Otherwise thisfunctionissimilarto run ().

runcall (function [ argument, ] )
Call the function (a function or method object, not a string) with the given arguments. When runcall ()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set_trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post_mortem (traceback)
Enter post-mortem debugging of the given traceback object.

pm()
Enter post-mortem debugging of the traceback foundin sys . last traceback.

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
“h(elp)” means that either “h” or “help” can be used to enter the help command (but not “he” or “hel”, nor
“H" or “Help or “HELP"). Arguments to commands must be separated by whitespace (spaces or tabs). Optional
arguments are enclosed in square brackets (“ [1”) in the command syntax; the square brackets must not be typed.
Alternativesin the command syntax are separated by a vertical bar (“ |”).

Entering a blank line repeats the last command entered. Exception: if the last commandwasa“1ist” command, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation point (*!”). Thisisa

130



powerful way to inspect the program being debugged; it is even possible to change a variable or call afunction. When
an exception occursin such a statement, the exception name s printed but the debugger’s state is not changed.

h(elp) [command ]

Without argument, print the list of available commands. With a command as argument, print help about that
command. “help pdb” displaysthefull documentationfile; if the environment variable PAGER is defined, the
fileis piped through that command instead. Since the command argument must be an identifier, “help exec”
must be entered to get help on the* 1" command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Movethe current frame one level down in the stack trace (to an older frame).
u(p) Movethe current frame onelevel up in the stack trace (to a newer frame).

b(reak) [lineno | function [, ” condition”]]

With alineno argument, set a break therein the current file. With a function argument, set a break at the entry of
that function. Without argument, list all breaks. If a second argument is present, it is a string (included in string
quotes!) specifying an expression which must evaluate to true before the breakpoint is honored.

cl(ear) [lineno ]

With a lineno argument, clear that break in the current file. Without argument, clear all breaks (but first ask
confirmation).

s(tep) Executethe current line, stop at the first possible occasion (either in afunction that is called or on the next line
in the current function).

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
next and step isthat step stops inside a called function, while next executes called functions at (nearly)
full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.
c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.
I(ist) [first [, last]]
List source code for the current file. Without arguments, list 11 lines around the current line or continue the

previouslisting. With one argument, list 11 lines around at that line. With two arguments, list the given range; if
the second argument is less than the firgt, it isinterpreted as a count.

a(rgs) Print the argument list of the current function.

p expression Evaluate the expression in the current context and print its value. (Note: print can also be used, but is
not a debugger command — this executes the Python print statement.)

[! statement]
Execute the (one-line) statement in the context of the current stack frame. The exclamation point can be omitted
unless the first word of the statement resembles a debugger command. To set a global variable, you can prefix
the assignment command with a“global” command on the sameline, e.g.:

(Pdb) global list options; list options = [’/-1']
(Pdb)

g(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

131



o sys.settrace(func) sets the global trace function
¢ therecan also alocal trace function (see later)

Trace functions have three arguments: (frame, event, arg)

frame isthe current stack frame
event isastring: “call’, 'line’, 'return’ Or 'exception’
arg is dependent on the event type

The global trace function is invoked (with event set to ' call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scope, or None if the scope shouldn’t be traced.

Thelocal trace function should return areferenceto itself (or to another function for further tracing in that scope), or
None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

"call’ A functionis called (or some other code block entered). The globa trace function is called; arg is the
argument list to the function; the return value specifies the local trace function.

"1line’ Theinterpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
Thelocal trace functionis called; arg in None; the return value specifies the new local trace function.

"return’ A function (or other code block) is about to return. Thelocal trace functioniscalled; arg isthe value that
will be returned. The trace function’sreturn valueisignored.

"exception’ An exception has occurred. The local trace function is caled; arg is a triple (exception, value,
traceback); the return val ue specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an ' exception’ eventisgenerated at each level.

Stack frame objects have the following read-only attributes:

f_code the code object being executed

f_lineno the current line number (-1 for ' call’ events)
f_back the stack frame of the caller, or None

f_locals dictionary containing local name bindings
f_globals dictionary containing global name bindings

Code objects have the following read-only attributes:

co_code the code string

co_names thelist of names used by the code

co_consts thelist of (literal) constants used by the code
co_filename the filename from which the code was compiled

132



Chapter 10

The Python Profiler

Copyright (© 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind?

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any purpose
(subject to the restriction in the following sentence) without fee is hereby granted, provided that the above copyright
notice appearsin al copies, and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. This permission is explicitly restricted to the copying and modifi-
cation of the software to remain in Python, compiled Python, or other languages (such as C) wherein the modified or
derived codeis exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. Asaresult, it is probably clumsy code, but |
don’'t know for sureyet ' cause I'm a beginner :-). | did work hard to make the code run fast, so that profiling would be
areasonable thing to do. | tried not to repeat code fragments, but I'm sure | did some stuff in really awkward ways at
times. Please send suggestions for improvementsto: jare@enetscape.com. | won't promise any support. ...but I'd
appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modules profile and pstats. This profiler
provides deterministic profiling of any Python programs. It also provides a series of report generation tools to allow
usersto rapidly examine the results of a profile operation.

10.2 How IsThisProfiler Different From The Old Profiler?

(Thissectionis of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

1 Updated and converted to BTEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

133



The big changes from old profiling module are that you get more information, and you pay less CPU time. It's not a
trade-off, it's a trade-up.

To be specific:

Bugsremoved: Loca stack frameis no longer molested, execution timeis now charged to correct functions.

Accuracy increased: Profiler executiontimeisno longer charged to user’s code, calibration for platformis supported,
file reads are not done by profiler during profiling (and charged to user’s codel).

Speed increased: Overhead CPU cost was reduced by more than afactor of two (perhaps afactor of five), lightweight
profiler module is all that must be loaded, and the report generating module (pstats) is not needed during
profiling.

Recursive functions support: Cumulative timesin recursive functions are correctly calculated; recursive entries are
counted.

Largegrowth in report generating Ul: Distinct profiles runs can be added together forming a comprehensive re-
port; functionsthat import statistics take arbitrary lists of files; sorting criteriais now based on keywords (instead
of 4 integer options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

10.3 Instant Users M anual

This section is provided for users that “don’t want to read the manual.” It providesavery brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with amain entry point of ‘ foo () ', you would add the following to your module;

import profile
profile.run("foo()")

The above action would cause ‘oo ()’ to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profileinto
afilefor later examination, you can supply afile name as the second argument to the run () function:

import profile
profile.run("foo ()", ’'fooprof’)

profile.py can aso be invoked as a script to profile another script. For example
python /usr/local/lib/pythonl.4/profile.py myscript.py

When you wish to review the profile, you should use the methods in the pstats module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The class stats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read into ‘p’. Whenyouranprofile.run () above, what was printed was the result
of three method calls:

p.strip dirs() .sort stats(-1).print stats()

134



The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

p.sort stats(’name’)
p.print_ stats()

Thefirst call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort stats(’cumulative’) .print stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping alot, and taking alot of time, you would do:

p.sort stats(’time’) .print stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort stats(’file’) .print stats(’ init ’)

Thiswill sort al the statistics by file name, and then print out statistics for only the class init methods ( cause they are
spelled with __init__inthem). Asonefinal example, you could try:

p.sort stats(’time’, ‘cum’).print stats(.5, ’‘init’)

Thisline sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some
of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5’) of its original size, then only lines

containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according to the last
criteria) do:

p.print callers(.5, ’'init’)
and you would get alist of callers for each of the listed functions.
If you want more functionality, you're going to have to read the manual, or guess what the following functions do:

p.print callees()
p.add (' fooprof’)

135



10.4 What IsDeter ministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception events are
monitored, and precise timings are made for the intervals between these events (during which time the user's code
is executing). In contrast, statistical profiling (which is not done by this module) randomly samples the effective
instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically provides a hook (optional callback) for each event. In addition, the
interpreted nature of Python tendsto add so much overhead to execution, that deterministic profiling tendsto only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of agorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global function profile.run (). Itistypicaly used to create any
profileinformation. Thereports are formatted and printed using methodsof theclasspstats. Stats. Thefollowing
is a description of al of these standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on Profiler Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

profile.run (string [, filename [, ] ] )
This function takes a single argument that has can be passed to the exec statement, and an optional file name.
In all casesthis routine attempts to exec itsfirst argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. Thefollowing isatypical output from such a
cal:

main ()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno (function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)
43/3 0.533 0.012 0.749 0.250 pobject.py:99 (evaluate)

The first line indicates that this profile was generated by the call:

profile.run(’‘main () ’), and hencethe exec'ed string is 'main () ’. The second line indicates that 2706 calls were
monitored. Of those calls, 2004 were primitive. We define primitive to mean that the call was not induced via recursion.
Thenext line: Ordered by: standard name, indicatesthat the text string in the far right column was used to sort the
output. The column headings include:

ncallsfor the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall isthe quotient of tottime divided by ncalls

136



cumtimeis the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is accurate even for
recursive functions.

percall isthe quotient of cumt ime divided by primitive calls

filename:lineno(function) provides the respective data of each function

When there are two numbersin the first column (e.g.: ‘43 /3’), then the latter is the number of primitive calls, and the former

isthe actual number of calls. Note that when the function does not recurse, these two values are the same, and only the single
figureis printed.

pstats.Stats (filename [, ] )
This class constructor creates an instance of a “statistics object” from a filename (or set of filenames). Stats
objects are manipulated by methods, in order to print useful reports.
The file selected by the above constructor must have been created by the corresponding version of profile.
To be specific, there is NO file compatibility guaranteed with future versions of this profiler, and there is no
compatibility with files produced by other profilers (e.g., the old system profiler).
If severa files are provided, al the statistics for identical functions will be coalesced, so that an overall view of
severa processes can be considered in a single report. If additional files need to be combined with datain an
existing Stats object, the add () method can be used.

10.5.1 Thestats Class

strip.dirs()
This method for the Stats class removes al leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entriesin a
“random” order, as it was just after object initialization and loading. If strip.dirs () causes two function
names to be indistinguishable (i.e., they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add (filename [, ...] )
This method of the Stats class accumulates additional profiling information into the current profiling object.
Its arguments should refer to filenames created by the corresponding version of profile.run (). Statistics
for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.

sort_stats (key [, ] )
Thismethod modifiesthe St at s object by sorting it according to the supplied criteria. Theargument istypically
astring identifying the basis of a sort (example: "time" or "name").
When more than one key is provided, then additional keys are used as secondary criteria when the there is
equality in all keys selected before them. For example, sort_stats(’ name’, 'file’) will sort all the entries according
to their function name, and resolve all ties (identical function names) by sorting by file name.
Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are the
keys currently defined:

Valid Arg Meaning
"calls" call count
"cumulative" | cumulativetime
"file" file name
"module" file name
"pcalls" primitive call count
"line" line number
"name" function name
"nfl" nameffilelline
"stdname" standard name
"time" internal time

Notethat all sortson statistics are in descending order (placing most time consuming itemsfirst), where as name,
file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction between "nf1"

137



and "stdname" isthat the standard nameis a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)
appear in the string order 20, 3 and 40. In contrast, "nf1" does a numeric compare of the line numbers. In fact,
sort_stats ("nfl") isthesameassort_stats ("name", "file", "line").

For compatibility with the old profiler, the numeric arguments‘-1’, ‘0’, ‘1", and ‘2’ are permitted. They are
interpreted as "stdname", "calls", "time", and "cumulative" respectively. If this old style format
(numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will be silently

ignored.

reverse_order ()
Thismethod for the St at s classreversesthe ordering of the basic list within the object. Thismethod is provided
primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs descending order
is properly selected based on the sort key of choice.

print_stats (regriction[, ...] )
This method for the Stat s class prints out areport as described intheprofile. run () definition.
The order of the printing is based on the last sort_stats () operation done on the object (subject to caveats
inadd () andstripdirs()).
The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),
or adecimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or aregular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by the re module). If several restrictions are provided, then they are applied sequentially. For
example:

print stats(.1l, "foo:")

would first limit the printing to first 10% of list, and then only print functions that were part of filename
‘. *foo:’. In contrast, the command:

print_stats("foo:", .1)

would limit thelist to al functions having file names* . *foo:’, and then proceed to only print the first 10% of
them.

print_callers (redtrictions [, ] )
This method for the Stats class prints alist of all functionsthat called each function in the profiled database.
The ordering isidentical to that provided by print _stats (), and the definition of the restricting argument is
alsoidentical. For convenience, anumber is shown in parentheses after each caller to show how many times this
specific call was made. A second non-parenthesized number is the cumulative time spent in the function at the
right.

print_callees (restrictions[, ] )
This method for the Stats class prints alist of al function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
theprint_callers () method.

ignore ()
This method of the Stats class is used to dispose of the value returned by earlier methods. All standard
methods in this class return the instance that is being processed, so that the commands can be strung together.
For example:

pstats.Stats (' foofile’) .strip dirs().sort_stats('cum’) \
.print_stats() .ignore()

138



would perform al the indicated functions, but it would not return the final referenceto the Stat s instance.?

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to dispatch
call, return, and exception events. Compiled C code does not get interpreted, and hence is “invisible’ to the profiler.
All time spent in C code (including builtin functions) will be charged to the Python function that invoked the C code.
If the C code calls out to some native Python code, then those calls will be profiled properly.

The second limitation has to do with accuracy of timing information. Thereis afundamental problem with determin-
istic profilersinvolving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at arate
(typically) of about .001 seconds. Hence no measurementswill be more accurate that that underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error...

The second problem is that it “takes awhile” from when an event is dispatched until the profiler’'s call to get thetime
actually gets the state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
aresult, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (i.e., less than one clock tick), but it
can accumulate and become very significant. This profiler provides a means of calibrating itself for a given platform
so that this error can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in aleast square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-). ) Do NOT be alarmed by negative numbersin the profile. They
should only appear if you have calibrated your profiler, and the results are actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate for the overhead
of calling the time function, and socking away the results. The following procedure can be used to obtain this constant
for agiven platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
pr.calibrate(100)

pr.calibrate (100)
pr.calibrate (100)

The argument to calibrate() is the number of timesto try to do the sample callsto get the CPU times. If your computer
isvery fast, you might have to do:

pr.calibrate (1000)

or even:

pr.calibrate(10000)

2This was once necessary, when Python would print any unused expression result that was not None. The method is still defined for backward
compatibility.

139



The object of this exerciseisto get afairly consistent result. When you have a consistent answer, you are ready to use
that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about .00053.
If you have a choice, you are better off with a smaller constant, and your results will “less often” show up as negative
in profile statistics.

The following shows how the trace_dispatch() method in the Profile class should be modified to install the calibration
constant on a Sun Sparcstation 1000:

def trace dispatch(self, frame, event, arg):
t = self.timer ()
t t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatchlevent] (frame, t) :

t = self.timer ()

self.t = t[0] + t[1]
else:

r = gelf.timer ()

self.t = r[0] + r[1l] - t # put back unrecorded delta
return

Note that if thereis no calibration constant, then the line containing the callibration constant should simply say:

t = t[0] + t[l] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally fast!!), but the
above method is the simplest to use. | could have made the profiler “self calibrating”, but it would have made the
initialization of the profiler class slower, and would have required some very fancy coding, or else the use of avariable
where the constant * . 00053’ was placed in the code shown. ThisisaVERY critical performance section, and there
IS no reason to use a variable lookup at this point, when a constant can be used.

10.8 Extensions— Deriving Better Profilers

ThepProfile classof moduleprofile waswritten so that derived classes could be devel oped to extend the profil er.
Rather than describing all the details of such an effort, I’ll just present the following two examples of derived classes
that can be used to do profiling. If the reader is an avid Python programmer, then it should be possible to use these as
amodel and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class has an
option for that in the constructor for the class. Consider passing the name of afunction to call into the constructor:

pr = profile.Profile(your time func)

The resulting profiler will call your_time_func () instead of os.times (). The function should return either a
single number or alist of numbers (likewhat os . times () returns). If the function returns a single time number, or
thelist of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you choose. For most machines, a
timer that returns alone integer value will provide the best resultsin terms of low overhead during profiling. (os.times
is pretty bad, ' cause it returns a tuple of floating point values, so all arithmetic is floating point in the profiler!). If you
want to substitute a better timer in the cleanest fashion, you should derive a class, and simply put in the replacement

140



dispatch method that better handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive functions. The
reason for the usefulness of this profiler isthat it runsfaster (i.e., less overhead) than the old profiler. It still creates all
the caller stats, and is quite useful when thereis no recursionin the user’s code. It is also alot more accurate than the
old profiler, asit does not charge all its overhead time to the user’s code.

141



class OldProfile(Profile) :

def trace dispatch exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:
return self.trace dispatch return(rframe, t)
return O

def trace dispatch call(self, frame, t):

fn = ‘frame.f code®
self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has key(fn):
tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers
else:
self.timings[fn] = 0, 0, {}
return 1

def trace dispatch return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur
rtt = rtt + t
sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur
self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings([rfn]
if callers.has key(pfn):
callers[pfn] = callers[pfn] + 1
else:
callers[pfn] =1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot stats(self):
self.stats = {}
for func in self.timings.keys():

tt, ct, callers = self.timings[func]
nor func = self.func normalize (func)
nor callers = {}

nc =0

for func caller in callers.keys():
nor callers[self.func normalize (func caller)]=\
callers[func_caller]
nc = nc + callers[func _caller]
self.stats[nor func] = nc, nc, tt, ct, nor callers

142



10.8.2 HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and does not
calculate cumulative time under afunction. It only calculatestime spent in afunction, so it runsvery quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth the savings to give up the data, but this
class till provides a nice example.

class HotProfile(Profile):

def trace dispatch exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:
return self.trace dispatch return(rframe, t)
return 0

def trace dispatch call(self, frame, t):
self.cur = (t, 0, frame, self.cur)

return 1

def trace dispatch return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f code‘

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has key(rfn):

nc, tt = self.timings[rfn]

self.timings[rfn] = nc + 1, rt + rtt + tt
else:

self.timings[rfn] = 1, rt + rtt
return 1

def snapshot stats(self):
self.stats = {}
for func in self.timings.keys():

nc, tt = self.timings[func]
nor func = self.func normalize (func)
self.stats[nor func] = nc, nc, tt, 0, {}

143



Chapter 11

| nter net and WWW Services

The modules described in this chapter provide various services to World-Wide Web (WWW) clients and/or services,
and afew modulesrelated to news and email. They are all implemented in Python. Some of these modules require the
presence of the system-dependent module socket s, whichis currently only fully supported on Unix and Windows
NT. Hereis an overview:

cgi — Common Gateway Interface, used to interpret formsin server-side scripts.
urllib — Open an arbitrary object given by URL (requires sockets).

httplib — HTTP protocol client (requires sockets).

ftplib — FTP protocol client (requires sockets).

gopherlib — Gopher protocol client (requires sockets).

nntplib — NNTP protocol client (requires sockets).

urlparse — Parse a URL string into a tuple (addressing scheme identifier, network location, path, parameters, query
string, fragment identifier).

sgmllib — Only as much of an SGML parser as needed to parse HTML.

htmllib — A parser for HTML documents.

xmllib — A parser for XML documents.

formatter — Generic output formatter and device interface.

rfc822 — Parse RFC-822 style mail headers.

mimetools — Tools for parsing MIME style message bodies.

binhex — Encode and decode files in binhex4 format.

uu — Encode and decode files in uuencode format.

binascii — Tools for converting between binary and various ascii-encoded binary representation

xdrlib — The External Data Representation Standard as described in RFC 1014, written by Sun Microsystems, Inc.
June 1987.

mailcap — Mailcap file handling. See RFC 1524.

base64 — Encode/decode binary files using the MIME base64 encoding.

quopri — Encode/decode binary files using the MIME quoted-printable encoding.
SocketServer — A framework for network servers.

mailbox — Read various mailbox formats.

mimify — Mimification and unmimification of mail messages.

144



11.1 Standard Module cgi

Support module for CGI (Common Gateway Interface) scripts.

This modul e defines a number of utilities for use by CGI scripts written in Python.

11.1.1 Introduction

A CGlI script isinvoked by an HTTP server, usually to process user input submitted through an HTML <FORM> or
<ISINPUT> element.

Most often, CGI scriptslivein the server’'sspecia ‘cgi-bin’ directory. The HTTP server placesall sorts of informa-
tion about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies)
in the script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
datais passed viathe “ query string” part of the URL. Thismodule (‘cgi . py’) isintended to take care of the different
cases and provide a simpler interface to the Python script. 1t also provides anumber of utilities that help in debugging
scripts, and the latest addition is support for file uploads from a form (if your browser supports it — Grail 0.3 and
Netscape 2.0 do).

Theoutput of aCGl script should consist of two sections, separated by ablank line. Thefirst section contains anumber
of headers, telling the client what kind of datais following. Python code to generate a minimal header section looks
likethis:

print "Content-type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which alows the client software to display nicely formatted text with header,
in-line images, etc. Here's Python code that prints a simple piece of HTML.:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!™"

(It may not be fully legal HTML according to the letter of the standard, but any browser will understand it.)

11.1.2 Usingthecgi module

Begin by writing import cgi. Don'tuse from cgi import * —the module defines al sorts of names for its
own use or for backward compatibility that you don’t want in your namespace.

It's best to use the FieldStorage class. The other classes define in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the form contents from standard input or the
environment (depending on the value of various environment variables set according to the CGI standard). Since it
may consume standard input, it should be instantiated only once.

The FieldStorage instance can be accessed as if it were a Python dictionary. For instance, the following code
(which assumes that the Content -type header and blank line have already been printed) checks that the fields
name and addr are both set to a non-empty string:

145



form = cgi.FieldStorage ()
form ok = 0
if form.has key("name") and form.has key("addr"):
if form["name"] .value != "" and form["addr"] .value != "":
form ok = 1
if not form ok:
print "<HlsError</H1>"
print "Please fill in the name and addr fields."
return
...further form processing here...

Here the
fields, accessed through form[key], are themselves instances of FieldStorage (or MiniFieldStorage,
depending on the form encoding).

If the submitted form data contains more than one field with the same name, the object retrieved by form [key] is
not a (Mini)FieldStorage instance but alist of such instances. If you expect this possibility (i.e., when your
HTML form comtains multiple fields with the same name), use the type () function to determine whether you have
asingle instance or alist of instances. For example, here's code that concatenates any number of username fields,
separated by commas:

username = form["username"]
if type(username) is type([]):
# Multiple username fields specified
usernames = ""
for item in username:
if usernames:
# Next item -- insert comma
usernames = usernames + "," + item.value
else:
# First item -- don’t insert comma
usernames = item.value
else:
# Single username field specified
usernames = username.value

If afield represents an uploaded file, the value attribute reads the entire file in memory as a string. This may not be
what you want. You can test for an uploaded file by testing either the filename attribute or the file attribute. You can
then read the data at |easure from the file attribute:

fileitem = form["userfile"]
if fileitem.file:
# It’'s an uploaded file; count lines

linecount = 0

while 1:
line = fileitem.file.readline ()
if not line: break
linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-like FieldStorage item. This can be
determined by testing its type attribute, which should have the valuemultipart /form-data (or perhapsanother

146



string beginning withmultipart/ It thiscase, it can beiterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of
type application/x-www-form-urlencoded), the items will actualy be instances of the class
MiniFieldStorage. Inthiscase, thelit, file and filename attributes are aways None.

11.1.3 Old classes

These classes, present in earlier versions of the cgi module, are still supported for backward compatibility. New
applications should use the FieldStorage class.

SvFormContentDict single value form content as dictionary; assumes each field name occurs in the form only
once.

FormContentDict multiple value form content as dictionary (the form items are lists of values). Useful if your
form contains multiple fields with the same name.

Other classes (FormContent, InterpFormContentDict) are present for backwards compatibility with really
old applications only. If you still use these and would be inconvenienced when they disappeared from a next version
of this module, drop me a note.

11.1.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
modulein other circumstances.

parse (fp)
Parse a query in the environment or from afile (default sys . stdin).

parse_gs (QS)
parse aquery string given as astring argument (data of type application/x-www-form-urlencoded).

parsemultipart (fp, pdict)
parse input of type multipart/form-data (for file uploads). Arguments are £p for the input file and
pdict for the dictionary containing other parameters of content - type header
Returns adictionary just like parse_gs () keysarethefield names, each valueisalist of values for that field.
This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible. Note that content -type is the raw, unparsed
contents of the content - type header.

Note that this does not parse nested multipart parts—use FieldStorage for that.

parse_header (string)
parse a header like Content - type into amain content-type and a dictionary of parameters.

test ()
robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

print_environ ()
format the shell environmentin HTML.

print_form (form)
format aformin HTML.

print_directory ()
format the current directory in HTML.

print_environ_usage ()

147



print alist of useful (used by CGlI) environment variablesin HTML.

escape(s[,qude])
convert the characters“&”, “<” and “ >" in string s to HTM L -safe sequences. Use thisif you need to display text
that might contain such charactersin HTML. If the optional flag quote is true, the double quote character (") is
also trandated; thishelps for inclusionin an HTML attribute value, e.g. in“<A HREF="...">",

11.1.5 Caring about security

There's one important rule: if you invoke an external program (e.g. viathe os.system () or os.popen () func-
tions), make very sure you don’'t pass arbitrary strings received from the client to the shell. This is a well-known
security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script to invoke arbitrary shell
commands. Even parts of the URL or field names cannot be trusted, since the request doesn’t have to come from your
form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only al phanumeric characters, dashes, underscores, and periods.

11.1.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGlI scripts should be installed; usually thisisin adirectory ‘cgi-bin’ inthe server tree.

Make sure that your script is readable and executable by “others’; the Unix file mode should be 755 (use
chmod 755 filename). Make sure that the first line of the script contains # ! starting in column 1 followed
by the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others’.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others’ — their
mode should be 644 for readable and 666 for writable. Thisis because, for security reasons, the HT TP server executes
your script as user “nobody”, without any special privileges. It can only read (write, execute) files that everybody
can read (write, execute). The current directory at execution time is also different (it is usually the server’s cgi-bin
directory) and the set of environment variablesis also different from what you get at login. in particular, don’'t count
on the shell’s search path for executables ($PATH) or the Python module search path ($PYTHONPATH) to be set to
anything interesting.

If you need to load modules from a directory which is not on Python's default modul e search path, you can change the
path in your script, before importing other modules, e.g.:

import sys
sys.path.insert (0, "/usr/home/joe/lib/python")
sys.path.insert (0, "/usr/local/lib/python")

(Thisway, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server’s documentation (it will usually have a section
on CGl scripts).

148



11.1.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There's one reason why you should
still test your script from the command line: if it contains a syntax error, the python interpreter won’t executeit at all,
and the HTTP server will most likely send acryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section:

11.1.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully can
save you alot of time. If you wonder whether you have understood the installation procedure correctly, try installing
acopy of thismodulefile (‘cgi . py’) as a CGlI script. When invoked as a script, the file will dump its environment
and the contents of the form in HTML form. Give it the right mode etc, and send it a request. If it'sinstalled in the
standard ‘cgi-bin’ directory, it should be possible to send it a request by entering a URL into your browser of the
form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If thisgives an error of type 404, the server cannot find the script — perhapsyou need to install it in adifferent directory.
If it givesanother error (e.g. 500), there’s an installation problem that you should fix beforetrying to go any further. If
you get a nicely formatted listing of the environment and form content (in this example, the fields should be listed as
“addr” with value “At Home" and “name” with value “Joe Blow"), the ‘cgi . py’ script has been installed correctly.
If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call the cgi module’'s test () function from your script: replace its main code with the
single statement

cgi.test ()

This should produce the same results as those gotten frominstalling the ‘ cgi . py’ fileitsalf.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name, afile that
can't be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter will still
do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP server’'s
log file, or be discarded altogether.

Fortunately, once you have managed to get your script to execute * some* code, it is easy to catch exceptionsand cause
atraceback to be printed. Thetest () function below in thismodule is an example. Here are the rules:

Import the traceback module (before entering the try-except!)
Make sure you finish printing the headers and the blank line early
Assign sys.stderrtosys.stdout

Wrap all remaining codein atry-except statement

o~ w b pE

In the except clause, call traceback.print_exc ()

For example:

149



import sys
import traceback
print "Content-type: text/html"

print
sys.stderr = sys.stdout
try:

...your code here...
except:

print "\n\n<PRE>"
traceback.print_ exc ()

Notes:. The assignment to sys.stderr is needed because the traceback prints to sys.stderr. The
print "\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even more robust
approach (which only uses built-in modules):

import sys

sys.stderr = sys.stdout

print "Content-type: text/plain"
print

...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text, which
disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback will be displayed. Because no HTML
interpretation is going on, the traceback will readable.

11.1.9 Common problemsand solutions

e Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is not
possible to display a progress report on the client’s display while the script is running.

e Check theinstallation instructions above.

e ChecktheHTTP server'slogfiles. (tail -f logfile inaseparate window may be usefull)

e Always check ascript for syntax errorsfirst, by doing something like python script.py.

e When using any of the debugging techniques, don't forget to add import sys tothetop of the script.

e When invoking externa programs, make sure they can be found. Usually, this means using absol ute path names
— $PATH isusualy not set to avery useful valuein a CGlI script.

e When reading or writing external files, make sure they can be read or written by every user on the system.

e Don'ttry to give a CGlI script a set-uid mode. This doesn’t work on most systems, and is a security liability as
well.

11.2 Standard Moduleurllib

This module provides a high-level interface for fetching data across the World-Wide Web. In particular, the
urlopen () functionis similar to the built-in function open (), but accepts URLSs (Universal Resource Locators)
instead of filenames. Some restrictions apply — it can only open URLSs for reading, and no seek operations are
available.

It defines the following public functions:

150



urlopen (url)

Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it
has‘file:’ asits scheme identifier, this opensalocal file; otherwise it opens a socket to a server somewhere
on the network. If the connection cannot be made, or if the server returns an error code, the TOError excep-
tionisraised. If al went well, a file-like object is returned. This supports the following methods. read (),
readline (), readlines (), fileno (), close () and info (). Except for the last one, these methods
have the same interface as for file objects — see the section on File Objects earlier in this manual. (It's not a
built-in file object, however, so it can’t be used at those few places where atrue built-in file object is required.)
The info () method returns an instance of the classmimetools .Message containing the headers received
from the server, if the protocol uses such headers (currently the only supported protocol that usesthisisHTTP).
See the description of themimetools module.

urlretrieve (url)
Copy a network object denoted by a URL to aloca file, if necessary. If the URL pointsto alocal file, or avalid
cached copy of the object exists, the object is not copied. Return a tuple (filename, headers) where filename
is the local file name under which the object can be found, and headers is either None (for a local object) or
whatever the info () method of the object returned by urlopen () returned (for a remote object, possibly
cached). Exceptions are the same asfor urlopen ().

urlcleanup ()
Clear the cache that may have been built up by previouscallstourlretrieve ().

quote (string [ addsafe] )

Replace special charactersin string using the $xx escape. Letters, digits, and the characters“_, . -" are never
quoted. The optional addsafe parameter specifies additional characters that should not be quoted — its default
vaueis’ /’.

Example: quote (' /“connolly/’) yields’ /$7econnolly/’.

quote_plus (string [, addsafe] )
Like quote (), but aso replaces spaces by plus signs, as required for quoting HTML form values.

unquote (string)
Replace ‘' $xx’ escapes by their single-character equivalent.
Example: unquote (' /$7Econnolly/’) yields’ /~“connolly/’.

unquote_plus (string)
Likeungquote (), but aso replaces plus signs by spaces, as required for unquoting HTML form values.

Restrictions:

e Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but not Gopher-+),
FTPR and locdl files.

e The caching feature of urlretrieve () has been disabled until | find the time to hack proper processing of
Expiration time headers.

e There should be a function to query whether a particular URL isin the cache.

e For backward compatibility, if a URL appears to point to a loca file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

e Theurlopen () andurlretrieve () functionscan causearbitrarily long delayswhile waiting for anetwork
connection to be set up. This means that it is difficult to build an interactive web client using these functions
without using threads.

e The datareturned by urlopen () or urlretrieve () isthe raw datareturned by the server. This may be
binary data(e.g. animage), plain text or (for example) HTML. The HTTP protocol providestypeinformationin
the reply header, which can be inspected by looking at the Content -type header. For the Gopher protocol,
typeinformationisencodedin the URL; thereis currently no easy way to extract it. If thereturned dataisHTML,
you can usethe module htm111ib to parseit.

151



¢ Although the ur11ib module contains (undocumented) routines to parse and unparse URL strings, the recom-
mended interface for URL manipulationisin moduleurlparse.

11.3 Standard Modulehttplib

This module defines a class which implements the client side of the HTTP protocol. It is normally not used directly
— themoduleur11ib usesit to handle URLsthat use HTTP.

