QT QTR QIET FESVEERLE HOTYE
B T8 QOBPEOHQE RS SO GO
SUEOBRTBQRBOGH SHUE BERE
BEQOTEEOOT QETTE GEAOR
QTTE A P ESDERHRTE STQBET =
SBOCEOLEENE DR QR
w ONCLD CLD a1 3 BOLHQEE QR
E@M DY@ 0 a10P < cLD CLD 2 e DO 5 @
SRR QRERTE T 2 B
SCHTOOYHH HB QROJWWBYBHOTVH
wi=rtitee
TEYE DHEE S FEDEB SOR/TROIX
B ot 9.6 SHE OB 2 HPTE H8
a1olcrp 2 Verp e ciolloy, M AR OODE m
e OO OBTE AT B OORH OH BT
B0 HG8 LB SEOTRIEEH
BHRYTHEE SREOIT G GHIGEHR
TSR RORHBERYTOSAD T 94
G QERRWSHIVHRIE EQHOTARHE ¢
@@@@M A\awlo a ¥ cin] S ot Yo, 8 [anley eXclar, o,
USRS OEIECE AR @%
5

G anf.S

3 PO CLDY Q2 Q CLD o & a10/C. BAAOICNE, &
TREGCE VDB S BB OGPPSR

Q Q C 10! 8 APIYQ, & /¢ 9
EH H{ R HERYEEH B & HEHOSOREHIGSE

D QIO
ai

CL
CL
a1o

CLD

A
g &

¢

&
U']O
a1
CLD
cLd
070
Q
&
&
fa)
]
O
&
aio

Q
S
QS
LD Q']O

9
&

Context Lua Documents 1

Introduction

Sometimes you hear folks complain about the TEX input language, i.e. the backslashed com-
mands that determine your output. Of course, when alternatives are being discussed every
one has a favourite programming language and of course in practice coding a document in
each of them triggers similar sentiments with regards to coding as TgX itself does.

However, just for fun, I added a couple of commands to ConTgXt MKIV that permit you to
code your document in Lua. After all it is surprisingly simple to implement a feature like this
due to metatables. I was wondering if there was a more natural way to deal with commands
at the Lua end. Of course it’s a bit slower but often more readable when mixed with Lua
code.

So, we now can code in TgX, xml, METAPOST, as well as in Lua. Coding in Lua makes a lot
of sense when you generate content, for instance from a database.

From the users perspective a ConTgXt run goes like:
context yourfile
and by default a file with suffix tex will be processed. There are however a few other options:

context yourfile.xml
context yourfile.rlx —--forcexml
context yourfile.lua
context yourfile.pqr --forcelua
context yourfile.cld
context yourfile.xyz --forcecld

When processing a Lua file the given file is loaded and just processed. This options will
seldom be used as it is way more efficient to let mtxrun process that file. However, the last
two variants are what we will discuss here. The suffix c1d is a shortcut for ConTgXt Lua
Document.

A simple c1d file looks like this:

context.starttext ()
context.chapter("Hello There!")
context.stoptext ()

So, yes, you need to know the ConTgXt commands in order to use this mechanism. In spite of
what you might expect, the codebase involved in this gimmick is not that large. If you know
ConIEgXt, and if you know how to call commands, you basically can use this Lua method.

There are a few rules that you need to be aware of. First of all no syntax checking is done.
Second you need to know what the given commands expects in terms of arguments. Third,
the type of your arguments matter:

nothing : just the command, no arguments
string : argument with curly braces

Context Lua Documents 2

array : list between square backets
hash : assignment list between square brackets

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })

This is equivalent to:

\chapter{Some title}
\chapter[first]{Some title}
\startchapter[title={Some titlel},label=first]

Strings are interpreted as TgX input, so:
context.mathematics("\\sqrt{27°3}")
or, if you don’t want to escape:
context.mathematics([[\sqrt{273}]]1)

is okay. As TEX math is a language in its own and a de-facto standard way of inputting math
this is quite natural, even at the Lua end.

Appetizer
Before we give some more examples, we will have a look at the way the title page is made:

local todimen = number.todimen

context.startTEXpage ()

local paperwidth tex.dimen.paperwidth
local paperheight = tex.dimen.paperheight
local nofsteps 25

local firstcolor = "darkblue"

local secondcolor "white"

context.definelayer(
{ "titlepage" }
)

context.setuplayer(
{ "titlepage" 1},
{
width = todimen(paperwidth),

height = todimen(paperheight),
)

context.setlayerframed/(
{ "titlepage" },

{ offset = "-6pt" 1},

{
width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",

backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

s

for i=1, nofsteps do
for j=1, nofsteps do
context.setlayerframed/(
{ "titlepage" },
{

X
y

frame = "off",
background = "color",

backgroundcolor = secondcolor,
foregroundcolor = firstcolor,

foregroundstyle "type",

s
HCLDH

end
end

context.tightlayer(
{ "titlepage" }
)

context.stopTEXpage ()

return true

Context Lua Documents

todimen((i-1) * paperwidth /nofsteps),
todimen((j-1) * paperheight/nofsteps),
rotation = math.random(360),

3

Context Lua Documents 4

This does not look that bad, does it? Of course in pure TEX code it looks mostly the same but
loops and calculations look a bit more natural in Lua then in TgX.