The module defines one class, HTTP. An HTTP instance represents one transaction with an HTTP server. It should
be instantiated passing it a host and optional port number. If no port number is passed, the port is extracted from the
host string if it hastheformhost : port, else the default HTTP port (80) is used. If no host is passed, no connection
is made, and the connect method should be used to connect to a server. For example, the following calls al creste
instances that connect to the server at the same host and port:

>>> hl = httplib.HTTP('www.cwi.nl’)
>>> h2 = httplib.HTTP('www.cwi.nl:80")
>>> h3 = httplib.HTTP('www.cwi.nl’, 80)

Once an HT'TP instance has been connected to an HTTP server, it should be used as follows:

Make exactly one call to theputrequest () method.

Make zero or more callsto the putheader () method.

Call the endheaders () method (this can be omitted if step 4 makes no calls).
Optional callsto the send () method.

Cadll thegetreply () method.

Cadl thegetfile () method and read the data off the file object that it returns.

© 0~ w DN P

11.3.1 HTTP Objects

HTTP instances have the following methods:

set_debuglevel (level)

Set the debugging level (the amount of debugging output printed). The default debug level is 0, meaning no
debugging output is printed.

connect(hoﬂ[,poﬁ])
Connect to the server given by host and port. See the intro for the default port. This should be called directly
only if the instance was instantiated without passing a host.

send (data)
Send datato the server. Thisshould be used directly only after the endheaders () method has been called and
beforegetreply () hasbeencalled.

putrequest (request, selector)
Thisshould bethefirst call after the connectionto the server hasbeen made. It sendsalineto the server consisting
of the request string, the selector string, and the HTTP version (HTTP/1. 0).

putheader(h&ﬂ&}&gumaﬂ[“"])
Send an RFC-822 style header to the server. It sends a line to the server consisting of the header, a colon and a
space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab
and an argument.

152



endheaders ()

Send a blank line to the server, signalling the end of the headers.

getreply ()

Complete the request by shutting down the sending end of the socket, read the reply from the server, and return
atriple (replycode, message, headers). Here replycode is the integer reply code from the request (e.g. 200 if
the request was handled properly); message is the message string corresponding to the reply code; and headers
is an instance of the class mimetools.Message containing the headers received from the server. See the
description of themimetools module.

getfile()

Return afile object from which the data returned by the server can be read, using the read (), readline ()
or readlines () methods.

11.3.2 Example

Here is an example session:

>>> import httplib

>>> h = httplib.HTTP ('www.cwi.nl’)

>>> h.putrequest ('GET’, ’'/index.html’)
>>> h.putheader (’'Accept’, 'text/html’)
>>> h.putheader (’'Accept’, ’'text/plain’)
>>> h.endheaders()

>>> errcode, errmsg, headers = h.getreply ()
>>> print errcode # Should be 200

>>> £ = h.getfile()

>>> data = f.read() # Get the raw HTML
>>> f.close()

>>>

11.4 Standard Module ftplib

This module defines the class FTP and a few related items. The FTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mirroring
other ftp servers. It is also used by the module ur11ib to handle URLSs that use FTP. For more information on FTP

(File Transfer Protocol), see Internet RFC 959.

Here's a sample session using the £tplib module;

153



>>> from ftplib import FTP

>>> ftp = FTP('ftp.cwi.nl’) # connect to host, default port

>>> ftp.login() # user anonymous, passwd user@hostname
>>> ftp.retrlines (’LIST’) # list directory contents

total 24418

drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48

dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32

-YW-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

>>> ftp.quit ()

The module defines the following items:

FTP ( [host [ user, passwd, acct] ] )
Return a new instance of the FTP class. When host is given, the method call connect (host) is made. When
user is given, additionally the method call 1ogin (user, passwd, acct) is made (where passwd and acct
default to the empty string when not given).

all_errors
The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed below aswell assocket .error and IOError.

error_reply
Exception raised when an unexpected reply is received from the server.

error_temp
Exception raised when an error code in the range 400499 is received.

error_perm
Exception raised when an error code in the range 500-599 is received.

error_proto
Exception raised when areply is received from the server that does not begin with adigit in the range 1-5.

1141 FTP Objects

FTP instances have the following methods:

set_debuglevel (leve)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, O,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
singleline per request. A value of 2 or higher produces the maximum amount of debugging output, logging each
line sent and received on the control connection.

connect(hoﬂ[,poﬁ])
Connect to the given host and port. The default port number is 21, as specified by the FTP protocol specification.
Itisrarely needed to specify adifferent port number. This function should be called only once for each instance;
it should not be called at all if a host was given when the instance was created. All other methods can only be
used after a connection has been made.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

154



login ( [user [ passwd [ acct] ] ] )
Log in as the given user. The passwd and acct parameters are optional and default to the empty string. If no
user is specified, it defaults to ‘anonymous’. If user is anonymous, the default passwd is ‘realuser@host’
where realuser is the real user name (glanced from the ' LOGNAME’ or ‘USER’ environment variable) and host
isthe hostname as returned by socket .gethostname (). Thisfunction should be called only once for each
instance, after a connection has been established; it should not be called at all if ahost and user were given when
the instance was created. Most FTP commands are only allowed after the client has logged in.

abort ()
Abort afiletransfer that isin progress. Using this does not always work, but it's worth atry.

sendcmd (command)
Send a simple command string to the server and return the response string.

voidemd (command)
Send a simple command string to the server and handle the response. Return nothing if a response code in the
range 200299 is received. Raise an exception otherwise.

retrbinary (command, callback [ maxbl ocksi ze] )
Retrieve a file in binary transfer mode. command should be an appropriate ‘RETR’ command, i.e.
"RETR filename". The callback function is called for each block of data received, with a single string ar-
gument giving the data block. The optional maxblocksi ze argument specifies the maximum chunk size to read on
the low-level socket object created to do the actual transfer (which will also bethe largest size of the data blocks
passed to callback). A reasonable default is chosen.

retrlines (command [ callback] )
Retrieve afile or directory listing in Ascll transfer mode. command should be an appropriate ‘RETR’ command
(seeretrbinary () ora‘LIST command (usualy just the string "LIST"). The callback functionis called
for each line, with the trailing CRLF stripped. The default callback printsthelineto sys . stdout.

storbinary (command, file, blocksize)
Store a file in binary transfer mode. command should be an appropriate ‘STOR’ command, i.e.
"STOR filename". file is an open file object which is read until EOF using its read () method in blocks
of size blocksize to provide the datato be stored.

storlines (command, file)
Store a file in Ascll transfer mode. command should be an appropriate ‘STOR’ command (see
storbinary ()). Lines are read until EOF from the open file object file using its readline () method
to privide the data to be stored.

nlst (argument[,...])
Return alist of files as returned by the ‘NLST' command. The optional argument is a directory to list (default
is the current server directory). Multiple arguments can be used to pass non-standard options to the ‘NLST’
command.

dir (argument[,...])
Return a directory listing as returned by the ‘LIST’ command, as a list of lines. The optional argument is a
directory to list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the ‘LIST" command. If the last argument is a function, it is used as a callback function as for
retrlines ().

rename (fromname, toname)
Rename file fromname on the server to toname.

cwd (pathname)
Set the current directory on the server.

mkd (pathname)
Create a new directory on the server.

155



pwd ()
Return the pathname of the current directory on the server.

quit ()
Send a‘QUIT command to the server and close the connection. Thisisthe “polite” way to close a connection,
but it may raise an exception of the server repondswith an error to the QUIT command.

close ()
Close the connection unilaterally. This should not be applied to an aready closed connection (e.g. after a suc-
cessful call toquit ().

11.5 Standard Module gopherlib

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by the module
urllib to handle URLsthat use the Gopher protocol.

The module defines the following functions:

send_selector(sdaionhoﬁ[,poﬁ])
Send a selector string to the gopher server at host and port (default 70). Return an open file object from which
the returned document can be read.

send_query (sdlector, query, host [ port] )
Send a selector string and a query string to a gopher server at host and port (default 70). Return an open file
object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of the selector
string. If the dataiis text (first character of the selector is*0"), lines are terminated by CRLF, and the dataiis terminated
by aline consisting of asingle‘.’, and aleading * ." should be stripped from lines that begin with . .”. Directory
listings (first charactger of the selector is*1") are transferred using the same protocol.

11.6 Standard Modulenntplib

This module defines the class NNTP which implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network News
Transfer Protocoal), see Internet RFC 977.

Here aretwo small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of
thelast 10 articles:

156



>>> g = NNTP('news.cwi.nl’)

>>> resp, count, first, last, name = s.group(’comp.lang.python’)

>>> print ’‘Group’, name, ’'has’, count, ’articles, range’, first, ’'to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803

>>> resp, subs = s.xhdr(’subject’, first + '-’ + last)

>>> for id, sub in subs[-10:]: print id, sub

3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?

3794 Emacs and doc strings

3795 a few questions about the Mac implementation

3796 Re: executable python scripts

3797 Re: executable python scripts

3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts

3803 Re: POSIX wait and SIGCHLD

>>> s.quit ()

205 news.cwi.nl closing connection. Goodbye.’

>>>

To post an article from afile (this assumes that the article has valid headers):

>>> 8 = NNTP('news.cwi.nl’)

>>> f = open(’/tmp/article’)

>>> s.post (f)

240 Article posted successfully.’

>>> s.quit ()

205 news.cwi.nl closing connection. Goodbye.’
>>>

The module itself defines the following items:

NNTP (host [ port] )
Return a new instance of the NN'TP class, representing a connection to the NNTP server running on host host, listening at port
port. The default port is 119.

error._reply
Exception raised when an unexpected reply is received from the server.

error_temp
Exception raised when an error code in the range 400499 is received.

error_perm
Exception raised when an error code in the range 500-599 is received.

error_proto
Exception raised when areply is received from the server that does not begin with adigit in the range 1-5.

11.6.1 NNTP Objects

NNTP instances have the following methods. The response that is returned asthe first item in the return tuple of almost all methods
isthe server’s response: astring beginning with athree-digit code. If the server’s response indicates an error, the method raises one
of the above exceptions.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes contains dis-

157



claimers or help information that may be relevant to the user.)

set_debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, O, produces no
debugging output. A value of 1 produces a moderate amount of debugging output, generally a single line per request or
response. A value of 2 or higher produces the maximum amount of debugging output, logging each line sent and received on
the connection (including message text).

newgroups (date, time)
Send a‘NEWGROUPS’ command. The date argument should be a string of the form "yymmdd" indicating the date, and time
should be a string of the form "hhmmss" indicating the time. Return a pair (response, groups) where groupsis alist of
group names that are new since the given date and time.

newnews (group, date, time)
Send a ‘NEWNEWS' command. Here, group is a group name or "*", and date and time have the same meaning as for
newgroups (). Returnapair (response, articles) where articlesisalist of articleids.

list ()
Send a ‘'LIST’ command. Return a pair (response, list) where list is a list of tuples. Each tuple has the form
(group, last, first, flag), where group is agroup name, last and first are the last and first article numbers (as strings),
andflagis 'y if posting isalowed, 'n’ if not, and ' m’ if the newsgroup is moderated. (Note the ordering: last, first.)

group (hame)
Send a‘GROUP’ command, where name is the group name. Return atuple (response, count, first, last, name) where
count is the (estimated) number of articles in the group, first is the first article number in the group, last is the last article
number in the group, and name is the group name. The numbers are returned as strings.

help ()
Send a‘HELP' command. Return apair (response, list) wherelistisalist of help strings.

stat (id)
Send a‘STAT' command, where id is the message id (enclosed in ‘<’ and ‘>’) or an article number (as a string). Return a
triple (response, number, id) where number isthe article number (asastring) and id isthe articleid (enclosed in ‘<’ and
SN,

next ()
Send a‘NEXT' command. Return asfor stat ().

last ()
Send a‘LAST' command. Return asfor stat ().

head (id)
Send a‘HEAD' command, whereid has the same meaning asfor stat (). Returnapair (response, list) wherelistisalist
of the article’s headers (an uninterpreted list of lines, without trailing newlines).

body (id)
Send a‘BODY’ command, where id has the same meaning asfor stat (). Returnapair (response, list) wherelistisalist
of the article’s body text (an uninterpreted list of lines, without trailing newlines).

article (id)
Send a‘ARTICLE’ command, whereid has the same meaning asfor stat (). Return apair (response, list) wherelistis
alist of the article’s header and body text (an uninterpreted list of lines, without trailing newlines).

slave ()
Send a‘SLAVE’ command. Return the server’s response.

xhdr (header, string)
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension. The header argument is a
header keyword, e.g. "subject". The string argument should have the form "first-last" where first and last are the first
and last article numbers to search. Return a pair (response, list), wherelist isalist of pairs (id, text), whereid isan
articleid (as astring) and text is the text of the requested header for that article.

post (file)
Post an article using the ‘POST’ command. The file argument is an open file object which is read until EOF using its
readline () method. It should be a well-formed news article, including the required headers. The post () method

158



automatically escapes lines beginning with * .".

ihave (id, file)
Send an ' THAVE' command. If the response is not an error, treat file exactly asfor the post () method.

date ()
Return a triple (response, date, time), containing the current date and time in a form suitable for the newnews and
newgroups methods. Thisis an optional NNTP extension, and may nhot be supported by all servers.

xgtitle (name)
Process an XGTITLE command, returning a pair (response, list, where list is alist of tuples containing (name, title) .
Thisisan optional NNTP extension, and may not be supported by all servers.

xover (start, end)
Return a pair (resp, list). listisalist of tuples, one for each article in the range delimited by the start and end article
numbers. Each tupleis of the form (articlenumber, subject, poster, date, id, references, size, lines). Thisisan
optional NNTP extension, and may not be supported by all servers.

xpath (id)
Return a pair (resp, path), where path is the directory path to the article with message ID id. Thisis an optional NNTP
extension, and may not be supported by all servers.

quit ()
Send a‘QUIT’ command and close the connection. Once this method has been called, no other methods of the NNTP object
should be called.

11.7 Standard Moduleurlparse

This module defines a standard interface to break URL strings up in components (addessing scheme, network location, path etc.),
to combine the components back into a URL string, and to convert a“relative URL” to an absolute URL given a“base URL”.

The module has been designed to match the current Internet draft on Relative Uniform Resource Locators (and discovered abug in
an earlier draft!).

It defines the following functions:

urlparse (urlstring [ default_scheme [ allow_fragments] ] )
Parsea URL into 6 components, returning a6-tuple: (addressing scheme, network location, path, parameters, query, fragment
identifier). This corresponds to the general structure of a URL: scheme: / /netloc/ path ; parameters? query#fragment. Each
tupleitemisastring, possibly empty. The components are not broken up in smaller parts (e.g. the network location isasingle
string), and % escapes are not expanded. The delimiters as shown above are not part of the tuple items, except for aleading
slash in the path component, which is retained if present.

Example:

urlparse ('http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

("http’, 'www.cwi.nl:80’, ’'/%$7Eguido/Python.html’, *’', "', '’)

If the default_scheme argument is specified, it gives the default addressing scheme, to be used only if the URL string does not
specify one. The default value for this argument is the empty string.

If the allow_fragments argument is zero, fragment identifiers are not allowed, even if the URL's addressing scheme normally
does support them. The default value for this argument is 1.

urlunparse (tuple)
Construct a URL string from atuple as returned by urlparse. Thismay result in adlightly different, but equivalent URL,
if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty query (the draft states that these are
equivalent).

159



urljoin (base, url [ alIow.fragrrmts] )
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url). Informally, this uses
components of the base URL, in particular the addressing scheme, the network location and (part of) the path, to provide
missing components in the relative URL.

Example:
urljoin('http://www.cwi.nl/%$7Eguido/Python.html’, 'FAQ.html’)
yields the string

'http://www.cwi.nl/%$7Eguido/FAQ.html’

The allow_fragments argument has the same meaning asfor urlparse.

11.8 Standard Module sgmllib

Thismodule defines aclass SGMLParser which serves asthe basisfor parsing text filesformatted in SGML (Standard Generalized
Mark-up Language). In fact, it does not provide afull SGML parser — it only parses SGML insofar asit is used by HTML, and
the module only exists as abase for the htm11lib module.

In particular, the parser is hardcoded to recognize the following constructs:

e Opening and closing tags of theform “<tag attr="value" ...>" and“</tag>", respectively.
e Numeric character references of the form “ s&#name;”.
e Entity references of the form * &name; ”.

e SGML comments of theform “< ! - -text- - >”. Note that spaces, tabs, and newlines are allowed between the trailing “ >" and
theimmediately preceeding “--".

The SGMLParser class must be instantiated without arguments. It has the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. Thisis called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the HTML tag
<PLAINTEXT> can beimplemented.)

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is buffered until
more dataisfed or close () iscaled.

close ()
Force processing of al buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always call
SGMLParser.close ().

handle_starttag (tag, method, attributes)

This method is called to handle start tags for which either astart_tag () or do_tag () method has been defined. The tag
argument is the name of the tag converted to lower case, and the method argument is the bound method which should be
used to support semantic interpretation of the start tag. The attributes argument isalist of (name, value) pairs containing the
attributes found inside the tag's <> brackets. The name has been trandated to lower case and double quotes and backslashes
in the value have been interpreted. For instance, for thetag <A HREF="http://www.cwi.nl/">, thismethod would be
cdled as unknown_starttag(’a’, [(‘href’, ’'http://www.cwi.nl/’)]). The base implementation sim-

ply callsmethod with attributes asthe only argument.

160



handle_endtag (tag, method)
This method is called to handle endtags for which an end tag () method has been defined. The tag argument is the name
of the tag converted to lower case, and the me t hod argument is the bound method which should be used to support semantic
interpretation of the end tag. If no end_tag () method is defined for the closing element, this handler is not called. The base
implementation simply callsmethod.

handle_data (data)
Thismethod iscalled to process arbitrary data. Itisintended to be overridden by aderived class; the base classimplementation
does nothing.

handle_charref (ref)
This method is called to process a character reference of the form “&#ref ;. In the base implementation, ref must be a
decima number in the range 0-255. It trandlates the character to Ascii and calls the method handle data () with the
character as argument. If ref isinvalid or out of range, the method unknown charref (ref) is called to handle the error.
A subclass must override this method to provide support for named character entities.

handle_entityref (ref)
This method is called to process a general entity reference of the form “&ref ;" where ref is an general entity reference. It
looksfor ref in theinstance (or class) variable ent i t yde £ s which should be amapping from entity names to corresponding
tranglations. |If a trandation is found, it calls the method handle data () with the trandation; otherwise, it calls the
method unknown_entityref (ref). The default entitydefs defines trandations for &amp;, &apos, &gt ;, &1t ;,
and &quot ;.

handle_comment (comment)
This method is called when a comment is encountered. The comment argument is a string containing the text between the
“<1--"and"“-->" delimiters, but not the delimiters themselves. For example, the comment “<! - -text - ->" will cause
this method to be called with the argument ’ text ‘. The default method does nothing.

report_unbalanced (tag)
Thismethod is called when an end tag is found which does not correspond to any open element.

unknown_starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_charref (ref)
Thismethod is called to process unresolvable numeric character references. It isintended to be overridden by aderived class;
the base class implementation does nothing.

unknown_entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class; the base
class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may aso define methods of the following form to
define processing of specific tags. Tag namesin the input stream are case independent; the tag occurring in method names must be
in lower case:

start_tag (attributes)
This method is called to process an opening tag tag. It has preference over da tag () . The attributes argument has the same
meaning as described for handle_starttag () above.

do_tag (attributes)
Thismethod is called to process an opening tag tag that does not come with a matching closing tag. The attributes argument
has the same meaning as described for handle starttag () above.

end-tag ()
Thismethod is called to process a closing tag tag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags processed by
start_tag() are pushed on this stack. Definition of an end_tag () method is optional for these tags. For tags processed by
do_tag () or by unknown_tag (), no end_tag () method must be defined; if defined, it will not be used. If both start tag()

161



and do_tag () methods exist for atag, the start_tag () method takes precedence.

11.9 Standard Modulehtmllib

This module defines a class which can serve as abase for parsing text files formatted in the HyperText Mark-up Language (HTML).
The class is not directly concerned with 1/0 — it must be provided with input in string form via a method, and makes calls to
methods of a“formatter” object in order to produce output. The HTMLParser classisdesigned to be used as a base classfor other
classesin order to add functionality, and allows most of its methods to be extended or overridden. In turn, this classis derived from
and extends the SGMLParser class defined in module sgm11ib. Two implementations of formatter objects are provided in the
formatter module; refer to the documentation for that module for information on the formatter interface.

Thefollowing isasummary of theinterface defined by sgml11lib.SGMLParser:

e Theinterface to feed data to an instance is through the feed () method, which takes a string argument. This can be called
withaslittleor asmuch text at atimeasdesired, p. feed (a) ; p.feed (b) hasthesameeffectasp . feed (a+b). When
the data contains complete HTML tags, these are processed immediately; incomplete elements are saved in a buffer. To force
processing of all unprocessed data, call the close () method.

For example, to parse the entire contents of afile, use:

parser.feed(open(‘myfile.html’) .read())
parser.close ()

e The interface to define semantics for HTML tags is very simple: derive a class and define methods called start tag(),
end.-tag (), or do_tag () . Theparser will call these at appropriate moments: start_tag or do_tagiscalled when an opening
tag of the form <tag . . .> isencountered; end tag is called when a closing tag of the form <tag> is encountered. If an
opening tag requires a corresponding closing tag, like <H1> ... </H1>, the class should define the start tag method; if a
tag requires no closing tag, like <P >, the class should define the do_tag method.

The module defines asingle class:

HTMLParser (formatter)
Thisisthe basic HTML parser class. It supports all entity names required by the HTML 2.0 specification (RFC 1866). It also
defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

In addition to tag methods, the HTMLParser class provides some additional methods and instance variables for use within tag
methods.

formatter
Thisisthe formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be. In general, this
should only be true when character dataisto be treated as“ preformatted” text, aswithin a <PRE> element. The default value
isfase. This affects the operation of handle data () and save_end ().

anchor_bgn (href, name, type)
Thismethod iscalled at the start of an anchor region. The arguments correspond to the attributes of the <A > tag with the same
names. The default implementation maintains alist of hyperlinks (defined by the href argument) within the document. The
list of hyperlinksis available as the data attribute anchorlist.

anchor_end ()
This method is called at the end of an anchor region. The default implementation adds a textual footnote marker using an
index into the list of hyperlinks created by anchor_bgn ().

handle_image (source, alt [ ismap [ align [ width [ height] ] ] ] )
This method is called to handle images. The default implementation simply passes the alt value to the handle data ()
method.

save_bgn ()
Begins saving character datain abuffer instead of sending it to the formatter object. Retrievethe stored dataviasave end ()
Use of the save_bgn () / save_end () pair may not be nested.

162



save_end ()
Ends buffering character data and returns all data saved since the preceeding call to save bgn (). If nofill flagis
false, whitespace is collapsed to single spaces. A call to this method without a preceeding call to save bgn () will raisea
TypeError exception.

11.10 Standard Modulexmllib

This module defines a class XMLParser which serves as the basis for parsing text files formatted in XML (eXtended Markup
Language).

The XMLParser class must be instantiated without arguments. It has the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. Thisis called implicitly at the instantiation time.

setnomoretags ()
Stop processing tags. Treat al following input as literal input (CDATA).

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is buffered until
more dataisfed or close () iscalled.

close()
Force processing of al buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always call
XMLParser.close ().

handle_starttag (tag, method, attributes)

This method is called to handle start tags for which a start_tag () method has been defined. The tag argument is the
name of the tag, and the method argument is the bound method which should be used to support semantic interpreta-
tion of the start tag. The attributes argument is a dictionary of attributes, the key being the name and the value being
the value of the attribute found inside the tag's <> brackets. Lower case and double quotes and backslashes in the value
have been interpreted. For instance, for the tag <A HREF="http://www.cwi.nl/">, this method would be caled
ashandle_starttag('A’, self.start A, 'HREF’: 'http://www.cwi.nl/’). The baseimplementation
simply callsmethod with attributes asthe only argument.

handle_endtag (tag, method)
Thismethod is called to handle endtags for which an end_tag () method has been defined. The tag argument isthe name of
the tag, and the method argument is the bound method which should be used to support semantic interpretation of the end
tag. If no end-tag () method is defined for the closing element, this handler is not called. The base implementation simply
calsmethod.

handle_data (data)
Thismethod iscalled to process arbitrary data. Itisintended to be overridden by aderived class; the base classimplementation
does nothing.

handle_charref (ref)
This method is called to process a character reference of the form “s#ref ;. ref can either be a decima number, or a
hexadecimal number when preceded by x. In the base implementation, ref must be anumber in the range 0-255. It translates
the character to Ascii and calls the method handle data () with the character as argument. If ref isinvalid or out of
range, the method unknown_charref (ref) iscaled to handle the error. A subclass must override this method to provide
support for character references outside of the AscII range.

handle_entityref (ref)
This method is called to process a general entity reference of the form “&ref ;" where ref is an general entity reference. It
looksfor ref intheinstance (or class) variable ent i tyde £ s which should be amapping from entity namesto corresponding
trandations. |If a trandation is found, it calls the method handle_data () with the trandation; otherwise, it cals the
method unknown_entityref (ref). The default entitydefs defines trandations for &amp;, &apos, &gt ;, &1t ;,
and squot ;.

163



handle_comment (comment)
This method is called when a comment is encountered. The comment argument is a string containing the text between the
“<1--"and"“-->" delimiters, but not the delimiters themselves. For example, the comment “<! - -text - ->" will cause
this method to be called with the argument ’ text ‘. The default method does nothing.

handle_cdata (data)
Thismethod is called when a CDATA element is encountered. The data argument isastring containing the text between the
“<1 [CDATA[” and “]1>" delimiters, but not the delimiters themselves. For example, the entity “<! [CDATA [text]]>"
will cause this method to be called with the argument ' text ’. The default method does nothing.

handle_proc (name, data)
This method is called when a processing instruction (Pl) is encountered. The name isthe Pl target, and the data argument
is a string containing the text between the Pl target and the closing delimiter, but not the delimiter itself. For example, the
instruction “<?XML text?>" will cause this method to be called with the arguments ' XML’ and ’ text’. The default
method does nothing.

handle_special (data)
This method is called when a declaration is encountered. The data argument is a string containing the text between the

“<1” and “>" delimiters, but not the delimiters themselves. For example, the entity “ < ! DOCTYPE text>" will cause this
method to be called with the argument ' DOCTYPE text’. The default method does nothing.

syntax_error (lineno, message)
This method is called when a syntax error is encountered. The 1ineno argument is the line number of the error, and the
message is a description of what was wrong. The default method raises a Runt imeError exception. If this method is
overridden, it is permissable for it to return. This method is only called when the error can be recovered from.

unknown_starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_charref (ref)
Thismethod is called to process unresolvable numeric character references. It isintended to be overridden by aderived class;
the base class implementation does nothing.

unknown_entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class; the base
class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may aso define methods of the following form to
define processing of specific tags. Tag names in the input stream are case dependent; the tag occurring in method names must bein
the correct case:

start_tag (attributes)
This method is called to process an opening tag tag. The attributes argument has the same meaning as described for
handle_starttag () above.

end-tag ()
Thismethod is called to process a closing tag tag.

11.11 Standard Module formatter

This module supports two interface definitions, each with mulitple implementations. The formatter interface is used by the
HTMLParser class of thehtml1ib module, and the writer interfaceisrequired by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects. Formatters manage
several stack structuresto allow various properties of awriter object to be changed and restored; writers need not be able to handle
relative changes nor any sort of “change back” operation. Specific writer properties which may be controlled via formatter objects
are horizontal alignment, font, and left margin indentations. A mechanism is provided which supports providing arbitrary, non-

164



exclusive style settings to a writer as well. Additional interfaces facilitate formatting events which are not reversible, such as
paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as physical devices.
The provided implementations all work with abstract devices. The interface makes available mechanisms for setting the properties
which formatter objects manage and inserting data into the output.

11.11.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces described below are
the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS_IS
Value which can be used in the font specification passed to the push font () method described below, or as the new value
to any other push_property () method. Pushing the AS_IS value alows the corresponding pop. property () method to be
called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end_paragraph (blanklines)
Close any open paragraphs and insert at least blank1 ines before the next paragraph.

add_line_break ()
Add ahard line break if one does not already exist. This does not break the logical paragraph.

add_-hor_rule (*args, **kw)
Insert ahorizontal rulein the output. A hard break isinserted if thereisdatain the current paragraph, but thelogical paragraph
is not broken. The arguments and keywords are passed on to the writer's send. 1ine break () method.

add_-flowing-data (data)
Provide data which should be formatted with collapsed whitespaces. Whitespace from preceeding and successive calls to
add-flowing.-data () isconsidered as well when the whitespace collapse is performed. The data which is passed to this
method is expected to be word-wrapped by the output device. Note that any word-wrapping still must be performed by the
writer object due to the need to rely on device and font information.

add-literal_data (data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab characters, are consid-
ered legal in the value of data.

add_label_data (format, counter)
Insert alabel which should be placed to the left of the current left margin. This should be used for constructing bulleted or
numbered lists. If the format valueisastring, it isinterpreted as aformat specification for counter, which should be an
integer. The result of this formatting becomes the value of the label; if format isnot astring it is used as the label value
directly. The label value is passed as the only argument to the writer's send 1abel data () method. Interpretation of

non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with acounter value, are used to compute label values. Each character
inthe format string is copied to the label value, with some characters recognized to indicate a transform on the counter value.
Specifically, thecharacter “ 1" representsthe counter value formatter as an arabic number, the characters“A” and “a” represent
alphabetic representations of the counter value in upper and lower case, respectively, and “I” and “1” represent the counter
value in Roman numerals, in upper and lower case. Note that the alphabetic and roman transforms require that the counter

value be greater than zero.

flush_softspace ()
Send any pending whitespace buffered from aprevious call to add f1lowing data () to the associated writer object. This
should be called before any direct manipulation of the writer object.

push_alignment (align)
Push anew alignment setting onto the alignment stack. Thismay be 251 if no change isdesired. If the alignment valueis

165



changed from the previous setting, the writer'snew.alignment () method is called with the align value.

pop-alignment ()
Restore the previous alignment.

push_font ((Size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set to AS IS are set to the values passed in
while others are maintained at their current settings. The writer'snew. font () method is called with the fully resolved font
specification.

pop-font ()
Restore the previous font.

push.margin (margin)
Increase the number of left margin indentations by one, associating the logical tag margin with the new indentation. The
initial margin level is 0. Changed values of the logical tag must be true values; false values other than AS 1S are not sufficient
to change the margin.

pop-margin ()
Restore the previous margin.

push_style (*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A tuple representing
the entire stack, including AS_IS values, is passed to the writer’'snew_styles () method.

pop_style ( [n = l] )
Pop thelast n style specifications passed topush_style (). A tuple representing the revised stack, including AS IS values,
is passed to the writer’'snew_styles () method.

set_spacing (spacing)
Set the spacing style for the writer.

assert_line_data ( [flag = 1] )
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used when the writer has
been manipulated directly. The optional £1ag argument can be set to false if the writer manipulations produced a hard line
bresak at the end of the output.

11.11.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these classes without
modification or subclassing.

NullFormatter ( [Writer = None] )
A formatter which does nothing. If writer isomitted, aNullWriter instanceis created. No methods of the writer are
called by Nullwriter instances. Implementations should inherit from this class if implementing a writer interface but
don’t need to inherit any implementation.

AbstractFormatter (writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may be used directly
in most circumstances. It has been used to implement a full-featured world-wide web browser.

11.11.3 TheWriter Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described below
are the required interfaces which all writers must support once initiadlized. Note that while most applications can use the
AbstractFormatter class asaformatter, the writer must typically be provided by the application.

flush ()
Flush any buffered output or device control events.

new_alignment (align)
Set the alignment style. The align value can be any object, but by convention is a string or None, where None indicates

166



that the writer’s “preferred” alignment should be used. Conventional align valuesare * left’, ' center’, 'right’,
and ' justify’.

new_font (font)
Set the font style. The value of font will be None, indicating that the device's default font should be used, or atuple of
the form (size, italic, bold, teletype). Size will be a string indicating the size of font that should be used; specific strings and
their interpretation must be defined by the application. Theitalic, bold, and teletype values are boolean indicators specifying
which of those font attributes should be used.

new_margin (margin, level)
Set the margin level to the integer 1evel and the logical tag to margin. Interpretation of the logical tag is at the writer's
discretion; the only restriction on the value of the logical tag isthat it not be afalse value for non-zero values of 1evel.

new_spacing (spacing)
Set the spacing styleto spacing.

new_styles (styles)
Set additional styles. The styles valueisatuple of arbitrary values; thevalue AS_ IS should beignored. Thestyles tuple
may be interpreted either as a set or as a stack depending on the requirements of the application and writer implementation.

send_line_break ()
Break the current line.

send_paragraph (blankline)
Produce a paragraph separation of at least blankline blank lines, or the equivelent. The blankline value will be an
integer.

send-hor_rule (*args, **kw)
Display a horizonta rule on the output device. The arguments to this method are entirely application- and writer-specific,
and should be interpreted with care. The method implementation may assume that a line break has already been issued via
send-line break ().

send_flowing_data (data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls to this method,
the writer may assume that spans of multiple whitespace characters have been collapsed to single space characters.

send-literal_data (data)
Output character data which has already been formatted for display. Generaly, this should be interpreted to mean that line
breaks indicated by newline characters should be preserved and no new line breaks should be introduced. The data may
contain embedded newline and tab characters, unlike data provided to the send formatted data () interface.

send_label_data (data)
Set data to theleft of the current left margin, if possible. The value of data isnot restricted; treatment of non-string values
isentirely application- and writer-dependent. This method will only be called at the beginning of aline.

11.11.4 Writer Implementations

Threeimplementations of the writer object interface are provided as examples by thismodule. Most applications will need to derive
new writer classes fromtheNullWriter class.

NullWriter ()
A writer which only provides the interface definition; no actions are taken on any methods. This should be the base class for
all writerswhich do not need to inherit any implementation methods.

AbstractWriter ()
A writer which can be used in debugging formatters, but not much else. Each method simply accounces itself by printing its
name and arguments on standard output.

DumbWriter ( [file = None [, maxcol = 72] ] )
Simple writer class which writes output on the file object passed in as £ile or, if £ile is omitted, on standard output.
The output is simply word-wrapped to the number of columns specified by maxcol. This class is suitable for reflowing a
sequence of paragraphs.

167



11.12 Standard Module rfcsg22

This module defines a class, Message, which represents a collection of “email headers’ as defined by the Internet standard RFC
822. Itisused in various contexts, usually to read such headers from afile.

Note that there's a separate module to read UNIX, MH, and MMDF style mailbox files: mailbox.

A Message instance is instantiated with an open file object as parameter. The optional seekable parameter indicates if the file
object is seekable; the default value is 1 for true. Instantiation reads headers from the file up to a blank line and stores them in the
instance; after instantiation, the file is positioned directly after the blank line that terminates the headers.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; aterminating CR-LF isreplaced by a
single linefeed before the line is stored.

All header matching is done independent of upper or lower case; eg. m [’ From’ ], m[’ from’] andm [’ FROM’ ] al yield the
same result.

parsedate (date)
Attempts to parse a date according to the rules in RFC822. however, some mailers don't follow that format as spec-
ified, so parsedate () tries to guess correctly in such cases. date is a string containing an RFC822 date, such as
"Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing the date, parsedate () returns a 9-tuple that
can be passed directly to t ime . mkt ime () ; otherwise None will be returned.

parsedate_tz (date)
Performs the same function as parsedate, but returns either None or a 10-tuple; the first 9 elements make up a tuple
that can be passed directly to time . mktime (), and the tenth is the offset of the date’s time zone from UTC (which is the
official term for Greenwich Mean Time).

11.12.1 Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

getallmatchingheaders (name)
Return alist of lines consisting of all headers matching name, if any. Each physical line, whether it is a continuation line or
not, is a separate list item. Return the empty list if no header matches name.

getfirstmatchingheader (name)
Return alist of lines comprising the first header matching name, and its continuation line(s), if any. Return None if thereis
no header matching name.

getrawheader (name)
Return asingle string consisting of the text after the colon in the first header matching name. Thisincludes|eading whitespace,
thetrailing linefeed, and internal linefeeds and whitespace if there any continuation line(s) were present. Return None if there
is no header matching name.

getheader (name)
Like getrawheader (name), but strip leading and trailing whitespace (but not internal whitespace).

getaddr (name)
Return a pair (full name, email address) parsed from the string returned by getheader (name) . If no header matching
name exists, return None, None; otherwise both the full name and the address are (possibly empty )strings.
Example: If m’sfirst From header contains the string
'jackecwi.nl (Jack Jansen)’, then m.getaddr (' From’) will yield
the pair (' Jack Jansen’, ’'jackecwi.nl’). If the header contained ' Jack Jansen <jack@cwi.nls’ in-
stead, it would yield the exact same resullt.

getaddrlist (name)
Thisis similar to getaddr (list), but parses a header containing a list of email addresses (e.g. a To header) and returns
alist of (full name, email address) pairs (even if there was only one address in the header). If there is no header matching
name, return an empty list.

168



XXX The current version of thisfunction is not really correct. It yields bogus resultsif afull name contains a comma.

getdate (name)
Retrieve a header using getheader and parse it into a 9-tuple compatible with t ime . mktime (). If there is no header
matching name, or it isunparsable, return None.
Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested and found correct
on alarge collection of email from many sources, it is still possible that this function may occasionally yield an incorrect
result.

getdate_tz (name)
Retrieve a header using getheader and parse it into a 10-tuple; the first 9 elements will make a tuple compatible with
time.mktime (), and the 10th isanumber giving the offset of the date’s time zone from UTC. Similarly to getdate (),
if thereis no header matching name, or it is unparsable, return None.

Message instances aso support aread-only mapping interface. In particular: m [name] isthesameasm.getheader (name);
and len (m),m.has_key (name), m.keys (), m.values () andm.items () actasexpected (and consistently).

Finaly, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read. Each line contains a trailing newline.
The blank line terminating the headers is not contained in the list.

fp
Thefile object passed at instantiation time.

11.13 Standard Modulemimetools

This module defines a subclass of the class r£c822 . Message and anumber of utility functions that are useful for the manipula-
tion for MIME style multipart or encoded message.

It defines the following items:

Message (fp)
Return a new instance of themimetools .Message class. Thisisasubclass of the rfc822 . Message class, with some
additional methods (see below).

choose_boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
"hostipaddr . uid. pid . timestamp . random".

decode (input, output, encoding)
Read data encoded using the allowed MIME encoding from open file object input and write the decoded data to open file
object output. Valid values for encoding include "baseé4", "quoted-printable" and "uuencode".

encode (input, output, encoding)
Read data from open file object input and writeit encoded using the allowed MIME encoding to open file object output. Valid
values for encoding are the same asfor decode () .

copyliteral (input, output)
Read lines until EOF from open file input and write them to open file output.

copybinary (input, output)
Read blocks until EOF from open file input and write them to open file output. The block sizeis currently fixed at 8192.

11.13.1 Additional Methods of M essage obj ects

Themimetools.Message class defines the following methods in addition to the r£c822 . Message class:

getplist ()
Return the parameter list of the Content-type header. This is a list if strings. For parameters of the form
‘key=value', key is converted to lower case but value is not. For example, if the message contains the header

169



‘Content-type: text/html; spam=1; Spam=2; Spam’ then getplist () will return the Python list
["spam=1', ’'spam=2’, ’'Spam’].

getparam (name)
Return the value of thefirst parameter (asreturned by getplist () of theform ‘name=value' for the given name. If value
issurrounded by quotes of theform j...¢ or ” .., these are removed.

getencoding ()
Return the encoding specified inthe ‘Content -transfer-encoding message header. If no such header exists, return
"7bit". The encoding is converted to lower case.

gettype ()
Return the message type (of the form *type/ subtype’) as specified inthe‘ Content - type’ header. If no such header exists,
return "text /plain". Thetypeisconverted to lower case.

getmaintype ()
Return the main type as specified inthe ‘ Content - type’ header. If no such header exists, return "text". The main type
is converted to lower case.

getsubtype ()
Return the subtype as specified in the * Content - type’ header. If no such header exists, return "plain". The subtypeis
converted to lower case.

11.14 Standard modulebinhex

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh filesin ASCII. On the
macintosh, both forks of afile and the finder information are encoded (or decoded), on other platforms only the datafork ishandled.

The binhex module defines the following functions:

binhex (input, output)
Convert a binary file with filename input to binhex file output. The output parameter can either be a filename or afile-like
object (any object supporting awrite and close method).

hexbin (input [ output] )
Decode a binhex fileinput. input may be afilename or afile-like object supporting read and close methods. The resulting file
iswritten to a file named output, unless the argument is empty in which case the output filename is read from the binhex file.

11.14.1 notes

Thereis an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the macintosh newline convention (carriage-return as
end of line).

As of thiswriting, hexbin appears to not work in all cases.

11.15 Standard module uu

This module encodes and decodes files in uuencode format, allowing arbitrary binary datato be transferred over ascii-only connec-
tions. Wherever afile argument is expected, the methods accept afile-like object. For backwards compatibility, a string containing
apathname is also accepted, and the corresponding file will be opened for reading and writing; the pathname * -’ is understood to
mean the standard input or output. However, thisinterface is deprecated; it's better for the caller to open the file itself, and be sure
that, when required, the modeis ' rb’ or ' wb’ on Windows or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

170



encode (in_file, out_file [ name, mode] )
Uuencode file in_file into file out_file. The uuencoded file will have the header specifying name and mode as the defaults for
the results of decoding the file. The default defaults are taken fromin file, or * -’ and 0666 respectively.

decode (infile [, out file, mode] )
This call decodes uuencoded file in_file placing the result on file out file. If out file is a pathname the mode is also set.
Defaults for out_file and mode are taken from the uuencode header.

11.16 Built-in Modulebinascii

The binascii module contains a number of methods to convert between binary and various ascii-encoded binary representations.
Normally, you will not use these modules directly but use wrapper modules like uu or hexbin in stead, this module solely exists
because bit-manipuation of large amounts of datais slow in python.

Thebinascii module defines the following functions:

a2b_uu (string)
Convert asingle line of uuencoded data back to binary and return the binary data. Lines normally contain 45 (binary) bytes,
except for the last line. Line data may be followed by whitespace.

b2a_uu (data)
Convert binary datato aline of ascii characters, the return value is the converted line, including a newline char. The length
of data should be at most 45.

a2b base64 (string)
Convert ablock of base64 data back to binary and return the binary data. More than one line may be passed at atime.

b2a base64 (data)
Convert binary datato aline of ascii charactersin base64 coding. The return value is the converted line, including a newline
char. The length of data should be at most 57 to adhere to the base64 standard.

a2b_hgx (string)
Convert binhex4 formatted ascii data to binary, without doing rle-decompression. The string should contain a complete
number of binary bytes, or (in case of the last portion of the binhex4 data) have the remaining bits zero.

rledecode_hgx (data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90 after a byte as a repeat
indicator, followed by a count. A count of 0 specifies a byte value of 0x90. The routine returns the decompressed data,
unless data input data ends in an orphaned repesat indicator, in which case the Incomplete exception is raised.

rlecode_hgx (data)
Perform binhex4 style RLE-compression on data and return the result.

b2a_hgx (data)
Perform hexbin4 binary-to-ascii trandation and return the resulting string. The argument should already be rle-coded, and
have alength divisible by 3 (except possibly the last fragment).

crc_hgx (data, crc)
Compute the binhex4 crc value of data, starting with an initial crc and returning the result.

Error
Exception raised on errors. These are usually programming errors.

Incomplete
Exception raised on incomplete data. These are usually not programming errors, but handled by reading a little more data
and trying again.

11.17 Standard modulexdrlib

The xdr1ib module supports the External Data Representation Standard as described in RFC 1014, written by Sun Microsystems,
Inc. June 1987. It supports most of the data types described in the RFC.

171



Thexdr1ib module definestwo classes, one for packing variables into X DR representation, and another for unpacking from XDR
representation. There are also two exception classes.

11.17.1 Packer Objects

Packer isthe class for packing datainto XDR representation. The Packer classis instantiated with no arguments.

get_buffer()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

Ingeneral, you can pack any of the most common XDR datatypes by calling the appropriate pack type method. Each method takes
a single argument, the value to pack. The following simple data type packing methods are supported: pack uint, pack int,
pack_enum, pack_bool, pack_uhyper, and pack_hyper.

pack_float (value)
Packs the single-precision floating point number value.

pack_double (value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opague data:

pack_fstring(n,s)
Packs afixed length string, s. n isthe length of the string but it is not packed into the data buffer. The string is padded with
null bytesif necessary to guaranteed 4 byte alignment.

pack_fopagque (n, data)
Packs a fixed length opague data stream, similarly to pack fstring.

pack_string(s)
Packs a variable length string, s. The length of the string isfirst packed as an unsigned integer, then the string data is packed
withpack_fstring.

pack_opaque (data)
Packs a variable length opague data string, similarly to pack string.

pack_bytes (bytes)
Packs a variable length byte stream, similarly to pack string.

The following methods support packing arrays and lists:

pack_list (list, pack.item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not available
until the entirelist has been walked. For each itemin the list, an unsigned integer 1 is packed first, followed by the data value
from the list. pack_itemisthe function that is called to pack the individual item. At the end of the list, an unsigned integer 0
is packed.

pack_farray (n, array, pack item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed into the buffer, but a
ValueError exception israised if 1en (array) isnot equal to n. As above, pack itemis the function used to pack each
element.

pack_array (list, pack_item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an unsigned integer, then each
element ispacked asin pack_farray above.

11.17.2 Unpacker Objects

Unpacker isthe complementary class which unpacks XDR data values from a string buffer, and has the following methods:

_init__(data)

172



Instantiates an Unpacker object with the string buffer data.

reset (data)
Resets the string buffer with the given data.

get_position ()
Returns the current unpack position in the data buffer.

set_position (position)
Sets the data buffer unpack position to position. You should be careful about using get position() and
set_position/().

get_buffer()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raisesan xdrlib.Error exception if al of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking methods are of
the form unpack_type, and take no arguments. They return the unpacked object.

unpack_float ()
Unpacks a single-precision floating point number.

unpack_double ()
Unpacks a double-precision floating point number, similarly to unpack float.

In addition, the following methods unpack strings, bytes, and opaque data:

unpack_fstring(n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with null bytes to guaranteed 4
byte alignment is assumed.

unpack_fopaque (n)
Unpacks and returns afixed length opaque data stream, similarly to unpack fstring.

unpack_string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer, then the string
datais unpacked with unpack-fstring.

unpack_opaque ()
Unpacks and returns a variable length opague data string, similarly to unpack string.

unpack bytes ()
Unpacks and returns a variable length byte stream, similarly to unpack string.

The following methods support unpacking arrays and lists:

unpack_list (unpack.item)
Unpacks and returns alist of homogeneous items. The list is unpacked one element at a time by first unpacking an unsigned
integer flag. If the flag is 1, then the item is unpacked and appended to the list. A flag of 0 indicates the end of the list.
unpack_itemis the function that is called to unpack the items.

unpack_farray (n, unpack_item)
Unpacks and returns (as alist) afixed length array of homogeneous items. nisnumber of list elementsto expect in the buffer.
As above, unpack_itemis the function used to unpack each element.

unpack_array (unpack item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is unpacked as an unsigned
integer, then each element is unpacked asin unpack farray above.

11.17.3 Exceptions

Exceptions in this module are coded as class instances:

Error

173



The base exception class. Error hasasingle public data member msg containing the description of the error.

ConversionError

Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib

p:
try:

xdrlib.Packer ()

p.pack double(8.01)

except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

11.18 Standard Modulemailcap

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react to files with
different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For example, a mailcap file might
contain alinelike video/mpeg; xmpeg %s. Then, if the user encounters an email message or Web document with the MIME
type video/mpeg, %s will be replaced by a filename (usually one belonging to a temporary file) and the xmpeg program can be
automatically started to view thefile.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail Format Informa-

tion”,

but is not an Internet standard. However, mailcap files are supported on most Unix systems.

findmatch (caps, MIMEtype, key, filename, plist)

Return a 2-tuple; the first element is a string containing the command line to be executed (which can be passed to
os.system()), and the second element is the mailcap entry for a given MIME type. If no matching MIME type can
befound, (None, None) isreturned.

key isthe name of the field desired, which represents the type of activity to be performed; the default value is'view’, sincein
the most common case you simply want to view the body of the MIME-typed data. Other possible values might be’ compose’
and ’edit’, if you wanted to create a new body of the given MIME type or alter the existing body data. See RFC1524 for a
complete list of these fields.

filename is the filename to be substituted for %s in the command line; the default value is ‘ /dev/null’ which is amost
certainly not what you want, so usually you'll override it by specifying afilename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the list must
be a string containing the parameter name, an equals sign (=), and the parameter’s value. Mailcap entries can con-
tain named parameters like ${foo}, which will be replaced by the value of the parameter named 'foo’. For exam-
ple, if the command line showpartial %${id} %{number} %{total} wasin a mailcap file, and plist was set to
["id=1’, ’'number=2’, ’total=3'],theresultingcommand linewould be "showpartial 1 2 3".
Inamailcap file, the "test” field can optionally be specified to test some external condition (e.g., the machine architecture, or
the window system in use) to determine whether or not the mailcap line applies. £indmatch () will automatically check
such conditions and skip the entry if the check fails.

getcaps ()

Returns adictionary mapping MIME typesto alist of mailcap file entries. Thisdictionary must be passed to the £ indmatch
function. An entry isstored asalist of dictionaries, but it shouldn’t be necessary to know the details of this representation.
The information is derived from al of the mailcap files found on the system. Settings in the user’'s mailcap file
‘$HOME/ .mailcap’ will override settingsin the system mailcap files‘ /etc/mailcap’, ' /usr/etc/mailcap’, and
‘/usr/local/etc/mailcap’.

An example usage:

174



>>> import mailcap

>>> d=mailcap.getcaps ()

>>> mailcap.findmatch(d, ’‘video/mpeg’, filename='/tmp/tmpl223’)
("xmpeg /tmp/tmpl223’, {’view’: 'xmpeg %s’})

11.19 Standard Modulebases4

This module perform base-64 encoding and decoding of arbitrary binary strings into text strings that can be safely emailed or
posted. The encoding scheme is defined in RFC 1421 and is used for MIME email and various other Internet-related applications;
it is not the same as the output produced by the ‘uuencode’ program. For example, the string * www . python.org’ isencoded
asthestring ' d3d3LnB5dGhvbi5veme=\n".

decode (input, output)
Decode the contents of the input file and write the resulting binary data to the output file. input and output must either be file
objects or objects that mimic the file object interface. input will be read until input . read () returns an empty string.

decodestring(s)
Decode the string s, which must contain one or more lines of base-64 encoded data, and return a string containing the resulting
binary data.

encode (input, output)
Encode the contents of the input file and write the resulting base-64 encoded data to the output file. input and output must
either be file objects or objects that mimic the file object interface. input will be read until input. read () returns an empty
string.

encodestring(s)
Encode the string s, which can contain arbitrary binary data, and return a string containing one or more lines of base-64
encoded data.

11.20 Standard Module quopri

This modul e performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Multipurpose Internet
Mail Extensions) Part One”. The quoted-printable encoding is designed for data where there are relatively few nonprintable char-
acters; the base-64 encoding scheme available viathe base64 module is more compact if there are many such characters, as when
sending agraphicsfile.

decode (input, output)
Decode the contents of the input file and write the resulting decoded binary data to the output file. input and output must
either be file objects or objects that mimic the file object interface. input will be read until input. read () returns an empty
string.

encode (input, output, quotetabs)
Encode the contents of the input file and write the resulting quoted-printable data to the output file. input and output must
either be file objects or objects that mimic the file object interface. input will be read until input. read () returns an empty
string.

11.21 Standard Module SocketServer

The SocketServer module simplifies the task of writing network servers.

There are four basic server classes: TCPServer uses the Internet TCP protocol, which provides for continuous streams of data
between the client and server. UDPServer uses datagrams, which are discrete packets of information that may arrive out of order
or be lost while in transit. The more infrequently used UnixStreamServer and UnixDatagramServer classes are similar,

175



but use Unix domain sockets; they’re not available on non-Unix platforms. For more details on network programming, consult a
book such as W. Richard Steven’s UNIX Network Programming or Ralph Davis's Win32 Network Programming.

These four classes process requests synchronously; each request must be completed before the next request can be started. This
isn't suitable if each request takes a long time to complete, because it requires a lot of computation, or because it returns a lot
of data which the client is slow to process. The solution is to create a separate process or thread to handle each request; the
ForkingMixIn and ThreadingMixIn mix-in classes can be used to support asynchronous behaviour.

Creating a server requires several steps. First, you must create arequest handler class by subclassing theBaseRequestHandler
class and overriding its handle () method; this method will process incoming requests. Second, you must instantiate one
of the server classes, passing it the server's address and the request handler class. Finaly, call the handle request () or
serve_forever () method of the server object to process one or many requests.

Server classes have the same external methods and attributes, no matter what network protocol they use:

fileno()
Return an integer file descriptor for the socket on which the server is listening. This function is most commonly passed to
select.select (), toalow monitoring multiple servers in the same process.

handle_request ()
Process a single request. This function calls the following methods in order: get request (), verify request (),
and process_request (). If the user-provided handle () method of the handler class raises an exception, the server's
handle_error () method will be called.

serve_forever ()
Handle an infinite number of requests. Thissimply callshandle request () inside an infinite loop.

address_family
The family of protocols to which the server’s socket belongs. socket . AF. INET and socket . AF.UNIX aretwo possible
values.

RequestHandlerClass
The user-provided request handler class; an instance of this classis created for each request.

server_address
The address on which the server is listening. The format of addresses varies depending on the protocol family; see the
documentation for the socket module for details. For Internet protocols, thisis atuple containing a string giving the address,
and an integer port number: (*127.0.0.1’, 80),for example.

socket
The socket object on which the server will listen for incoming reguests.

The server classes support the following class variables:

request_queue_size
The size of the request queue. If it takes along time to process a single request, any requests that arrive while the server is
busy are placed into a queue, up to request_queue_size requests. Once the queue is full, further requests from clients
will get a“Connection denied” error. The default value is usually 5, but this can be overridden by subclasses.

socket_type
The type of socket used by the server; socket . SOCK.STREAM and socket . SOCK.DGRAM are two possible values.

There are various server methods that can be overridden by subclasses of base server classes like TCPServer; these methods
aren't useful to external users of the server object.

finish request ()
Actually processes the request by instantiating RequestHandlerClass and callingitshandle () method.

get_request ()
Must accept arequest from the socket, and return a 2-tuple containing the new socket object to be used to communicate with
the client, and the client’s address.

handle_error (request, client_address)
This function is called if the RequestHandlerClass's handle method raises an exception. The default action is to
print the traceback to standard output and continue handling further requests.

process_request (request, client_address)

176



Calls finish request () to create an instance of the RequestHandlerClass. If desired, thisfunction can create a
new process or thread to handle the request; the ForkingMixIn and ThreadingMixIn classes do this.

server_activate ()
Called by the server's constructor to activate the server. May be overridden.

server_bind ()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify_request (request, client.address)
Must return a Boolean value; if the value is true, the request will be processed, and if it's false, the request will be denied.
This function can be overridden to implement access controls for a server. The default implementation aways return true.

The request handler class must define a new handle method, and can override any of the following methods. A new instance is
created for each request.

finish ()
Called after the handle method to perform any clean-up actions required. The default implementation does nothing. If
setup () or handle () raise an exception, this function will not be called.

handle ()

This function must do all the work required to service arequest. Several instance attributes are available to it; the request is
avalableasself.request;theclientaddressasself.client_request;andthe server instanceas self . server,
in case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services, self.request isa
socket object; for datagram services, self . request isastring. However, this can be hidden by using the mix-in request
handler classes St reamRequestHandler Or DatagramRequestHandler, which override the setup and £inish
methods, and provides self.rfile and self.wfile attributes. self.rfile and self.wfile can be read or
written, respectively, to get the request data or return data to the client.

setup ()
Called before the hand1e method to perform any initialization actions required. The default implementation does nothing.

11.22 Standard Modulemailbox

This modul e defines a number of classes that allow easy and uniform access to mail messagesin a (unix) mailbox.

UnixMailbox (fp)
Access a classic unix-style mailbox, where al messages are contained in a single file and separated by “From name time”
lines. Fpisthe file object pointing to the mailbox file.

MmdfMailbox (fp)
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines consisting of 4
control-A characters. Fp isthe file object pointing to the mailbox file.

MHMailbox (dirname)
Access an MH mailbox, a directory with each message in a separate file with a numeric name. Dirname is the name of the
mailbox directory.

11.22.1 Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next ()
Return the next message in the mailbox, asarfc822 . Message object. Depending on the mailbox implementation the fp
attribute of this object may be atruefile object or a class instance simulating afile object, taking care of things like message
boundaries if multiple mail messages are contained in asinglefile, etc.

177



11.23 Standard Modulemimify

The mimify module defines two functions to convert mail messages to and from MIME format. The mail message can be either a
simple message or a so-called multipart message. Each part istreated separately. Mimifying (a part of) a message entails encoding
the message as quoted-printable if it contains any characters that cannot be represented using 7-bit ASCII. Unmimifying (a part of)
a message entails undoing the quoted-printable encoding. Mimify and unmimify are especially useful when a message has to be
edited before being sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify (infile outfile)
Copy the message in infile to outfile, converting parts to quoted-printable and adding MIME mail headers when necessary.
infile and outfile can be file objects (actually, any object that has a readl ine method (for infile) or awrite method (for
outfile)) or strings naming thefiles. If infile and outfile are both strings, they may have the same value.

unmimify (infile outfile, decode base64 = 0)
Copy the message in infile to outfile, decoding all quoted-printable parts. infile and outfile can be file objects (actualy, any
object that has a readl ine method (for infile) or awrite method (for outfile)) or strings naming the files. If infile and
outfile are both strings, they may have the same value. If the decode base64 argument is provided and tests true, any parts
that are coded in the base64 encoding are decoded as well.

mime_decode_header (line)
Return a decoded version of the encoded header linein line.

mime_encode_header (line)
Return a MIME-encoded version of the header linein line.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCI| characters (i.e., characters with the
8th hit set), or if there are any lines longer than MAXL.EN characters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored in CHARSET, and the
default value is 1SO-8859-1 (also known as Latinl (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-1 length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively. infile defaults to standard input, outfile defaults to standard output. The
same file can be specified for input and output.
If the - 1 option is given when encoding, if there are any lines longer than the specified length, the containing part will be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

178



Chapter 12

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various functions and classes,
For example, a Python program can open any file for reading and writing by using the open () built-in function (provided the
underlying OS gives you permission!). Thisis exactly what you want for most applications.

There exists a class of applications for which this “openness’ is inappropriate. Take Grail: aweb browser that accepts “applets’,
snippets of Python code, from anywhere on the Internet for execution on the local system. This can be used to improve the user
interface of forms, for instance. Since the originator of the code is unknown, it is obvious that it cannot be trusted with the full
resources of the local machine.

Restricted execution is the basic framework in Python that allows for the segregation of trusted and untrusted code. It is based on
the notion that trusted Python code (a supervisor) can create a*“padded cell’ (or environment) with limited permissions, and run the
untrusted code within this cell. The untrusted code cannot break out of itscell, and can only interact with sensitive system resources
through interfaces defined and managed by the trusted code. The term “restricted execution” is favored over “safe-Python” since
true safety ishard to define, and isdetermined by the way the restricted environment is created. Note that the restricted environments
can be nested, with inner cells creating subcells of lesser, but never greater, privilege.

An interesting aspect of Python's restricted execution model is that the interfaces presented to untrusted code usually have the
same names as those presented to trusted code. Therefore no specia interfaces need to be learned to write code designed to run
in arestricted environment. And because the exact nature of the padded cell is determined by the supervisor, different restrictions
can be imposed, depending on the application. For example, it might be deemed “safe” for untrusted code to read any file within a
specified directory, but never to writeafile. In thiscase, the supervisor may redefine the built-in open () function sothat it raisesan
exception whenever the mode parameter is ’ w” . It might also perform achroot () -like operation on the filename parameter, such
that root is always relative to some safe “ sandbox” area of the filesystem. In this case, the untrusted code would still see an built-in
open () functionin itsenvironment, with the same calling interface. The semantics would be identical too, with IOErrorsbeing
raised when the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based on the identity
of the _builtins__ object in its global variables: if this is (the dictionary of) the standard __builtin_ module, the code is
deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escaping from the
padded cell. For instance, the function object attribute func_globals and the class and instance object attribute__dict_ are
unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec — Basic restricted execution framework.
Bastion — Providing restricted access to objects.

179



12.1 Standard Module rexec

This module contains the RExec class, which supports r_exec (), r_eval (), rrexecfile (), and r_import () methods,

which are restricted versions of the standard Python functions exec (), eval (), execfile (), and the import statement.

Code executed in this restricted environment will only have access to modules and functions that are deemed safe; you can subclass
RExec to add or remove capabilities as desired.

Note: The RExec class can prevent code from performing unsafe operations like reading or writing disk files, or using TCP/IP
sockets. However, it does not protect against code using extremely large amounts of memory or CPU time.

RExec ( [hooks [ verbose] ] )
Returns an instance of the RExec class.
hooks isan instance of the RHook s class or asubclass of it. If itisomitted or None, the default RHook s classisinstantiated.
Whenever the RExec module searches for amodule (even a built-in one) or reads a modul€e's code, it doesn’t actually go out
to the file system itself. Rather, it calls methods of an RHooks instance that was passed to or created by its constructor.
(Actualy, the RExec object doesn't make these calls—they are made by a module loader object that’s part of the RExec
object. This allows another level of flexibility, e.g. using packages.)
By providing an alternate RHooks object, we can control the file system accesses made to import a module, without changing
the actual algorithm that controls the order in which those accesses are made. For instance, we could substitute an RHooks
object that passes al filesystem requests to a file server elsewhere, via some RPC mechanism such as ILU. Grail’s applet
loader uses this to support importing applets from a URL for a directory.
If verbose is true, additional debugging output may be sent to standard output.

The RExec class has the following class attributes, which are used by the__ init__ method. Changing them on an existing instance
won't have any effect; instead, create a subclass of RExec and assign them new values in the class definition. Instances of the new
class will then use those new values. All these attributes are tuples of strings.

nok builtin-names
Contains the names of built-in functions which will not be available to programs running in the restricted environment. The
value for RExec is (‘open’, 'reload’, ’'__import__’). (This gives the exceptions, because by far the majority of
built-in functions are harmless. A subclass that wants to override this variable should probably start with the value from the
base class and concatenate additional forbidden functions — when new dangerous built-in functions are added to Python,
they will also be added to this module.)

ok_builtin.modules
Contains the names of built-in modules which can be safely imported. The value for RExec is (' audioop’, 'array’,
'binascii’, ‘cmath’, ‘errno’, 'imageop’, ‘'marshal’, 'math’, ‘'md5’, 'operator’, 'parser’,
'regex’, 'rotor’, 'select’, 'strop’, ‘struct’, ‘time’). A similar remark about overriding thisvariable
applies — use the value from the base class as a starting point.

ok_path
Contains the directories which will be searched when an import is performed in the restricted environment. The value for
RExec isthesame as sys . path (at the timethe module is loaded) for unrestricted code.

ok_posix names
Contains the names of the functions in the os module which will be available to programs running in the re-

stricted environment. The value for RExec is (’error’, 'fstat’, 'listdir’, ’lstat’, ’'readlink’,
‘stat’, 'times’, ‘uname’, '‘getpid’, '‘getppid’, ‘getcwd’, 'getuid’, 'getgid’, ‘geteuid’,
'getegid’).

ok_sys_names
Contains the names of the functions and variables in the sys module which will be available to programs running in the
restricted environment. The value for RExec is ('psl’, 'ps2’, 'copyright’, ’'version’, ’'platform’,
‘exit’, 'maxint’).

RExec instances support the following methods:

r_eval (code)
code must either be a string containing a Python expression, or a compiled code object, which will be evaluated in the
restricted environment’s__main__ module. The value of the expression or code object will be returned.

r_exec (code)
code must either be a string containing one or more lines of Python code, or a compiled code object, which will be executed

180



in the restricted environment’s __main__ module.

r_execfile (filename)
Execute the Python code contained in the file filename in the restricted environment’s__main_ module.

Methods whose names begin with s_ are similar to the functions beginning with =, but the code will be granted accessto restricted
versions of the standard I/O streans sys . stdin, sys.stderr, and sys. stdout.

s_eval (code)
code must be a string containing a Python expression, which will be evaluated in the restricted environment.

s_exec (code)
code must be a string containing one or more lines of Python code, which will be executed in the restricted environment.

s_execfile (code)
Execute the Python code contained in the file filename in the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the restricted environment.
Overriding these methods in a subclass is used to change the policies enforced by arestricted environment.

r_import (modulename [ globals, locals, fromlist] )
Import the module modulename, raising an ImportError exception if the module is considered unsafe.

r_open (filename [, mode [, bufsize] ] )
Method called when open () is caled in the restricted environment. The arguments are identical to those of open (),
and afile object (or a class instance compatible with file objects) should be returned. RExec’s default behaviour is alow
opening any file for reading, but forbidding any attempt to write afile. See the example below for an implementation of a
less restrictive r_open () .

r_reload (module)
Reload the module object module, re-parsing and re-initializing it.

r_unload (module)
Unload the module object module (i.e., remove it from the restricted environment’s sys . modules dictionary).