A few examples

As it makes most sense to use the Lua interface for generated text, here is another example
with a loop:

context.startitemize ({ "packed" })
for i=1,10 do
context.startitem()
context("this is item %i",i)
context.stopitem()
end
context.stopitemize ()

Just as you can mix TEX with xml and METAPOST, you can define bits and pieces of a docu-
ment in Lua. Tables are good candidates:

\startluacode
context.startlinecorrection({ "blank" })
context.bTABLE()
for i=1,10 do
context.bTR()
for i=1,20 do
context.bTD({ align= "middle", style = "type" })
local r= math.random(99)
if r < 50 then
context (context.blue("%#2i",r))
else
context ("%#2i",r)
end
context.eTD()
end
context.eTR()
end
context.eTABLE()
context.stoplinecorrection()
\stopluacode

Here we see a function call to context in the most indented line. The first argument is a
format and the rest of the arguments is substituted into this format. The result is shown in
table 1. The line correction is ignored when we use this table as a float, otherwise it assures
proper vertical spacing around the table.

Not all code will look as simple as this. Consider the following;:

Context Lua Documents 5

85(18(46|35|67(60|87|95|34| 3 |71| 7 |43|47|15|73(66|81|93| 9
75|89 8 |15|33(42(25|92|57(58|10|31|83(93|69|35|72|65|98|41
3 |49|85|72(88|79(48|89|62|70|50(94|67(99|99|25|89|72|38|12
87(94|53(39|39|95|16|69|72| 3 |62|72|85|33|46(35|39(91|48|77
23(30| 6 |50(60(88|21|51(83|38|17|33|26|66|16|24|59|30|86(55
34(92(47|11|45(90|66|76|84(44|60({31({91|52|13|39(84|82|17|85
64| 7 (76|30|74|88|70(97(27|71|88| 4 |56|69|72(17|25|23|64|64
39(14(80|83|92(91|29|15| 4 (24|83|58(64|14|38|67|65|97|38|16
5 |58|28(13(62|83|13(92|41|99|63|59|48|92|59| 9 |26|70(14|25
5(70|74|43(91|61|25| 1 |55|41|96|72|32|94|17|75| 6 | 1 |97|82

Table1 A table generated by Lua.

context.placefigure(
"caption",
function() context.externalfigure({ "cow.pdf" }) end

)

Here we pass an argument wrapped in a function. If we would not do that, the external
tigure would end up wrong, as arguments to functions are evaluated before the function
that gets them. A function argument is treated special and in this case the external figure
ends up right. Here is another example:

\startluacode
context.placefigure("Two cows!",function()
context.bTABLE()
context.bTR()
context.bTD()
context.externalfigure(
{ "cow.pdf" },
{ width = "3cm", height = "3cm" }
)
context.eTD()
context.bTD({ align = "{lohi,middlel}" })
context("and")
context.eTD()
context.bTD()
context.externalfigure(
{ "cow.pdf" },
{ width = "4cm", height = "3cm" }
)
context.eTD()
context.eTR()

Context Lua Documents 6

context.eTABLE()
end)
\stopluacode

and

Figure1 Two cows!

In previous examples the function has no return value and as such ends up as string, but
other types are also possible. The following two calls are equivalent:

context.chapter(
{ "ref" } s
"Title"

context.chapter(
function() return { "ref" } end,
function() return "Title" end

)
and both are effectively:
\chapter [ref]{Title}

Because the ConTgXt user interface is quite consistent this kind of tricks is possible. Of course
more obscure interfaces can be supported as well by returning a function.

context.chapter(function return "*", "direct" end, "Title")
Of course, this also works out well then:
tex.sprint(ctx.catcodes, "\\chapterx{Titlel}")

But ConTgXt is not to happy with such chapters. The direct signals that no braces or brack-
ets should be added to the *.

A function call to context acts like a print, as in:

\startluacode
context("test ")
context.bold("me")
context (" first")

\stopluacode

Context Lua Documents 7

However, internally we use the the string.format function so you can pass more argu-
ments.

\startluacode
context.startimath()
context ("%s = %0.5f",utf.char(0x03C0) ,math.pi)
context.stopimath()

\stopluacode

Special commands

There is one function in the context namespace that is no macro:
context.runfile("somefile.cld")

Another useful command is:

context.enabletrackers({ "cld.print" })

but this is just the equivalent of the macro with the same name:

\enabletrackers[cld.print]

Disclaimer

This mechanism is still experimental and might change a bit as I'm not entirely convinced
that this is the right way to do things.

Hans Hagen
Hasselt NL
July 2009