And their equivalents with access to restricted standard /O streams:

s_import (modulename [ globals, locals, fromlist] )
Import the module modulename, raising an ImportError exception if the module is considered unsafe.

s_reload (module)
Reload the module object module, re-parsing and re-initializing it.

s_unload (module)
Unload the module object module.

12.1.1 Anexample

Let us say that we want a slightly more relaxed policy than the standard RExec class. For example, if we're willing to allow filesin
‘/tmp’ to be written, we can subclass the RExec class:

181



class TmpWriterRExec (rexec.RExec) :
def r open(self, file, mode='r’, buf=-1):

if mode in (‘r’, ’‘rb’):
pass
elif mode in (‘w’, 'wb’, ’a’, ’'ab’):

# check filename : must begin with /tmp/
if file[:5]!="/tmp/’:
raise IOError, "can’'t write outside /tmp"
elif (string.find(file, '/../’) >= 0 or
file[:3] == '../’ or file[-3:] == "/.."):
raise IOError, "’'..’ in filename forbidden"
else: raise IOError, "Illegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted environment
won’'t be able to open afilecaled ' /tmp/foo/ . . /bar’. Tofix this, the r_open method would have to simplify the filename to
‘/tmp/bar’, which would require splitting apart the filename and performing various operations on it. In cases where security is
at stake, it may be preferable to write simple code which is sometimes overly restrictive, instead of more general code that is also
more complex and may harbor a subtle security hole.

12.2 Standard ModuleBastion

According to the dictionary, abastion is “afortified area or position”, or “something that is considered a stronghold.” It's a suitable
name for this module, which provides a way to forbid access to certain attributes of an object. It must always be used with the
rexec module, in order to alow restricted-mode programs access to certain safe attributes of an object, while denying access to
other, unsafe attributes.

Bastion (object [ filter, name, class] )
Protect the class instance object, returning a bastion for the object. Any attempt to access one of the object’s attributes will
have to be approved by thefilter function; if the access is denied an AttributeError exception will be raised.
If present, filter must be afunction that accepts a string containing an attribute name, and returnstrueif accessto that attribute
will be permitted; if filter returns false, the accessis denied. The default filter denies access to any function beginning with
an underscore (). The bastion’s string representation will be <Bastion for names if a vaue for name is provided;
otherwise, repr (object) will be used.
class, if present, would be a subclass of BastionClass; seethe codein ‘bastion.py’ for the details. Overriding the
default BastionClass will rarely be required.

182



Chapter 13

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multimediaapplications.
They are available at the discretion of the installation. Here's an overview:

audioop — Manipulate raw audio data.

imageop — Manipulate raw image data.

aifc — Read and write audio filesin AIFF or AIFC format.

jpeg — Read and write image filesin compressed JPEG format.

rgbimg — Read and write image filesin “SGI RGB” format (the module is not SGI specific though)!
imghdr — Determine the type of image contained in afile or byte stream.

13.1 Built-in Module audioop

The audioop module contains some useful operations on sound fragments. It operates on sound fragments consisting of signed
integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as used by the al and sunaudiodev
modules. All scalar items are integers, unless specified otherwise.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always a parameter of
the operation.

The module defines the following variables and functions:

error
This exception israised on al errors, such as unknown number of bytes per sample, etc.

add (fragmentl, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters. width is the sample width in bytes, either
1, 2 or 4. Both fragments should have the same length.

adpcm21in (adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of 1in2adpcm for details on
ADPCM coding. Return atuple (sample, newstate) where the sample has the width specified in width.

adpcm321in (adpcmfragment, width, state)
Decode an aternative 3-bit ADPCM code. See 1in2adpcm3 for details.

avg (fragment, width)
Return the average over all samplesin the fragment.

avgpp (fragment, width)
Return the average peak-peak value over all samplesin the fragment. No filtering is done, so the usefulness of this routineis
questionable.

183



bias (fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, reference)
Return a factor F such that rms (add (fragment, mul (reference, -F))) isminimal, i.e, return the factor with
which you should multiply reference to make it match as well as possible to fragment. The fragments should both contain
2-byte samples.
The time taken by thisroutine is proportional to 1en (fragment).

findfit (fragment, reference)
Thisroutine (which only accepts 2-byte sample fragments)
Try to match reference as well as possible to a portion of fragment (which should be the longer fragment). Thisis (concep-
tually) done by taking dlices out of fragment, using £ indfactor to compute the best match, and minimizing the result.
The fragments should both contain 2-byte samples. Return atuple (offset, factor) where offset isthe (integer) offset into
fragment where the optimal match started and factor is the (floating-point) factor asper £indfactor.

f indmax (fragment, length)
Search fragment for a dlice of length length samples (not bytes!) with maximum energy, i.e., return i for which
rms (fragment [1*2: (1+1length) *2]) ismaximal. The fragments should both contain 2-byte samples.

The routine takes time proportional to 1en (fragment).

getsample (fragment, width, index)
Return the value of sample index from the fragment.

1in21in (fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme, whereby each 4 bit
number isthe difference between one sample and the next, divided by a (varying) step. The Intel/DVI ADPCM algorithm has
been selected for use by the IMA, so it may well become a standard.
State is atuple containing the state of the coder. The coder returns a tuple (adpcmfrag, newstate), and the newstate
should be passed to the next call of lin2adpcm. In theinitial call None can be passed as the state. adpcmfrag isthe ADPCM
coded fragment packed 2 4-bit values per byte.

lin2adpcm3 (fragment, width, state)
Thisis an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the Intel/DVI ADPCM coder
and its output is not packed (due to laziness on the side of the author). Its use is discouraged.

lin2ulaw (fragment, width)
Convert samplesin the audio fragment to U-LAW encoding and return this as a Python string. U-LAW is an audio encoding
format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is used by the Sun audio hardware,
among others.

minmax (fragment, width)
Return a tuple consisting of the minimum and maximum values of all samplesin the sound fragment.

max (fragment, width)
Return the maximum of the absolute value of all samplesin afragment.

maxpp (fragment, width)
Return the maximum peak-peak value in the sound fragment.

mul (fragment, width, factor )
Return a fragment that has all samples in the origina framgent multiplied by the floating-point value factor. Overflow is
silently ignored.

ratecv (fragment, width, nchannels, inrate, outrate, state [ weightA, weightB] )
Convert the frame rate of the input fragment.

State isatuple containing the state of the converter. The converter returnsatupl (newfragment, newstate) , and newstate
should be passed to the next call of ratecv.

184



Theweighta and weightB arguments are parameters for asimple digital filter and default to 1 and O respectively.

reverse (fragment, width)
Reverse the samplesin afragment and returns the modified fragment.

/x5
n
tomono (fragment, width, Ifactor, rfactor)

Convert a stereo fragment to a mono fragment. The left channel is multiplied by Ifactor and the right channel by rfactor
before adding the two channels to give amono signal.

rms (fragment, width)
Return the root-mean-square of the fragment, i.e.

Thisis ameasure of the power in an audio signal.

tostereo (fragment, width, Ifactor, rfactor)
Generate a stereo fragment from amono fragment. Each pair of samples in the stereo fragment are computed from the mono
sample, whereby |eft channel samples are multiplied by Ifactor and right channel samples by rfactor.

ulaw2lin (fragment, width)
Convert sound fragments in ULAW encoding to linearly encoded sound fragments. ULAW encoding always uses 8 bits
samples, so width refers only to the sample width of the output fragment here.

Note that operations such asmul or max make no distinction between mono and stereo fragments, i.e. all samples are treated equal.
If thisis a problem the stereo fragment should be split into two mono fragments first and recombined later. Here is an example of
how to do that:

def mul stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono (sample, width, 1, 0)
rsample = audioop.tomono (sample, width, 0, 1)
lsample = audioop.mul (sample, width, lfactor)
rsample = audioop.mul (sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to tolerate packet
loss) you should not only transmit the data but also the state. Note that you should send the initial state (the one you passed to
lin2adpcm) aong to the decoder, not the final state (as returned by the coder). If you want to use st ruct to store the state in
binary you can code the first element (the predicted value) in 16 bits and the second (the deltaindex) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well be that | misinter-
preted the standards in which case they will not be interoperable with the respective standards.

The £ind. . . routines might look a bit funny at first sight. They are primarily meant to do echo cancellation. A reasonably fast
way to do thisisto pick the most energetic piece of the output sample, locate that in the input sample and subtract the whole output
sample from the input sample:

def echocancel (outputdata, inputdata) :
pos = audioop.findmax (outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in _test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in test, out test)
# Optional (for better cancellation) :
# factor = audioop.findfactor(in_test [ipos*2:ipos*2+len(out_test)],

# out test)
prefill = "\0’* (pos+ipos) *2
postfill = ’\0’*(len(inputdata)-len(prefill) -len (outputdata))

outputdata = prefill + audioop.mul (outputdata,2,-factor) + postfill
return audioop.add (inputdata, outputdata, 2)

185



13.2 Built-in Module imageop

The imageop module contains some useful operations on images. It operates on images consisting of 8 or 32 bit pixels stored in
Python strings. Thisisthe sameformat asused by gl .1lrectwrite and the imgfile module.

The module defines the following variables and functions:

error
This exception israised on al errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1, y1)
Return the selected part of image, which should by width by height in size and consist of pixels of psize bytes. x0, yO, x1
andyl arelikethe 1rectread parameters, i.e. the boundary isincluded in the new image. The new boundaries need not be
inside the picture. Pixelsthat fall outside the old image will have their value set to zero. If X0 isbigger than x1 the new image
ismirrored. The same holds for the y coordinates.

scale (image, psize, width, height, neamwidth, newheight)
Return image scaled to size newwidth by newheight. No interpolation is done, scaling is done by simple-minded pixel
duplication or removal. Therefore, computer-generated images or dithered images will not look nice after scaling.

tovideo (image, psize, width, height)
Run avertical low-pass filter over an image. It does so by computing each destination pixel as the average of two vertically-
aligned source pixels. The main use of thisroutine isto forestall excessive flicker if the image is displayed on avideo device
that uses interlacing, hence the name.

grey2mono (image, width, height, threshold)
Convert a8-bit deep greyscale image to a 1-bit deep image by tresholding all the pixels. Theresulting image istightly packed
and is probably only useful as an argument to mono2grey.

dither2mono (image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey (image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on input get value
pO0 on output and all one-value input pixels get value pl on output. To convert a monochrome black-and-white image to
greyscale pass the values 0 and 255 respectively.

grey2grey4 (image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey?2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. Asfor dither2mono, the dithering algorithm
iscurrently very simple.

grey42grey (image, width, height)
Convert a4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

13.3 Standard Moduleaifc

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File Format, aformat for
storing digital audio samplesin afile. AIFF-C isanewer version of the format that includes the ability to compress the audio data.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the number of times per

186



second the sound is sampled. The number of channels indicate if the audio is mono, stereo, or quadro. Each frame consists of one
sample per channel. The sample sizeisthe sizein bytes of each sample. Thus aframe consists of hchannel s* samplesize bytes, and
a second’s worth of audio consists of nchannels* sampl esize* framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame rate of 44,100
frames/second. This gives aframe size of 4 bytes (2*2), and a second’s worth occupies 2* 2* 44100 bytes, i.e. 176,400 bytes.

Module aifc defines the following function:

open (file, mode)
Open an AlFF or AIFF-C file and return an object instance with methods that are described below. The argument fileis either
a string naming afile or afile object. The mode is either the string ’ r* when the file must be opened for reading, or * w’
when the file must be opened for writing. When used for writing, the file object should be seekable, unless you know ahead
of time how many samples you are going to writein total and use writeframesraw () and setnframes ().

Objectsreturned by aifc.open () when afileis opened for reading have the following methods:

getnchannels ()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth ()
Return the size in bytes of individual samples.

getframerate ()
Return the sampling rate (number of audio frames per second).

getnframes ()
Return the number of audio framesin thefile.

getcomptype ()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the returned valueis
'NONE’ .

getcompname ()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the returned valueis
'not compressed’.

getparams ()
Return atuple consisting of al of the above values in the above order.

getmarkers ()
Return alist of markersin the audio file. A marker consists of atuple of three elements. Thefirst isthe mark ID (an integer),
the second is the mark position in frames from the beginning of the data (an integer), the third is the name of the mark (a
string).

getmark (id)
Return the tuple as described in getmarkers for the mark with the given id.

readframes (nframes)
Read and return the next nframes frames from the audio file. The returned data is a string containing for each frame the
uncompressed samples of al channels.

rewind ()
Rewind the read pointer. The next readframes will start from the beginning.

setpos (pos)
Seek to the specified frame number.

tell ()
Return the current frame number.

close ()
Close the AIFFfile. After calling this method, the object can no longer be used.

Objects returned by aifc.open () when afileis opened for writing have al the above methods, except for readframes and
setpos. In addition the following methods exist. The get methods can only be called after the corresponding set methods have
been called. Beforethefirst writeframes or writeframesraw, al parameters except for the number of frames must be filled

187



in.
aiff ()

Create an AIFF file. The default isthat an AIFF-Cfileis created, unless the name of thefile endsin’.aiff’ in which case the
defaultisan AlFFfile.

aifc ()
Create an AIFF-C file. The default is that an AIFF-C fileis created, unless the name of thefile endsin ’.aiff’ in which case
the default isan AlFFfile.

setnchannels (nchannels)
Specify the number of channelsin the audio file.

setsampwidth (width)
Specify the size in bytes of audio samples.

setframerate (rate)
Specify the sampling frequency in frames per second.

setnframes (nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set correctly, the file
needs to support seeking.

setcomptype (type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, compression is not
possible. The name parameter should be a human-readable description of the compression type, the type parameter should
be a four-character string. Currently the following compression types are supported: NONE, ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, compname)
Set al the above parameters at once. The argument is a tuple consisting of the various parameters. This means that it is
possible to use theresult of agetparams call asargument to setparams.

setmark (id, pos, name)
Add amark with the given id (larger than 0), and the given name at the given position. This method can be called at any time
before close.

tell ()
Return the current write position in the output file. Useful in combination with setmark.

writeframes (data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

writeframesraw (data)
Likewriteframes, except that the header of the audio fileis not updated.

close ()
Close the AlFFfile. The header of the file is updated to reflect the actual size of the audio data. After calling this method, the
object can no longer be used.

13.4 Built-in Module jpeg

The module jpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG Group. JPEG isa
(draft?) standard for compressing pictures. For details on jpeg or the Independent JPEG Group software refer to the JPEG standard
or the documentation provided with the software.

The jpeg module defines these functions:

compress (data, w, h, b)
Treat data as a pixmap of width w and height h, with b bytes per pixel. The dataisin SGI GL order, so thefirst pixel isin the
lower-left corner. This means that 1rectread return data can immediately be passed to compress. Currently only 1 byte
and 4 byte pixels are alowed, the former being treated as greyscale and the latter as RGB color. Compress returns a string
that contains the compressed picture, in JFIF format.

decompress (data)

188



Datais a string containing a picture in JFIF format. It returns atuple (data, width, height, bytesperpixel). Again, the
dataissuitableto passto lrectwrite.

setoption (name, value)
Set various options. Subsequent compress and decompress callswill use these options. The following options are available:

' forcegray’ Forceoutput to be grayscale, even if input is RGB.

'quality’ Setthequality of the compressed imageto avalue between 0 and 100 (default is 75). Compress only.
'optimize’ Perform Huffman table optimization. Takeslonger, but resultsin smaller compressed image. Compress only.
" smooth’ Perform inter-block smoothing on uncompressed image. Only useful for low-quality images. Decompress only.

Compress and uncompress raise the error jpeg. error in case of errors.

13.5 Built-in Module rgbimg

The rghimg module allows python programs to access SGI imglib imagefiles (also known as* . rgb’ files). The module isfar from
complete, but is provided anyway since the functionality that there is is enough in some cases. Currently, colormap files are not
supported.

The module defines the following variables and functions:

error
This exception israised on al errors, such as unsupported file type, etc.

sizeofimage (file)
This function returns atuple (x, y) where x and y are the size of the image in pixels. Only 4 byte RGBA pixels, 3 byte
RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file)
Thisfunction reads and decodes the image on the specified file, and returnsit as a Python string. The string has 4 byte RGBA
pixels. The bottom left pixel isthefirstin the string. Thisformat is suitable to passto gl .1lrectwrite, for instance.

longstoimage (data, X, Y, z file)
This function writes the RGBA data in data to image file file. x and y give the size of the image. zis 1 if the saved image
should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data, or 4 if the saved images should be 4 byte RGBA
data. Theinput data always contains 4 bytes per pixel. These are the formats returned by g1 . lrectread.

ttob (flag)
Thisfunction sets aglobal flag which defines whether the scan lines of the image are read or written from bottom to top (flag
is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default is zero.

13.6 Standard module imghdr

The imghdr module determines the type of image contained in afile or byte stream.

The imghdr module defines the following function:

what (filename [, h] )
Tests the image data contained in the file named by filename, and returns a string describing the image type. If optional his
provided, the filename is ignored and h is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value from what:

“rgb” SGI ImgLib Files

“gif” GIF 87aand 89aFiles
pbm” Portable Bitmap Files
pgm”
“ppm”  Portable Pixmap Files

“

“

Portable Graymap Files

189



“tiff” TIFF Files
“rast” Sun Raster Files

“ ”

xbm

wr

jpeg” JPEG datain JIFF format

X Bitmap Files

You can extend the list of file types imghdr can recognize by appending to this variable:

tests

A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and an open file-like
object. When what () iscalled with abyte-stream, the file-like object will be None.

The test function should return a string describing the image type if the test succeeded, or None if it failed.
Example:

>>> import imghdr
>>> imghdr.what (' /tmp/bass.gif’)
Igifl

190



Chapter 14
Cryptographic Services

The modules described in this chapter implement various a gorithms of a cryptographic nature. They are available at the discretion
of theinstallation. Here's an overview:

md5 — RSA's MD5 message digest algorithm.
mpz — Interface to the GNU MP library for arbitrary precision arithmetic.
rotor — Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of further interest; the
package adds built-in modules for DES and IDEA encryption, provides a Python module for reading and decrypting
PGP files, and then some. These modules are not distributed with Python but available separately. See the URL
‘http://www.magnet .com/ amk/python/pct.html’ or send email to ‘amk@magnet .com’ for more information.

14.1 Built-in Modulemds

This module implements the interface to RSA’'s MD5 message digest algorithm (see also Internet RFC 1321). Its use is quite
straightforward: use the mds .new () to create an md5 object. You can now feed this object with arbitrary strings using the
update () method, and at any point you can ask it for the digest (a strong kind of 128-bit checksum, ak.a. “fingerprint”) of the
contatenation of the strings fed to it so far using the digest () method.

For example, to obtain the digest of the string "Nobody inspects the spammish repetition":

>>> import md5

>>> m = md5.new ()

>>> m.update ("Nobody inspects")

>>> m.update (" the spammish repetition")

>>> m.digest ()
"\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351"

More condensed:

>>> md5.new ("Nobody inspects the spammish repetition") .digest ()
"\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351"

new ( [arg] )
Return a new md5 object. If arg is present, the method call update (arg) is made.

191



md5 ( [arg] )
For backward compatibility reasons, thisis an aternative name for the new () function.

An md5 object has the following methods:

update (arg)
Update the md5 object with the string arg. Repeated calls are equivalent to a single call with the concatenation of al the
arguments, i.e. m.update (a) ; m.update (b) isequivalenttom.update (a+b).

digest ()
Return the digest of the strings passed to the update () method so far. Thisis an 16-byte string which may contain non-
ASCII characters, including null bytes.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings that share acommon
initial substring.

14.2 Built-in Module mpz

Thisisan optional module. It is only available when Python is configured to include it, which requires that the GNU MP software
isinstalled.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision integer and rational number
arithmetic routines. Only the interfaces to the integer (‘mpz_...") routines are provided. If not stated otherwise, the description in
the GNU MP documentation can be applied.

In general, mpz-numbers can be used just like other standard Python numbers, e.g. you can use the built-in operators like +, *,
etc., aswell asthe standard built-in functions like abs, int, ..., divmod, pow. Please note: the bitwise-xor operation has been
implemented as a bunch of ands, inverts and ors, because the library lacks an mpz xoxr function, and | didn’t need one.

You create an mpz-number by calling the function called mpz (see below for an exact description). An mpz-number is printed like
this: mpz (value) .

mpz (value)
Create a new mpz-number. value can be an integer, a long, another mpz-number, or even a string. If it is a string, it is
interpreted as an array of radix-256 digits, least significant digit first, resulting in a positive number. See also the binary
method, described bel ow.

A number of extra functions are defined in this module. Non mpz-arguments are converted to mpz-values first, and the functions
return mpz-numbers.

powm (base, exponent, modulus)
Return pow (base, exponent) % modulus. If exponent == 0, return mpz (1) . In contrast to the C-library function, this
version can handle negative exponents.

gcd (opl, op2)
Return the greatest common divisor of opl and op2.

gcdext (a, b)
Return atuple (g, s, t),suchthata*s + b*t == g == gcd(a, b).

sqgrt (op)
Return the square root of op. The result is rounded towards zero.

sgrtrem(0p)
Return atuple (root, remainder), such that root*root + remainder == op.

divm (numerator, denominator, modulus)
Returns a number g. such that ¢ * denominator % modulus == numerator. One could aso implement this function in
Python, using gcdext.

An mpz-number has one method:

binary ()
Convert this mpz-number to abinary string, where the number has been stored as an array of radix-256 digits, least significant

192



digit first.
The mpz-number must have a value greater than or equal to zero, otherwise avalueError-exception will be raised.

14.3 Built-in Module rotor

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The design is derived from the
Enigma device, a machine used during World War 11 to encipher messages. A rotor is simply a permutation. For example, if the
character ‘A’ is the origin of the rotor, then a given rotor might map ‘A’ to ‘L', ‘B’ to ‘Z’, ‘C’' to ‘G’, and so on. To encrypt, we
choose several different rotors, and set the origins of the rotors to known positions; their initial position is the ciphering key. To
encipher a character, we permute the original character by thefirst rotor, and then apply the second rotor’s permutation to the result.
We continue until we've applied all the rotors; the resulting character is our ciphertext. We then change the origin of the final
rotor by one position, from ‘A’ to ‘B’; if the final rotor has made a complete revolution, then we rotate the next-to-last rotor by
one position, and apply the same procedure recursively. In other words, after enciphering one character, we advance the rotors in
the same fashion as a car's odometer. Decoding works in the same way, except we reverse the permutations and apply them in the
opposite order.

The available functions in this module are:

newrotor (key [ numrotors] )
Return a rotor object. key is a string containing the encryption key for the object; it can contain arbitrary binary data. The
key will be used to randomly generate the rotor permutations and their initial positions. numrotors is the number of rotor
permutations in the returned object; if it is omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey (key)
Setsthe rotor’s key to key.

encrypt (plaintext)
Reset the rotor object to itsinitial state and encrypt plaintext, returning a string containing the ciphertext. The ciphertext is
always the same length as the origina plaintext.

encryptmore (plaintext)
Encrypt plaintext without resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertext)
Reset the rotor object to its initia state and decrypt ciphertext, returning a string containing the ciphertext. The plaintext
string will always be the same length as the ciphertext.

decryptmore (ciphertext)
Decrypt ciphertext without resetting the rotor object, and return a string containing the ciphertext.

An example usage:

>>> import rotor

>>> rt = rotor.newrotor (’'key’, 12)
>>> rt.encrypt (‘bar’)

"\2534\363"

>>> rt.encryptmore ('bar’)
"\357\3753%"

>>> rt.encrypt ('bar’)

"\2534\363"

>>> rt.decrypt ('\2534\363")

"bar’

>>> rt.decryptmore (' \357\375$")
"bar’

>>> rt.decrypt (' \357\375$")

"1 (\315"

>>> del rt

193



The modul€’s code is not an exact simulation of the original Enigma device; it implements the rotor encryption scheme differently
from the original. The most important differenceisthat in the original Enigma, there were only 5 or 6 different rotorsin existence,
and they were applied twice to each character; the cipher key was the order in which they were placed in the machine. The Python
rotor module uses the supplied key to initialize a random number generator; the rotor permutations and their initial positions are
then randomly generated. The original device only enciphered the letters of the alphabet, while this module can handle any 8-bit
binary data; it also produces binary output. This module can aso operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal more difficult to crack
(especidly if you use many rotors), but it won’t be impossible for a truly skilful and determined attacker to break the cipher. So
if you want to keep the NSA out of your files, this rotor cipher may well be unsafe, but for discouraging casual snooping through
your files, it will probably be just fine, and may be somewhat safer than using the Unix ‘crypt’ command.

194



Chapter 15

Macintosh Specific Services

The modules in this chapter are available on the Apple Macintosh only.

Aside from the modules described here there are aso interfaces to various MacOS toolboxes, which are currently not extensively
described. Thetoolboxes for which modulesexist are: AE (Apple Events), cm (Component Manager), Ct1 (Control Manager), D1g
(Dialog Manager), Evt (Event Manager), Fm (Font Manager), List (List Manager), Menu (Moenu Manager), od (QuickDraw),
Qt (QuickTime), Res (Resource Manager and Handles), Scrap (Scrap Manager), Snd (Sound Manager), TE (TextEdit), waste
(non-Apple TextEdit replacement) and Wwin (Window Manager).

If applicable the module will define a number of Python objects for the various structures declared by the toolbox, and operations
will be implemented as methods of the object. Other operations will be implemented as functions in the module. Not all operations
possible in C will also be possible in Python (callbacks are often a problem), and parameters will occasionally be different in
Python (input and output buffers, especialy). All methods and functions have a._doc._ string describing their arguments and
return values, and for additional description you are referred to Inside Mac or similar works.

15.1 Built-in Modulemac

This module provides a subset of the operating system dependent functionality provided by the optional built-in module posix. It
is best accessed through the more portable standard module os.

The following functions are available in this module: chdir, close, dup, £dopen, getcwd, lseek, listdir, mkdir,
open, read, rename, rmdir, stat, sync, unlink, write, aswell asthe exception error. Note that the times returned
by stat () arefloating-point values, like al time values in MacPython.

One additional function isavailable: xstat (). Thisfunction returnsthe sameinformation asstat (), but with three extravalues
appended: the size of the resource fork of the file and its 4-char creator and type.

15.2 Standard Module macpath

This module provides a subset of the pathname manipulation functions available from the optiona standard module posixpath.
It is best accessed through the more portable standard module os, asos . path.

The following functions are available in this module: normcase, normpath, isabs, join, split, isdir, isfile, walk,
exists. For other functions available in posixpath dummy counterparts are available.

15.3 Built-in Module ctb

Thismodule provides apartial interface to the Macintosh Communications Toolbox. Currently, only Connection Manager tools are
supported. It may not be available in all Mac Python versions.

195



error
The exception raised on errors.

cmData
cmCntl
cmAttn
Flags for the channel argument of the Read and Write methods.

cmFlagsEOM
End-of-message flag for Read and Write.

choose*
Values returned by Choose.

cmStatus*
Bitsin the status as returned by Status.

available ()
Return 1 if the communication toolbox is available, zero otherwise.

CMNew (name, Sizes)
Create a connection object using the connection tool named name. sizesis a 6-tuple given buffer sizes for data in, data out,
control in, control out, attention in and attention out. Alternatively, passing None will result in default buffer sizes.

15.3.1 connection object

For all connection methods that take atimeout argument, avalue of -1 isindefinite, meaning that the command runsto completion.

callback
If this member is set to a value other than None it should point to a function accepting a single argument (the connection
object). This will make all connection object methods work asynchronously, with the callback routine being called upon
completion.
Note: for reasons beyond my understanding the callback routine is currently never called. You are advised against using
asynchronous calls for the time being.

Open (timeout)
Open an outgoing connection, waiting at most timeout seconds for the connection to be established.

Listen (timeout)
Wait for an incoming connection. Stop waiting after timeout seconds. This call is only meaningful to some tools.

accept (yesno)
Accept (when yesno is non-zero) or reject an incoming call after Listen returned.

Close (timeout, now)
Close a connection. When now is zero, the closeis orderly (i.e. outstanding output is flushed, etc.) with atimeout of timeout
seconds. When now is non-zero the close isimmediate, discarding output.

Read (len, chan, timeout)
Read len bytes, or until timeout seconds have passed, from the channel chan (which is one of cmData, cmCntl or cmAttn).
Return a 2-tuple: the data read and the end-of-message flag.

Write (buf, chan, timeout, eom)
Write buf to channel chan, aborting after timeout seconds. When eom has the value cmFlagsEOM an end-of-message
indicator will be written after the data (if this concept has a meaning for this communication tool). The method returns the
number of bytes written.

Status ()
Return connection status as the 2-tuple (sizes, flags). sizesis a 6-tuple giving the actual buffer sizes used (see CMNew),
flagsisaset of bits describing the state of the connection.

GetConfig()
Return the configuration string of the communication tool. These configuration strings are tool-dependent, but usually easily
parsed and modified.

196



SetConfig(str)
Set the configuration string for the tool. The strings are parsed |eft-to-right, with later values taking precedence. This means
individual configuration parameters can be modified by simply appending something like ' baud 4800’ to the end of the
string returned by GetConfig and passing that to this method. The method returns the number of characters actually parsed
by the tool before it encountered an error (or completed successfully).

Choose ()
Present the user with a dialog to choose a communication tool and configure it. If there is an outstanding connection some
choices (like selecting a different tool) may cause the connection to be aborted. The return value (one of the choose*
constants) will indicate this.

Idle()
Give the tool a chance to use the processor. You should call this method regularly.

Abort ()
Abort an outstanding asynchronous Open or Listen.

Reset ()
Reset a connection. Exact meaning depends on the tool.

Break (length)
Send a break. Whether this means anything, what it means and interpretation of the length parameter depend on the tool in
use.

15.4 Built-in Modulemacconsole

This module is available on the Macintosh, provided Python has been built using the Think C compiler. It provides an interface to
the Think console package, with which basic text windows can be created.

options
An object allowing you to set various options when creating windows, see below.

C_ECHO

C_NOECHO

C_CBREAK

C_RAW
Options for the setmode method. C_ECHO and C_CBREAK enable character echo, the other two disable it, C ECHO and
C_NOECHO enable line-oriented input (erase/kill processing, etc).

copen ()
Open anew console window. Return a console window object.

fopen (fp)
Return the console window object corresponding with the given file object. fp should beone of sys.stdin, sys.stdout
Oor sys.stderr

15.4.1 macconsole options object

These options are examined when awindow is created:

top
left
The origin of the window.

nrows
ncols
The size of the window.

txFont
txSize
txStyle

197



The font, fontsize and fontstyle to be used in the window.

title
Thetitle of the window.

pause_atexit
If set non-zero, the window will wait for user action before closing.

15.4.2 console window object

file
The file object corresponding to this console window. If the file is buffered, you should call £ile.flush () between
write () and read () cdls.

setmode (mode)
Set the input mode of the console to C_ECHO, etc.

settabs (n)
Set the tabsize to n spaces.

cleos ()
Clear to end-of-screen.

cleol ()
Clear to end-of-line.

inverse (onoff)
Enable inverse-video mode: characters with the high bit set are displayed in inverse video (this disables the upper half of a
non-Ascl| character set).

gotoxy (X,Y)
Set the cursor to position (x, V).

hide ()
Hide the window, remembering the contents.

show ()
Show the window again.

echo2printer ()
Copy everything written to the window to the printer as well.

15.5 Built-in Modulemacdnr

This module provides an interface to the Macintosh Domain Name Resolver. It is usually used in conjunction with the mactcp
module, to map hostnames to | P-addresses. It may not be available in al Mac Python versions.

The macdnr module defines the following functions:

Open ( [filename] )
Open the domain name resolver extension. If filenameisgiven it should be the pathname of the extension, otherwise adefault
isused. Normally, this call is not needed since the other calls will open the extension automatically.

Close()
Close the resolver extension. Again, not needed for normal use.

StrToAddr (hostname)
Look up the IP address for hostname. This call returns adnr result object of the “address’ variation.

AddrToName (addr)
Do areverse lookup on the 32-bit integer | P-address addr. Returns adnr result object of the “address” variation.

AddrToStr (addr)
Convert the 32-bit integer | P-address addr to a dotted-decimal string. Returns the string.

198



HInfo (hostname)
Query the nameservers for a HInfo record for host hostname. These records contain hardware and software information
about the machine in question (if they are available in the first place). Returns adnr result object of the “hinfo” variety.

MXInfo (domain)
Query the nameservers for amail exchanger for domain. Thisis the hosthame of ahost willing to accept SMTP mail for the
given domain. Returns adnr result object of the “mx” variety.

15.5.1 dnr result object

Since the DNR calls all execute asynchronously you do not get the results back immediately. Instead, you get a dnr result object.
You can check this object to see whether the query is complete, and access its attributes to obtain the information when it is.

Alternatively, you can also reference the result attributes directly, thiswill result in an implicit wait for the query to complete.
The rtnCode and cname attributes are always available, the others depend on the type of query (address, hinfo or mx).

wait ()
Wait for the query to complete.

isdone ()
Return 1 if the query is complete.

rtnCode
The error code returned by the query.

cname
The canonical name of the host that was queried.
ip0
ipl
ip2
ip3
At most four integer |P addresses for this host. Unused entries are zero. Valid only for address queries.

cpuType
osType
Textual strings giving the machine type an OS name. Valid for hinfo queries.

exchange
The name of amail-exchanger host. Valid for mx queries.

preference
The preference of this mx record. Not too useful, since the Macintosh will only return asingle mx record. Mx queries only.

The simplest way to use the module to convert names to dotted-decimal strings, without worrying about idle time, etc:

>>> def gethostname (name) :
import macdnr
dnrr = macdnr.StrToAddr (name)
return macdnr.AddrToStr (dnrr.ip0)

15.6 Built-in Modulemacts

This module provides access to macintosh FSSpec handling, the Alias Manager, finder aliases and the Standard File package.

Whenever a function or method expects a file argument, this argument can be one of three things: (1) afull or partial Macintosh
pathname, (2) an FSSpec object or (3) a3-tuple (wdRefNum, parID, name) asdescribed inInside Mac VI. A description of
aliases and the standard file package can also be found there.

199



FSSpec (file)
Create an FSSpec object for the specified file.

RawFSSpec (data)
Create an FSSpec object given the raw data for the C structure for the FSSpec as a string. Thisis mainly useful if you have
obtained an FSSpec structure over a network.

RawAlias (data)
Create an Alias object given theraw datafor the C structure for the aliasasa string. Thisismainly useful if you have obtained
an FSSpec structure over a network.

FInfo ()
Create a zero-filled FInfo object.

ResolveAliasFile (file)
Resolve an aliasfile. Returns a 3-tuple (fsspec, isfolder, aliased) where fsspec isthe resulting FSSpec object, isfolder is
trueif fsspec pointsto afolder and aliased istrueif the file was an aliasin thefirst place (otherwise the FSSpec object for the
fileitself isreturned).

StandardGetFile( [type, ] )
Present the user with a standard “open input file” dialog. Optionally, you can pass up to four 4-char file types to limit the
filesthe user can choose from. The function returns an FSSpec object and aflag indicating that the user completed the dialog
without cancelling.

PromptGetFile (prompt [, type, ] )
Similar to SandardGetFile but allows you to specify a prompt.

StandardPutFile (prompt, [default] )
Present the user with a standard “open output file’ dialog. prompt isthe prompt string, and the optional default argument
initializesthe output file name. The function returns an FSSpec object and aflag indicating that the user completed the dialog
without cancelling.

GetDirectory ( [prompt] )
Present the user with a non-standard “select a directory” dialog. prompt is the prompt string, and the optional. Return an
FSSpec object and a success-indicator.

SetFolder ( [fsspec] )
Set the folder that isinitially presented to the user when one of the file selection dialogs is presented. Fsspec should point to
afilein the folder, not the folder itself (the file need not exist, though). If no argument is passed the folder will be set to the
current directory, i.e. what os . getcwd () returns.
Note that starting with system 7.5 the user can change Standard File behaviour with the “general controls’ controlpanel,
thereby making this call inoperative.

FindFolder (where, which, create)
Locates one of the “special” folders that MacOS knows about, such as the trash or the Preferences folder. Where is the disk
to search, which is the 4-char string specifying which folder to locate. Setting create causes the folder to be created if it does
not exist. Returnsa (vrefnum, dirid) tuple

NewAliasMinimalFromFullPath (pathname)
Return aminimal alias record object that points to the given file, which must be specified asafull pathname. Thisisthe only
way to create an alias record pointing to a non-existing file.

The constants for where and which can be obtained from the standard module MACFS.

FindApplication (creator)
L ocate the application with 4-char creator code creator. The function returns an FSSpec object pointing to the application.

15.6.1 FSSpec objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as_pathname ()
Return the full pathname of the file described by the FSSpec object.

200



as_tuple ()
Return the (wdRefNum, parlD, name) tuple of the file described by the FSSpec object.

NewAlias([me])
Create an Alias object pointing to the file described by this FSSpec. If the optional file parameter is present the alias will be
relative to that file, otherwise it will be absolute.

NewAliasMinimal ()
Create aminimal alias pointing to thisfile.

GetCreatorType ()
Return the 4-char creator and type of thefile.

SetCreatorType (Creator, type)
Set the 4-char creator and type of thefile.

GetFInfol()
Return a FInfo object describing the finder info for thefile.

SetFInfo (finfo)
Set the finder info for the file to the values specified in the finfo object.

GetDates ()
Return a tuple with three floating point values representing the creation date, modification date and backup date of thefile.

SetDates (crdate, moddate, backupdate)
Set the creation, modification and backup date of thefile. The values are in the standard floating point format used for times
throughout Python.

15.6.2 aliasobjects

data
The raw data for the Alias record, suitable for storing in aresource or transmitting to other programs.

Resolve([me])
Resolve the dlias. If the alias was created as arelative aias you should pass the file relative to which it is. Return the FSSpec
for the file pointed to and aflag indicating whether the alias object itself was modified during the search process. If the file
does not exist but the path leading up to it does exist avalid fsspec is returned.

GetInfo (num)
Aninterfaceto the Croutine GetAliasInfo ().

Update (file, [file2] )
Update the dias to point to the file given. If file2 is present arelative alias will be created.

Notethat it iscurrently not possible to directly manipulate aresource as an alias object. Hence, after calling Update or after Resolve
indicates that the alias has changed the Python program is responsible for getting the data from the alias object and modifying the
resource.

15.6.3 FInfo objects

See Inside Mac for a complete description of what the various fields mean.

Creator
The 4-char creator code of thefile.

Type
The 4-char type code of thefile.

Flags
The finder flags for the file as 16-bit integer. The bit values in Flags are defined in standard module MACFS,

Location
A Point giving the position of thefile'sicon initsfolder.

201



Fldr
Thefolder thefileisin (as an integer).

15.7 Standard Moduleic

This module provides access to macintosh Internet Config package, which stores preferences for Internet programs such as mail
address, default homepage, etc. Also, Internet Config contains an elaborate set of mappings from Macintosh creator/type codes to
foreign filename extensions plus information on how to transfer files (binary, ascii, etc).

There is a low-level companion module icglue which provides the basic ic access functionality. This low-level module is not
documented, but the docstrings of the routines document the parameters and the routine names are the same as for the Pascal or C
API to Internet Config, so the standard | C programmers documentation can be used if this module is needed.

The ic module definesthe error exception and symbolic names for al error codes | C can produce, see the source for details.

The ic module defines the following functions:

IC( [signature, ic] )
Create an internet config object. The signature is a 4-char creator code of the current application (default ' Pyth’) which
may influence some of ICs settings. The optional ic argument isalow-level icinstance created beforehand, this may be
useful if you want to get preferences from a different config file, etc.

launchurl (url [, hint] )

parseurl (data [, start, end, hint] )
mapfile (file)

maptypecreator (type, creator [, filename] )

settypecreator (file)
These functions are “ shortcuts’ to the methods of the same name, described bel ow.

15.7.1 IC objects

I1C objects have a mapping interface, hence to obtain the mail address you simply get ic [ MailAddress’]. Assignment also
works, and changes the option in the configuration file.

The module knows about various datatypes, and convertstheinternal 1C representation to a“logical” python datastructure. Running
the ic module standalone will run a test program that lists all keys and values in your IC database, this will have to server as
documentation.

If the module does not know how to represent the data it returns an instance of the ICOpaqueData type, with the raw datain its
data attribute. Objects of thistype are also acceptable values for assignment.

Besides the dictionary interface IC objects have the following methods:

launchurl (url [, hint] )
Parse the given URL, lauch the correct application and pass it the URL. The optional hint can be a scheme name such as
mailto:, inwhich case incomplete URLs are completed with this scheme (otherwise incomplete URLs are invalid).

parseurl (data [, start, end, hint] )
Find an URL somewhere in data and return start position, end position and the URL. The optional start and end can be used
to limit the search, so for instance if a user clicksin along textfield you can pass the whole textfield and the click-position in
start and this routine will return the whole URL in which the user clicked. Hint isagain an optional scheme used to complete
incomplete URLSs.

mapfile (file)
Return the mapping entry for the given file, which can be passed as either a filename or an FSSpec object, and which need
not exist.
The mapping entry is returned as a tuple
(version type creator postcreator flags extension appname postappname mimetype entryname),

202



where version is the entry version number, type is the 4-char filetype, creator is the 4-char creator type, postcreator is the
4-char creator code of an optional application to post-process the file after downloading, flags are various bits specifying
whether to transfer in binary or ascii and such, extension is the filename extension for thisfile type, appname is the printable
name of the application to which this file belongs, postappname is the name of the postprocessing application, mimetype is
the MIME type of thisfile and entryname is the name of this entry.

maptypecreator (type, creator [, filename] )
Return the mapping entry for fileswith given 4-char type and creator codes. The optional filename may be specified to further
help finding the correct entry (if the creator codeis ' 22?2, for instance).

The mapping entry isreturned in the same format as for mapfile.

settypecreator (file)
Given an existing file, specified either as a filename or as an FSSpec record, set its creator and type correctly based on its
extension. The finder istold about the change, so the finder icon will be updated quickly.

15.8 Built-in ModuleMac0S

This module provides access to MacOS specific functionality in the python interpreter, such as how the interpreter eventloop
functions and the like. Use with care.

Note the capitalisation of the module name, thisisa historical artefact.

Error
Thisexception israised on MacOS generated errors, either from functionsin this module or from other mac-specific modules
like the toolbox interfaces. The arguments are the integer error code (the OSErr value) and atextual description of the error
code. Symbolic names for all known error codes are defined in the standard module macerrors.

SetEventHandler (handler)
In the inner interpreter loop Python will occasionally check for events, unless disabled with ScheduleParams. With this
function you can pass a Python event-handler function that will be called if an event is available. The event is passed as
parameter and the function should return non-zero if the event has been fully processed, otherwise event processing continues
(by passing the event to the console window package, for instance).
Call SetEventHandler without parameter to clear the event handler. Setting an eventhandler while one is already set is an
error.

Schedparams ( [ doint, evimask, besocial, interval, bgyield | )

Influence the interpreter inner loop event handling. Interval specifies how often (in seconds, floating point) the interpreter
should enter the event processing code. When true, doint causes interrupt (command-dot) checking to be done. Evtmask tells
the interpreter to do event processing for events in the mask (redraws, mouseclicks to switch to other applications, etc). The
besocial flag gives other processes a chance to run. They are granted minimal runtime when Python isin the foreground and
bgyield seconds per interval when Python runsin the background.

All parameters are optional, and default to the current value. The return value of this function is atuple with the old val ues of
these options. Initial defaults are that all processing is enabled, checking is done every quarter second and the CPU is given
up for a quarter second when in the background.

HandleEvent (ev)
Pass the event record ev back to the python event loop, or possibly to the handler for the sys. stdout window (based
on the compiler used to build python). This allows python programs that do their own event handling to till have some
command-period and window-switching capability.
If you attempt to call this function from an event handler set through SetEventHandler you will get an exception.

GetErrorString (errno)
Return the textual description of MacOS error code errno.

splash (resid)
Thisfunction will put a splash window on-screen, with the contents of the DLOG resource specified by resid. Calling with
azero argument will remove the splash screen. This function is useful if you want an applet to post a splash screen early in
initialization without first having to load numerous extension modules.

DebugStr (message [ object] )

203



Drop to the low-level debugger with message message. The optional object argument is not used, but can easily be inspected
from the debugger.

Note that you should use this function with extreme care: if no low-level debugger like MacsBug is installed this call will
crash your system. It isintended mainly for developers of Python extension modules.

openrf (name [, mode] )
Open the resource fork of afile. Arguments are the same as for the builtin function open. The object returned has file-like
semantics, but it is not a python file object, so there may be subtle differences.

15.9 Standard module macostools

This modul e contains some convenience routines for file-manipulation on the Macintosh.
Themacostools module defines the following functions:

copy (Src, dst [ createpath, copytimes] )
Copy file src to dst. The files can be specified as pathnames or FSSpec objects. If createpath is non-zero dst must be a
pathname and the folders leading to the destination are created if necessary. The method copies data and resource fork and
some finder information (creator, type, flags) and optionally the creation, modification and backup times (default is to copy
them). Custom icons, comments and icon position are not copied.

If the source is an aliasthe original to which the alias pointsis copied, not the aiasfile.

copytree (SIC, dst)
Recursively copy afile tree from src to dst, creating folders as needed. Src and dst should be specified as pathnames.

mkalias (Src, dst)
Create afinder alias dst pointing to src. Both may be specified as pathnames or FSSpec objects.

touched (dst)
Tell the finder that some bits of finder-information such as creator or type for file dst has changed. The file can be specified
by pathname or fsspec. This call should prod the finder into redrawing the filesicon.

BUFSIZ
The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence, aliases created with mkalias
could conceivably have incompatible behaviour in some cases.

15.10 Standard module findertools

Thismodule contains routinesthat give Python programs access to some functionality provided by thefinder. They areimplemented
as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames or as FSSpec objects.
The £ indertools module defines the following functions:

launch (file)
Tell the finder to launch file. What launching means depends on the file: applications are started, folders are opened and
documents are opened in the correct application.

Print (file)
Tell the finder to print afile (again specified by full pathname or FSSpec). The behaviour isidentical to selecting the file and
using the print command in the finder.

copy (file, destdir)
Tell the finder to copy afile or folder file to folder destdir. The function returnsan Alias object pointing to the new file.

move (file, destdir)
Tell the finder to move afile or folder file to folder destdir. The function returns an 211ias object pointing to the new file.

204



sleep ()
Tell the finder to put the mac to sleep, if your machine supportsiit.

restart ()
Tell the finder to perform an orderly restart of the machine.

shutdown ()
Tell the finder to perform an orderly shutdown of the machine.

15.11 Built-in Modulemactcp

This module provides an interface to the Macintosh TCP/IP driver MacTCP. There is an accompanying module macdnr which
provides an interface to the name-server (allowing you to translate hostnames to ip-addresses), a module MACTCPconst which
has symbolic names for constants constants used by MacTCP. Since the builtin module socket is also available on the mac it is
usually easier to use sockets in stead of the mac-specific MacTCP API.

A complete description of the MacTCP interface can be found in the Apple MacTCP APl documentation.

MTU ()
Return the Maximum Transmit Unit (the packet size) of the network interface.

IPAddr ()
Return the 32-bit integer | P address of the network interface.

NetMask ()
Return the 32-bit integer network mask of the interface.

TCPCreate (Size)
Create a TCP Stream object. sizeisthe size of the receive buffer, 4096 is suggested by various sources.

UDPCreate (Size, port)
Create a UDP stream object. size isthe size of the receive buffer (and, hence, the size of the biggest datagram you can receive
on thisport). port isthe UDP port number you want to receive datagrams on, avalue of zero will make MacTCP select afree
port.

15.11.1 TCP Stream Objects

asr
When set to a value different than None this should point to a function with two integer parameters: an event code and a
detail. This function will be called upon network-generated events such as urgent data arrival. In addition, it is called with
eventcode MACTCP. PassiveOpenDone When a PassiveOpen completes. This is a Python addition to the MacTCP
semantics. It is safe to do further callsfrom the asr.

PassiveOpen (port)
Wait for an incoming connection on TCP port port (zero makes the system pick a free port). The call returns immediately,
and you should use wait to wait for completion. You should not issue any method calls other than wait, isdone or
GetSockName before the call completes.

wait ()
Wait for PassiveOpen to complete.

isdone ()
Return 1if a PassiveOpen has completed.

GetSockName ()
Return the TCP address of this side of a connection asa2-tuple (host, port), bothintegers.

ActiveOpen (lport, host, rport)
Open an outgoing connection to TCP address (host, rport). Uselocal port Iport (zero makes the system pick afree port).
This call blocks until the connection has been established.

Send (buf, push, urgent)
Send data buf over the connection. Push and urgent are flags as specified by the TCP standard.

205



Rcv (timeout)
Receive data. The call returns when timeout seconds have passed or when (according to the MacTCP documentation) “a
reasonable amount of data has been received”. The return value is a 3-tuple (data, urgent, mark). If urgent datais
outstanding Rcv will always return that before looking at any normal data. The first call returning urgent data will have the
urgent flag set, the last will have the mark flag set.

Close ()
Tell MacTCP that no more datawill be transmitted on this connection. The call returns when all data has been acknowledged
by the receiving side.

Abort ()
Forcibly close both sides of a connection, ignoring outstanding data.

Status ()
Return a TCP status object for this stream giving the current status (see below).

15.11.2 TCP Status Objects

This object has no methods, only some members holding information on the connection. A complete description of al fieldsin this
objects can be found in the Apple documentation. The most interesting ones are:

localHost
localPort
remoteHost
remotePort
Theinteger |P-addresses and port numbers of both endpoints of the connection.

sendWindow
The current window size.

amtUnackedData
The number of bytes sent but not yet acknowledged. sendWindow - amtUnackedData iswhat you can passto Send
without blocking.

amtUnreadData
The number of bytes received but not yet read (what you can Recv without blocking).

15.11.3 UDP Stream Objects

Note that, unlike the name suggests, there is nothing stream-like about UDP.

asr
The asynchronous service routine to be called on events such as datagram arrival without outstanding Read call. The asr
has a single argument, the event code.

port
A read-only member giving the port number of this UDP stream.

Read (timeout)
Read a datagram, waiting at most timeout seconds (-1 isinfinite). Return the data.

Write (host, port, buf)
Send buf as a datagram to | P-address host, port port.

15.12 Built-in Modulemacspeech

This module provides an interface to the Macintosh Speech Manager, allowing you to let the Macintosh utter phrases. You need
aversion of the speech manager extension (version 1 and 2 have been tested) in your Extensions folder for thisto work. The
module does not provide full accessto all features of the Speech Manager yet. It may not be available in all Mac Python versions.

206



Available()
Test availability of the Speech Manager extension (and, on the PowerPC, the Speech Manager shared library). Return O or 1.

Version()
Return the (integer) version number of the Speech Manager.

SpeakString (str)
Utter the string str using the default voice, asynchronously. This aborts any speech that may still be active from prior
SpeakString invocations.

Busy ()
Return the number of speech channels busy, system-wide.

CountVoices ()
Return the number of different voices available.

GetIndVoice (num)
Return a voice object for voice number num.

15.12.1 voice objects

Voice objects contain the description of avoice. It is currently not yet possible to access the parameters of a voice.

GetGender ()
Return the gender of the voice: O for male, 1 for female and -1 for neuter.

NewChannel ()
Return a new speech channel object using this voice.

15.12.2 speech channel objects

A speech channel object allows you to speak strings with slightly more control than SpeakString (), and alows you to use
multiple speakers at the same time. Please note that channel pitch and rate are interrelated in some way, so that to make your
Macintosh sing you will have to adjust both.

SpeakText (Str)
Start uttering the given string.

Stop ()
Stop babbling.

GetPitch()
Return the current pitch of the channel, as a floating-point number.

SetPitch (pitch)
Set the pitch of the channel.

GetRate ()
Get the speech rate (utterances per minute) of the channel as a floating point number.

SetRate (rate)
Set the speech rate of the channel.

15.13 Standard module EasyDialogs

The EasyDialogs module contains some simple dialogs for the Macintosh, modelled after the stdwin dialogs with similar
names. All routines have an optional parameter id with which you can override the DLOG resource used for the dialog, aslong as
the item numbers correspond. See the source for details.

The EasyDialogs module defines the following functions:

207



Message (Str)
A modal dialog with the message text str, which should be at most 255 characters long, is displayed. Control is returned
when the user clicks “OK”.

AskString (prompt [ default] )
Ask the user to input a string value, in amodal dialog. Prompt is the promt message, the optional default arg is the initia
value for the string. All strings can be at most 255 bytes long. AskString returns the string entered or None in case the user
cancelled.

AskYesNoCancel (question [, default] )
Present adialog with text question and three buttons labelled “yes’, “no” and “cancel”. Return 1 for yes, 0 for no and -1 for
cancel. The default return value chosen by hitting return is 0. This can be changed with the optional default argument.

ProgressBar ( [Iabel, maxval] )
Display a modeless progress dialog with athermometer bar. Label isthe textstring displayed (default “Working...”), maxval
isthe value at which progress is complete (default 100). The returned object has one method, set (value), which setsthe
value of the progress bar. The bar remains visible until the object returned is discarded.

The progress bar has a* cancel” button, but it is currently non-functional.

Note that EasyDialogs does not currently use the notification manager. This means that displaying dialogs while the program
isin the background will lead to unexpected results and possibly crashes. Also, al dialogs are modeless and hence expect to be at
the top of the stacking order. Thisis true when the dialogs are created, but windows that pop-up later (like a console window) may
also result in crashes.

15.14 Standard module FrameWork

The FrameWork module contains classes that together provide a framework for an interactive Macintosh application. The pro-
grammer builds an application by creating subclasses that override various methods of the bases classes, thereby implementing the
functionality wanted. Overriding functionality can often be done on various different levels, i.e. to handle clicksin asingle diaog
window in anon-standard way it is not necessary to override the complete event handling.

The FrameWork is still very much work-in-progress, and the documentation describes only the most important functionality, and
not in the most logical manner at that. Examine the source or the examples for more details.

The FrameWork module defines the following functions:

Application ()
An object representing the complete application. See below for a description of the methods. The default__ init _ routine
creates an empty window dictionary and a menu bar with an apple menu.

MenuBar ()
An object representing the menubar. This object is usually not created by the user.

Menu (bar, title [ after] )
An object representing a menu. Upon creation you pass the MenuBar the menu appears in, the title string and a position
(1-based) after where the menu should appear (default: at the end).

MenuTtem (menu, title [, shortcut, callback] )
Create a menu item object. The arguments are the menu to crate the item it, the item title string and optionally the keyboard
shortcut and a callback routine. The callback is called with the arguments menu-id, item number within menu (1-based),
current front window and the event record.
In stead of a callable object the callback can also be astring. In this case menu selection causes the lookup of a method in the
topmost window and the application. The method name is the callback string with * domenu ’ prepended.
Calling the MenuBar fixmenudimstate method sets the correct dimming for all menu items based on the current front
window.

Separator (menu)
Add a separator to the end of a menu.

SubMenu (menu, label)
Create a submenu named label under menu menu. The menu object is returned.

208



Window (parent)
Creates a (modeless) window. Parent is the application object to which the window belongs. The window is not displayed
until later.

DialogWindow (parent)
Creates a model ess dialog window.

windowbounds (width, height)
Return a (left, top, right, bottom) tuple suitable for creation of a window of given width and height. The
window will be staggered with respect to previous windows, and an attempt is made to keep the whole window on-screen.
The window will however always be exact the size given, so parts may be offscreen.

setwatchcursor ()
Set the mouse cursor to awatch.

setarrowcursor ()
Set the mouse cursor to an arrow.

15.14.1 Application objects

Application objects have the following methods, among others:

makeusermenus ()
Override this method if you need menus in your application. Append the menusto self .menubar.

getabouttext ()
Override this method to return a text string describing your application. Alternatively, override the da about method for
more elaborate about messages.

mainloop ( [mask, Wait] )
Thisroutine isthe main event loop, cal it to set your application rolling. Mask is the mask of events you want to handle, wait
isthe number of ticks you want to leave to other concurrent application (default 0, which is probably not agood idea). While
raising self to exit the mainloop is still supported it is not recommended, call self . quit instead.
The event loop is split into many small parts, each of which can be overridden. The default methods take care of dispatching
events to windows and dialogs, handling drags and resizes, Apple Events, events for non-FrameWork windows, etc.
In general, all event handlers should return 1 if the event isfully handled and O otherwise (because the front window was not
a FrameWork window, for instance). Thisis needed so that update events and such can be passed on to other windows like
the Sioux console window. Calling Mac0OS .HandleEvent isnot alowed within our_dispatch or its callees, since this may
result in an infinite loop if the code is called through the python inner-loop event handler.

asyncevents (onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell the inner interpreter loop
to call the application event handler async dispatch whenever events are available. This will cause FrameWork window
updates and the user interface to remain working during long computations, but will slow the interpreter down and may
cause surprising results in non-reentrant code (such as FrameWork itself). By default async dispatch will immedeately call
our _dispatch but you may override thisto handle only certain events asynchronously. Eventsyou do not handle will be passed
to Sioux and such.

The old on/off value is returned.
_quit ()

Terminate the event mainloop at the next convenient moment.
do-char (c, event)

The user typed character c. The complete details of the event can be found in the event structure. This method can also be
provided in awindow object, which overrides the application-wide handler if the window is frontmost.

do_-dialogevent (event)
Called early in the event loop to handle modeless dialog events. The default method simply dispatches the event to the
relevant dialog (not through the the DialogWindow object involved). Override if you need special handling of dialog
events (keyboard shortcuts, etc).

idle (event)

209



Called by the main event loop when no events are available. The null-event is passed (so you can look at mouse position,
etc).

15.14.2 Window Objects

Window objects have the following methods, among others:

open ()
Override this method to open a window. Store the MacOS window-id in self.wid and call self.da postopen to
register the window with the parent application.

close ()
Override this method to do any special processing on window close. Call self .da postclose to cleanup the parent state.

do_postresize (width, height, macoswindowid)
Called after the window isresized. Override if more needs to be done than calling InvalRect.

do_contentclick (local, modifiers, event)
The user clicked in the content part of awindow. The arguments are the coordinates (window-relative), the key modifiersand
the raw event.

do_update (macoswindowid, event)
An update event for the window was received. Redraw the window.

do_activate (activate, event)
The window was activated (act ivate==1) or deactivated (activate==0). Handle things like focus highlighting, etc.

15.14.3 ControlswWindow Object

ControlsWindow objects have the following methods besides those of Window objects:

do_controlhit (window, control, pcode, event)
Part pcode of control control was hit by the user. Tracking and such has already been taken care of.

15.14.4 ScrolledWindow Object

ScrolledWindow objects are Controlswindow objects with the following extra methods:

scrollbars ( [Wantx, Wanty] )
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want (default: both). The scrollbars
aways have minimum 0 and maximum 32767.

getscrollbarvalues ()
You must supply this method. It should return atuple x, vy giving the current position of the scrollbars (between 0 and
32767). You can return None for either to indicate the whole document is visible in that direction.

updatescrollbars ()
Call this method when the document has changed. It will call getscrollbarvalues and update the scrollbars.

scrollbar_callback (which, what, value)
Supplied by you and called after user interaction. Which will be *x’ or " y’, what willbe " -7, 7 -~ "get’, " ++' Or
' +7. For ' set’, value will contain the new scrollbar position.

scalebarvalues (absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate values to return from get scrollbarvalues. You pass document minimum and
maximum value and topmost (leftmost) and bottommost (rightmost) visible values and it returns the correct number or None.

do_activate (onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost vv. If you override this method call this
one at the end of your method.

210



do_postresize (width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

do_controlhit (window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero return value indicates the hit was in the
scrollbars and has been handled.

15.14.5 DialogWindow Objects

DialogWindow objects have the following methods besides those of Wwindow objects:

open (resid)
Create the dialog window, from the DLOG resource with id resid. The dialog object is stored in self .wid.

do_itemhit (item, event)
Item number item was hit. You are responsible for redrawing toggle buttons, etc.

15.15 Standard moduleMiniAEFrame

The module MiniAEFrame provides a framework for an application that can function as an OSA server, i.e. receive and process
AppleEvents. It can be used in conjunction with FrameWork or standalone.

This module is temporary, it will eventually be replaced by a module that handles argument names better and possibly automates
making your application scriptable.

The Mini AEFrame modul e defines the following classes:

AEServer ()
A class that handles AppleEvent dispaich.  Your application should subclass this class together with either
MiniAEFrame.MiniApplicationor FrameWork.Application. Your _init__method shouldcall the__init__
method for both classes.

MiniApplication()
A classthat ismore or less compatible with FrameWork . Application but with lessfunctionality. Its eventloop supports
the apple menu, command-dot and AppleEvents, other events are passed on to the Python interpreter and/or Sioux. Useful if
your application wantsto use AEServer but does not provide its own windows, etc.

15.15.1 AEServer Objects

installaehandler (classe, type, callback)
Installs an AppleEvent handler. Classe and type are the four-char OSA Class and Type designators, * **** ' wildcards
are alowed. When amatching AppleEvent is received the parameters are decoded and your callback is invoked.

callback (_object, **kwargs)
Your callback is called with the OSA Direct Object asfirst positional parameter. The other parameters are passed as keyword
arguments, with the 4-char designator as name. Three extra keyword parameters are passed: _ class and_ type are the
Class and Type designators and _at tributes isadictionary with the AppleEvent attributes.

The return value of your method is packed with aetools.packevent and sent asreply.

Note that there are some serious problems with the current design. AppleEvents which have non-identifier 4-char designators for
arguments are not implementable, and it is not possible to return an error to the originator. This will be addressed in a future
relesse.

211



Chapter 16

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI's IRIX operating system (versions 4 and
5).

16.1 Built-in Moduleal

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the IRIX man pages
for details. You'll need to read those man pages to understand what these functions do! Some of the functions are not available in
IRIX releases before 4.0.5. Again, see the manual to check whether a specific function is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to their name.
Symbolic constants from the C header file‘<audio.h>' are defined in the standard module AL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed rather than returning an
error status. Unfortunately, since the precise circumstances under which this may happen are undocumented and hard to check, the
Python interface can provide no protection against this kind of problems. (One example is specifying an excessive queue size —
there is no documented upper limit.)

The module defines the following functions:

openport (hame, direction [, config] )
The name and direction arguments are strings. The optional config argument is a configuration object as returned by
al.newconfig (). Thereturn value isan port object; methods of port objects are described below.

newconfig()
The return value is anew configuration object; methods of configuration objects are described below.

queryparams (device)
The device argument is an integer. The return value isalist of integers containing the data returned by AL queryparams().

getparams (device, list)
The device argument is an integer. The list argument isalist such asreturned by queryparams; it ismodified in place (!).

setparams (device, list)
The device argument isan integer. The list argument isalist such asreturned by al . queryparams.

16.1.1 Configuration Objects

Configuration objects (returned by al .newconfig () have the following methods:

getqueuesize ()
Return the queue size.

212



setqueuesize (Size)
Set the queue size.

getwidth ()
Get the sample width.

setwidth (width)
Set the sample width.

getchannels ()
Get the channel count.

setchannels (nchannels)
Set the channel count.

getsampfmt ()
Get the sample format.

setsampfmt (sampfmt)
Set the sample format.

getfloatmax ()
Get the maximum value for floating sample formats.

setfloatmax (floatmax)
Set the maximum value for floating sample formats.

16.1.2 Port Objects

Port objects (returned by al . openport () have the following methods:

closeport ()
Close the port.

getfd ()
Return the file descriptor as an int.

getfilled()
Return the number of filled samples.

getfillable()
Return the number of fillable samples.

readsamps (nsamples)
Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the raw data, (e.g., 2
bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample width to 2 bytes).

writesamps (samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for the readsamps return value.

getfillpoint ()
Return the ‘fill point’.

setfillpoint (fillpoint)
Set the ‘fill point’.

getconfig()
Return a configuration object containing the current configuration of the port.

setconfig (config)
Set the configuration from the argument, a configuration object.

getstatus (list)
Get status information on last error.

213



16.2 Standard Module AL

This module defines symbolic constants needed to use the built-in module a1 (see above); they are equivalent to those defined in
the C header file ‘<audio.h>' except that the name prefix ‘AL’ is omitted. Read the module source for a complete list of the
defined names. Suggested use:

import al
from AL import *

16.3 Built-in Module cd

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device with cd. open () and creates a parser to parse
the data from the CD with cd. createparser (). The object returned by cd . open () can be used to read data from the CD,
but also to get status information for the CD-ROM device, and to get information about the CD, such as the table of contents. Data
from the CD is passed to the parser, which parses the frames, and calls any callback functions that have previously been added.

An audio CD is divided into tracks or programs (the terms are used interchangeably). Tracks can be subdivided into indices. An
audio CD contains a table of contents which gives the starts of the tracks on the CD. Index 0 is usually the pause before the start of
atrack. The start of the track as given by the table of contentsisnormally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or atuple of three values, minutes, seconds and frames.
Most functions use the latter representation. Positions can be both relative to the beginning of the CD, and to the beginning of the
track.

Module cd defines the following functions and constants:

createparser ()
Create and return an opague parser object. The methods of the parser object are described bel ow.

msftoframe (min, sec, frame)
Convertsa (minutes, seconds, frames) triple representing time in absolute time code into the corresponding CD
frame number.

open ( [device [, mOdE] ] )
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are described below.
The device is the name of the SCSI device file, e.g. /dev/scsi/sc0d4l0, or None. If omited or None, the hardware inventory
is consulted to locate a CD-ROM drive. The mode, if not omited, should be the string 'r’.

The module defines the following variables:

error
Exception raised on various errors.

DATASIZE
The size of one frame's worth of audio data. Thisisthe size of the audio data as passed to the callback of type audio.

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned by getstatus:

READY
The drive isready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM

214



The drive isloaded with a CD-ROM. Subsequent play or read operations will return 1/O errors.

ERROR
An error aoocurred while trying to read the disc or its table of contents.

PLAYING
Thedriveisin CD player mode playing an audio CD through its audio jacks.

PAUSED
Thedriveisin CD layer mode with play paused.

STILL
The equivalent of PAUSED on older (non 3301) model Toshiba CD-ROM drives. Such drives have never been shipped by
SGl.

audio

pnum

index

ptime

atime

catalog

ident

control
Integer constants describing the various types of parser callbacks that can be set by the addcallback () method of CD
parser objects (see below).

Player objects (returned by cd. open () ) have the following methods:

allowremoval ()
Unlocks the gect button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize ()
Returns the best value to use for the num frames parameter of the readda method. Best is defined as the value that
permits a continuous flow of datafrom the CD-ROM drive.

close ()
Frees the resources associated with the player object. After calling close, the methods of the object should no longer be
used.

eject ()
Ejects the caddy from the CD-ROM drive.

getstatus ()
Returns information pertaining to the current state of the CD-ROM drive. The returned information is a tuple with the
following values: state, track, rtime, atime, ttime, first, last, scsi_audio, cur-block. rtime isthe
time relative to the start of the current track; at ime isthe time relative to the beginning of the disc; tt ime isthetotal time
on the disc. For more information on the meaning of the values, see the manual for CDgetstatus. The value of state isone
of thefollowing: cd.ERROR, cd.NODISC, cd.READY, cd.PLAYING, cd.PAUSED, cd.STILL, Or cd.CDROM.

gettrackinfo (track)
Returns information about the specified track. The returned information is a tuple consisting of two elements, the start time
of the track and the duration of the track.

msftoblock (min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the corresponding logica block
number for the given CD-ROM drive. You should use cd.msftoframe () rather than msftoblock () for comparing
times. The logical block number differs from the frame number by an offset required by certain CD-ROM drives.

play (start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on the CD-ROM
drive's headphone and audio jacks (if fitted). Play stops at the end of the disc. start isthe number of the track at which to
start playing the CD; if play isO, the CD will be set to an initial paused state. The method togglepause () can then be
used to commence play.

playabs (min, sec, frame, play)

215



Likeplay (), except that the start is given in minutes, seconds, frames instead of atrack number.

playtrack (start, play)
Likeplay (), except that playing stops at the end of the track.

playtrackabs (track, min, sec, frame, play)
Likeplay (), except that playing begins at the spcified absolute time and ends at the end of the specified track.

preventremoval ()
Locks the gject button on the CD-ROM drive thus preventing the user from arbitrarily €ecting the caddy.

readda (num.frames)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is a string
representing the audio frames. This string can be passed unaltered to the parseframe method of the parser object.

seek (min, sec, frame)
Setsthe pointer that indicates the starting point of the next read of digital audio datafrom a CD-ROM. The pointer isset to an
absol ute time code location specified in minutes, seconds, and frames. The return value isthe logical block number to which
the pointer has been set.

seekblock (block)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The pointer is set to
the specified logical block number. The return value is the logical block number to which the pointer has been set.

seektrack (track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The pointer is set to
the specified track. The return value isthe logical block number to which the pointer has been set.

stop ()
Stops the current playing operation.

togglepause ()
Pausesthe CD if it is playing, and makesit play if it is paused.

Parser objects (returned by cd . createparser ()) have the following methods:

addcallback (type, func, arg)

Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio data

stream. Constants for these types are defined at the cd module level (see above). The calback is called as follows:

func (arg, type, data), where arg is the user supplied argument, type is the particular type of callback, and

data isthe datareturned for this type of callback. The type of the data depends on the type of callback as follows:

cd.audio: Theargument isastring which can be passed unmodified to al . writesamps ().

cd.pnum: Theargument isan integer giving the program (track) number.

cd. index: Theargument isan integer giving the index number.

cd.ptime: Theargument isatuple consisting of the program timein minutes, seconds, and frames.

cd.atime: Theargument isatuple consisting of the absolute time in minutes, seconds, and frames.

cd.catalog: The argument isastring of 13 characters, giving the catalog number of the CD.

cd.ident: The argument is a string of 12 characters, giving the ISRC identification number of the recording. The string
consists of two characters country code, three characters owner code, two characters giving the year, and five characters
giving a serial number.

cd.control: The argument isan integer giving the control bits from the CD subcode data.

deleteparser ()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call is done
automatically when the last reference to the object isremoved.

parseframe (frame)
Parses one or more frames of digital audio data from a CD such as returned by readda. It determines which subcodes
are present in the data. If these subcodes have changed since the last frame, then parseframe executes a callback of the
appropriate type passing to it the subcode data found in the frame. Unlike the C function, more than one frame of digital
audio data can be passed to this method.

removecallback (type)
Removes the callback for the given type.

216



resetparser ()
Resets the fields of the parser used for tracking subcodes to an initial state. resetparser should be called after the disc
has been changed.

16.4 Built-in Module £1

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library can be retrieved by
anonymous ftpfromhost ‘ftp.cs.ruu.nl’, directory ‘SGI/FORMS'. It was last tested with version 2.0b.

Most functions are litera trandations of their C equivalents, dropping the initial ‘£1." from their name. Constants used by the
library are defined in module FL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by the library to which
new FORMS objects are added, all functions that add a FORM S abject to aform are methods of the Python object representing the
form. Consequently, there are no Python equivalents for the C functions £1. addta form and £1 end form, and the equivalent
of £1 bgn_formiscaled £1.make_form.

Weatch out for the somewhat confusing terminology: FORMS uses the word object for the buttons, sliders etc. that you can place
in aform. In Python, ‘object’ means any value. The Python interface to FORMS introduces two new Python object types: form
objects (representing an entire form) and FORM S objects (representing one button, slider etc.). Hopefully thisisn’t too confusing...

There are no ‘free objects’ in the Python interface to FORMS, nor isthere an easy way to add object classes written in Python. The
FORMS interface to GL event handling is available, though, so you can mix FORM S with pure GL windows.

Please note: importing £1 impliesacall to the GL function foreground () and to the FORMSroutine £1_init ().

16.4.1 FunctionsDefined in Module £1

Module £1 defines the following functions. For more information about what they do, see the description of the equivalent C
function in the FORM S documentation:

make_form (type, width, height)
Create aform with given type, width and height. This returns a form object, whose methods are described below.

do_forms ()
The standard FORM S main loop. Returns a Python object representing the FORM S object needing interaction, or the special
value FL . EVENT.

check_forms ()
Check for FORMS events. Returns what do_forms above returns, or None if there is no event that immediately needs
interaction.

set_event_call_back (function)
Set the event callback function.

set_graphics_mode (rgbmode, doublebuffering)
Set the graphics modes.

get_rgbmode ()
Return the current rgb mode. Thisis the value of the C global variable £1_rgbmode.

show_message (strl, str2, str3)
Show adialog box with athree-line message and an OK button.

show_question (strl, str2, str3)
Show adialog box with athree-line message and Y ES and NO buttons. It returns 1 if the user pressed YES, 0 if NO.

show_choice (strd, str2, str3, butd [, but2, but3] )
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button clicked by the user
(1,2 0r3).

show_input (prompt, default)

217



Show adialog box with a one-line prompt message and text field in which the user can enter a string. The second argument
isthe default input string. It returns the string value as edited by the user.

show_file_selector (message, directory, pattern, default)
Show a dialog box in which the user can select afile. It returns the absol ute filename selected by the user, or None if the user
presses Cancel.

get_directory ()

get_pattern()

get_filename ()
These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show_file_selector cal.

gdevice (dev)

ungdevice (dev)

isqueued (dev)

gtest ()

gread ()

greset ()

genter (dev, val)

get_mouse ()

tie (button, valuatorl, valuator2)
These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to handle some GL
events yourself when using £1 . do_events. When a GL event is detected that FORMS cannot handle, £1.da forms ()
returns the special value FL . EVENT and you should call £1.gread () to read the event from the queue. Don't use the
equivalent GL functions!

color ()
mapcolor ()
getmcolor ()
See the description in the FORM S documentation of £1_color, £1 mapcolor and £1 getmcolor.

16.4.2 Form Objects

Form objects (returned by £1.make_form () above) have the following methods. Each method corresponds to a C function
whose name is prefixed with * £1_"; and whose first argument is aform pointer; please refer to the official FORMS documentation
for descriptions.

All the ‘add._..." functions return a Python object representing the FORMS object. Methods of FORMS objects are described
below. Most kinds of FORM S object also have some methods specific to that kind; these methods are listed here.

show_form (placement, bordertype, name)
Show the form.

hide_form()
Hide the form.

redraw_form()
Redraw the form.

set_form_position (X,Y)
Set the form’s position.

freeze_form()
Freeze the form.

unfreeze_form/()
Unfreeze the form.

activate_form/()
Activate the form.

deactivate_form()

218



Deactivate the form.

bgn_group ()

Begin anew group of objects; return a group object.
end_group ()

End the current group of objects.

find first ()
Find the first object in the form.

find last ()
Find the last object in the form.

add_box (type, X, ¥, w, h, name)
Add abox object to the form. No extra methods.

add_text (type, X, Y, w, h, name)
Add atext object to the form. No extra methods.

add_clock (type, X, Y, w, h, name)
Add aclock object to the form.
Method: get_-clock.

add_button (type, X, ¥y, w, h, name)
Add a button object to the form.
Methods: get_button, set_button.

add_lightbutton (type, X, Y, w, h, name)
Add alightbutton object to the form.
Methods: get_button, set_button.

add_roundbutton (type, X, ¥, w, h, hame)
Add aroundbutton object to the form.
Methods: get_button, set_button.

add_slider (type, X, ¥, W, h, name)
Add adlider object to the form.

Methods: set_slider_value,get_slider_value, set_slider_bounds, get_slider_bounds,
set_slider_return, set_slider_size, set_slider precision, set_slider_step.

add_valslider (type, X, ¥, W, h, name)
Add avalslider object to the form.

Methods: set_slider_value,get_slider_value, set_slider_bounds, get_slider_bounds,
set_slider_return, set_slider_size, set_slider precision, set_slider_step.

add_dial (type X, Y, w, h, name)
Add adial object to the form.

Methods: set_dial value,get_dial value, set_-dial_bounds, get_-dial_bounds.

add_positioner (type X, Y, w, h, name)
Add a positioner object to the form.

Methods: set_positioner_xvalue, set_positioner_yvalue, set_positioner_xbounds,
set_positioner_ybounds, get_positioner xvalue,get_positioner_yvalue,
get_positioner _xbounds, get_positioner_ybounds.

add_counter (type, X, Y, W, h, name)
Add a counter object to the form.

Methods: set_counter_value, get_counter_value, set_counter_bounds, set_counter_step,
set_counter_precision, set_counter_return.

add_input (type, X, y, w, h, name)
Add ainput object to the form.
Methods: set_input, get_input, set_input_color, set_input_return.

add-menu (type, X, Y, W, h, name)

219



Add amenu object to the form.
Methods: set_menu, get_menu, addto_menu.

add_choice (type, X, ¥y, w, h, name)
Add a choice object to the form.
Methods: set_choice, get_choice, clear_choice, addto_choice, replace_choice,delete_choice,
get_choice_text, set_choice_fontsize, set_choice_fontstyle.

add_browser (type, X, Y, w, h, name)
Add abrowser object to the form.
Methods: set_browser_topline, clear.-browser, add browser_line, addto_browser,
insert browser_line,delete browser_line, replace browser_line, get_browser_line,
load browser, get _browser_ maxline, select_browser_line, deselect browser_line,
deselect browser, isselected browser_line, get browser, set browser_fontsize,
set browser_fontstyle, set_browser_specialkey.

add_timer (type, X, Y, w, h, name)
Add atimer object to the form.
Methods: set_timer, get_timer.

Form objects have the following data attributes; see the FORM S documentation:

Name Type Meaning

window int (read-only) | GL window id

w float form width

h float form height

X float form x origin

% float formy origin

deactivated int nonzero if form is deactivated
visible int nonzero if formisvisible
frozen int nonzero if form isfrozen
doublebuf int nonzero if double buffering on

16.4.3 FORMSObjects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following methods:

set_call_back (function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback function will be called
with two arguments. the object, and the callback argument. (FORMS objects without a callback function are returned by
fl.do_forms () or £1.check_forms () when they need interaction.) Call this method without arguments to remove
the callback function.

delete_object ()
Delete the object.

show_object ()
Show the object.

hide_object ()
Hide the object.

redraw_object ()
Redraw the object.

freeze_ object ()
Freeze the object.

unfreeze_object ()
Unfreeze the object.

FORMS objects have these data attributes; see the FORM S documentation:

220



Name Type Meaning
objclass int (read-only) | object class
type int (read-only) | object type
boxtype int box type

X float x origin

y float y origin

w float width

h float height

coll int primary color
col2 int secondary color
align int alignment

lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) | (see FORMS docs)
focus int (read-only) | (see FORMS docs)
belowmouse | int(read-only) | (see FORMS docs)
frozen int (read-only) | (see FORMS docs)
active int (read-only) | (see FORMS docs)
input int (read-only) | (see FORMS docs)
visible int (read-only) | (see FORMS docs)
radio int (read-only) | (see FORMS docs)
automatic int (read-only) | (see FORMS docs)

16.5 Standard Module FL

This module defines symbolic constants needed to use the built-in module £1 (see above); they are equivalent to those defined in
the C header file ‘<forms.h>’ except that the name prefix ‘FI.’ is omitted. Read the module source for a complete list of the
defined names. Suggested use:

import f1l
from FL import *

16.6 Standard Module flp

This module defines functions that can read form definitions created by the ‘form designer’ (£design) program that comes with
the FORMS library (see module £1 above).

For now, seethefile‘£1p.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted herel

16.7 Built-in Module fm

This module provides access to the IRIS Font Manager library. It is available only on Silicon Graphics machines. See also: 4Sight
User's Guide, Section 1, Chapter 5: Using the IRIS Font Manager.

Thisisnot yet afull interface to the IRIS Font Manager. Among the unsupported features are: matrix operations; cache operations;
character operations (use string operations instead); some details of font info; individua glyph metrics; and printer matching.

It supports the following operations:

init ()

221



Initialization function. Calls fminit (). Itisnormally not necessary to call thisfunction, sinceit is called automatically the
first time the £m module isimported.

findfont (fontname)
Return afont handle object. Calls ftmfindfont (fontname) .

enumerate ()
Returns alist of available font names. Thisis an interfaceto fmenumerate ().

prstr (string)
Render a string using the current font (seethe set font () font handle method below). Calls fmprstxr (string) .

setpath (string)
Setsthe font search path. Calls fmsetpath (string). (XXX Does not work!?!)

fontpath ()
Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor)
Returns a handle for a scaled version of thisfont. Cals fmscalefont (fh, factor).

setfont ()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted. Calls
fmsetfont (th).

getfontname ()
Returns thisfont’s name. Calls fmget fontname (fh) .

getcomment ()
Returns the comment string associated with this font. Raises an exception if thereis none. Calls fmget comment (fh).

getfontinfo ()
Returns a tuple giving some pertinent data about thisfont. Thisis an interface to fmgetfontinfo (). The returned tuple
contains the following numbers: (printermatched, fixed width, xorig, yorig, xsize, ysize, height, nglyphs).

getstrwidth (string)
Returns the width, in pixels, of the string when drawn in thisfont. Calls fmgetstrwidth (fh, string).

16.8 Built-in Module gl

This module provides access to the Silicon Graphics Graphics Library. It is available only on Silicon Graphics machines.

Warning: Someillegal callsto the GL library cause the Python interpreter to dump core. In particular, the use of most GL callsis
unsafe before the first window is opened.

The module istoo large to document here inits entirety, but the following should help you to get started. The parameter conventions
for the C functions are translated to Python as follows:

e All (short, long, unsigned) int values are represented by Python integers.
¢ All float and double values are represented by Python floating point numbers. In most cases, Python integers are also allowed.
o All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

e All string and character arguments are represented by Python strings, for instance, winopen ('Hi There!’) and
rotate (900, ‘z’).

e All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an array argument
are omitted. For example, the C call

lmdef (deftype, index, np, props)

istranslated to Python as

222



lmdef (deftype, index, props)

e Output arguments are omitted from the argument list; they are transmitted as function return values instead. If more than
one value must be returned, the return value is atuple. If the C function has both aregular return value (that is not omitted
because of the previous rule) and an output argument, the return value comes first in the tuple. Examples: the C call

getmcolor (i, &red, &green, &blue)

istranslated to Python as

red, green, blue = getmcolor (i)

The following functions are non-standard or have special argument conventions:

varray (argument)
Equivalent to but faster than anumber of v3d () calls. The argument isalist (or tuple) of points. Each point must be atuple
of coordinates (x, y, z) or (X, Yy). Thepoints may be 2- or 3-dimensional but must all have the same dimension. Float
and int values may be mixed however. The points are aways converted to 3D double precision pointsby assumingz = 0.0
if necessary (as indicated in the man page), and for each point v3d () iscalled.

nvarray ()
Equivalent to but faster than a number of n3£ and v3£ calls. The argument is an array (list or tuple) of pairs of normals
and points. Each pair is a tuple of a point and a normal for that point. Each point or normal must be a tuple of coordinates
(X, y, 2z). Three coordinates must be given. Float and int values may be mixed. For each pair, n3f () iscalled for the
normal, and then v3 £ () iscalled for the point.

vnarray ()
Similar tonvarray () but the pairs have the point first and the normal second.

nurbssurface (sk, tk, ctl, sord, t_ord, type)
Defines a nurbs surface. The dimensions of ctl[]1[] are computed as follows: [len(sk) - sord],
[len(tk) - tord].

nurbscurve (knots, ctlpoints, order, type)
Defines anurbs curve. The length of ctlpointsis 1en (knots) - order.

pwlcurve (points, type)
Defines a piecewise-linear curve. pointsisalist of points. type must be N_ST.

pick(n)
select (n)
The only argument to these functions specifies the desired size of the pick or select buffer.

endpick ()

endselect ()
These functions have no arguments. They return a list of integers representing the used part of the pick/select buffer. No
method is provided to detect buffer overrun.

Hereisatiny but complete example GL program in Python:

223



import gl, GL, time

def main() :
gl.foreground ()
gl.prefposition (500, 900, 500, 900)
w = gl.winopen(’'CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color (GL.WHITE)
gl.clear()
gl.color (GL.RED)
gl.bgnline ()
gl.v2£(0.0, 0.0)
gl.v2f£(400.0, 400.0)
gl.endline ()
gl.bgnline ()
gl.v2£f(400.0, 0.0)
gl.v2£(0.0, 400.0)
gl.endline ()
time.sleep(5)

main ()

16.9 Standard ModulesGL and DEVICE

These modules define the constants used by the Silicon Graphics Graphics Library that C programmers find in the header files
‘<gl/gl.h>’ and‘<gl/device.h>'. Read the module source filesfor details.

16.10 Built-in Module imgfile

The imgfile module allows python programs to access SGI imglib imagefiles (also known as* . rgb’ files). Themoduleisfar from
complete, but is provided anyway since the functionality that there is is enough in some cases. Currently, colormap files are not
supported.

The module defines the following variables and functions:

error
This exception israised on al errors, such as unsupported file type, etc.

getsizes (file)
This function returns atuple (x, y, 2z) where x and y are the size of the image in pixels and z is the number of bytes per
pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

read (file)
This function reads and decodes the image on the specified file, and returnsit as a python string. The string has either 1 byte
greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is suitable to pass to
gl.lrectwrite, for instance.

readscaled (file x, y, filter [, blur] )
Thisfunctionisidentical toread but it returns animagethat is scaled to the given x and y sizes. If thefilter and blur parameters
are omitted scaling is done by simply dropping or duplicating pixels, so the result will be less than perfect, especially for
computer-generated images.
Alternatively, you can specify afilter to use to smoothen the image after scaling. Thefilter forms supported are ' impulse’,
'box’, 'triangle’, 'quadratic’ and 'gaussian’. If afilter is specified blur isan optional parameter specifying
the blurriness of thefilter. It defaultsto 1. 0.
readscaled makes no attempt to keep the aspect ratio correct, so that is the users' responsibility.

224



ttob (flag)
Thisfunction sets aglobal flag which defines whether the scan lines of the image are read or written from bottom to top (flag
is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default is zero.

write (file data, X, Y, 2)
This function writes the RGB or greyscale data in data to image file file. x and y give the size of theimage, zis 1 for 1 byte
greyscaleimages or 3 for RGB images (which are stored as 4 byte values of which only the lower three bytes are used). These
aretheformatsreturned by gl .1lrectread.

225



Chapter 17

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS operating system (versions 4 and
5; the latter is also known as Solaris version 2).

17.1 Built-in Module sunaudiodev

This module allows you to access the sun audio interface. The sun audio hardware is capable of recording and playing back audio
datain U-LAW format with a sample rate of 8K per second. A full description can be gotten with ‘man audio’.

The module defines the following variables and functions:

error
This exception israised on al errors. The argument is a string describing what went wrong.

open (mode)
This function opens the audio device and returns a sun audio device object. This object can then be used to do I/O on. The
mode parameter isone of ' r’ for record-only access, ' w’ for play-only access, ' rw’ for both and ' control’ for access
to the control device. Since only one processis alowed to have the recorder or player open at the sametimeitisagood idea
to open the device only for the activity needed. See the audio manpage for details.

17.1.1 Audio Device Objects

The audio device objects are returned by open define the following methods (except cont rol objectswhich only provide getinfo,
setinfo and drain):

close ()
This method explicitly closes the device. It is useful in situations where deleting the object does not immediately close it
since there are other references toit. A closed device should not be used again.

drain ()
This method waits until all pending output is processed and then returns. Calling this method is often not necessary: destroy-
ing the object will automatically close the audio device and thiswill do an implicit drain.

flush ()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due to buffering of
up to one second of sound).

getinfo ()
This method retrieves status information like input and output volume, etc. and returnsit in the form of an audio status object.
Thisobject has no methods but it contains anumber of attributes describing the current device status. The names and meanings
of the attributes are described in ‘ /usr/include/sun/audioio.h’ and in the audio man page. Member names are
dlightly different from their C counterparts. a status object is only asingle structure. Members of the p1lay substructure have

226



‘o_" prepended to their name and members of the record structure have ‘i ’. So, the C member play.sample rate is
accessed aso_sample_rate, record.gainasi-gain and monitor.gain plainly asmonitor_gain.

ibufcount ()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not block on aread
call of so many samples.

obufcount ()
This method returns the number of samples buffered on the playback side. Unfortunately, this number cannot be used
to determine a number of samples that can be written without blocking since the kernel output queue length seems to be
variable.

read (Size)
This method reads size samples from the audio input and returns them as a python string. The function blocks until enough
dataisavailable.

setinfo (status)
Thismethod sets the audio device status parameters. The status parameter is an device status object as returned by getinfo
and possibly modified by the program.

write (samples)
Writeis passed a python string containing audio samplesto be played. If thereis enough buffer space free it will immediately
return, otherwise it will block.

Thereis a companion module, SUNAUDIODEV, which defines useful symbolic constants like MIN. GAIN, MAX GAIN, SPEAKER,
etc. The names of the constants are the same names as used in the C include file ‘ <sun/audioio. h>’, with the leading string
‘AUDIO." stripped.

Useability of the control device is limited at the moment, since there is no way to use the “wait for something to happen” feature
the device provides.

227



Chapter 18

Undocumented M odules

Here's a quick listing of modules that are currently undocumented, but that should be documented. Feel free to contribute docu-
mentation for them! (The idea and most contents for this chapter were taken from a posting by Fredrik Lundh; | have revised some
modules’ status.)

18.1 Fundamental, and pretty straightforward to document

cPickle.c — mostly the same as pickle but no subclassing

cStringlO.c — mostly the same as Stringl O but no subclassing

18.2 Frameworks, somewhat harder to document, but well worth the effort

Tkinter.py — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh isworking on this one!
BaseHTTPServer.py — HTTP server base class

CGIHTTPServer.py — CGl-savvy HTTP Server

SimpleHTTPServer.py — Simple HTTP Server

18.3 Stuff useful to alot of people, including the CGI crowd

MimeWriter.py — Generic MIME writer
multifile.py — make each part of a multipart message “feel” like

fileinput.py — convenient loop over the linesin alist of input files.

18.4 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm”.
calendar.py — Calendar printing functions
ConfigParser.py — Parse afile of sectioned configuration parameters

cmp.py — Efficiently compare files

228



cmpcache.py — Efficiently compare files (uses statcache)
dircache.py — like os.listdir, but caches results

dircmp.py — class to build directory diff tools on

linecache.py — Cache lines from files (used by pdb)

pipes.py — Conversion pipeline templates (hmm)

popen2.py — improved popen, can read AND write simultaneously
statcache.py — Maintain a cache of file stats

colorsys.py — Conversion between RGB and other color systems
dbhash.py — (g)dbm-like wrapper for bsdhash.hashopen

mhlib.py — MH interface

pty.py — Pseudo terminal utilities

tty.py — Terminal utilities

cmd.py — build line-oriented command interpreters (used by pdb)
bdb.py — A generic Python debugger base class (used by pdb)

ihooks.py — Import hook support (for ni and rexec)

18.5 Parsing Python

(One could argue that these should all be documented together with the parser module.)
tokenize.py — regular expression that recognizes Python tokens; also contains helper code for colorizing Python source code.

pyclbr.py — Parse a Python file and retrieve classes and methods

18.6 Platform specific modules

ntpath.py — equivalent of posixpath on 32-bit Windows
dospath.py — equivalent of posixpath on MS-DOS

18.7 Code objectsand files, debugger etc.

compileall.py —force ”compilation” of all .py filesin adirectory

py-compile.py —"compile” a.py fileto a.pycfile

repr.py —Redo the ‘... (representation) but with limits on most sizes (used by pdb)
copy-reg.py — helper to provide extensibility for pickle/cPickle

18.8 Multimedia

audiodev.py — Playsaudio files
sunau.py — parse Sun and NeXT audio files

sunaudio.py — interpret sun audio headers

229



toaiff.py — Convert "arbitrary” sound filesto AIFF files
sndhdr.py — recognizing sound files
wave.py — parse WAVE files

whatsound.py — recognizing sound files

18.9 Oddities

These modules are probably aso obsolete, or just not very useful.
bisect.py — Bisection agorithms (this is actually useful at times)
dump.py — Print python code that reconstructs a variable

find.py —find files matching pattern in directory tree

fpformat.py — General floating point formatting functions — obsol ete
grep.py —grep

mutex.py —Mutual exclusion —for use with module sched
packmail.py — create a self-unpacking UN1x shell archive
poly.py — Polynomials

sched.py — event scheduler class

shutil.py — utility functions usable in a shell-like program

util.py — useful functions that don’t fit elsewhere

zmod.py — Compute properties of mathematical "fields’
tzparse.py — Parse a timezone specification (unfinished)

18.10 Obsolete

newdir.py — New dir() function (the standard dir() is now just as good)

addpack.py — standard support for " packages’ (use ni instead)

fmt.py — text formatting abstractions (too slow)

Para.py — helper for fmt.py

lockfile.py — wrapper around FCNTL file locking (use fentl.lockf/flock intead)

th.py — Print tracebacks, with a dump of local variables (use pdb.pm() or traceback.py instead)

codehack.py —extract function name or line number from afunction code object (these are now accessible as attributes: co.ca name,
func.func_name, co.co_firstlineno)

18.11 Extension modules

bsddbmodule.c — Interface to the Berkeley DB interface (yet another dom clone).
cursesmodule.c — Curses interface.
dbhashmodule.c — Obsolete; this functionality is now provided by bsddbmodule.c.

dimodule.c — A highly experimental and dangerous device for calling arbitrary C functions in arbitrary shared libraries.

230



newmodule.c — Tommy Burnette’'s ‘ new’ module (creates new empty objects of certain kinds) — dangerous.
nismodule.c — NIS (a.k.a. Sun’'s Yellow Pages) interface.

timingmodule.c — Measure time interval s to high resolution (obsolete — use time.clock() instead).
resource.c — Interface to getrusage() and friends.

stdwinmodule.c — Interface to STDWIN (an old, unsupported platform-independent GUI package). Obsolete; use Tkinter for a
platform-independent GUI instead.

Thefollowing are SGI specific:
clmodule.c — Interface to the SGI compression library.

svmodule.c — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

231



| ndex

.pythonrc.py
keyword, 57

operator, 3
__abs__ (in module operator), 27
__add__ (in modul e operator), 26
__and__ (in modul e operator), 27
_builtin__(built-in module), 58
__concat__ (in module operator), 27
_delitem__ (in module operator), 28
_delslice__ (in module operator), 28
_dict__(pickle protocal), 30
_div__ (in module operator), 26
_getinitargs__ (copy protocol), 33
_getinitargs__ (pickle protocal), 30
__getitem_ (in module operator), 27
_getslice__ (in module operator), 28
_getstate__ (copy protocol), 33
_getstate__ (pickle protocal), 30
_import__ (built-in function), 13
_init__ (_-init__ method), 106
__init.__(in module xdrlib), 172
__init__(pickle protocal), 30
__inv__(in module operator), 27
__1shift__(in module operator), 27
_main__ (built-in module), 58
__mod__ (in modul e operator), 26
_mul__ (in module operator), 26
_neg__ (in module operator), 27
__or__(in module operator), 27
__pos__ (in module operator), 27
__repeat__ (in module operator), 27
_rshift__(in module operator), 27
__setitem__ (in module operator), 28
__setslice__ (in module operator), 28
__setstate__ (copy protocol), 33
__setstate__ (pickle protocal), 30
__sub__ (in module operator), 26
_exit (in module posix), 111
—quit (Application method), 209
UNIX

file control, 120

1/0O control, 120
ABC

language, 3

1421
RFC, 175
1521

232

RFC, 175

a2b_base64 (in module binascii), 171

a2b_hgx (in module binascii), 171

a2b_uu (in module binascii), 171

Abort (TCP stream method), 206

Abort (connection object method), 197

abort (FTP object method), 155

abs (built-in function), 14

abs (in module operator), 27
AbstractFormatter (in module formatter), 166
AbstractWriter (in module formatter), 167
accept (connection object method), 196
accept (socket method), 102

acos (in module cmath), 77

acos (in module math), 76

acosh (in module cmath), 77

acquire (lock method), 105

activate_form (form object method), 218
ActiveOpen (TCP stream method), 205

add (Stats method), 137

add (in module audioop), 183

add (in modul e operator), 26

add_box (form object method), 219

add _browser (form object method), 220
add-button (form object method), 219
add_choice (form object method), 220
add_clock (form object method), 219
add_counter (form object method), 219
add_dial (form object method), 219
add_flowing.data (formatter object method), 165
add_hor_rule (formatter object method), 165
add_input (form object method), 219
add-label_data (formatter object method), 165
add_lightbutton (form object method), 219
add-line break (formatter object method), 165
add-literal_data (formatter object method), 165
add_menu (form object method), 219
add_positioner (form object method), 219
add_roundbutton (form object method), 219
add_slider (form object method), 219
add_text (form object method), 219
add-timer (form object method), 220
add_valslider (form object method), 219
addcallback (CD parser object method), 216
address_family (SocketServer protocol), 176
AddrToName (in module macdnr), 198
AddrToStr (in module macdnr), 198

adler32 (in module zlib), 107



adpcm21lin (in module audioop), 183
adpcm321in (in module audioop), 183
AEServer (in module MiniAEFrame), 211
AF_INET (in module socket), 100
AF_UNIX (in module socket), 100
aifc (aifc object method), 188
aifc (standard module), 186
aiff (aifc object method), 188
AL (standard module), 214
al (built-in module), 212
alarm (in module signa), 99
all_errors (in module ftplib), 154
allocate_lock (in module thread), 105
allowremoval (CD player object method), 215
altsep (inmodule os), 84
altzone (in module time), 85
amtUnackedData (TCP status attribute), 206
amtUnreadData (TCP status attribute), 206
anchor_bgn (HTMLParser method), 162
anchor_end (HTMLParser method), 162
and

operator, 3
and. (in module operator), 27
anydbm (standard module), 106
append (in module array), 81
append (list method), 7
Application (in module FrameWork), 208
apply (built-in function), 14
argv (in module sys), 22
arithmetic, 4

ArithmeticError (built-in exception base class), 11

array (built-in module), 73, 80
array (in module array), 81
arrays, 80
article (NNTP object method), 158
AS_Is (in module formatter), 165
as_pathname (FSSpec object method), 200
as_tuple (FSSpec object method), 201
asctime (in module time), 85
asin (in module cmath), 77
asin (in module math), 76
asinh (in module cmath), 78
AskString (in module EasyDiaogs), 208
AskYesNoCancel (in module EasyDialogs), 208
asr (TCP stream attribute), 205
asr (UDP stream attribute), 206
assert

statement, 11
assert_line_data (formatter object method), 166
AssertionError (built-in exception), 11
assignment

dice, 7

subscript, 7
ast2list (in module parser), 39
ast2tuple (in module parser), 40
asyncevents (Application method), 209
atan (in module cmath), 78
atan (in module math), 76

233

atan2 (in module math), 76

atanh (in module cmath), 78

atime (in module cd), 215

atof (in module locale), 96

atof (in module string), 60

atoi (in module locale), 96

atoi (in module string), 60

atol (in module string), 60
AttributeError (built-in exception), 11
audio (in module cd), 215

audioop (built-in module), 183
Available (in module macspeech), 207
available (in module ctb), 196

avg (in module audioop), 183

avgpp (in module audioop), 183

b2a_base64 (in module binascii), 171
b2a_hgx (in module binascii), 171
b2a_uu (in module binascii), 171
base-64

encoding, 175
base64 (standard module), 175
basename (in module posixpath), 115
Bastion (in module Bastion), 182
Bastion (standard module), 182
bdb (in module pdb), 129
bestreadsize (CD player object method), 215
betavariate (in module random), 79
bgn._group (form object method), 219
bias (in module audioop), 184
binary (mpz method), 192
BINARY.ADD (byte code insns), 52
BINARY_AND (byte codeinsns), 53
BINARY.DIVIDE (byte codeinsns), 52
BINARY_LSHIFT (byte codeinsns), 52
BINARY _MODULO (byte code insns), 52
BINARY MULTIPLY (byte codeinsns), 52
BINARY.OR (byte codeinsns), 53
BINARY_POWER (byte code insns), 52
BINARY_RSHIFT (byte codeinsns), 52
BINARY_SUBSCR (byte code insns), 52
BINARY_SUBTRACT (byte code insns), 52
BINARY_XOR (byte codeinsns), 53
binascii (built-in module), 171
bind (socket method), 102
binhex (in module binhex), 170
binhex (standard module), 170
bit-string

operations, 5
BLOCKSIZE (in module cd), 214
body (NNTP object method), 158
Boolean

operations, 2, 3

type, 2
Break (connection object method), 197
BREAK_LOOP (byte code insns), 54
buffer_info (in module array), 81
BUFSIZ (in module macostools), 204



BUILD_CLASS (byte code insns), 54
BUILD_LIST (byte codeinsns), 54
BUILD_MAP (byte code insns), 55
BUILD_SLICE (byte codeinsns), 56
BUILD_TUPLE (byte code insns), 54
built-in

exceptions, 2

functions, 2

types, 2
builtin module_names (in module sys), 22
BuiltinFunctionType (in module types), 25
BuiltinMethodType (in moduletypes), 25
Busy (in module macspeech), 207
byteswap (in module array), 81

C

structures, 73
C_BUILTIN (in module imp), 35
C_CBREAK (in module macconsole), 197
C_ECHO (in module macconsole), 197
C_EXTENSION (in moduleimp), 35
C_NOECHO (in module macconsole), 197
C_RAW (in module macconsole), 197
calcsize (in module struct), 73
CALL_FUNCTION (byte code insns), 56
callable (built-in function), 14
callback (AEServer method), 211
callback (connection object attribute), 196
capitalize (in module string), 60
capwords (in module regsub), 72
capwords (in module string), 60
casefold (in module regex), 71
catalog (in module cd), 215
cd (built-in module), 214
CDROM (in module cd), 214
ceil (built-in function), 4
ceil (in module math), 76
center (in module string), 61
Cal

protocol, 145
cgi (standard module), 145
chaining

comparisons, 3
CHAR_MAX (in module locale), 97
CHARSET (in module mimify), 178
chdir (in module posix), 111
check_forms (in modulefl), 217
chmod (in module posix), 111
choice (in module rand), 80
choice (in module whrandom), 78
Choose (connection object method), 197
choose* (in module ctb), 196
choose_boundary (in module mimetools), 169
chown (in module posix), 111
chr (built-in function), 14
cipher

DES, 191

Enigma, 193

234

IDEA, 191
ClassType (in module types), 25
clear_cache (in module regsub), 72
cleol (console window method), 198
cleos (console window method), 198
clock (in module time), 85
Close (TCP stream method), 206
Close (connection object method), 196
Close (in module macdnr), 198
close (CD player object method), 215
close (FTP object method), 156
close (SGMLParser method), 160
close (Window method), 210
close (XMLParser method), 163
close (aifc object method), 187, 188
close (audio device method), 226
close (file method), 9
close (in module posix), 111
close (socket method), 102
closelog (in module syslog), 126
closeport (audio port object method), 213
cmath (built-in module), 77
cmAttn (in module ctb), 196
cmCntl (in module ctb), 196
cmd (in module pdb), 129
cmData (in module ctb), 196
cmFlagsEOM (in module ctb), 196
CMNew (in module ctb), 196
cmp (built-in function), 14
cmp_op (in module dis), 51
cmStatus* (in module ctb), 196
cname (dnr result object attribute), 199
code

object, 9, 33
code (standard module), 48
CodeType (in module types), 25
coerce (built-in function), 14
color (in modulefl), 218
commands (standard module), 127
commonpref ix (in module posixpath), 115
COMPARE_OP (byte code insns), 55
comparing

objects, 3
comparison

operator, 3
comparisons

chaining, 3
compile (built-in function), 9, 14
compile (inmodulere), 64
compile (in module regex), 70
compile_command (in module code), 48
compileast (in module parser), 40
complex (built-in function), 4, 14
complex number

literals, 4

type, 4
compress (in module jpeg), 188
compress (in module zlib), 107, 108



compressobj (in module zlib), 107
concat (in module operator), 27
concatenation

operation, 5
configuration

file, path, 56
connect (FTP object method), 154
connect (HTTP method), 152
connect (socket method), 102
connect_ex (socket method), 102
control (in module cd), 215
ConversionError (in module xdrlib), 174
conversions

numeric, 4
copen (in module macconsole), 197
copy (copy function), 32
copy (in module macostools), 204
copy (md5 method), 192
copy (standard module), 32
copybinary (in module mimetools), 169
copyliteral (in module mimetools), 169
copytree (in module macostools), 204
cos (in module cmath), 78
cos (in module math), 76
cosh (in module cmath), 78
cosh (in module math), 76
count (in module string), 60
count (list method), 7
CountVoices (in module macspeech), 207
cpuType (dnr result object attribute), 199
crec32 (in module zlib), 107
crc_hgx (in module binascii), 171
createparser (in module cd), 214
Creator (FInfo object attribute), 201
crop (in module imageop), 186
cross (in module audioop), 184
crypt (built-in module), 117
crypt (in module crypt), 117
crypt(1), 194
crypt(3), 117
cryptography, 191
ctb (built-in module), 195
ctime (in module time), 85
cunifvariate (in module random), 79
curdir (in module os), 84
cwd (FTP object method), 155
C

language, 3, 4

data (FSSpec object attribute), 200
data (alias object attribute), 201
DATASIZE (in module cd), 214
date (NNTP object method), 159
daylight (in module time), 85
dbm (built-in module), 32, 117, 118

deactivate_form (form object method), 218

debugger, 24
debugging, 129

DebugStr (in module MacOS), 203
decode (in module base64), 175
decode (in module mimetools), 169
decode (in module quopri), 175
decode (in module uu), 171
decodestring (in module base64), 175
decompress (in module jpeg), 188
decompress (in module zlib), 108
decompressobj (in module zlib), 108
decrypt (rotor method), 193
decryptmore (rotor method), 193
deepcopy (copy function), 32
defpath (in module 0s), 84
del

statement, 7
delattr (built-infunction), 14
DELETE_ATTR (byte code insns), 54
DELETE_FAST (byte code insns), 55
DELETE_GLOBAL (byte code insns), 54
DELETE_NAME (byte code insns), 54
delete_object (FORMS object method), 220
DELETE_SLICE+0 (byte codeinsns), 53
DELETE_SLICE+1 (byte codeinsns), 53
DELETE_SLICE+2 (byte codeinsns), 53
DELETE_SLICE+3 (byte codeinsns), 53
DELETE_SUBSCR (byte code insns), 53

deleteparser (CD parser object method), 216

delitem (in module operator), 28
delslice (in module operator), 28
DES

cipher, 191
DEVICE (standard module), 224
DialogWindow (in module FrameWork), 209
dictionary

type, 7

type, operations on, 7
DictionaryType (in module types), 25
DictType (in module types), 25
digest (md5 method), 192
digits (datain module string), 59
dir (FTP object method), 155
dir (built-in function), 15
directory

site-packages, 56

site-python, 56
dis (in module dis), 51
dis (standard module), 50
disassemble (in module dis), 51
disco (in moduledis), 51
distb (in module dis), 51
dither2grey?2 (in moduleimageop), 186
dither2mono (in module imageop), 186
div (in module operator), 26
division

integer, 4

long integer, 4
divm (in module mpz), 192
divmod (built-in function), 15



do_activate (ScrolledWindow method), 210
do_activate (Window method), 210

do_char (Application method), 209
do_contentclick (Window method), 210
do_controlhit (Controlswindow method), 210
do_controlhit (ScrolledWindow method), 211
do_dialogevent (Application method), 209
do_forms (in modulefl), 217

do_itemhit (DialogWindow method), 211
do_postresize (ScrolledWindow method), 211
do_postresize (Window method), 210
do_update (Window method), 210

done (in module xdrlib), 173

drain (audio device method), 226

dumbdbm (standard module), 106

DumbWriter (in module formatter), 167

dump (in module marshal), 34

dump (in module pickle), 31

dumps (in module marshal), 34

dumps (in module pickle), 31

dup (in module posix), 111

dup (posixfile method), 122

dup2 (in module posix), 111

dup?2 (posixfile method), 122

DUP_TOP (byte code insns), 52

e (in module cmath), 78

e (in module math), 77

E2BIG (in module errno), 89

EACCES (in module errno), 89
EADDRINUSE (in module errno), 93
EADDRNOTAVATIL (in module errno), 93
EADV (in module errno), 91
EAFNOSUPPORT (in module errno), 93
EAGAIN (in module errno), 89
EALREADY (in module errno), 93
EasyDialogs (standard module), 207
EBADE (in module errno), 91

EBADF (in module errno), 89

EBADFD (in module errno), 92
EBADMSG (in module errno), 92
EBADR (in module errno), 91
EBADRQC (in module errno), 91
EBADSLT (in module errno), 91
EBFONT (in module errno), 91

EBUSY (in module errno), 89

ECHILD (in module errno), 89
echo2printer (console window method), 198
ECHRNG (in module errno), 90

ECOMM (in module errno), 91
ECONNABORTED (in module errno), 93
ECONNREFUSED (in module errno), 93
ECONNRESET (in module errno), 93
EDEADLK (in module errno), 90
EDEADLOCK (in module errno), 91
EDESTADDRREQ (in module errno), 92
EDOM (in module errno), 90

EDOTDOT (in module errno), 92

236

EDQUOT (in module errno), 94
EEXIST (in module errno), 89
EFAULT (in module errno), 89
EFBIG (in module errno), 89
EHOSTDOWN (in module errno), 93
EHOSTUNREACH (in module errno), 93
EIDRM (in module errno), 90
EILSEQ (in module errno), 92
EINPROGRESS (in module errno), 94
EINTR (in module errno), 88
EINVAL (in module errno), 89
EIO (in module errno), 88
EISCONN (in module errno), 93
EISDIR (in module errno), 89
EISNAM (in module errno), 94
eject (CD player object method), 215
EL2HLT (in module errno), 91
EL2NSYNC (in module errno), 90
EL3HLT (in module errno), 90
EL3RST (in module errno), 90
ELIBACC (in module errno), 92
ELIBBAD (in module errno), 92
ELIBEXEC (in module errno), 92
ELIBMAX (in module errno), 92
ELIBSCN (in module errno), 92
Ellinghouse, Lance, 193
ELNRNG (in module errno), 90
ELOOP (in module errno), 90
EMFILE (in module errno), 89
EMLINK (in module errno), 90
Empty (in module Queue), 106
empty (empty method), 106
EMSGSIZE (in module errno), 92
EMULTIHOP (in module errno), 92
ENAMETOOLONG (in module errno), 90
ENAVAIL (in module errno), 94
encode (in module base64), 175
encode (in module mimetools), 169
encode (in module quopri), 175
encode (in module uu), 170
encodestring (in module base64), 175
encoding

base-64, 175

quoted printable, 175
encrypt (rotor method), 193
encryptmore (rotor method), 193
end (regex attribute), 67
END_FINALLY (byte code insns), 54
end_group (form object method), 219
end_paragraph (formatter object method), 165
endheaders (HTTP method), 153
endpick (inmodule gl), 223
endpos (regex attribute), 68
endselect (in module gl), 223
ENETDOWN (in module errno), 93
ENETRESET (in module errno), 93
ENETUNREACH (in module errno), 93
ENFILE (in module errno), 89



Enigma

cipher, 193
ENOANO (in module errno), 91
ENOBUF'S (in module errno), 93
ENOCST (in module errno), 91
ENODATA (in module errno), 91
ENODEV (in module errno), 89
ENOENT (in module errno), 88
ENOEXEC (in module errno), 89
ENOLCK (in module errno), 90
ENOLINK (in module errno), 91
ENOMEM (in module errno), 89
ENOMSG (in module errno), 90
ENONET (in module errno), 91
ENOPKG (in module errno), 91
ENOPROTOOPT (in module errno), 92
ENOSPC (in module errno), 89
ENOSR (in module errno), 91
ENOSTR (in module errno), 91
ENOSYS (in module errno), 90
ENOTBLK (in module errno), 89
ENOTCONN (in module errno), 93
ENOTDIR (in module errno), 89
ENOTEMPTY (in module errno), 90
ENOTNAM (in module errno), 94
ENOTSOCK (in module errno), 92
ENOTTY (in module errno), 89
ENOTUNIQ (in module errno), 92
enumerate (in module fm), 222
environ (datain module posix), 111
ENXIO (in module errno), 88
EOFError (built-in exception), 12
EOPNOTSUPP (in module errno), 93
EOVERFLOW (in module errno), 92
EPERM (in module errno), 88
EPFNOSUPPORT (in module errno), 93
EPIPE (in module errno), 90
EPROTO (in module errno), 91
EPROTONOSUPPORT (in module errno), 93
EPROTOTYPE (in module errno), 92
ERANGE (in module errno), 90
EREMCHG (in module errno), 92
EREMOTE (in module errno), 91
EREMOTEIO (in module errno), 94
ERESTART (in module errno), 92
EROFS (in module errno), 90
errno (standard modul€), 88
ERROR (in module cd), 215
Error (in module MacOS), 203
Error (in module binascii), 171
Error (in modulelocale), 97
Error (in module xdrlib), 173
error (exception in module posix), 111
error (in module audioop), 183
error (in module cd), 214
error (in module cth), 196
error (in module dom), 118
error (in module gdbm), 118

237

error (in module imageop), 186
error (in module imdfile), 224
error (in module re), 66
error (in module regex), 71
error (in module resource), 123
error (in module rghimg), 189
error (in module select), 104
error (in module socket), 100
error (in module struct), 73
error (in module sunaudiodev), 226
error (in module thread), 105
error_perm (in module ftplib), 154
error_perm (in module nntplib), 157
error_proto (in module ftplib), 154
error_proto (in module nntplib), 157
error_reply (in module ftplib), 154
error_reply (in module nntplib), 157
error_temp (in module ftplib), 154
error_temp (in module nntplib), 157
escape (in module cgi), 148
escape (in modulere), 65
ESHUTDOWN (in module errno), 93
ESOCKTNOSUPPORT (in module errno), 93
ESPIPE (in module errno), 90
ESRCH (in module errno), 88
ESRMNT (in module errno), 91
ESTALE (in module errno), 94
ESTRPIPE (in module errno), 92
ETIME (in module errno), 91
ETIMEDOUT (in module errno), 93
ETOOMANYREFS (in module errno), 93
ETXTBSY (in module errno), 89
EUCLEAN (in module errno), 94
EUNATCH (in module errno), 90
EUSERS (in module errno), 92
eval (built-in function), 9, 15, 60
EWOULDBLOCK (in module errno), 90
exc-info (in module sys), 22
exc_traceback (in module sys), 22
exc_type (in module sys), 22
exc-value (in module sys), 22
except

statement, 11
Exception (built-in exception base class), 11
exceptions

built-in, 2
exchange (dnr result object attribute), 199
EXDEV (in module errno), 89
exec

statement, 9
exec_prefix

keyword, 56
exec_prefix (in module sys), 22
EXEC_STMT (byte code insns), 54
execfile (built-in function), 15
execl (in module 0s), 84
execle (in module os), 84
execlp (in module os), 84



execv (in module posix), 111

execve (in module posix), 111

execvp (in module os), 84

execvpe (in module 0s), 84

EXFULL (in module errno), 91

exists (in module posixpath), 115
exit (in module sys), 22

exit (in module thread), 105
exit_thread (in module thread), 105
exitfunc (in module sys), 23

exp (in module cmath), 78

exp (in module math), 76

expandtabs (in module string), 60
expanduser (in module posixpath), 115
expandvars (in module posixpath), 116
expovariate (in module random), 79
expr (in module parser), 39
extract_tb (in module traceback), 28

fabs (in module math), 76
fase 2
FCNTL (standard module), 121
fentl (built-in module), 9, 120
fentl (in module struct), 120
fdopen (in module posix), 111
feed (SGMLParser method), 160
feed (XMLParser method), 163
file

path configuration, 56

temporary, 88
file (console window attribute), 198
file (posixfile method), 122
file control

UNIX, 120
file name

temporary, 88
file object

posix, 121
fileno (SocketServer protocol), 176
fileno (file method), 9
fileno (socket method), 102
fileopen (in module posixfile), 121
FileType (in module types), 25
filter (built-in function), 15
find (in module string), 60
find_first (form object method), 219
find_last (form object method), 219
find module (in moduleimp), 34

FindApplication (in module macfs), 200

findertools (standard module), 204
findfactor (in module audioop), 184
findfit (in module audioop), 184
FindFolder (in module macfs), 200
findfont (in module fm), 222
findmatch (in module mailcap), 174
findmax (in module audioop), 184
FInfo (in module macfs), 200

finish (SocketServer protocol), 177

238

finish request (SocketServer protocol), 176
firstkey (in module gdbm), 118
FL (standard module), 221
£1 (built-in module), 217
Flags (FInfo object attribute), 201
flags (posixfile method), 122
flags (regex attribute), 67
flattening

objects, 29
Fldr (FInfo object attribute), 202
float (built-in function), 4, 16
floating point

literals, 4

type, 4
FloatingPointError (built-in exception), 12
FloatType (in module types), 25
flock (in module struct), 120
floor (built-in function), 4
floor (in module math), 77
f1p (standard module), 221
flush (audio device method), 226
flush (file method), 9
f£lush (in module zlib), 108
flush (writer object method), 166

flush_softspace (formatter object method), 165

fm (built-in module), 221
fmod (in module math), 77
fnmatch (in module fnmatch), 95
fnmatch (standard module), 95
fnmatchcase (in module fnmatch), 95
fontpath (in module fm), 222
fopen (in module macconsole), 197
FOR_LOOP (byte code insns), 55
fork (in module posix), 111
format (in module local€), 96
formatter, 162
formatter (HTMLParser method), 162
formatter (standard module), 162, 164
fp (in module rfc822), 169
frame

object, 100
FrameType (in module types), 25
FrameWork (standard module), 208
freeze_form (form object method), 218
freeze_object (FORMS object method), 220
frexp (in module math), 77
fromfd (in module socket), 101
fromfile (in module array), 81
fromlist (in module array), 81
fromstring (in module array), 81
FSSpec (in module macfs), 200
fstat (in module posix), 111
FTR 151
FTP (in module ftplib), 154
ftplib (standard module), 153
ftruncate (in module posix), 112
full (full method), 106
func_code (dictionary method), 9



functions
built-in, 2
FunctionType (in module types), 25

gamma (in module random), 79

gauss (in module random), 79

gcd (in module mpz), 192

gcdext (in module mpz), 192

gdbm (built-in module), 32, 117, 118

get (get method), 106

get buffer (in module xdrlib), 172, 173
get_directory (in modulefl), 218
get_filename (in modulefl), 218

get_ident (in module thread), 105
get_magic (in module imp), 34

get_mouse (in module fl), 218

get_nowait (get_nowait method), 106
get_pattern (inmodulefl), 218
get_position (in module xdrlib), 173
get_request (SocketServer protocol), 176
get_rgbmode (in modulefl), 217
get_soundex (in module soundex), 75
get_suffixes (in moduleimp), 34
get_syntax (in module regex), 71
getabouttext (Application method), 209
getaddr (in module rfc822), 168
getaddrlist (in module rfc822), 168
getallmatchingheaders (in module rfc822), 168
getattr (built-in function), 16

getcaps (in module mailcap), 174
getchannels (audio configuration object method), 213
getcomment (font handle method), 222
getcompname (aifc object method), 187
getcomptype (afc object method), 187
GetConfig (connection object method), 196
getconfig (audio port object method), 213
GetCreatorType (FSSpec object method), 201
getcwd (in module posix), 112

getdate (in module rfc822), 169

getdate_tz (in module rfc822), 169
GetDates (FSSpec object method), 201
GetDirectory (in module macfs), 200
getegid (in module posix), 112
getencoding (mimetool.Message method), 170
GetErrorString (in module MacOS), 203
geteuid (in module posix), 112

get£d (audio port object method), 213

getfile (HTTP method), 153

getfillable (audio port object method), 213
getfilled (audio port object method), 213
getfillpoint (audio port object method), 213
GetFInfo (FSSpec object method), 201
getfirstmatchingheader (in module rfc822), 168
getfloatmax (audio configuration object method), 213
getfontinfo (font handle method), 222
getfontname (font handle method), 222
getframerate (aifc object method), 187
GetGender (voice object method), 207

239

getgid (in module posix), 112

getgrall (in module grp), 117

getgrgid (in module grp), 117

getgrnam (in module grp), 117

getheader (in module rfc822), 168
gethostbyaddr (in module socket), 101
gethostbyname (in module socket), 101
gethostname (in module socket), 101
GetIndvoice (in module macspeech), 207
GetInfo (aiasobject method), 201

getinfo (audio device method), 226

getitem (in module operator), 27
getmaintype (mimetool.Message method), 170
getmark (aifc object method), 187
getmarkers (aifc object method), 187
getmcolor (in modulefl), 218
getnchannels (aifc object method), 187
getnframes (aifc object method), 187

getopt (standard module), 87

getoutput (in module commands), 128
getpagesize (in module resource), 125
getparam (mimetool.Message method), 170
getparams (afc object method), 187
getparams (in module a), 212
getpeername (socket method), 102

getpgrp (in module posix), 112

getpid (in module posix), 112

GetPitch (speech channel object method), 207
getplist (mimetool.Message method), 169
getppid (in module posix), 112
getprotobyname (in module socket), 101
getpwall (in module pwd), 117

getpwnam (in module pwd), 117

getpwuid (in module pwd), 117
getqueuesize (audio configuration object method), 212
GetRate (speech channel object method), 207
getrawheader (in module rfc822), 168
getreply (HTTP method), 153

getrlimit (in module resource), 123
getrusage (in module resource), 124
getsampfmt (audio configuration object method), 213
getsample (in module audioop), 184
getsampwidth (aifc object method), 187
getscrollbarvalues (ScrolledWindow method), 210
getservbyname (in module socket), 101
getsignal (in module signal), 99

getsizes (in module imdfile), 224

getslice (in module operator), 28
GetSockName (TCP stream method), 205
getsockname (socket method), 102
getsockopt (socket method), 102
getstatus (CD player object method), 215
getstatus (audio port object method), 213
getstatus (in module commands), 128
getstatusoutput (in module commands), 127
getstrwidth (font handle method), 222
getsubtype (mimetool.Message method), 170
gettrackinfo (CD player object method), 215



gettype (mimetool.Message method), 170
getuid (in module posix), 112
getwelcome (FTP object method), 154
getwelcome (NNTP object method), 157

getwidth (audio configuration object method), 213

givenpat (regex attribute), 72

GL (standard module), 224

gl (built-in module), 222

glob (in module glob), 94

glob (standard module), 94

globals (built-in function), 16

gmt ime (in moduletime), 85

Gopher, 151

gopherlib (standard module), 156
gotoxy (console window method), 198
grey22grey (in module imageop), 186
grey2grey?2 (in module imageop), 186
grey2grey4 (in module imageop), 186
grey2mono (in module imageop), 186
grey42grey (in module imageop), 186
group (NNTP object method), 158
group (regex attribute), 67

group (regex method), 71
groupindex (regex attribute), 67, 72
groups (regex éttribute), 67

grp (built-in module), 117

gsub (in module regsub), 72

gzip (built-in module), 108

handle (SocketServer protocol), 177
handle_cdata (XMLParser method), 164
handle_charref (SGMLParser method), 161
handle_charref (XMLParser method), 163
handle_comment (SGMLParser method), 161
handle_comment (XMLParser method), 164
handle_data (SGMLParser method), 161
handle_data (XMLParser method), 163
handle_endtag (SGMLParser method), 161
handle_endtag (XMLParser method), 163
handle_entityref (SGMLParser method), 161
handle_entityref (XMLParser method), 163
handle_error (SocketServer protocol), 176
handle_image (HTMLParser method), 162
handle_proc (XMLParser method), 164
handle_request (SocketServer protocol), 176
handle_special (XMLParser method), 164
handle_starttag (SGMLParser method), 160
handle_starttag (XMLParser method), 163
HandleEvent (in module MacOS), 203
has_key (dictionary method), 7

hasattr (built-in function), 16

hascompare (in module dis), 51

hasconst (in module dis), 51

hash (built-in function), 16

hasjabs (inmodule dis), 51

hasjrel (inmoduledis), 51

haslocal (in moduledis), 51

hasname (in module dis), 51

240

head (NNTP object method), 158
headers

MIME, 145
headers (in module rfc822), 169
help (NNTP object method), 158
hex (built-in function), 16
hexadecimal

literals, 4
hexbin (in module binhex), 170
hexdigits (datain module string), 59
hide (console window method), 198
hide_form (form object method), 218

hide_object (FORMS object method), 220

HInfo (in module macdnr), 199
HTML, 151, 162

htmllib (standard module), 151, 160, 162

HTMLParser (in module htmllib), 162
htonl (in module socket), 101
htons (in module socket), 102
HTTPR, 151, 152
protocol, 145
httplib (standard module), 152
hypertext, 162
hypot (in module math), 77

1/O control

UNIX, 120

Posix, 119, 120

tty, 119, 120
ibufcount (audio device method), 227
1C (in moduleic), 202
ic (built-in module), 202
id (built-in function), 16
IDEA

cipher, 191
ident (in module cd), 215
Idle (connection object method), 197
idle (Application method), 209
if

statement, 2
ignore (Stats method), 138
ihave (NNTP object method), 159
ihooks (standard module), 13
imageop (built-in module), 186
imgfile (built-in module), 224
imghdr (standard module), 189
imp (built-in module), 13, 34
import, 34
import

statement, 13
IMPORT_FROM (byte code insns), 55
IMPORT_NAME (byte code insns), 55
ImportError (built-in exception), 12
in

operator, 3, 5
INADDR_* (in module socket), 101
Incomplete (in module binascii), 171
index (in module cd), 215



index (in module string), 60
index (list method), 7
IndexError (built-in exception), 12
init (in module fm), 221
init_builtin (inmoduleimp), 35
init_frozen (in moduleimp), 35
input (built-in function), 16
insert (in module array), 82
insert (list method), 7
installaehandler (AEServer method), 211
InstanceType (in module types), 25
int (built-in function), 4, 16
integer

division, 4

division, long, 4

literals, 4

literals, long, 4

type, 4

type, long, 4

types, 4

types, operations on, 5
intern (built-in function), 16
Internet, 144
IntType (in module types), 24
inv (in module operator), 27
inverse (console window method), 198
IOCTL (standard module), 121
ioctl (in module struct), 120
IOError (built-in exception), 12
ip0 (dnr result object attribute), 199
ipl (dnr result object attribute), 199
ip2 (dnr result object attribute), 199
ip3 (dnr result object attribute), 199
IP_* (in module socket), 101
IPAddr (in module mactcp), 205
IPPORT_* (in module socket), 101
IPPROTO_* (in module socket), 101
is

operator, 3
is not

operator, 3
is builtin (in moduleimp), 36
is_frozen (in module imp), 36
isabs (in module posixpath), 116
isatty (file method), 9
isdir (in module posixpath), 116
isdone (TCP stream method), 205
isdone (dnr result object method), 199
ISEOF (in module token), 48
isexpr (in module parser), 40
isfile (in module posixpath), 116
isinstance (built-in function), 16
iskeyword (in module token), 48
islink (in module posixpath), 116
ismount (in module posixpath), 116
ISNONTERMINAL (in module token), 48
isqueued (in modulefl), 218
isreadable (PrettyPrinter method), 50

241

isreadable (in module pprint), 49
isrecursive (PrettyPrinter method), 50
isrecursive (in module pprint), 50
issubclass (built-in function), 17
issuite (in module parser), 40
ISTERMINAL (in module token), 48
itemsize (in module array), 81

join (in module posixpath), 116

join (in module string), 61
joinfields (in module string), 61
jpeg (built-in module), 188
JUMP_ABSOLUTE (byte code insns), 55
JUMP_FORWARD (byte code insns), 55
JUMP_IF_FALSE (byte code insns), 55
JUMP_IF_TRUE (byte code insns), 55

KeyboardInterrupt (built-in exception), 12
KeyError (built-in exception), 12
keys (dictionary method), 7
keyword
.pythonrc.py, 57
exec_prefix, 56
prefix, 56
sys.exec_prefix, 56
sys.prefix, 56
keyword (standard module), 48
kill (in module posix), 112

LambdaType (in module types), 25
language

ABC, 3

C 34
last (NNTP object method), 158
last (regex attribute), 71
last_traceback (in module sys), 23
last_type (in module sys), 23
last_value (in module sys), 23
launch (in module macostools), 204
launchurl (IC object attribute), 202
launchurl (in moduleic), 202
LC_ALL (in module locale), 97
LC_COLLATE (in module locale), 96
LC_CTYPE (in module locale), 96
LC_MESSAGES (in module locale), 97
LC_MONETARY (in module locale), 97
LC_NUMERIC (in module locale), 97
LC_TIME (in modulelocale), 97
1ldexp (in module math), 77
left (macconsole option), 197
len (built-in function), 5, 7, 17
letters (datain module string), 59
lin2adpcm (in module audioop), 184
lin2adpcm3 (in module audioop), 184
1in21lin (in module audioop), 184
lin2ulaw (in module audioop), 184
1link (in module posix), 112
list

type, 5, 6



type, operations on, 7
1list (NNTP object method), 158
list (built-infunction), 17
listdir (in module posix), 112
Listen (connection object method), 196
listen (socket method), 102
ListType (in module types), 25
literals

complex number, 4

floating point, 4

hexadecimal, 4

integer, 4

long integer, 4

numeric, 4

octal, 4
1just (in module string), 61
load (in module marshal), 34
load (in module pickle), 31
LOAD_ATTR (byte code insns), 55
load_compiled (in moduleimp), 36
LOAD_CONST (byte code insns), 54
load_dynamic (in module imp), 36
LOAD_FAST (byte code insns), 55
LOAD_GLOBAL (byte code insns), 55
LOAD_LOCALS (byte code insns), 54
load-module (in moduleimp), 35
LOAD_NAME (byte code insns), 54
load_source (in moduleimp), 36
loads (in module marshdl), 34
loads (in module pickle), 31
locale (standard module), 95
localeconv (in module locale), 95
localHost (TCP status attribute), 206
localPort (TCP status attribute), 206
locals (built-in function), 17
localtime (in moduletime), 85
Location (FInfo object attribute), 201
lock (posixfile method), 121
locked (lock method), 105
lockf (in module struct), 121
log (in module cmath), 78
1log10 (in module cmath), 78
login (FTP object method), 154
lognormvariate (in module random), 79
long

integer division, 4

integer literals, 4

integer type, 4
long (built-in function), 4, 17
longimagedata (in module rgbimg), 189
longstoimage (in module rghimg), 189
LongType (in module types), 24
LookupError (built-in exception base class), 11
lower (in module string), 60
lowercase (datain module string), 59
lseek (in module posix), 112
1shift (in module operator), 27
1stat (in module posix), 112

242

1strip (in module string), 61

mac (built-in module), 195
macconsole (built-in module), 197
macdnr (built-in module), 198
macfs (built-in module), 199
MacOS (built-in module), 203
macostools (standard module), 204
macpath (standard module), 195
macspeech (built-in module), 206
mactcp (built-in module), 205
mailbox (standard module), 168, 177
mailcap (standard module), 174
mainloop (Application method), 209
Majewski, Steve, 117
make_form (in modulefl), 217
MAKE_FUNCTION (byte code insns), 56
makefile (socket method), 102
maketrans (in module string), 60
makeusermenus (Application method), 209
map (built-in function), 17
mapcolor (inmodulefl), 218
mapfile (IC object attribute), 202
mapfile (in moduleic), 202
mapping

types, 7

types, operations on, 7
maptypecreator (IC object attribute), 203
maptypecreator (in moduleic), 202
marshal (built-in module), 29, 33
marshalling

objects, 29
masking

operations, 5
match (in module re), 65
match (in module regex), 70
match (re method), 66
match (regex method), 71
math (built-in module), 4, 76
max (built-in function), 5, 17
max (in module audioop), 184
MAXLEN (in module mimify), 178
maxpp (in module audioop), 184
md5 (built-in module), 191
md5 (in module md5), 192
MemoryError (built-in exception), 12
Menu (in module FrameWork), 208
MenuBar (in module FrameWork), 208
MenulItem (in module FrameWork), 208
Message (in module EasyDialogs), 207
Message (in module mimetools), 169
method

object, 8
MethodType (in module types), 25
MHMailbox (in module mailbox), 177
MIME

headers, 145

quoted-printable encoding, 175



MIME, base 64 encoding, 175
mime_decode_header (in module mimify), 178
mime_encode_header (in module mimify), 178
mimetools (standard module), 151, 153, 169
mimify (in module mimify), 178
mimify (Standard module), 178
min (built-in function), 5, 17
MiniAEFrame (standard module), 211
MiniApplication (in module MiniAEFrame), 211
minmax (in module audioop), 184
mkalias (in module macostools), 204
mkd (FTP object method), 155
mkdir (in module posix), 112
mk £ ifo (in module posix), 112
mktemp (in module tempfile), 88
mktime (in module time), 85
MmdfMailbox (in module mailbox), 177
mod (in module operator), 26
modf (in module math), 77
modules (in module sys), 23
ModuleType (in module types), 25
mono2grey (in module imageop), 186
move (in module macostools), 204
mpz (built-in module), 192
mpz (in module mpz), 192
msftoblock (CD player object method), 215
msftoframe (in module cd), 214
MSG_* (in module socket), 100
MTU (in module mactcp), 205
mul (in module audioop), 184
mul (in module operator), 26
mutable
sequence types, 6
sequence types, operations on, 7
MXInfo (in module macdnr), 199

name (in module os), 83

NameError (built-in exception), 12

National Security Agency, 194

ncols (macconsole option), 197

neg (in module operator), 26

NetMask (in module mactcp), 205

new (in module mds), 191

new_alignment (writer object method), 166

new_font (writer object method), 167

new_margin (writer object method), 167

new_module (in moduleimp), 35

new_spacing (writer object method), 167

new_styles (writer object method), 167

NewAlias (FSSpec object method), 201

NewAliasMinimal (FSSpec object method), 201

NewAliasMinimalFromFullPath (in module macfs),
200

NewChannel (voice object method), 207

newconfig (inmodulea), 212

newgroups (NNTP object method), 158

newnews (NNTP object method), 158

newrotor (in module rotor), 193

243

next (NNTP object method), 158
next (in module mailbox), 177
nextkey (in module gdbm), 118
ni (built-in module), 37
ni (standard module), 13
nice (in module posix), 112
nlst (FTP object method), 155
NNTP (in module nntplib), 157
nntplib (standard module), 156
NODISC (in module cd), 214
nofill (HTMLParser method), 162
nok_builtin names (RExec object attribute), 180
None (Built-in object), 2
NoneType (in module types), 24
normalvariate (in module random), 80
normcase (in module posixpath), 116
not

operator, 3
not in

operator, 3, 5
nrows (macconsole option), 197
NSIG (in module signal), 99
ntohl (in module socket), 101
ntohs (in module socket), 101
NullFormatter (in module formatter), 166
NullwWriter (in module formatter), 167
numeric

conversions, 4

literals, 4

types, 3, 4

types, operations on, 4
nurbscurve (in module gl), 223
nurbssurface (in module gl), 223
nvarray (in module gl), 223

O_APPEND (in module posix), 115
O_CREAT (in module posix), 115
O_DSYNC (in module posix), 115
O_EXCL (in module posix), 115
O_NDELAY (in module posix), 115
O_NOCTTY (in module posix), 115
O_NONBLOCK (in module posix), 115
O_RDONLY (in module posix), 115
O_RDWR (in module posix), 115
O_RSYNC (in module posix), 115
0_SYNC (in module posix), 115
O_TRUNC (in module posix), 115
O_WRONLY (in module posix), 115
object

code, 9, 33

frame, 100

method, 8

traceback, 22

type, 20
objects

comparing, 3

flattening, 29

marshalling, 29



persistent, 29

pickling, 29

serializing, 29
obufcount (audio device method), 227
oct (built-in function), 17
octal

literals, 4
octdigits (datain module string), 59
ok_builtin modules (RExec object attribute), 180
ok_path (RExec object attribute), 180
ok_posix-names (RExec object attribute), 180
ok_sys_names (RExec object attribute), 180
Open (connection object method), 196
Open (in module macdnr), 198
open (DialogWindow method), 211
open (Window method), 210
open (built-in function), 9, 17
open (in module aifc), 187
open (in module cd), 214
open (in module dom), 118
open (in module gdbm), 118
open (in module gzip), 108
open (in module posix), 113
open (in module posixfile), 121
open (in module sunaudiodev), 226
open (in modules anydbm, dumbdbm), 107
openlog (in module syslog), 125
openport (in module al), 212
openrf (in module MacOS), 204
operation

concatenation, 5

repetition, 5

dice, 5

subscript, 5
operations

bit-string, 5

Boolean, 2, 3

masking, 5

shifting, 5
operations on

dictionary type, 7

integer types, 5

list type, 7

mapping types, 7

mutable sequence types, 7

numeric types, 4

sequence types, 5, 7
operator

and, 3
comparison, 3
in, 3,5
is, 3
is not,3
not, 3
not in,3,5
or, 3
operator (built-in module), 26

244

opname (in module dis), 51
options (in module macconsole), 197
or
operator, 3
or_ (in module operator), 27
ord (built-in function), 18
os (standard module), 24, 83, 110, 115, 195
osType (dnr result object attribute), 199
OoverflowError (built-in exception), 12

pack (in module struct), 73
pack_array (in module xdrlib), 172
pack_bytes (in module xdrlib), 172
pack_double (in module xdrlib), 172
pack_farray (in module xdrlib), 172
pack_float (in module xdrlib), 172
pack_fopague (in module xdrlib), 172
pack_fstring (in module xdrlib), 172
pack_list (in module xdrlib), 172
pack_opagque (in module xdrlib), 172
pack_string (in module xdrlib), 172
package, 56
pardir (in module 0s), 84
paretovariate (in module random), 80
parse (in module cgi), 147
parse_header (in module cgi), 147
parsemultipart (in module cgi), 147
parse_gs (inmodule cgi), 147
parsedate (in module rfc822), 168
parsedate_tz (in module rfc822), 168
parseframe (CD parser object method), 216
parser (built-in module), 38
ParserError (in module parser), 40
parseurl (IC object attribute), 202
parseurl (inmoduleic), 202
parsing

URL, 159
PassiveOpen (TCP stream method), 205
path

configuration file, 56
path (in module os), 84
path (in module sys), 23
pathsep (in module 0s), 84
pattern (regex attribute), 67
pause (in module signal), 99
pause_atexit (macconsole option), 198
PAUSED (in module cd), 215
Pdb (in module pdb), 129
pdb (standard module), 23, 129
persistency, 29
persistent

objects, 29
pformat (PrettyPrinter method), 50
pformat (in module pprint), 49
PGP, 191
pi (in module cmath), 78
pi (in module math), 77
pick (inmodulegl), 223



pickle (standard module), 29, 32, 33
Pickler (inmodule pickle), 31
pickling

objects, 29
PicklingError (in module pickle), 31
pipe (in module posix), 113
PKG_DIRECTORY (in module imp), 35
platform (in module sys), 23
play (CD player object method), 215
playabs (CD player object method), 215
PLAYING (in module cd), 215
playtrack (CD player object method), 216
playtrackabs (CD player object method), 216
plock (in module posix), 113
pm (in module pdb), 130
pnum (in module cd), 215
pop-alignment (formatter object method), 166
POP_BLOCK (byte code insns), 54
pop-font (formatter object method), 166
pop-margin (formatter object method), 166
pop-style (formatter object method), 166
POP_TOP (byte code insns), 52
popen (in module posix), 113
port (UDP stream attribute), 206
pos (in module operator), 27
pos (regex attribute), 68
Posix

1/O control, 119, 120
posix

file object, 121
posix (built-in module), 110, 195
posixfile (built-in module), 121
posixpath (standard module), 115, 195
post (NNTP object method), 158
post_mortem (in module pdb), 130
pow (built-in function), 18
pow (in module math), 77
powm (in module mpz), 192
pprint (PrettyPrinter method), 50
pprint (in module pprint), 49
pprint (standard module), 48
preference (dnr result object attribute), 199
prefix

keyword, 56
prefix (in module sys), 23
PrettyPrinter (in module pprint), 48

preventremoval (CD player object method), 216

Print (in module macostools), 204
print

statement, 2
print_callees (Stats method), 138
print_callers (Stats method), 138
print_directory (in module cgi), 147
print_environ (in module cgi), 147
print_environ_usage (in module cgi), 147
print_exc (in module traceback), 29
print_exception (in module traceback), 29
PRINT_EXPR (byte code insns), 53

245

print_form (in module cgi), 147
PRINT._ITEM (byte codeinsns), 53
print_last (in module traceback), 29
PRINT _NEWLINE (byte code insns), 53
print_stats (Stats method), 138
print_tb (in module traceback), 28
process_request (SocketServer protocol), 176
profile (standard module), 133
profile function, 24
profile.run (profiler function), 136
profiler, 24
ProgressBar (in module EasyDiaogs), 208
PromptGetFile (in module macfs), 200
protocol

CGl, 145

HTTP, 145
prstr (in module fm), 222
psl (in module sys), 23
ps2 (in module sys), 23
pstats (standard module), 133
pstats.Stats (profiler function), 137
ptime (in module cd), 215
push_alignment (formatter object method), 165
push_font (formatter object method), 166
push_margin (formatter object method), 166
push_style (formatter object method), 166
put (put method), 106
putenv (in module posix), 113
putheader (HTTP method), 152
putrequest (HTTP method), 152
pwd (FTP object method), 155
pwd (built-in module), 115, 116
pwlcurve (inmodulegl), 223
PY_COMPILED (in module imp), 35
PY_FROZEN (in module imp), 35
PY_RESOURCE (in module imp), 35
PY_SOURCE (in module imp), 35

gdevice (in modulefl), 218
genter (in modulefl), 218
gread (in module fl), 218
greset (in modulefl), 218
gsize (qsize method), 106
gtest (inmodulefl), 218
queryparams (in module al), 212
Queue (standard module), 106
quit (FTP object method), 156
quit (NNTP object method), 159
quopri (standard module), 175
quote (in module urllib), 151
quote_plus (in module urllib), 151
quoted printable

encoding, 175

r_eval (RExec object method), 180
r_exec (RExec object method), 180
r_execfile (RExec object method), 181
r_import (RExec object method), 181



r_open (RExec object method), 181
r_reload (RExec object method), 181
r-unload (RExec object method), 181
raise

statement, 11
RAISE_VARARGS (byte codeinsns), 55
rand (in module rand), 80
rand (standard module), 80
randint (in module whrandom), 79
random (in module whrandom), 79
random (standard module), 79
range (built-in function), 18
ratecv (in module audioop), 184
raw_input (built-in function), 18
RawAlias (in module macfs), 200
RawFSSpec (in module macfs), 200
Recv (TCP stream method), 206
re (built-in module), 6, 62
re (regex atribute), 68
re (standard module), 59
Read (UDP stream method), 206
Read (connection object method), 196
read (audio device method), 227
read (file method), 9
read (in module imgfile), 224
read (in module posix), 113
readda (CD player object method), 216
readframes (afc object method), 187
readline (file method), 10
readlines (file method), 10
readlink (in module posix), 113
readsamps (audio port object method), 213
readscaled (in module imdfile), 224
READY (in module cd), 214
realpat (regex attribute), 72
recv (socket method), 103
recvfrom (socket method), 103
redraw_form (form object method), 218
redraw_object (FORMS object method), 220
reduce (built-in function), 18
regex (built-in module), 68
regs (regex attribute), 71
regsub (standard module), 72
relative

URL, 159
release (lock method), 105
reload (built-in function), 19
remoteHost (TCP status attribute), 206
remotePort (TCP status attribute), 206
remove (in module posix), 113
remove (list method), 7
removecallback (CD parser object method), 216
rename (FTP object method), 155
rename (in module posix), 113
reorganize (in module gdom), 119
repeat (in module operator), 27
repetition

operation, 5

246

replace (in module string), 61
report_unbalanced (SGML Parser method), 161
repr (built-in function), 19
request_queue_size (SocketServer protocol), 176
RequestHandlerClass (SocketServer protocol), 176
Reset (connection object method), 197
reset (SGMLParser method), 160
reset (XMLParser method), 163
reset (in module xdrlib), 172, 173
resetparser (CD parser object method), 217
Resolve (alias object method), 201
ResolveAliasFile (in module macfs), 200
resource (built-in module), 123
restart (in module macostools), 205
retrbinary (FTP object method), 155
retrlines (FTP object method), 155
RETURN_VALUE (byte code insns), 54
reverse (in module audioop), 185
reverse (list method), 7
reverse_order (Stats method), 138
rewind (aifc object method), 187
rewindbody (in module rfc822), 168
RExec (in module rexec), 180
rexec (Standard module), 13, 180
RFC

822, 168

1421, 175

1521, 175
rfc822 (standard module), 168
rfind (in module string), 60
rgbimg (built-in module), 189
rindex (in module string), 60
rjust (in module string), 61
rlecode_hgx (in module binascii), 171
rledecode_hgx (in module binascii), 171
RLIMIT_AS (in module resource), 124
RLIMIT_CORE (in module resource), 124
RLIMIT_CPU (in module resource), 124
RLIMIT DATA (in module resource), 124
RLIMIT_FSIZE (in module resource), 124
RLIMIT_MEMLOC (in module resource), 124
RLIMIT NOFILE (in module resource), 124
RLIMIT_NPROC (in module resource), 124
RLIMIT-OFILE (in module resource), 124
RLIMIT_RSS (in module resource), 124
RLIMIT_STACK (in module resource), 124
RLIMIT_VMEM (in module resource), 124
rmdir (in module posix), 113
rms (in module audioop), 185
ROT_THREE (byte code insns), 52
ROT_TWO (byte code insns), 52
rotor (built-in module), 193
round (built-in function), 19
rshift (in module operator), 27
rstrip (in module string), 61
rtnCode (dnr result object attribute), 199
run (in module pdb), 130
runcall (in module pdb), 130



runeval (in module pdb), 130
RuntimeError (built-in exception), 12
RUSAGE_BOTH (in module resource), 125
RUSAGE_CHILDREN (in module resource), 125
RUSAGE_SELF (in module resource), 125

s_eval (RExec object method), 181

s_exec (RExec object method), 181
s_execfile (RExec object method), 181
s_import (RExec object method), 181
S_ISCHR (in module stat), 126

S_ISDIR (in module stat), 126

S_ISFIFO (in module stat), 126

S_ISLNK (in module stat), 126

S_ISREG (in module stat), 126

S_ISSOCK (in module stat), 126

s_reload (RExec object method), 181
s_unload (RExec object method), 181
saferepr (in module pprint), 50

samefile (in module posixpath), 116
save_bgn (HTMLParser method), 162
save_end (HTMLParser method), 163

scale (in module imageop), 186
scalebarvalues (ScrolledWindow method), 210
scalefont (font handle method), 222
SchedParams (in module MacOS), 203
scrollbar_callback (ScrolledWindow method), 210
scrollbars (ScrolledWindow method), 210
search (in modulere), 65

search (in module regex), 70

search (re method), 66

search (regex method), 71

SEARCH_ERROR (in module imp), 35

seed (in module whrandom), 79

seek (CD player object method), 216

seek (file method), 10

SEEK_CUR (in module posixfile), 121
SEEK_END (in module posixfile), 121
SEEK_SET (in module posixfile), 121
seekblock (CD player object method), 216
seektrack (CD player object method), 216
select (built-in module), 104

select (inmodule gl), 223

select (in module select), 104

Send (TCP stream method), 205

send (HTTP method), 152

send (socket method), 103
send_flowing_data (writer object method), 167
send _hor_rule (writer object method), 167
send-label_data (writer object method), 167
send-line break (writer object method), 167
send_literal_data (writer object method), 167
send-paragraph (writer object method), 167
send_query (in module gopherlib), 156
send_selector (in module gopherlib), 156
sendcmd (FTP object method), 155

sendto (socket method), 103

sendWindow (TCP status attribute), 206

247

sep (in module os), 84
Separator (in module FrameWork), 208
sequence

types, 5

types, mutable, 6

types, operations on, 5, 7

types, operations on mutable, 7
sequence2ast (in module parser), 39
serializing

objects, 29
serve_forever (SocketServer protocol), 176
server

WWW, 145
server_activate (SocketServer protocol), 177
server_address (SocketServer protocol), 176
server_bind (SocketServer protocol), 177
set_call back (FORMS object method), 220
set_debuglevel (FTP object method), 154
set_debuglevel (HTTP method), 152
set_debuglevel (NNTP object method), 158
set_event_call_back (in modulefl), 217
set_form position (form object method), 218
set_graphics_mode (in modulefl), 217
SET_LINE_NO (byte code insns), 55
set_position (in module xdrlib), 173
set_spacing (formatter object method), 166
set_syntax (in module regex), 71
set_trace (in module pdb), 130
setarrowcursor (in module FrameWork), 209
setattr (built-in function), 19
setblocking (socket method), 103
setchannels (audio configuration object method), 213
setcheckinterval (in module sys), 23
setcomptype (aifc object method), 188
SetConfig (connection object method), 197
setconfig (audio port object method), 213
SetCreatorType (FSSpec object method), 201
SetDates (FSSpec object method), 201
SetEventHandler (in module MacOS), 203
setfillpoint (audio port object method), 213
SetFInfo (FSSpec object method), 201
setfloatmax (audio configuration object method), 213
SetFolder (in module macfs), 200
setfont (font handle method), 222
setframerate (aifc object method), 188
setgid (in module posix), 113
setinfo (audio device method), 227
setitem (in module operator), 27
setkey (rotor method), 193
setliteral (SGMLParser method), 160
setliteral (XMLParser method), 163
setlocale (in modulelocale), 95
setlogmask (in module syslog), 126
setmark (aifc object method), 188
setmode (console window method), 198
setnchannels (aifc object method), 188
setnframes (afc object method), 188
setnomoretags (SGMLParser method), 160



setnomoretags (XMLParser method), 163
setoption (in module jpeg), 189
setparams (aifc object method), 188
setparams (in module a), 212
setpath (in module fm), 222
setpgid (in module posix), 114
setpgrp (in module posix), 113
SetPitch (speech channel object method), 207
setpos (afc object method), 187
setprofile (in module sys), 24
setqueuesize (audio configuration object method), 213
SetRate (speech channel object method), 207
setrlimit (in module resource), 123
setsampfmt (audio configuration object method), 213
setsampwidth (aifc object method), 188
setsid (in module posix), 114
setslice (in module operator), 28
setsockopt (socket method), 103
settabs (console window method), 198
settrace (in module sys), 23
settypecreator (IC object attribute), 203
settypecreator (in moduleic), 202
setuid (in module posix), 114
setup (SocketServer protocol), 177
SETUP_EXCEPT (byte code insns), 55
SETUP_FINALLY (byte code insns), 55
SETUP_LOOP (byte code insns), 55
setwatchcursor (in module FrameWork), 209
setwidth (audio configuration object method), 213
SGML, 160, 162
sgmllib (standard module), 160, 162
SGMLParser (in module htmllib), 162
shelve (standard module), 29, 32, 33
shifting

operations, 5
show (console window method), 198
show_choice (in modulefl), 217
show_file_selector (inmodulefl), 218
show_form (form object method), 218
show_input (in modulefl), 217
show_message (in module fl), 217
show_object (FORMS object method), 220
show_question (inmodulefl), 217
shutdown (in module macostools), 205
shutdown (socket method), 103
SIG* (in module signal), 99
SIG_DFL (in module signal), 99
SIG_IGN (in module signal), 99
signal (built-in module), 98
signal (in module signal), 99
sin (in module cmath), 78
sin (in module math), 77
sinh (in module cmath), 78
sinh (in module math), 77
site (standard module), 56, 57
site-packages

directory, 56
site-python

248

directory, 56
sitecustomize (module), 57
sizeofimage (in module rghimg), 189
slave (NNTP object method), 158
sleep (in module macostools), 205
sleep (in module time), 85
dlice

assignment, 7

operation, 5
slice (built-in function), 19
SLICE+0 (byte codeinsns), 53
SLICE+1 (byte codeinsns), 53
SLICE+2 (byte codeinsns), 53
SLICE+3 (byte codeinsns), 53
SO_* (in module socket), 100
SOCK_DGRAM (in module socket), 100
SOCK_RAW (in module socket), 100
SOCK_RDM (in module socket), 100
SOCK_SEQPACKET (in module socket), 100
SOCK_STREAM (in module socket), 100
socket (SocketServer protocol), 176
socket (built-in module), 100
socket (in module select), 105
socket (in module socket), 101
socket_type (SocketServer protocol), 176
SocketServer (standard module), 175
SocketType (in module socket), 102
SOL._* (in module socket), 101
SOMAXCONN (in module socket), 100
sort (list method), 7
sort_stats (Stats method), 137
sound_similar (in module soundex), 75
soundex (standard module), 75
span (regex attribute), 67
SpeakString (in module macspeech), 207

SpeakText (speech channel object method), 207

splash (in module MacOS), 203
split (in module posixpath), 116
split (in modulere), 65

split (in module regsub), 72
split (in module string), 61
split (re method), 66
splitext (in module posixpath), 116
splitfields (in module string), 61
splitx (in module regsub), 72
sqgrt (in module cmath), 78

sqgrt (in module math), 77

sqgrt (in module mpz), 192
sgrtrem (in module mpz), 192
srand (in module rand), 80
ST_ATIME (in module stat), 127
ST_CTIME (in module stat), 127
ST_DEV (in module stat), 126
ST_GID (in module stat), 127
ST_INO (in module stat), 126
ST_MODE (in module stat), 126
ST_MTIME (in module stat), 127
ST_NLINK (in module stat), 126



ST_SIZE (in module stat), 127
ST_UID (in module stat), 127
StandardError (built-in exception base class), 11
StandardGetFile (in module macfs), 200
StandardPutFile (in module macfs), 200
start (regex attribute), 67
start_new_thread (in module thread), 105
stat (NNTP object method), 158
stat (in module posix), 114
stat (standard module), 114, 126
statement

assert, 11

del, 7

except, 11

exec, 9

if,2

import, 13

print, 2

raise, 11

try, 11

while, 2
Status (TCP stream method), 206
Status (connection object method), 196
stderr (in module sys), 24
stdin (in module sys), 24
stdout (in module sys), 24
stdwin, 129
stdwin (in module select), 105
STILL (in module cd), 215
Stop (speech channel object method), 207
stop (CD player object method), 216
STOP_CODE (byte code insns), 52
storbinary (FTP object method), 155
STORE_ATTR (byte code insns), 54
STORE_FAST (byte code insns), 55
STORE_GLOBAL (byte code insns), 54
STORE_NAME (byte code insns), 54
STORE_SLICE+0 (byte code insns), 53
STORE_SLICE+1 (byte code insns), 53
STORE_SLICE+2 (byte code insns), 53
STORE_SLICE+3 (byte code insns), 53
STORE_SUBSCR (byte code insns), 53
storlines (FTP object method), 155
str (built-in function), 19
str (in module locale), 96
strcoll (inmodule locale), 96
strerror (in module posix), 113
strftime (in moduletime), 86
string

type, 5
string (regex attribute), 68
string (standard module), 6, 59
StringIO (standard module), 74
StringType (in module types), 25
strip (in module string), 61
strip-dirs (Stats method), 137
strop (built-in module), 62
StrToAddr (in module macdnr), 198

249

struct (built-in module), 73, 81
structures

C, 73
strxfrm (in module locale), 96
sub (in module operator), 26
sub (in modulere), 66
sub (in module regsub), 72
sub (re method), 67
SubMenu (in module FrameWork), 208
subn (in module re), 66
subn (re method), 67
subscript

assignment, 7

operation, 5
suite (in module parser), 39
SUNAUDIODEV (standard module), 227
sunaudiodev (built-in module), 226
swapcase (in module string), 61
sym_name (in module symbol), 47
symbol (standard module), 47
symbol table, 2
symcomp (in module regex), 71
symlink (in module posix), 114
sync (in module gdbm), 119
syntax_error (XMLParser method), 164
SyntaxError (built-in exception), 13
sys (built-in module), 22
sys.execprefix

keyword, 56
sys.prefix

keyword, 56
syslog (built-in module), 125
syslog (in module syslog), 125
system (in module posix), 114
SystemError (built-in exception), 13
SystemExit (built-in exception), 13

tan (in module cmath), 78
tan (in module math), 77
tanh (in module cmath), 78
tanh (in module math), 77
tcdrain (in module termios), 119
tcflow (in module termios), 119
tcflush (in module termios), 119
tcgetattr (in module termios), 119
tcgetpgrp (in module posix), 114
TCPCreate (in module mactcp), 205
tcsendbreak (in module termios), 119
tcsetattr (in module termios), 119
tcsetpgrp (in module posix), 114
tell (aifc object method), 187, 188
tell (file method), 10
tempdir (in module tempfile), 88
tempfile (standard module), 838
template (in module tempfile), 88
temporary

file, 88

file name, 88



TERMIOS (standard module), 120
termios (built-in module), 119, 120
test (in module cgi), 147
tests (in module imghdr), 190
thread (built-in module), 105
tie (inmodulefl), 218

time (built-in module), 84

time (in module time), 86
times (in module posix), 114
timezone (in module time), 86
title (macconsole option), 198
TMPDIR (in module tempfile), 88
tofile (in module array), 82

togglepause (CD player object method), 216

tok_name (in module token), 47
token (standard module), 47
tolist (inmodule array), 82
tomono (in module audioop), 185
top (macconsole option), 197
tostereo (in module audioop), 185
tostring (in module array), 82
touched (in module macostools), 204
tovideo (in module imageop), 186
trace function, 24
traceback

object, 22
traceback (standard module), 28
tracebacklimit (in module sys), 24
TracebackType (in module types), 25

long integer, 4

object, 20

operations on dictionary, 7

operationson list, 7

string, 5

tuple, 5
type (built-in function), 2, 9, 20
typecode (in module array), 81
TypeError (built-in exception), 13
types

built-in, 2

integer, 4

mapping, 7

mutable sequence, 6

numeric, 3, 4

operations on integer, 5

operations on mapping, 7

operations on mutable sequence, 7

operations on numeric, 4

operations on sequence, 5, 7

seguence, 5
types (standard module), 9, 20, 24
TypeType (in module types), 24
tzname (in module time), 86

UDPCreate (in module mactcp), 205
ulaw2lin (in module audioop), 185
umask (in module posix), 114
uname (in module posix), 114

UNARY_CONVERT (byte code insns), 52
UNARY_INVERT (byte code insns), 52
UNARY_NEG (byte code insns), 52

translate (in module fnmatch), 95
translate (in module string), 61
translate (regex atribute), 72

true, 3 UNARY_NOT (byte code insns), 52

truncate (file method), 10 UNARY_POSITIVE (byte codeinsns), 52

truth UnboundMethodType (in module types), 25
value, 2 unfreeze_form (form object method), 218

try unfreeze_object (FORMS object method), 220

uniform (in module whrandom), 79
UnixMailbox (in module mailbox), 177
unknown_charref (SGMLParser method), 161

statement, 11
ttob (in module imgfile), 225
t tob (in module rghimg), 189

tty unknown_charref (XMLParser method), 164

1/0 control, 119, 120 unknown_endtag (SGMLParser method), 161
tuple unknown_endtag (XMLParser method), 164

type, 5 unknown_entityref (SGMLParser method), 161

unknown_entityref (XMLParser method), 164
unknown_starttag (SGMLParser method), 161
unknown_starttag (XMLParser method), 164
unlink (in module posix), 114

unmimify (in module mimify), 178

tuple (built-in function), 20
tuple2ast (in module parser), 39
TupleType (in module types), 25
txFont (macconsole option), 197
txSize (macconsole option), 197
txStyle (macconsole option), 197 unpack (in module struct), 73
Type (FInfo object attribute), 201 unpack_array (in module xdrlib), 173
type unpack bytes (in module xdrlib), 173
Boolean, 2 unpack_double (in module xdrlib), 173
complex number, 4 unpack_farray (in module xdrlib), 173
dictionary, 7 unpack_float (in module xdrlib), 173
floating point, 4 unpack_fopaque (in module xdrlib), 173
integer, 4 unpack_fstring (in module xdrlib), 173
list, 5, 6 UNPACK_LIST (byte codeinsns), 54

250



unpack_list (in module xdrlib), 173
unpack_opaque (in module xdrlib), 173
unpack_string (in module xdrlib), 173
UNPACK_TUPLE (byte code insns), 54
Unpickler (in module pickle), 31
ungdevice (in modulefl), 218
unquote (in module urllib), 151
unquote_plus (in module urllib), 151
Update (alias object method), 201
update (md5 method), 192
updatescrollbars (ScrolledwWindow method), 210
upper (in module string), 61
uppercase (datain module string), 59
URL, 145, 150, 159

parsing, 159

relative, 159
urlcleanup (in module urllib), 151
urljoin (in module urlparse), 160
urllib (standard module), 150, 152
urlopen (in module urllib), 151
urlparse (in module urlparse), 159
urlparse (standard module), 152, 159
urlretrieve (in module urllib), 151
urlunparse (in module urlparse), 159
user (standard module), 57
UserDict (in module UserDict), 26
UserList (in module UserList), 26
utime (in module posix), 114
uu (standard module), 170

value

truth, 2
ValueError (built-in exception), 13
varray (in module gl), 223
vars (built-in function), 20
verify_request (SocketServer protocol), 177
Version (in module macspeech), 207
version (in module sys), 24
vnarray (in module gl), 223
voidemd (FTP object method), 155
vonmisesvariate (in module random), 80

wait (TCP stream method), 205
wait (dnr result object method), 199
wait (in module posix), 114
waitpid (in module posix), 115
walk (in module posixpath), 116
wdb (in module pdb), 129
weibullvariate (in module random), 80
what (in module imghdr), 189
whichdb (in module whichdb), 107
whichdb (standard module), 107
while

statement, 2
whitespace (datain module string), 60
whrandom (standard module), 78
Window (in module FrameWork), 209
windowbounds (in module FrameWork), 209

251

WNOHANG (in module posix), 115
World-Wide Web, 144, 150, 159
Write (UDP stream method), 206
Write (connection object method), 196
write (audio device method), 227
write (file method), 10
write (in module imgfile), 225
write (in module posix), 115
writeframes (afc object method), 188
writeframesraw (aifc object method), 188
writelines (file method), 10
writer (formatter object data), 165
writesamps (audio port object method), 213
WWW, 144, 150, 159

server, 145

XDR, 171

xdrlib (standard module), 171
xgtitle (NNTP object method), 159
xhdr (NNTP object method), 158
XML, 163

xmllib (standard module), 163
xover (NNTP object method), 159
xpath (NNTP object method), 159
xrange (built-in function), 20
XRangeType (in module types), 25

ZeroDivisionError (built-in exception), 13
z£i11 (in module string), 61
z11ib (built-in module), 107



